OPERATION PLUMBBOB

NEVADA TEST SITE
MAY-OCTOBER 1957

Project 37.4

MEASUREMENT AND PERMANENT RECORDING OF FAST NEUTRONS BY EFFECTS ON GERMANIUM DOSIMETERS

Issuance Date: August 27, 1958

CIVIL EFFECTS TEST GROUP
This is a preliminary report based on all data available at the close of this project's participation in Operation PLUMBBOB. The contents of this report are subject to change upon completion of evaluation for the final report. This preliminary report will be superseded by the publication of the final (WT) report. Conclusions and recommendations drawn herein, if any, are therefore tentative. The work is reported at this early time to provide early test results to those concerned with the effects of nuclear weapons and to provide for an interchange of information between projects for the preparation of final reports.

When no longer required, this document may be destroyed in accordance with applicable security regulations.

DO NOT RETURN THIS DOCUMENT
Operation PLUMBBOB Preliminary Report

Project 37-4

MEASUREMENT AND PERMANENT RECORDING OF FAST NEUTRONS BY EFFECTS ON GERMANIUM DOSIMETERS

By

B. Cassen and H. C. Gass

Approved by: K. H. Larson
Director
Program 37

Approved by: R. L. Corsbie
Director
Civil Effects Test
Group

Atomic Energy Project
University of California
at Los Angeles

September 1957

Formely restricted data
Handle as Restricted Data in foreign dissemination. Section 144b, Atomic Energy Act of 1954.

This material contains information affecting the national defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

1-2
LABORATORY AND FIELD EXPERIMENTS RELATIVE TO THE USE OF SEMICONDUCTOR FAST-NEUTRON DOSIMETERS WHICH WERE PURSUED ON A SMALL SCALE IN OPERATION UPSHOT-KNOThOLE AND OPERATION TEPOT WERE CONTINUED. CONSIDERABLE IMPROVEMENTS IN METHODOLOGY AND PROCEDURES OF DOSIMETER PREPARATION LEADING TO INCREASED ACCURACY, REPRODUCIBILITY AND SENSITIVITY WERE OBTAINED IN INTERIM LABORATORY STUDIES. RESULTS OBTAINED DURING OPERATION PLUMBBOB THAT TAKE ADVANTAGE OF THESE IMPROVEMENTS ARE REPORTED.
UNCLASSIFIED

CONTENTS

ABSTRACT .. 3

CHAPTER 1 INTRODUCTION 7
 1.1 Background 7
 1.2 Objectives 8

CHAPTER 2 METHODS 11
 2.1 Shot Participation 11
 2.2 Instrumentation 11
 2.3 Field Procedures 11

CHAPTER 3 RESULTS 14
 3.1 Interim Summary 14

ILLUSTRATIONS

CHAPTER 1 INTRODUCTION
 1.1 Dose-response Curves for Various Purities of Germanium 9

TABLES

CHAPTER 3 RESULTS
 3.1 Summary of Results 15

UNCLASSIFIED

5-6
Chapter 1

INTRODUCTION

1.1 BACKGROUND

Discovery of changes in the electrical conductivity of single-crystal germanium produced by exposure to a fast-neutron flux was the result of investigations by Lark-Horowitz and collaborators at Oak Ridge.¹ First attempts to use this phenomenon for dosimetric applications were made by the authors in a preliminary study² at Operation Upshot-Knothole in 1953. Between 1953 and 1955, extensive improvement was obtained in small-scale research and development at the UCLA Atomic Energy Project (UCIA-AEP). Participation was undertaken in Operation Teapot,³ and relatively excellent results were obtained with one purchased batch of germanium. At the same time results were obtained with material from other sources of supply which were very difficult to interpret. Variable surface conductivity conditions were also encountered. It was then realized that material could not be satisfactorily specified for purchase and that probably subspectroscopic amounts of impurities could radically change the response characteristics of the single-crystal germanium to fast neutrons. During 1956, the Biophysics Department of the UCLA School of Medicine, in cooperation with the UCIA-AEP, received a grant from the Air Force to study the preparation of single-crystal germanium so that it could be grown to have reproducible and specifiable properties with respect to its response to fast neutrons. A zone-melting purification and crystal-growing furnace was set up, and many melts were made under a wide variety of conditions.⁴ It was found that any type of previously observed response, e.g., that of the General Electric Co. (GE) and Hughes batches found during Operation Teapot,³ could be reproduced by control of minute amounts of certain additives such as metallic indium. Several such crystal ingots were grown in preparation for Operation Plumbbob. It has not yet been determined whether or not the prepared dosimeters are optimum for field measurements, but they are believed to be better than those previously used.
The basic findings of this interim effort on the preparation of germanium suitable for dosimetry are shown in Fig. 1.1. The dose—response curve of the material most highly purified by zone melt is represented diagrammatically by curve A. It had the highest slope and the crossover point (a) fell in the range of 100 to 150 rep. The relative behavior of other batches is shown by curves B, C and D. Material prepared by GE followed a response such as D, with a crossover point (d) in the region of 16,000 rep. However, the initial slope in the negative direction, indicated by the dotted line F, was higher than the slope of A above its respective crossover point. For this reason the GE material seemed to give indications of some of the internal shelter doses on shot Apple I in the dose range of 25 rep.3

Up to the present time, numerous unsuccessful attempts have been made to add controlled amounts of indium to a material of characteristic response A in order to shift its starting point beyond the crossover (a) shown on the abscissa of Fig. 1.1. Different parts of the same ingot have been shown to acquire different responses, and much of the ingot was usually unusable because of the resultant low resistivity of the dosimeters. Preliminary tests indicated that a practical procedure for application to the problems of Operation Plumbbob entailed a preexposure of dosimeters made of type A material to about 2000 to 5000 rep., e.g., by placing a batch at a selected distance from a shot earlier than the shots on which the dosimeters would be used for measurement purposes. The procedure would produce the "bump-over" desired, with the associated disadvantage that the dosimeters would require recalibration at the UCL—AEP to establish their initial resistances prior to field use.

1.2 OBJECTIVES

The main objective of the present operation was to determine whether or not the interim improvements and increased knowledge of the behavior of germanium dosimeters, as described in Sec. 1.1, could be utilized to obtain increased accuracy and sensitivity of fast-neutron dosage measurements made in the region of a nuclear detonation. A supplementary objective was to determine whether or not the higher initial negative slope of the type D material (Fig. 1.1) could be used to obtain greater sensitivity for measurement of fast-neutron penetration of personnel shelters close to GZ.

REFERENCES

UNCLASSIFIED

CONFIDENTIAL
Fig. 1.1—Dose-response curves for various purities of germanium.

Chapter 2

METHODS

2.1 SHOT PARTICIPATION

After discussion with other dosimetric groups participating in Operation Plumbbob it was agreed that maximum information on the performance of the single-crystal germanium fast-neutron dosimeters could be obtained with minimum effort and expense through cooperative participation. Germanium dosimeter stations similar to those used at Operation Teapot were placed adjacent to neutron and gamma-dosimetry stations surveyed and established by Projects 39.1 and 39.5 (ITR-1500 and ITR-1504). In this manner, resultant measurements could be directly compared with those made by other techniques. Participation of this nature was undertaken on shots Stokes, Doppler, Franklin Prime, Smoky, Fizeau and Laplace. On shot Smoky certain types of germanium fast-neutron dosimeters were placed in shelters in cooperation with Project 39.1 and returned to Project 37.1 for reading after their postshot recovery.

2.2 INSTRUMENTATION

The laboratory instrumentation and field methodology and instrumentation were not significantly different from Operation Teapot and the references given in it.

2.3 FIELD PROCEDURES

Germanium dosimeters were prepared for field experiments by inserting four dosimeters into an 8-in. length of 52S aluminum tubing with a 0.375-in. outside diameter and a 0.049-in. wall. The aluminum tube was swaged closed at one end, and after it was filled, the open end was closed with glass-fiber-reinforced scotch tape. Two of the filled tubes were wrapped in aluminum foil and placed within a 12-in. long thin-wall aluminum tube of 1-in. outside diameter. Both ends were
sealed with rubber stoppers to prevent infiltration of radioactive contaminants.

The stoppered units were fastened to standard angle-iron fence posts, 1.25 in. by 1.25 in. by 6 ft., which were driven into the ground so that the apex of the angle faced the direction of the oncoming shock front. The post was slanted so that the major dimension of the dosimeter unit was approximately perpendicular to the radial line from the point of detonation. The tubular units were fastened to the stake in its protected included angle and were held in position with standard fiber-glass-reinforced tape. The stakes and tubes were then completely covered with heavy-duty aluminum foil to act as a heat-flash shield. Previous operations had shown that even at stations set up near the base of towers this type of flash shield successfully prevented severe burning of the stakes and attached materials.

These units were located along the surveyed lines of Projects 39.1 and 39.5 near stations established by those projects as well as those of Projects 39.9 and 37.5. Slant distances were computed from information supplied by the former two groups. Two to four of the stoppered units were used at each of the close-in stations and one or two at the more distant stations. On higher yield shots stations were generally located at 500, 700, 800, 900, 1000, 1100, 1200, 1250, 1300, 1400, 1500, 1750 and 2000 yards from GZ. On smaller yield shots the distances were usually 500, 600, 700, 800, 900, 1000, 1250 and 1500 yards.

Postshot recoveries were customarily made on Day +2 day, since the resistance changes in the dosimeters produced by fast-neutron exposure are relatively permanent. This allows a later recovery after the areas have become more accessible from a Rad-Safe standpoint. In some cases recoveries were made much later without apparent effect on the dosimeters. If on recovery any tubes showed radioactive contamination beyond acceptable limits, the rubber stoppers were removed and discarded with the outside tube at the recovery site, and the non-contaminated inner containers were transported back to the Mercury laboratory.

After each shot recovered dosimeters were recorded and sorted into special holders in which they were transported to the UCLA–AEP for cold-bath measurements of resistivity changes.

Preliminary results obtained on shot Stokes indicated that the amount of indium in most of the dosimeters was not constant nor sufficient enough to yield linear responses in the lower dosage range. This suggested that instead of depending on exact indium-content control, the dosimeters should be preirradiated by exposure to about 2000 rep on a shot prior to the one which they would document. Therefore on shot Doppler 250 dosimeters were placed in a steel pipe at a distance chosen to receive approximately 2000 rep. These dosimeters were then
sent back to the UCLA-AEP for establishment of a new preshot resistance value. The chosen prodose proved to be optimum, and 99 percent of the instruments showed a slight increase in conductivity, indicating that they had been dosed just beyond their crossover points as explained in Sec. 1.1. These dosimeters were used on shot Franklin Prime, and a new batch was preirradiated by Franklin Prime for use on later tests.

REFERENCES

Chapter 3

RESULTS

3.1 INTERIM SUMMARY

The results of laboratory measurement of exposed dosimeters showed that the expected improvement in accuracy and sensitivity was not obtained. This was traced back to laboratory errors in pre-measurement. The results, however, have about the same quality as those obtained during Teapot. Table 3.1 is a summary of some of the measurements obtained. They and additional measurements, which are harder to definitely interpret at the present time, such as shelter measurements on shot Smoky, will be exhaustively analyzed in the final report.

The units of ΔC in Table 3.1 are micromhos per inch as used previously in WT-1170. In WT-1170 the symbol $\Delta \sigma$ was used instead of ΔC. They are equivalent.

REFERENCES:

<table>
<thead>
<tr>
<th>Shot</th>
<th>Slant Distance in Feet</th>
<th>No. of Dosi-meters</th>
<th>Average ΔC</th>
<th>Shot</th>
<th>Slant Distance in Feet</th>
<th>No. of Dosi-meters</th>
<th>Average ΔC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stokes</td>
<td></td>
<td></td>
<td></td>
<td>Stokes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2343</td>
<td>10</td>
<td>11,315</td>
<td>11,481</td>
<td>Franklin</td>
<td>1677</td>
<td>6</td>
<td>13,900</td>
</tr>
<tr>
<td>2581</td>
<td>15</td>
<td>12,405</td>
<td>7</td>
<td>Prime</td>
<td>1677</td>
<td>3</td>
<td>15,605</td>
</tr>
<tr>
<td>2848</td>
<td>13</td>
<td>7,157</td>
<td></td>
<td>1951</td>
<td>4</td>
<td>6</td>
<td>14,151</td>
</tr>
<tr>
<td>3044</td>
<td>9</td>
<td>3,891</td>
<td>6,111</td>
<td>1951</td>
<td>4</td>
<td>6</td>
<td>13,100</td>
</tr>
<tr>
<td>3354</td>
<td>10</td>
<td>1</td>
<td></td>
<td>2829</td>
<td>4</td>
<td>8</td>
<td>8,208</td>
</tr>
<tr>
<td>Doppler</td>
<td></td>
<td></td>
<td></td>
<td>2229</td>
<td>4</td>
<td>8</td>
<td>7,962</td>
</tr>
<tr>
<td>2121</td>
<td>16</td>
<td>16,308</td>
<td>8,662</td>
<td>2229</td>
<td>4</td>
<td>8</td>
<td>7,770</td>
</tr>
<tr>
<td>2343</td>
<td>10</td>
<td>10,338</td>
<td>10,222</td>
<td>2343</td>
<td>4</td>
<td>4</td>
<td>4,069</td>
</tr>
<tr>
<td>2581</td>
<td>14</td>
<td>6,232</td>
<td>7,360</td>
<td>2343</td>
<td>4</td>
<td>4</td>
<td>4,215</td>
</tr>
<tr>
<td>2704</td>
<td>21</td>
<td>6,570</td>
<td></td>
<td>2343</td>
<td>4</td>
<td>4</td>
<td>4,818</td>
</tr>
<tr>
<td>2848</td>
<td>17</td>
<td>3,955</td>
<td>2,570</td>
<td>2343</td>
<td>4</td>
<td>4</td>
<td>4,514</td>
</tr>
<tr>
<td>3044</td>
<td>7</td>
<td>2,918</td>
<td>1,494</td>
<td>2514</td>
<td>4</td>
<td>4</td>
<td>3,993</td>
</tr>
<tr>
<td>3354</td>
<td>8</td>
<td>1,519</td>
<td></td>
<td>2514</td>
<td>4</td>
<td>4</td>
<td>3,007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2811</td>
<td>4</td>
<td>4</td>
<td>3,233</td>
</tr>
<tr>
<td>Laplace</td>
<td></td>
<td></td>
<td></td>
<td>2811</td>
<td>4</td>
<td>4</td>
<td>3,338</td>
</tr>
<tr>
<td>1677</td>
<td>8</td>
<td>5,162</td>
<td></td>
<td>3093</td>
<td>4</td>
<td>4</td>
<td>3,274</td>
</tr>
<tr>
<td>1950</td>
<td>7</td>
<td>3,204</td>
<td></td>
<td>3093</td>
<td>4</td>
<td>4</td>
<td>3,874</td>
</tr>
<tr>
<td>2226</td>
<td>7</td>
<td>1,662</td>
<td></td>
<td>Fizeau</td>
<td>1869</td>
<td>10</td>
<td>9,196</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fizeau</td>
<td>1869</td>
<td>10</td>
<td>8,709</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2173</td>
<td>3</td>
<td>9</td>
<td>5,979</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2735</td>
<td>4</td>
<td>9</td>
<td>2,250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3039</td>
<td>8</td>
<td>9</td>
<td>2,165</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3633</td>
<td>10</td>
<td>10</td>
<td>360</td>
</tr>
</tbody>
</table>
DISTRIBUTION

Military Distribution Category 5-40

ARMY ACTIVITIES

2. Chief of Research and Development, D/A, Washington 25, D.C. ATTN: R&D
4. Chief Signal Officer, D/A, PO Division, Washington 25, D.C. ATTN: SPO
5. The Surgeon General, D/A, Washington 25, D.C. ATTN: MUR
6. Chief Chemical Officer, D/A, Washington 25, D.C. ATTN: Research and Development
7. The Quartermaster General, D/A, Washington 25, D.C. ATTN: Research and Development
9. Chief of Transportation, Military Planning and Intelligence Div., Washington 25, D.C.
11. President, Board #1, Headquarters, Continental Army Command, Ft. Sill, Okla.
23. Commandant, Command and General Staff College, Ft. Leavenworth, Kan. ATTN: ALLIADS
25. Secretary, The U.S. Army Air Defense School, Ft. Bliss, Texas. ATTN: Maj. Ergen V. Barth, Dept. of Tactics and Combined Arms
26. Commanding General, Army Medical Service School, Brooke Army Medical Center, Ft. Sam Houston, Tex.
28. Commandant, Walter Reed Army Institute of Research, Walter Reed Army Medical Center, Washington 25, D.C.
29. Superintendent, U.S. Military Academy, West Point, N.Y. ATTN: Prof. of Ordinance
31. Commanding General, Aberdeen Proving Grounds, Md. ATTN: Director, Ballistics Research Laboratory
33. Commanding Officer, Engineer Research and Development Laboratory, Ft. Belvoir, Va. ATTN: Chief, Technical Intelligence Branch
34. Commanding Officer, Fort Knox Arsenal, Dover, N.J. ATTN: MDACS
35. Commanding Officer, Frankford Arsenal, Philadelphia, Pa. ATTN: Cal. Tewe Kundel
36. Commanding Officer, Chemical Warfare Laboratories, Army Chemical Center, Md. ATTN: Tech. Library
37. Commanding Officer, Transportation and Station, Ft. Bragg, Va.

45. Director, Technical Documents Center, Evans Signal Laboratory, Beckner, D.C.
46. Director, Waterways Experiment Station, PO Box 631, Vicksburg, Miss. ATTN: Library
47. Operations Research Office, Johns Hopkins University, 6095 Arlington Rd., Bethesda 14, Md.
48. Commanding General, Quartermaster Research and Development Command, Quartermaster Research and Development Center, Hatik, Mass. ATTN: CBI Liaison Officer
50. President, U.S. Army Aviation Board, CONUS, Fort Rucker, Ala.

NAVY ACTIVITIES

63. Chief, Bureau of Ordnance, D/N, Washington 25, D.C.
70. Chief of Naval Research, Department of the Navy Washington 25, D.C. ATTN: Code 511
74. President, U.S. Naval War College, Newport, R.I.
75. Superintendent, U.S. Naval Postgraduate School, Monterey, Calif.
76. Commander, Joint Task Force Seven, Arlington Hall Station, Arlington 12, Va., ATTN: TD and RD
78. Commander, U.S. Fleet Training Center, Naval Base, Norfolk 11, Va. ATTN: Special Weapons School
81-82. Special Weapons Unit, Pacific, U.S. Naval Air Station, North Island, San Diego 35, Calif.
83. Commanding Officer, Air Development Squadron 5, VX-5, China Lake, Calif.
84. Commanding Officer, U.S. Naval Damage Control Training Center, Naval Base, Philadelphia, Pa. ATTN: AND
85. Commander, U.S. Naval Ordnance Laboratory, Silver Spring 19, Md. ATTN: XN
86. Commander, U.S. Naval Ordnance Laboratory, Silver Springs 19, Md. ATTN: H
87. Commander, U.S. Naval Ordnance Test Station, Inyokern, China Lake, Calif.
88. Commanding Officer, U.S. Naval Medical Research Inst., National Naval Medical Center, Bethesda 14, Md.
89. Director, U.S. Naval Research Laboratory, Washington 25, D.C. ATTN: Mrs. Katherine R. Chase
CONFIDENTIAL

90 Director, The Materials Laboratory, New York Naval Shipyard, Brooklyn, N.Y.
91 Commanding Officer and Director, U.S. Naval Electronics Laboratory, San Diego, Calif. ATTN: Code 622
92-95 Director of Operations, Headquarters, USN, Washington, D.C., D.C. ATTN: Operations Analysis
98 Director of Intelligence, Headquarters, USN, Washington, D.C., D.C. ATTN: Code 10
99 Officer-in-Charge, U.S. Naval Civil Engineering Research and Development Laboratory, Washington, D.C., D.C. ATTN: Civil Engineering Laboratory, Wash. D.C.
100-104 Technical Information Service Extension, Oak Ridge, Tenn. (Surplus)

AIR FORCE ACTIVITIES
105 Amt. for Atomic Energy Headquarters, USAF, Washington, D.C., D.C. ATTN: DC/N/E
109-110 Director of Intelligence, Headquarters, USAF, Washington, D.C., D.C. ATTN: Code 10
112 Amt. Chief of Staff, Intelligence, Headquarters, U.S. Air Forces-Europe, APO 631, New York, N.Y. ATTN: Director of Intelligence
113 Commander, USAF Reconnaissance Technical Squadron (Augmented), APO 631, New York, N.Y.
114 Commander, 475th Reconnaissance Technical Squadron, APO 631, New York, N.Y.
115 Commander, USAF Reconnaissance Technical Squadron, APO 631, San Francisco, Calif. ATTN: USAF Reconnaissance Technical Squadron
116 Commander, USAF Reconnaissance Technical Squadron, APO 631, San Francisco, Calif. ATTN: USAF Reconnaissance Technical Squadron
117 Commander, USAF Reconnaissance Technical Squadron, APO 631, San Francisco, Calif. ATTN: USAF Reconnaissance Technical Squadron
118 Commander, USAF Reconnaissance Technical Squadron, APO 631, San Francisco, Calif. ATTN: USAF Reconnaissance Technical Squadron
119 Commander, USAF Reconnaissance Technical Squadron, APO 631, San Francisco, Calif. ATTN: USAF Reconnaissance Technical Squadron
120 Director of Installations, DC/N/D, Headquarters, USAF, Washington, D.C., D.C. ATTN: Operations Analysis
121 Commander, USAF Research and Development Command, Andrews AFB, Washington, D.C., D.C. ATTN: MEM
123-124 Director, USAF University Library, Maxwell AFB, Ala.
125-126 Commander, USAF Air Force School of Aviation Medicine, Brooks AFB, Tex.
127-128 Commander, Wright Air Development Center, Wright-Patterson AFB, Dayton, Ohio. ATTN: MORE
129-130 Commander, Air Force Cambridge Research Center, 10 Hanscom Field, Bedford, Mass. ATTN: CROWT-2
131-133 Commander, Air Force Special Weapons Command, Kirtland AFB, N. Mex. ATTN: Tech. Info. Office
134 Commander, Lowry AFB, Denver, Colo. ATTN: Department of Special Weapons Training
135 Commander, 100th Special Weapons Squadron, Headquarters, USAF, Washington, D.C., D.C. ATTN: Operations Analysis
136-137 Commander, 100th Special Weapons Squadron, Headquarters, USAF, Washington, D.C., D.C. ATTN: Operations Analysis
138 Commander, Second Air Force, Randolph AFB, Tex. ATTN: Operations Analysis
139 Commander, Eighth Air Force, Westover AFB, Mass. ATTN: Operations Analysis
140 Commander, Fifteenth Air Force, March AFB, Calif. ATTN: Operations Analysis
141 Commander, Western Development Div. (AEC), PO Box 280, Ingledwood, Calif. ATTN: ORNL, R.G. Watts
142-146 Technical Information Service Extension, Oak Ridge, Tenn. (Surplus)

OTHER DEPARTMENT OF DEFENSE ACTIVITIES
148 U.S. Documents Officer, Office of the U.S. National Military Representative, USAF, PO Box 55, New York, N.Y.
149 Director, Weapon Systems Evaluation Group, OSD, Room 20310, Pentagon, Washington, D.C., D.C.
150 Chairman, Armed Forces Explosives Safety Board, R/D, Building 7-7, Gravelly Point, Washington, D.C., D.C.
151 Commander, Armed Forces Staff College, Norfolk, Va. ATTN: Secretary
152 Commander, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
153 Commander, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
154 Commander, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
155 ATTN: Technical Training Group
156-157 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
158-159 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
160-161 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
162-163 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
164-165 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
166-167 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
170-171 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
172-173 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
174-175 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
176-177 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
178-179 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
180-181 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
182-183 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
184-185 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
188-189 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
190-191 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
192-193 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
194-195 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
196-197 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
198-199 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.
200-201 Command, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.

UNCLASSIFIED

CONFIDENTIAL

FORMERLY CLASSIFIED DATA

18