SUMMARY OF BESRL SURVEILLANCE RESEARCH


U. S. Army
Behavioral Science Research Laboratory

May 1969
Research Studies are special reports to military management. They are usually prepared to meet requests for research results bearing on specific management problems. A limited distribution is made—primarily to the operating agencies directly involved.
The SURVEILLANCE SYSTEMS research program of the U.S. Army Behavioral Science Research Laboratory has as its objective the production of scientific data bearing on the extraction of information from surveillance displays, and the efficient storage, retrieval, and transmission of this information within an advanced computerized image interpretation facility. Research results are used in future systems design and in the development of enhanced techniques for all phases of the interpretation process. Research is conducted under Army RDE Project 2Q66704472, "Surveillance Systems: Ground Surveillance and Target Acquisition Interpreter Techniques," and 2Q667044A732, "Image Characteristics and Interpreter/Performance," FY 1969 Work Program.

The present publication presents the major problem areas, the rationale of BESRL's approach to their solution, and the general course of research studies completed or in progress in each area of related problems. The research effort is currently organized into the following Work Units:

The Determination of Interpreter Techniques in a Surveillance Facility

INTERPRETER TECHNIQUES

Influence of Displays on Image Interpreter Performance

IMAGE INTERPRETATION DISPLAYS

Intelligence Information Processing Systems

INTELLIGENCE SYSTEMS

Information Processing in Advanced Image Interpretation Systems

IMAGE SYSTEMS

BESRL research in surveillance systems is conducted as an in-house effort augmented by contracts with organizations selected as having unique capabilities and facilities for research in aerial surveillance. The experimentation is, in the main, performed in BESRL's Information Systems Laboratory.

J. E. UHLANER, Director
U. S. Army Behavioral Science Research Laboratory
SUMMARY OF BESRL SURVEILLANCE RESEARCH

BRIEF

Requirements:

INTERPRETER TECHNIQUES. To develop methods and procedures which maximize the accuracy, completeness, and speed with which intelligence information is derived from imagery—photographs, infra-red, and radar.

IMAGE INTERPRETATION DISPLAYS. To determine how interpreter performance is affected by variations in the characteristics of the image—magnification and image quality of photos, for example, and output of infrared and radar sensors; to specify techniques for accurate and speedy reporting of information; and to select or develop efficient procedures for change detection in comparing early and late cover.

IMAGE SYSTEMS. To integrate, evaluate, and improve advanced surveillance information processing systems through laboratory simulation and to develop effective techniques for team operations, data bank utilization, and control of imagery and information flow through the system.

INTELLIGENCE SYSTEMS. To increase the speed, accuracy, and completeness of field army intelligence processing in advanced computerized systems through research on man/machine functions, procedures, and information management.

Scope of the Present Publication:

Content of the present Research Study has been abstracted from a forthcoming BESRL Technical Research Report which summarizes in integrated fashion the rationale, broad objectives, and specific studies of the Surveillance Systems research programs conducted by the Support Systems Research Division of BESRL. Sketched very briefly in the present publication are the areas in which BESRL's manned systems experimentation has resulted in findings of interest to the Office, Chief of Research and Development, the Assistant Chief of Staff for Intelligence, and the U. S. Continental Army Command. Findings are applicable in optimizing performance of the human component in existing systems and in providing systems developers with information useful in design specifications for future systems. Included are the background discussion from the Report proper and a sampling of significant findings.
SUMMARY OF BESRL SURVEILLANCE RESEARCH

BACKGROUND

Military decisions require an estimate of the enemy's strength and weaknesses, his manner of deployment, and his possible courses of action. To provide the needed information, many sources of intelligence must be utilized. One major source is aerial surveillance.

A significant intermediary output of aerial surveillance systems is the imagery generated by the various sensor systems flown to cover the terrain of interest. The image interpreter is the individual who transforms the information recorded on these images into intelligence information. Not too long ago, the interpreter's problem was restricted to the interpretation of black and white photographs. Nowadays, he must also extract information from images generated by the more exotic sensors such as infrared and radar, and what is more, the information must be rapidly produced. Moreover, with the every-increasing volume of imagery the new systems are able to generate, interpretation facilities are being inundated. Within this context, the focus is on the interpreter who must provide intelligence information meeting standards of acceptability. Based on the current state-of-the-art, it is expected that he will remain the key information transformation agent for some time to come.

It must be recognized that intelligence information is information and as such possesses characteristics of information. From the usability point of view, there are two major aspects of concern: the information content and certain information attributes. The content of the information is important because it relates directly to the requirements imposed on the surveillance system and directly on the interpreter. The information attributes provide the means for direct assessment of the information provided and thus can serve as the yardsticks for many comparisons. BESRL's manned systems research rests on the measurement of these attributes—the accuracy and completeness of information and the speed with which it is generated.

Research in the area of surveillance systems must take into account a multiplicity of variables. There are, in fact, families of variables. For example, with respect to imagery, there is concern not only with type of image—photo infrared, and radar—but in photo imagery alone, there are vertical, oblique, and panoramic views. Photographs differ in scale and quality dimensions. They differ in content: They may depict different terrain (jungle, mountainous, swamp, desert); they may have been obtained under different weather conditions (cloud cover, snow, rain, sunny); they may show different degrees of enemy deployment in terms of target type and target numerosity. With respect to the interpreter, there are differences in ability, background, experience, and training. In requirements, there are differences as a function of echelon; for example, the commander of an
The army is more concerned with the global picture than with knowing where the foxholes are. The company commander, for his part, is vitally concerned with where enemy obstacles are located. Within echelon there are different information requirements. The artillery officer is concerned with targeting information and therefore needs map coordinate data of sufficient precision that his artillery fire will include the target within the effective radius of the shell bursts. The engineering officer may wish to locate the best place to cross the river and to know the width of the river in order to plan for the requisite number of pontoons to span the river. The infantry officer whose forces are attacking may be concerned with the location of enemy ambush sites, their mine fields, etc.; in the defensive posture, he may need to know what kind of enemy forces will attack him and where they are most likely to attack. Superimposed on these requirements are the requirements that the information provided be accurate and complete, and that it be provided "yesterday." There are hosts of other factors that enter into the picture, such as display, equipment, and procedures.

A surveillance system built for the Army should be able to provide for the needs of all its users. With the multiplicity of variables that must be expected to have an effect on performance, system developers are confronted with numerous trade-off situations where decisions must be made whether to go one way or another. Data are desperately needed to assist in coming to logical conclusions.

In the area of intelligence information, BESRL research deals with at least three performance indices—accuracy, completeness, and timeliness of information. Results in terms of these indices are not always in the same direction. For example, BESRL research indicates that, while cumulative completeness increases as a function of time, cumulative accuracy decreases. Furthermore, accuracy can be emphasized at the expense of completeness and vice versa. There are various other trade-offs involving accuracy, completeness, and time that can be made. The problem concerning the man-machine interface resides in the nature of responses interpreters can and do make when they interpret an image. The interpreter may provide some correct detections and identifications. However, he may also fail to detect targets actually present, he may misidentify others, and under some conditions he may report targets that are not present. In other words, the information generated by interpreters possesses an attribute of fallibility.

The research presented in the present report is directed toward the improvement of information output of future surveillance, interpretation, and intelligence systems with fallout for current systems. Studies and findings should be of interest to the users of these systems (interpreters, G2 and G2 Air, commanders, etc.), system designers and engineers, the Intelligence School, and the Intelligence community at large.
APPROACH IN BESRL'S SURVEILLANCE SYSTEMS RESEARCH

The systems concept played a major role in the formulation of the research approach in the area of surveillance. A system can be thought of in terms of structure and function. It consists of personnel, equipment, materials, procedures, and environmental conditions. It receives input, performs operations, and provides output.

A system can also be thought of as consisting of subsystems, each with its own input, operations, and output, and each funneling its output into the larger system. System improvement can be achieved through the improvement of its subsystems and components. Assessment of subsystem effectiveness can be based on output measures of two types: 1) those based on output of the subsystems, and 2) those based on total system output. The ultimate determiner of subsystem effectiveness is, of course, its contribution to the total system. However, subsystem output may be useful in itself in many studies and at times may be the only measurable output available for assessment.

BESRL studies typically fall into two corresponding major categories, those concerned with assessing subsystems or subsystem components as entities in themselves and those concerned with the integration of these subsystems or components into a larger system for total system evaluation. The approach has been to analyze current systems and conceptualizations of future systems for the purpose of study design and execution. For either category of study, the research is planned so as to yield empirical performance data reflective of the maximum amount of operational realism compatible with appropriate experimental control. Most studies have as a basic element the presentation of tactical imagery to trained Army image interpreters, requiring them to perform their usual tasks of detection, identification, and mensuration. Their responses can then be scored for accuracy (percent of responses correct), completeness (percent of targets actually present in the imagery that are reported), and speed (number of targets or reports per unit of time). The study ramifications attendant to this basic element vary widely, depending on the number, type, and complexity of the variables being studied.

In the simplest case, little may be required beyond use of a light table and the assortment of manual aids found in the standard Photo-interpreter kit--tube magnifiers, slide rule, etc. In the more complex case, studies deal with a full-scale semiautomated computerized imagery interpretation system--interpreter, equipment, and procedures are totally interrelated. Any change in an element of such a system affects other elements in the system--and not necessarily in the desired or expected direction.

BESRL'S INFORMATION SYSTEMS LABORATORY

To accomplish the research in a timely and meaningful manner for such complex systems, which frequently are still in the conceptualization stage, an Information Systems Laboratory has been constructed within
the Support Systems Research Division of BESRL. This laboratory contains light tables, full frame magnification viewers, random access slide projectors, cathode ray tubes with keyboards, pushbutton matrices, and typewriter keyboards. More important, all equipment is on-line to BESRL’s CDC 3300 computer which is time-shared with the normal statistical processing of research data. The time-sharing is on a priority interrupt basis, the laboratory experimentation inputs/processing/outputs having priority.

A prime virtue of the Information Systems Laboratory is its flexibility. It not only permits empirical simulation of computerized systems which could not otherwise be studied, but also facilitates experimental control and data collection for studies where computerization is not requisite to the study itself. Ways in which the computer can facilitate such experiments include the following:

Computer automation provides precise control over an experiment. The experimenter may wish to present a stimulus for exactly six seconds; he may wish to present information to the subject only when certain criteria have been met; he may wish to pause when the subject has reached a certain point in the experiment. Automation guarantees that such procedures are followed exactly.

Automation provides detailed recording of events as specified by the experimenter. Every stimulus given to the subject and every response made by the subject can be recorded, including times of occurrence. The subject need not be aware that he is being timed; timing by stopwatch, for example, can be a disturbing influence on the subject. The experimenter need not be physically present in cases where his presence might disturb the subject.

An automated experiment tends to be more uniform in quality. The biases that may arise from a particular person monitoring the performance of a group of subjects are minimized.

Instantaneous feedback can be provided the subject. Response-dependent experiments are very difficult to perform manually if the feedback depends on the responses in a complicated manner. Randomized stimuli that are not possible with manual techniques can be provided when automation is used.

Commercial designations are given for information only; their mention does not constitute indorsement by BESRL or by the Army.
BRIEF REVIEW OF BESRL'S SURVEILLANCE SYSTEMS RESEARCH

Research studies completed or in progress are grouped in three categories: those concerned primarily with specific tasks and functions and of themselves without immediate regard for systems use, those concerned with the display requirements for accomplishing actual or conceptualized tasks, and those requiring a systems context for execution because of concern with the totality of system performance as well and the separate and interactive contribution of the various subsystems and elements.

RESEARCH ON INTERPRETER TECHNIQUES

A number of aspects of interpretation have been subjected to investigation, notably problems of trade-offs among accuracy, completeness, and time, control of imagery viewing procedures, methods for increasing the proficiency level of interpreters, and the interpretation of infrared and radar imagery.

Research concerns interpreter activities with emphasis on the cues and signatures for tactical targets and definition of the interpreter's job in such functions as screening, interpretation, target location, plotting, and mensuration. BESRL findings indicate that many factors affect performance; the imagery, its content, quality, and scale; the requirements imposed on the interpreter with respect both to content and the attributes of accuracy, completeness, and speed; the man, his ability, background, and experience; and the method of displaying the imagery.

In many instances, the limits of the interpreter's abilities are taxed by the tasks imposed, as when he is required to derive information from poor quality imagery or from infrared and radar. Image interpretability and the nature of interpreter errors are prime areas of investigation. Studies in these areas permit determination of threshold conditions and diagnosis of difficulties and provide direction on how best to attain improvement in performance.

Other research studies indicate the importance of establishing optimal viewing time, since identification accuracy decreases as time spent in interpretation increases. Findings on plotting and target location have indicated that accuracy of the flight trace provided by the pilot of the imagery gathering mission has an effect on plotting performance. For screening, it was found that interpreters could report both priority and non-priority targets without significant increase in interpretation time and with little loss in the completeness and accuracy with which priority targets were identified. Good quality imagery at scales of 1:2000 viewed at a rate of six seconds per frame was screened with 86 percent accuracy; at .8 second per frame, accuracy was 75 percent. Another study identified potentially useful techniques to speed up imagery screening by means of eye movement and scoring techniques. For change detection, a computer method which relies on a check of new against old reports was better than the conventional comparative cover interpretation
method. For selected sensors (infrared and radar), cues and signatures have been identified and consolidated into potentially useful techniques for improved interpretation. A technique for reading the binary code numeric information of the matrix data block (including coordinate location) has been developed. The technique is easily learned and provides an accuracy rate of 98 per cent for reading the block.

IMAGE INTERPRETATION DISPLAYS

Research findings from studies on displays provide information on display requirements based on interpreter needs. These findings are of more immediate use to those concerned with the development of interpretation equipment and systems—system designers and engineers in particular. The nature of this work implies the need for discrete studies, since display requirements are of necessity tied to specific requirements imposed on interpreters under prevailing conditions.

Among previous BESRL research efforts, it was found that stereo viewing does not, in general, improve interpreter performance. It was further found that the time required for screening or interpreting the overlapping photography required for stereo viewing was considerably greater than for non-overlapping imagery, and with no additional benefits of increased accuracy or completeness. In a different study, it was found that interpretation performance is equally good with positive or negative transparencies, implying that under some circumstances at least the extra step of providing positives could be eliminated. Another study found that "error keys"—photographic references depicting conditions that often give rise to false alarms (inventive errors)—reduce appreciably the number of such reports. A study on the characteristics of photo keys revealed no advantage to the use of photos as opposed to schematics or to the use of vertical as opposed to oblique views. Use of small-scale illustrations, however, did prove detrimental in that additional time was required to magnify the views. These results must be considered tentative at this time because of the limited nature of the study.

In change detection, research findings indicate that the larger the difference in photo scale and/or orientation of the early and late cover, the lower the accuracy and completeness of change detection and the longer the response time. In addition, alternative target entry and correction procedures using such input/output devices as teletypewriters, cathode ray tubes with associated typewriter, and fixed-response keyboards interfaced in the Information Systems Laboratory with a CDC digital computer were studied.

SYSTEMS STUDIES

BESRL's image and intelligence system studies are concerned with a number of different facets relating to system development and system use. They serve the purposes of integrating findings from many relevant efforts,
of conceptualizing and evaluating system alternatives, and of concept-
ualizing and testing various aspects of system and computer use to
maximize the capability of the system. The underlying expectation of
some of these efforts is that future interpretation facilities will have
collectors, and that these computers can serve many more purposes than the
mere storage and retrieval of data and the computation required for
obtaining map coordinates. Within this area, BESRL is conducting research
to develop and use a systems measurement methodology, developing procedures
by means of which the computer can assist man in the decision process, and
determining how best to use computerized interpretation facilities for
maintenance or improvement of interpreter proficiency.

The research is realized through laboratory simulation and the develop-
ment of effective techniques for improving team operations, data bank
utilization, and control of imagery and report flow through the system.
A simulated advanced image interpretation facility has been developed in
BESRL's Information Systems Laboratory as a means of exercising a standard
measurement package for assessing the performance of alternative concepts
and system configurations— an effort but recently completed. The package
includes all materials and instructions necessary for evaluating a variety
of tactical image interpretation facilities. On the basis of such systems
evaluation, modifications and improvements can be introduced.

Emphasis is on the development of automated data handling techniques
to assist the decision process. Studies have been conducted on problems
of controlling input to the system, screening information for relevance,
transforming information into computer-acceptable format, inputting data,
displaying information, obtaining valid assessments of information credi-
bility, determining the critical functions that must be performed by men
and those that can be automated wholly or in part, and integrating diverse
information into intelligence reports and disseminating information.
TECHNICAL RESEARCH REPORTS


TECHNICAL RESEARCH NOTES


TECHNICAL RESEARCH NOTES (cont'd)


TRN 166 (C). Martinek, Harold and James A. Thomas. The effects of image resolution and lighting orientation on intelligence (Unclassified Title). February 1966. CONFIDENTIAL


TECHNICAL RESEARCH NOTES (cont'd)


RESEARCH STUDIES


OTHER