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ON MIXTURES OF DISTRIBUTIONS: A SURVEY
AND SOME NEW RESULTS ON RANKING AND SELECTION*

by
Shanti S. Gupta, Purdue University
and

Wen-Tao Huang, Academia Sinica, Taiwan

J. -Introduction and Summary

There is a large body of literature on the mixture of distributions

~ going over about the last eighty years. Since Pearson [84] comsidered

the estimation of the parameters of the mixture of two normal densities

in 1894, many more papers have appeared relatéd to the problem of statis-
tical inference about the parameters of mixture and probabilisti~ propey;ies
of mixture densitiés.~ In 1960, Teicher [120] started the study of goneral
considerations of identifiability of mixtures of distributions. Since then

the interest in the mathematical asﬁocts of mixtures has received an in-

'crcnsing amount of attention, and the appf&ach to the statistical inference

of mixtures has also scon more doevelopmont. Rocontly, the studies of mix-
tures and related topics in statistics and probability have developed. even
more 50, that these can be classified as a new area. For this reason, thg
present authors docided to review (survey) some of the literatire dealing

with somo aspects of this area which secnad'iuportant to thom. Thv topies

. covered raxate to probabilistic properties, estimation, hypothcsos testing,

- and tnltiple dacision (seleutiom and rnnking) procedurcs..

“This research was supported by the 0ffice of Nuval Rescarch Contract
NOOO14.75-C-~0455 at Rurduc Univvrsity
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The applications of mixtures of distributions can be found in many
fields such as ecology, taxonomy, fishery,biology, plant and animal breed-
ing, psychology and engincering, etc. In biology it is often des%red to
measure certain characteristics in natural populations of some particuiar
species. The distribution of such characteristics may vary markedly with
age of the individuals. Age is difficult to ascertain in samples from
populations. In such cases the biologist observing the population as a
whole is dealing with a mixture of distributions, the mixing in this case
is donc over a parameter depending on the unobservable variate '"age". In
agriculture remotely sensed unlabelled observations from several crops are
available and sometimes along with some labelled observations informatior
is also available about the distribution of individual crop population. On
the basis of such information one wishes to estimate the acreage »f a par-
ticular crop or all crops as proportion of the total acreage.

In statistical applications of mixtures, the mixture of densities can
be used to approximate some parameter(s) associated with a density. For
example, the coefficiont of skowness of Fishér's transformation z « % log (%;;0
of the correlation coefficient docreases more rapidly than the excess of its
kurﬁqsis when the sample size increases. The usual normal approxination'

for its distribution can be improved by mixing it with a logistic dis-

‘tribqtion. The resulting mixture approximation which can be used to estimate
~ the probabilities and the pefccntilés. conpares favorably in both accuracy .

~ oand simplicity (see [78]).

tn thigs paper we restrict ourselves to pfobnbilistic properties, esti-
mwation, hypotheses testing and multiple decisions. In Section 1 we yeview
these main results concerning probabiliseic properties of mixing distributions

including the identifiability, scale nixture, infiuita.divisihility,'utoqicness




and perfectness. In Section 2 we survey results on estimation theory which
include the method of moments, method of maximum likelihood estimation, method
of least squarcs, Bayesian estimation mcthod, and method of curve fitting. Vlor
the hypotheses testing problem, we give those results which provide tests for
hypothesis whether an obscrved sample is mixed from two samples with certain
unknown proportion; we also give those results which test if the mean of the

. mixture population is equal to some known value. All these are treated in

Section 3. And finally in the last section (Section 4) we study some selection

problems of mixture populations. We use the subset selection formulation
when the sample size is small and also study the case of larye sample using
the indifference zone approach.

At the end of the paper we have given a reasonably comprehensive and

useful bibliography concerning the topics discussed in this paper and also

the topic of experimental designs. This last topic ix not discussed in
this paper and hence the papers dealing with it are marked with u « in the

- bibliography.

1, Probabilistic Properties

3 e R R L o
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Lot G(0) be o cumulative distribution function. 'Let Fix,8) be a cumulative

g
s

'distriubtion function in x for oach 0 on the support of G. Assume r(x.O) is
Borel wmoasurable iﬂ 0 for every X. rhen ﬁc(x) definod by Hh(x) @ f r(x 6)d6(8)
- dsa distribution. func:ion. which is called a G-mixture of ¥ and G is reforred
- to as a tixing distrxbution. ﬂhon Gisa discrote distribution, nc(x) is
called a finite wixture and G is referred tu as a finite wixing distribution.
l..ot- the domiin of 8 be denotal by 9,' ad (@) denote o staalpehea of A siwh that _
cach point. of 9 is contained in 0(8). Let @ denote a class of mixing distri-

butions on (9, o(s}}; Lctilfdenote the class of al} G-wixture of F for all
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GEY. Let M denote a mappmg from.? to 4 such that for each GE,
M(G) = [ F(x,0)dG(6). Class &is called identifiable if M is one-to-one

-0

so that one can identify some unique mixing distribution Go when a certain

Hoe.(t/is given.

1A, ldentifiability of Nixtures

Some basic propeftiesI of mixture was studied by Robbins in 1948. t95].
Teicher [120] extended and generalized this work. Teicher [121] initiated
the study of identifiabill-it;r problem. In [121] location and scale parameter
wixtures are considered, i.o. when @ is, respectively, the location and the
scale parameter of F(x,e) Suffxcmnt conditwns for the identifiabilities
of &when 0 is, rospectively. thc locanon and scale parameter. are given.
It is also shown by Teicher (121} that &'is idontifiable if {F(x,8), 0 € @) is
an additively closed f_amny. i.e. F(ﬁ- 0’);F(x ) = F(x,e ‘62), the operation
is the usual convolution. In (122] nmessary and sufficient cond&tmns for
identifiability of finite mixturgs a;’q g;iven-.‘\ -:Iu_portant distributions such
as normal and gamma are shown to tb&"*"idéﬁffifipi)ig dndgzr‘finite uiiging. Some
sufficient conditions éro also given. fétnthe‘ clas:, g‘f.tbin&ialv _distrihutions
to be identifiable. » Ui : e )

These results are hrgoly oxtonded by Yakm' : yragins {127] They
consider the general case of p- d;uensiomn d;stributions. using the wthods

of mmar nlgebra. the authors obtain a necessafy aud mfficiont couditiou

-for identif'iability of finite uixturea. 1’Ms conditicn i% very uwf‘ul rince

it is casy to cheek j‘hey conclude that the fauixy of psdiumnswnnl Gaussiun
distributions, the family of Cauchy distributions, tho family of uan;cicgénor;te

negative binowisl distributions, the family of products of n exponentisl dis-

 tributions (for fixed integer n), and the union of the family of P-variate
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Gaussian and the family of products of n exponential distributions are all
identifiable. Using a result given by [122], Mohanty [76] showed that the
finite mixture of Laguerre distributions is also identifiable. Chandra [14]
has proved some results given by Teicher [122] and Yakowitz and Spragins [127]
by some other methods. Recently, Blum and Susarla 91 gave a short and clear
set of equivalent conditions for identifiability. Let A = {F(x,*): x €R}.
Denote CO(g) the Banach space of continuous functions ong which.vanish at

« and the norm is given by the sup norm. Blum and Susala [9] showed that if
AC Co(g). then &is ident.ifial‘)le if, and orly if A generates C,f3) in the

sup norm.

1B. Scale Mixtures .

When the mixture is defined in the form HG{x) ] f F{%)d(}(‘a). the mixture
is called the scale mixture. This kind of mixture hasn,special interest both
in probability theory and statistics. It is easy to sec that the density

and the assocliated characteristic 'f‘unction of'HG(x) can he written, respoectively,

a8

ho(a) = [ GEGIGO). (1) - fbmfctewcm.

In terws of random variables, we denote them by 2 = dxv  (~ g feans equality in
distribution) where X, Y and Z are, respectively, associated with Fx(si. (:y(e_)

and 0 (x). It is interesting to note that the class of scale mixtures is

- closed under the oﬁerat.ioﬁ of Scnle mixing, ic if FE Y, the clasxk of seale

-
mixtures, then HEYwhere H(x) = I Pt%i)dc(m where G(0) is some distribution
0 :

function on (0,) r‘naf‘ineﬁg = {2 -.dxy). ‘l‘t&m, wo have for u » 0,

0cpel, B, FyEN wp Fylan) ¢ (1 - p)F,(ax) €4, The conditions for

- ~ the ideatifiability in the case of scaie mixture can be put in another form in

torms of momcnt cdmlitioixs which is given by Keilson and Stoutel [64]

AR
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as follows. If X # 0 a.s. and E|X[S < = for some € > 0 and if EIZie < o,
then E YE< = and there exists one-to-one correspondence between Z and Y
(and¥). Now, if we assume X to be a normal with mean 0, or, the kernel of
the mixture, i.e. F(x,6) is the normal distribution function with.mean 0; we can
characterize the class of mixtures. Let &(9) denote the class of scale
mixtures (variance mixtures) of normal distribution with mean 0. From the
Bernstein's representation theorem for completely monotone functions (see
[37 p. 415]) we can conclude that f€& &{¢) if, and only if, ve(t), the
characteristic function of f, is an even function and wf(/f) is completely
monotone on (0,»)., We recall that h(x) is completely monotone on (o0,*)
if (-l)“h(“)(x) >0 forx>0andn =0,1,2,.... Accordingly, by checking

- the conditions, it can be seen that the Cauchy distributions, the Laplace
distributions, student t-distributions and the symmetric stable distributions
ave all in the class &#(s). This was obtained by Kelker [66]). Alse, logistic
and double exponential distributions belong to &/(¢) ([1]). To characterize
&(%) in another type, we restate a result of Schoenberger [104] as follows:

€ (3} if, and only if there exists a function ¢ such that @-f.(t) e '.-';(g?)

and for to= (tataat), Gplt) = 0(|512), a p-dimensional characteristic

function for each p {p *pl.z,...). It was shown in [64]) that &¢(s) is closed
under- the wultiplication cf densities with suitable renorming if the product

is integrable. 'IF 2 has density fz(z) which is symmetric about 0, Mohanty

{76] showed that a necessary and sufficient condition for 2 =4 N Y, where

N denotes thezero weén normal random variable, is that for semek (5g0k?2(!§) > 0,
for 2 > 0. He also found some special correspondence botween 2 and Y. If

Fo(2) o oSt
- ) l ’ e 9

i.e. %’Y is the asvmptotic distribution of the well-known Kolwogorov's goodness

-
. s k-1 ,2 <3 2'2
is logistic, then Gy(y) = 2y - £y 7 expl-k/2y")
: ..

of fit statistic. This rosult is useful for Monte Carlo studies. It was

e A —— s A SPIOE o ed8 S S0 bar Y
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also found that if Z is double exponent, then % Y2 is exponential. Finally,

it is interesting to ask how broad is the classs &{(¢). For given

By, 0y(5 < @) < ay), let F € (6 with F(x)) = o) and F(x)) = a,. let

&09; Xps Xy, 0, az) = {H(x): H(xl) = a), H(xz) = a,, H(x) € &(¢$)}. Then,

Efron and Olshen [35] showed that, there exists an F* € (¢, X1 Xy Ay, a,_\)

such that F*(x')= max H(x') for x' € (xl, xz) and F*(x")= min H(x") for

x" ¢ (xl, xz) where the maximum and minimum are over the set H(9$; X)s Xa» “1. az).
If X is considered to be a gamma distribution of order a (0 < a < =),

we denote the class of mixture b)’MG(u). Then, we note that %(Q)CMG(B) for

a <B8. When ¢ = I,MG(I) is the mixture of exponential density and for

f, € MGCI), f,(x) is completely monotone. (1) plays a key role in

stochastic processes reversible in time. Kingman [67) showed that any density

¥(x) on (0,=) can be approximated arbitrarily closely by a finite mixture

of expommj:ial densities and this mixture is in ﬂ%(l). Let K/gtn) denote

b

the clase of mixtures of T+ T, where I'  denotes the gamma of order a and

u’
1‘2 denotes the dual of l‘a. Then, for a < 8, ﬁ’g(g‘) C ﬁ*g(ﬁ) and
1in #(a) = #(9) (see (63]). | |
Qe

Another important property concorning misture is the infinite divisibility.
Me rocall that a random variablo X is infinitely divisible (1.d.) if, for any
. positive integer n, there exist indopendently identically distributed random

variables X xz....,xn ‘suc-h that Xad Xy ¢ :):2 s X Tt has been shown 1)

ll
that in many fa_u_ili'os of i.d. _disti‘ibuticn functions, the property of i.d.

is preserved under the operation of mixing, Furthermore, for certain fumilies,
this property still holds even vhen mixing and convolution ave appliced repeatedly.
To find such a class,r define _‘!o to be 4 set of all real positive characteristic
functions that are log-convex on (0,). Then it is shown in [64] that & i
closed under (a) mixing (b) raising to a positive power (c) scaling (d) multi-
plication and thus (ﬁ) any co.biuafim; of (a), (b), (c) and (d).

s

e e e 1Tl e e S At e T o, et e it i A




For the scale mixing of normal distributions, Kelker [66] showed that
if the mixing distribution is non-degenerate and finite, i.e. G(b) = 1 for
some finite b, then HG(x) isnot i.d.. On the other hand, we note that Hc(x)
is 1.d. if G(x) is i.d. (see [64]).

Following the notation tﬂ&(l) introduced earlier, that is, the class
of mixtures with mixand a standard exponential density, it is shown [64]
that each clement in (1) is i.d. Also, cach eloment in &3(1) is i.d.

Now we consider the power mixture. Let wx(t) be an infinitely divisible

characteristic function. We define ¢z(t) = f:{wx(t)}ﬁdcyte) as the power
mixture of mx(t) (or equivalently X). Them, it is easily seen that QZ(t)
is 1.d. and the class 4(X), the set of all power mixtures of @x(t). is
¢losed under mixing and convolution (sce [64]).

It is interesting to note that all scale mixture of Cauchy distributions
are i.d. (see [66]). For the scale mixing Steutel [116] characterizes a big

class which are i.d.. Wo state it as follows, If @(t) is i,d.. then

8

R A )

is ar i.d. characteristic function for 6 » 0 and
6.(t) = [ ¢(8)dG(9) is also i.d..
[ O . V

1€, Some Other Properties _

Lét (X, of, P) be a probability space. A set A € ufis called atom of
P if for each B C A such that B € ﬂ'eifher P(B) = 0 or P(B) = P(A). P is
called atomic if each positive measurable sét contains an arom. P i3 non-
atomic otherwise. fhe'ateeic or non-atomic proparties-of':he airturc
aeasurés are not nlwéys ﬁreservod, In [90] an example was given where the
mixture of a non-atomic |MpASUre is.atouig. However, on a real line or a
subset of a real line 2, if the probability weasure B(x,*) is non-atomic

for cach x, then the sixture §s always non-atomic for any probability
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measure G(8). For other more general cases, three sufficient conditions
were given in [90] for the non-atomicness of the mixture when the mixand
mgasure is non-atomic.

The perfectness of a probability measure was first discussed in the
book [42]). This concerns thce approximation of a measurable set by a closed
or open set. For a probability space (X, @f, P), P is called perfect if
for every Qf<measurable real-valued function f on X and every subset S of
the real line for which f'l(S} € of, there is a linear Borel set TC S such
that P(f'l(S) = P(f'l(T)). To check the perfectness of P, Sozonov [101)
showed that P is perfect if, and only if, for each Sf-measurable veal-
vaiued function f on X there is a lincar Borel set AE.CIf(X) such that
P(E'X(Af)) = 1. Accordingly, it is easy to see that a discrote measure
k is perfect. We call a mixture measure perfect ov nau-ﬁerfect accovding to
whethor the mixing measure is perfect or not. Rodine [97) cenjectured that
perfect mixtures of perfect measures are perfect. [t was shown to be false
'bi Rnnachaudran {89]. However, it is true that the perfect mixtures of dis-

~ crete measures (thus perfect) are arfect (sov [89]). In general, perfect

§ . mixture of non-perfect measures can be perfect. The perfeciness of the
§ eixture and mixand measures doos not guarantve the perfectness of the mixing
% ) soasure (see ISQI).
: 2. EBstimation
{ Let H(x) = f F(x,a)dG(a) be the mixture distribution. If G(a) is
discrete, then H(x) is given by H(x) = { 0 P(x.ai) ¥hon the susmation
1!0
is finite, N(x) is callod Finite wixture. In this section, we study the
i prodilom of ostimating G(o) bused on indopendent observatiovns from H{s).
: " However, for the most part we will discuss the case of finite mistures.
- g For the case of finite wmixtures, the study is tiwen for the estimation of
&
g

TODS KA AR a5 il $R. 1,

i
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Oi and a.. The methods for estimation can he classificed as the method of
moments, method of maximum-likelihood estimation, the minimum square method,
Bayesian estimation method and the method of curve fitting. In this

problem, all mixture distributions are assumed to be identifiable so that
theestimations of parameters make sense. Some important classes of con-
tinuous and discrete distributions which are identifiable have been mentioned

in Section lA.

2A. Method of Moments

In 1894 K. Pearson [84] studied the dissection of asymptotic and sym-
motric frequency curves into two components of normal frequency distributions.
This may be the earliest paper that investiguted the estimation of parameters
in the finite mixture case by the use of the mathod of moments. Let
#{x, u, az) denote the normél ¢df with mean uy and va:iaﬁce 02. The mixture
s given by H(x) = ¢ (x, u, od) + (1-a) & (x, uye €3). K. Pearson [84] com-
puted the first five noments andrby equating the population momonts to the
sasple woments he obtained a nenie (Oth degree) equation. Solving for-these
equations he ?inally obtained the estimates for a, Bys 9y ¥y
and o,. However, the estimates are not unique. He used the data of 1000
crabs frem Naples. For study of fhe frequency distributions of the breadth
of forehvad of crabs, assuming the crabs were from iué differont species, he
considered the ratio of the forehead to the body-length as the abscissae of

the cufve. Applying the sethod he developed, he arvived at two sets of

‘solutions. This lack of uniqueness of solutions bothered Pearsen and he

suggested choosing the set of estimates shich resulted in the closest

 agreowment botwech the sixth central soment of the saﬁpla and the corvesponding

woment of the wixture which are suppdsed to e fitted. Charlier in 1906 [16]

R UPUSVSIY YOPIL SR
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‘;dit;oné; chigsquare estimates were also ﬁiscussédl_ An example wag pro-

- vidéed to illustrute the procedure proposed For the estimates. llowever,

‘sdldtioﬁ to the examplé given by Cehun [21) was;pyoyidqd by Hluwkins [501..

11

suggested a somewhat simpler but still laborious, solution of the moment
equations involving a cubic and the ratio of two other polynomials. Burrau
in 1934 [13] computed certain functions of the moments which are expressed
in terms cf the five parameters to be estimated. In the same year Stromgren
[117] computed some tables and charts to aid calculation of solutions of
some equations which are derived using some given func£ion of moments. Again
in the same year of 1934, Pollard [86] considered the dissection of a Sym-
metric density into three components of normal density. Under some assump-
tion.Pollard was able to reduce eight parameters to five. Since the density
is assumed symmetric so that odd moments are zero. Since five equations are
needed for the five unknown parameters, the first eight moments are computed.
Pearson's solution [84] are not applicable in this case, However, the dev-
elopment is analogous.

Instead of moment equations, one might expect the application:of tech-
niques involving iteration for maximum likelihéod gquéﬁioné? 'This has been
done, in fact, by Rao [91] for speéial qase §i ='62{1'Th§s assdmbtionAsim-.
plifies the problem considerably. However, thé'qalgﬁlaﬁions_involygd-areﬂ
still quite cumbersome.l _ " | .

In 1967, Cohen {21] again dérived,the nonic;gqnatibn which- was first

obtained by Pearson. Cohen considerably roduced'theltoial;cpmpututionul if'

-effort otherwise required. Same special cases considered by Cohen are ‘1”

9, r 9y, =00rf; =0, = 6 Some conditional maximun- 1ikelihood and con-

the problem of. lack of uniqueness of sqiutions still)}wmaﬁnod. Another

A

R

. -
\
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In general, multiple solutions for the estimate of parameters are possible.
When multiple solutions occur, cither solution would be the one of intercst
and should be cxamined with an eventual choice of a preferred solution in
mind. And when a clear decision can not be made on the basis of ‘any tests,
a larger sample should be taken if conditions so permit. Even if some tests
are possible, the confidence of conclusion of the estimates are far weakened.
Having multiple solutions for estimate is one of the shortcomings for the
application of the method of moments.

Later Rao [92] considered the same problem for the special case of
cqual variances and his results led to a simple set of equétions having a
unique solution. Rao's method was later programmed for computer's use by
Hasselbled [48] .. 1l was found to work very well.

“Gregor [43) based on the idea of Doetsch [30] as provided by Medgyessi

'[73] cdnstrﬁctcd an algorithm which can be used to find the mean of each

component withgihe aid of a Fourier transformation of the given density

function. The mbthodkpf reduction of variances was utilized to determine

the unknown viriance and frequencies of the components (using the continued

‘fraction abproximation For~the error function). To test the goodness of

"fit Kolmogorov- Smirnav tcst stngistics wero used.

bay {27] considerad the ostim&te of tho proportion of mixture a by
the wethod of momeuts ﬂhon ench companenf is a multivariate normal with

ccmmon~vari&nce matrix. For tho univariate case, some, sinulation results

: showod the e«-timata behave reasombly nearly 4s well as minxm ukelihood

estimate. However. when tbs dzmenéionnlity of the coiponent is ltrgef,

tha cstim&tes &ppear poor. 3




Damrtedesa

5

i aaatig o R Y RS S

© - Ao Mt e e o i

S,

et o st et < ns i
22 3

:ﬁ#:cfﬂ-&g;gfg.:%fb:i;ﬁl Gy TR

e SO R

gt

- PUIRIBIEAI ot i ping

Rl

e A IR Sl

e ST

D D T

13

John [56] considered a related but different model of problem.
It was assumed that the sample of size N was the result of mixing a
random sampie of size N1 from a p-variate normal population with mean
¥y and the covariance matrix § with an independent random sample of size
N2 from another p-variate normal population with mean Hy and covariance
matrix t. It was desired to estimate Nl’ NZ’ Bys My and t. The method of
moments was considered for the case p = 1. It has been shown that in this
case there is an unique of the solution for the estimates. The same method
proposed can be applied to the general case of p > 1. Asymptotic normality
of the moment estimates was also studies by John [56]. For p = 2, an ex-
ample was worked out using the proposed method.

When the components are other than normal, Mendenhall and Hader [75]
considered the exponential populations. Rider [93] also considered the same
case with less restrictions. He derived the estimates by the method of
moments. It was shown that the estimatc obtained were consistent. However,

it is not clear that the ostimates always exist. Cohen [20] considered the

cases of mixture of the Poisson distributions and a mixture of one Poisson

and one binomial. In the former case, he considored the estimates based

on the first two sample moments and the zero sample frequoncy. Again, he

considored.the mixture of truncated Poisson_distributions with niésing 2oro

classes. For the latter case, he used the tochnique'of factorial momonts.

As the author pointed cut, in practice, the more difficult and most important

problenm is to determine which components are appropriite to fit the data,
Rider [94) also considered the case of Poiszon aixture, aid computed
nsymptotic'vériancos. When the components are binomial, Blischke (5] used
the technique of Fnctorial mononts to obtain some rolations awnng memonts
and ‘parameters. Pirst throo moments wore computed to obtain three equations

$0 that a unique-solution is possible for thres uaknown parameotors. Howover,
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the estimates obtained by Blischke [5] have the unpleasant property of

sssuming complex as well as indeterminate values with positive probability,
though this probability tends to zero as sample size increases to infinity.

He also showed that the moment estimafes é z (51, §2’ &) are asymptotically
normal and consistent. Blischke also considered asymptotic relative efficiency

(ARE} of the moment estimates § = (pl, Pys a). The ARE of g i3 defined as the

ratic of og*/og where ag* is the Cramér-Rao lower bound of 6* which is the

maximum likelihood estimate. When the components of the estimates 6 are

considered jointly, 2 joint asymptotic relative efficiency (JARE) of é relative
to the maxir an likelihood estimate 6* was also considered defined by the square
of the ratio of the areas of the ellipse of concentréiion of the respective
asymptot'c normal distributivns. [t was proved that the joint asymptotic
efficiency is -iven by det(xe,)/det(za) where té is the convariance matrix
of é, Por some speciai valuus of ?1’.Pz and a,~81is§hko {8] computed both
ARE ard JARE and it was found that neither ARE nor JARE are monotone with
respect to n. However, ifor thr limiting case, they always attain the value 1.
_ When the number of binomial compone.is is larger thanlz. Blischke (7)
considered a goneral case of r binomial comnonents with 2r-1 parameters to
he estimated., He Also applied the mothod of moments to obtain the first

estimate. -‘Then, he considcrﬁd another ~fficient estimate based on the moment

estimates, ~This construction of altoma?ive wstimate was made at the sugi:ation

e L R T
Per e 2 iy L

of Le Cam [69]. - By,sayman*s linearization tochnique BAN ostimates were aiso

constructed. Asymntotic relative efficiency ard joint as&aptotic'reldtive

& e A S, SR 2

officiency of the monent estimates wers diséussed by Blischke [*]. A aum-

oo w7

~erical cxasple for the comparisons of the method of waent and other two

altornative estimates was given.
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The results for the mixture of r binomials can also be obtained for
a number of other distributions. For example, they are applicable to
mixtures on p (with known k) of negative binomialy and hence to its special
cases, the Pascal and geometric distributions. As regards other cases,
Bliss and Fisher [8] , Shenton and Wallington [107] and Katti and Surland
[62] have discussed the negative binomial which is a compound Poisson dis-
tribution. Sprott [115] and Katti and Gurland [61] discussed the case of
the Poisson-binomial distributions which is the Poisson mixture of parameter
n of binomial. The case of the Poisson-negative binomial was studied by
Katti and Gurland [60). For the Neyman contagious distributions (see {30])
Shenton [105] discussed efficiency of the moment estimates. And for a two
parameter beta-distribution mixture on parameter p of binomial which
is the so-called negative hypergeometric by Shenton {106] the moment estimates
were studied by Skol!ad {108]. Mosimann [77] studied the mixture of multi-
nomials. Falls [36] considered a gixture distribution of two Weibull dis-
tribution cach with difforent scale and different shape parameter. Moment
estimates were proposed and some graphicalrillu;tratibn and a numerical
example wore given by Falls [36]. For some cther details reference should
be made to Blischke [S] and Isaenke und Urbakh (55].

Moment estimates are usually not considered very efficiont excopt for
some cases such as the normal, binomial and Poisson distributions. Mothods
move efficiont such as the method of maximum 1ikelihood are more desirable, .
However, in many cases, such as for example whon more unknown paramoters
need to be ostimated, the maximum likelihood equations are found complicated
and almost intractable. Uader this situation, onc may still consider the

moment ostimates,

Lad - O A Y o
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For some further studies on the efficiency of moment estimates-
reference should be made to [105], [106], [11581, [S], [7], [39], 148], [113]

and [51].

2B. Methods of Maximum Likelihood

In many cases, maximum likelihood estimates arc considered to be more
%fficient than the moment estimates. For the problem of estimating of
parameters in the distribution of mixtures most authors treated it by the
method of moments in the early years. In 1966, Hasselblad first considered
the estimation problem by the method of maximum likelihood. The population
from which we sample obeys a density function which is a mixture of k normal
densities. Taking logarithms of the likelihood functions and differontiating
with respect to each parametors My ( mean), o§ (normal variance) and o,
(mixture proportion) i = 1, 2,...,k, and cquating them to 2ero Hasselblad
[48] obtained 3k-1 independent cquations with 3k-1 unknown parameters. By
substitution of some oqual quantity in some ecquation into another equation,
he obtained the first iteration scheme, A rough estimate from the truncation

method is used as an initial guess for this scheme. The idea of the gon-

oralized steepost descent method proposed by Goldstein was applied. It

can be shown that the direction traveled by the procedure at each iteration
possessos a positive inner product with respect to the gradient. For an
alternative treatment of the 3k-1 equations, Hasselblad [48] applied the
Newton iteration method, and finally he obtained a matrix equation of an

iteration scheme. The investigation of the variances of the estimates are |

important, Hasselblad [48) gave the explicit formula for the second partials

of logarithms of the likelihood-function and from these, the information
matrix and thus tho variance-covariance matrix of the estilntés was ap-

proximated. Somc details of the asynptotlé variances of the estimates of
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the means, proportions and standard deviations were also gi?en. However,
it should be pointed out that the solutions are limited to grouped data in
which all class intervals are of equal width. And, in practice, these results
obtained would not be likely to show satisfactory unless some conditions should
be met,éfor example, grouping intervals should be narrow, a large sample must
be available, and when k = 2, it is desired to have sample size 1000 or more
and when k is large, even larger sample sizes are nceded. When the separation
botween component means are insufficient and unable to obtain k distinct
sample modes, the estimates obtained are very likely to beunreliable.

For the same problcm.sﬁhbéodian [4] showed that the maximum likelihood
estimates for the component mean ¥y and component variance ai are, in fact,

- n -
‘respectively, a woighted sample mean u, T wii X, and the weighted sample

=]
- 2 2 . J -~
variance ¢ o = % wij j - ”i for i = 1, 2,...,L where "ij are the values of

j obtained by repiacing Mo oi and e by “i' of and o and v i satisfies

Uij = fi(xj)/nftxj). i - 1._ 2‘000.k’ j L l. 2,.u,l\- FUTthemore,
4 k ;,. Voo ' o
wij's satisfy jzl uj ji ol (i=1, 2,...,0) and
= R - .‘j\_\ . . .
n ,
j l ij = (i = !; 2);‘0‘,&).
- - : :

where fi(x) and>5(i) are, re:poctivély,rtﬁe'dansitios of ith cbﬁﬁenent and.
the mixture distribution. In fact, these sise have been obtained by wolfe
(1561. M§ considered the énse'of uuléivnriate'noraal density fi(§’ oi) '
for each component and he introduced the sa;éalleiﬂ"prohability of uenborshih“ '

. : ’ - a f,(x,0 _
of & vector x in type 1 which-is defined as P(i]x) = - i«y_——- whore £(x)

is the lixture_density. He, furthermore, obtained that the ML" of “i’ ﬁi"ﬁnd_,

51 are given by

i -‘-'-\'«‘;"‘i_'“‘:‘;'s:m"_ [t i G JERTR. gy »
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. no | . 1 no, |
| a. == % P>i|x.), w.. = — roP(ifx)) X . and
i ! SN -] ooy A, rel ron
'
" n ~ ~ -~
055() = — IoPslx ) (X -ugy) (X p¥gs)

n ai r=1

where uij and xij are the j-th component of u and §i and cij(s) is the (i,])

element in ts which is the covariance of the s-th component. These results

i are more general than that of Behboodian [4]. It is obvious that w,, aTe the

ij

functions of observations X)) xz,...,xn. To solve for "ij’ one has to solve

? the simultaneous functional equations which are rather complicated. However,
| the relations among ﬁi’ 6? and &i are given which are useful for the computations
of some quantities when some other quantities are obtained..

In 1969, Day [27] considered the mixture of two p-multivariate normal
populations with ecqual covariance matrix §}. There are %p2 + gp + 1 unknown
parameters which are to be aestimated. As usual, taking logarithms and dif-
ferentiating in turn with respect to each unknown parameter and cauating to zero,
a set of oquatibns are obtained. By introducing the quantity P(1|§3). the
probability that observation §j comes from the component i, Day was able to.
oxpress the maximum likelihood estimates of unknown parameters in terms of
the estimates of P(ilgj), denoted by §ﬁ|§j) wirich can be simply expressed
g " g - "~ in terns of some quantities which are functions of a and the estimated
- % Mahalanobis distance in torms of the maximum likelihood estimates. Finally,

; B an iterative scheme was set up., If gho initial puesses are close to the
| roal values satisfying the sgheue. it can bq shown that the sequences
; R ~ gonerated by the iterative process converge to the solutions. However,

'solutions may not be unique. For ¢xample, when p 3;3. and the Mahalanobis

distance between the two couponents-a2 ® (gl - gz) t'l(gl'- gz)' is small,

say less than 2 and the sample size is small, the solutions are nearly
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multiple. In this situation, one has to check up at each local maximum

to detesmine where the over-all maximum lies. And this is some shortcoming.
By repeating the iterative process from enough different starting points,
all the local maxima can be founo. However, the maximum likelihood
estimates are invariant under linear transformation. This property is
helpful for the simolation‘study. These estimates are, of course,
asymptotically mimimum veriance unbiased for 4 > 0. Instead of estimating

the mean and variance, it seems more interesting to estiimate the generalized

distance 4. The asymptotio7v5rianéo of 4 is given by r(a)/n where {r(A)’l} =

B{(E-lgg-ggfla}z. When A is small, Day showed that (r(A)'l) =

- a?(1-6%) (1-20)2 8% + 0(a® ) ignoring the correlation of a and 4. When A
is large, (r(A) ) is approx‘matod by o(l-o)(l+2¢(l-o)b )(ltm(l-a)o )
For more than 2 components. it is proposed that tho analogous iterative
.procoss can bo doveloped

Nhen tho component nu}tivarioto densities f (x) are all specified,
there are k-l proportion paronotors which remain unknown and- noad to be
-ostiuated. .feters andCobe?Iy(BS} gave a nocoessary condition that if é

* “_fﬁﬁ is a aaxinul likolihood ostinate (NLE) then o satisfics a. f;xod point

.equation o . G(o\ whoro fbr couponentwiso kc{o ) is the sum of the ratios

of oach ;onponent of sensity to the density of the mixture. In or*«u e

'to find this fixad point. sone proporties of & and ¢ wero found. It sk -

'showﬁ that G is'a local contrnction at o i€ the rank of M " (f (“j}]nxk

‘is k'cnd o is' a Ntﬁ'anﬁ is un'intorior point. In foct. if g is an interior
point sumh that B . liu " (8), thon B is a MLE. When k » 2, and 8 s an

interior point ﬁn its domsin, 6"(8) convorges to the MLE. It should be
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pointed out that the fixed point B satisfying B = G(8) is not unique.
A method is suggested to choose a starting point which is based on the

maximum-likelihood classifier. An example was used to show the iterations

needed for the accuracy of 0.5 x 10°% (i = 2, 3, 4) starting from 7

different points. For the accuracy 0.5 x 10"4, the iterations for the

worst case never exceed 70.

For a finite mixture of k exponential families with r unknown parameters
in cach component density, there are rk + k - 1 parameters including the k-1
unknown proportions to be estimated. Hasselblad [49] derived a set of
equations for the successive substitutions iteration scheme. For a practical
computation, an initial estimates are necessary and three methods for these
estimates are proposed., However, one of them is the initial guess. This
cén,often be made by the mode of the sample or other information obtained
directly'from data. It was found that the initia! estimates is relatively
unimportahf as long as it is in the admissible range. For some special

distributions such as. Poisson, binomial, and exponential, exact itcrative

_procedures ﬁore given and a numerical example for each case was provided.

Asymptotic variances for the Poisson example were derived. For the binomial

‘ease, with.k e 2, the moment estimates proposed by Blischke (7] was applied

to the sam§>déta-givcn in the example, and some comparisons between the

MLE and the moment ostimates were made. It was found that the MLE estimate

- are superior than thé moment cstimates in some sense for the small sample

study of size‘ioo. ?hc MLBfalways,;ios in the admissible range whenever

the initlal gupss i§?in-thejéagejr§ﬂgc which is not the case for the woment

";:stiuates,rhiisp thc.ynriaﬁae of.tho NLE iz smaller than that of the momont
5 éstihates}' Howover, thS‘asythdiigAvarinnco mpy be very large if the sub.

‘pepulations ars not well Sépafhted‘ Therefore sample sizes of 1000 or more

ey L hon; e -
o
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are always desirable for the MLE. It can be expected that the moment
estimates may be very bad when sample sizes are small. Day [27] has
shown that when the components are multivariate normal, the moment
estimates are essentially useless.

The joint asymptotic relative efficiency comparisons in [15] and
[118] show that the MLE are much more efficient than the moment estimates,
especially, when A = qu - ulllmin (04> 95) < 2. Hosmer [53) used Monte
Carlo simulation to study the MLE for 4 < 3 with 9 # 9y and with relatively
small sample size n < 300. This is interesting because both [49] and [27)
suggested large sample size as strongly desirable, especially, when the
two components are not well-separated. Using the iterative procedure
proposed in (48], Hosmer used a stopping time N = i whenever [L(g(i‘l)) -
L(?(i))l < 107 and took é = Q(i’l). Otherwise, he suggested N = 999 with
N 2 10. In the preceding L is the likelihood function, ¢ = (a, U 9s Uy 05),
and !(0) is the initial estimate. There is a strong indication that the
initial guess ?(O) doos not seem to have much effect on the MLE §. With
sample size n = 100, and ¢(¥ = (0.3, 0, 1, 1, 1.5), for oach of 10 dif-
ferent samples, §»was computed uéing three quito'di?ferent initial guesses.
In? of-tho 10 samples the values of § obtained by starting with the threc |
different guesses were the same and in two other sumples 2 of the 3 initial
gueses concludad the same é. The three values of § wero significéntly dif-
ferent in only one sample, For the true parameters = (0.3, 0, 1, Uy 1.5},
uy ® 1, 2, 3, simulations for the MLE obtained from 10 samples of size 100
and for true parameters ¢ = (0.3, 0, 1, 3, 1.5), simulations for MLE obtained
from 10 sa-ples,of'size 300 indicate that the HLE may not be accurate enough
to provide useful estimates. Hence, the poor behnvidr of the estimates of

the porameters for these examples considorgd,shows'that the MLE, though much

e e e A
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more efficient than the moment estimates and perhaps the best method available,
may be still highly unsatisfactory for even the moderate sample sizes.

The main difficulty in the problems of estimation of mixture is that
the data are mixed. When two compenents are not well separated, some of
the data can be from either component with high probability. If the data can
be identified the component of origin or when the data contain information
about the mixing proportion, the problem may be easier, and, the sample size
may be reduced and the estimates still give the same information for the
unknown parameter. For this interesting conjecture, Hosmer [53] did the
study by using the Monte Carlo method. First, he classified the data into
three types. The firét type data is mixed and it iscalled model 0 (MO)
sample. A sample where the component of origin of each observation is known
with certainty will be called known data. Two types of known data are pos-
sibld according to whether or not the known data cont-ins imformation about
the miiing proportion. A sample which contains both mixed and known data
and wherg the known data contains no information about the mixing proportion
will be referred to as a model 1 (Ml) sample, os for e;anple,,in»tho case
when 20 male fish and 20 female fish are arbitrarily taken. A wodel 2 (M2)
sample will be referfod to the case when the sanplé contains both mixed and
known data, and inforua;ion about the mixing proportion is contained in the

relative nuxher of observations from the two components in the known data.

An example of M2 sample would be the case where 100 fish are taken and then

the tish are classified o5 male and female. Let n denote the’sanple size of

MO sample and Tot m denote the sample size of Ml or MI sawple. Let the

proportion of m to n be denoted by r=2 The intent in considering M! or

n
M2 samples is that one needs only a small umsount of known data to improve

on the N0 sazple. The Monte Carlo‘study follou&é the same a#suaptionn
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given in [53] which have bcen mentioned above except that g, = 2.25 instead
of g, = 1.5. In this study r was restricted to be 0.1, 0.2 and 0.3 with
each value of n and $. For given n, MO sample was generated as a mixed
sample. The known samples for the Ml sample were generated by starting with
the first observation generated for the mixed sample and noting the pop-
ulation of origin of each observation successively until exactly rn/2 were
obtained from each component. These observations became the known sample
and the remaining n(l-r) obscrv;tions the mixed sample. The known samples
for M2 sample were consiructed by noting the population of origin of the
first nr observations for the mixed sample. The observations from the

first component formed one known sample and the observations from the second

component formed the other known sample. For n = 100 and ¢ = (0.5, 0, 1, 1, 2.25),

10 samples were generated and the MO, Ml and M2 estimates were computed from
cach sample. The mean, variance and mean squared error of these estimates
were tabulated. The cases for n = 100, and for Uy @ 2, s ® 3 and for

n = 300, By = 3, rospectively, were alco tabulated. From these Monte Cario

~ results, it is noted that for wost parameters, and for various sauplé sizes -

considered and the different values of ths ratio r, the Ml and hz'estimates
tond to have smaller varinncé and mean squared esror thaﬁ tnose of M),  The
variances and the mean square errors of Ml zad M2 ostinates tend to docrease
as r increases, Whon no» 100 and r = 0.1, the Ml estimates scem to have |
smaller variances and mean square errors than those of M2. It is found that
the estimates obtained using both the mixed and known data were wore accurate
than those cosputed from the samll samples. The éoajeeture‘tﬁat. if the
components are not well separated and if part of the mixed sample can be
correctly ¢lassified or if the mixed sample can be supplemented by & small
samplo of Anown data, the estigntos would bi sore accurate, wax supporeed by

the Monte Carlo results.

B
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As another direction for the study of statistical properties of the
estimates for the parameters in the mixturc density, Tubbs and Coberly [125]
did the study of the so-called sensitivity of the estimates for the mixing
proportions. They considered the three bivariate normal mixture and applied
the Monte Carlo method. When the original data from each components were
shifted (in location and direction), the variations of the estimates for
the mixing proportion suggested that the estimates were sensitive. Four
kinds of estimate were considered. They were MLE, moment estimate (ME)
minimum chi-square estimate, (MCE), and the classification estimate {CE),
the last being simply the proportion of the sample which is classified into
the ith class by the maximum-likelihood classifier. Mean square ervors for
each kind of estimates were plotted in [125]. It is interesting to note
(based on the Monte Carlo result) that the ordering of the four estimates,
according to the degree of sensivity, would be (CE, MLE) > MCE ; ME. How-
ever, it is also apparent that the pariicular type of shift deviation from
the model would result in a different ordering. Hence, if the suspected
deviation is known to be of one particular type or direction, a specialized

V experinent should be done to investigate the seusitivityAu@der that alternative.

€. Method of Leoast Squares, Bayesian Appraach-and Soae Other Methods
It is known from previous sectidn:‘:hét_ssaples of small size do not,
| in fact, rrovide ood solutions either for method of moments or fof sethod
of aaxiuﬁm likelihood. Besides, the computations of estimites using either
of these mothods are cuzbersome and sone difficulties suchAés lack of unique-
ness may occur. Therefore, it is desired io study some other sethods for
cstis:tian. n;st of results described in thii section are restricted toe the

estiwation of mixing distribution. 1In 1968 Choi and Sulgren (19] considered
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the case of estimating the mixing <:etribution when the component densities
arc completely specified. ILet Hn(x) denote the empirical distribution as-
sociated with the observed sample x of size n. If the mixing proportion

a = (al, a2’°"’ak) is used they considered the integral squared errors

f (Ha(x) - Hn(xﬂzdﬂn(x) where Ha(x) is the cdf of the mix-

t

given by Sn(g)
ture associated with a. ‘In fact, they considered the case of finite mixture
and showed that there exists the solution é(= &n(x)) which minimizes Sn(q}

for all a in the admissible drmain. This é is then used as the estimate of

the mixing proportior. It has been shown that % converges to the true un-
known value of a with propability one if continuity conditions are assumed

for H in ei (parameter in mixand density) and o, (i=1, 2,...,k}, Further-
more, asymptotic .ormality is also shown for the estimate § if non-singularity
condition holds for the matri: (E(H(x,ei)H(x, ej))), i,j =1, 2,...,k. Rate

of convergence of é is shown to be 0(%n a/v/n) for all n zn with probahility

onc. These asymptotic properties are very helpful for the study of the
estimates. In 1969, Choi [18] considered the case of estimating the mixing
proportion and unknown parameters in the componeint densities when the functiona!l
form of the component distribution is Qpecificd. He used the same criterion
of the integral squared errors. The same optimat asymptotic properties are

' shown to hold if sohe othor extra conditions on the first and second deriv-
atives of H(x,a)vwith respect to ay (i=1,2,...,k) are satisfied. Tt

should be noted that the parameters to be estimated in this situation are
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given by G = {al, Ugsee el 01, 62....,0k) when Gi's are the parameters in

the ith component distribution. Some Monte Carlo studies are made in {19].

Each compunent is assumed to be a univariate normal density with comeon
variance 1. The number of components ranges from 2 to 5. Sample size

cunged hotwoon 10 and 400,  Simuls ions wore vepeated 500 timos and mean
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sqrare errors were computed. It was found that mean square errors are

small when sample sizes are at jeast as large as 200 and the mean square

erro.s were not largelyveffected_by the number of components. The result

of Choi [18] can be extended te the case of continuous mixing distribution
by taking a sequence of distributionsas iﬁs approximation. The criterion

of errorsAconsidered by'{lg]-and [18] in fact can-bé exteﬁdea to brceame

/ (H, (x) —_Hn(x5”~dW(x) where K(x) is some weight fuﬁction.: As Bartlett

and MacDunald [2}4ha§e Stgdied, a good choice of ¥W(x) ig not easy. The
special case k =A2 ﬁas been studied in (2] and_for k>3, fhe.situation\i

is quite complicated. A%he.criterion of errors cénsidefed in f19] is, in
fact, the Cramer-Von Mises type or W¢1fow1tz §1stance betwean two s;mple
functions. TIf this distance is defined to he the Kolmogorov type

suplu (x) - H (x)l, then the solutions u(— a (x)): to mtn;mizo this distance
have been considered by Deely and Druse [281; _Thms.gqper 1s_related to the
empirical Bayes approach of Robbins [95]. They considéred iﬁ£ prcﬁlem ofﬁ
estimating the general mixing distrlbutiohzc(a) by_choosing aASequén;e of .
discrate didtributions {Gh(a}}. where for each n, Gﬁ(u) depends on the sample
gn of size n, such that Gn(u) converges weakly to G(a) with prebability one.
For each n, an admissible én(a) is chosen so that tle minimum of the uniform
distance batwoen'uancg)(x) and Rnfx) is attained. For cach sample size n, a
SeqUEnce fénfa)} is 6btainedﬁto approximate the real G(a). Under some mild
conditions, it has Boou shown that é {a)=+G({a) at any continuity poiﬂt of G
with probhility one. The axistanco of such & (a) for oach n is guaranteed
and ‘ts Lonputntion involves s lineur progranning problenm. Tb be wore
genoral, suppose d is any metric for the topology of weak convargence of
probnbilitiés on the sample sjace (sce Parthsarthy [83]);"L0t ¥ denote

the sot of alil mising distribution function G(a) éafineé on @, the pnranotoi
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space. For the topology of weak convergence, suppose & is compact and
for a sequence {y,} of subclasses of ¢ satisfies U Y =9 If G (a)

is so.chosen such that for each n, G (a)E [ A and d(H Hn) attains its

G, (a)’

infinum for all Gn(a)e Yo than lt is shown [14] that én(a) converges
weakly to G(s) with probability one if F(x,0) is continuous with respect

" to ¢, The re.stllts in [28] can thus be obtained by taking some special
metric satisfying some ‘c;onditions.t Some:. oth.er_conditions for the weak
convergence of énsjg) hel_ve aléd ‘been %st_:udied in {14}.. Using another approach,
. Blum and Susarla fs} considered a pai'lition of palfameter t-pace Q. A step
functzon G is construcced such tnat on each di‘sumn of the partition, the
eonstanf: value is gwen accerdmg to ‘some weight whlch are controlled by

the local maxmum and minimum values of the mixture dnnsity on this division.
Wheri: the mlxture denslty hG( ) xs unknoam, an estimnte h ( )t e

(- h (-, x, 1 xz,...,x )} sntisfying 3up[h (x) - h (x)[-»O a.s. is used to
replace hG( } 1£ same conditions smilar to- contmmty in both x and 6

are satistied by the. component donsity f(x,e), thon the woak convergence of
G to the. 's‘eal mixin,g distribution G(x) holds almost surely. Furthermore,
wh,en (] is a location or scals pavameter, it has been shown that

!hén(x) - hG(x)l-tO a.s. und B(hén(x) - hG(x))2 a Ofn-cl) whore t‘-ia min (Zc,. 1%25:)
for some constant ¢ satisfying en » n"%,  The construction of ﬁ“ is possible
by linear programming though not simple. One question may be raised how

the partition of 0 is takon so that for practics! application, the convergonce
of &n would bo more reasonable. Comparison with wethods given by [28) m?d-
(18] the ftun.-sontal property of the weuk convergence of the f‘.“ are all -
satisficd, MHowever, the cﬁmt_uﬁmul foasibility of the Choti’ s mothod [_lal

is not clearly established.

pmntane
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If thc obscrvations from the mixturc population are restricted to the
positive integer value, Rolph [98] first considered Bayes estimation of
G(a). Some assumptions were made by Rolph. & is a finite interval and

considering f(x,a) as a function of a, say, qx(a) for a fixed x,

[ R .
qx(a) = 'XO ai(x)a1 (In fact, continuity of q in o is sufficient). Then, the
i=

un;onditional mass function (mixture mass function) can be expressed as

2 summation of sequence of ith moment of G(a). Properly putting some prior
distribution of the set & of distributions defined on @, consider the Bayes
estimate G which minimizes the risk associated with some loss function

L(é, G). Under some conditions, the Bayes estimate of G is just the
-'expectation of the posterior distribution. The Bayes estimate G is thus

'determined by taking the distribution with (ﬁl, m ) as its moments

2,00-

- where each ii is the expected ith moment under the posterior distribution.
-]

Consider the loss function of the form I Yi(mi(&) - mi(G)z) where ﬁi(G)
' 1

8,
distributions having (ml, mz,...,ﬁt;l) as their momonts then, the estimate

"h"is_tho ith moment of G. Suppose E; and are the two boundaries where

: én is defined as the convex conbinat;on of'at and gt. It has been shown
tha;~the sequence {&h} (&n = én(xl’ xz,....xn))is consistent. Relaxing
the restriction to §i being a half-line, Meadqn,{74}’choso the prior
;distribation on the set of distribution on niih‘anothar way. Using some
resuifs‘of {98] Mceden [74] was able to show that the Bayes estimate under
lkis set-up y&s consistent. -These,nithenatical constructions and proof are

| cogpiate; howover, the practical computation for the estimate is not so
easy and clearcut and still needs moré investigation.

| Alﬁroﬁartiés pffcbnsisténcy or weak convefgence are important and

dcsirablo.and'fundanental fbr our study of estinatioﬁ.of'nixing distribution.
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The above properties may not hold when sample size is small. ‘Paying
attention to the small sample property, Boes [11] considared the pos-
sibility of some estimates to attain the Cramér-Rao bound. Restricting
to the case of finite mixture, he obtained the necessary and sufficient
conditions for the attain&ent of the Cramer-Rao lower bound for the
parameter a when k = 2. A uniformly minimum variance estimator of o was
obtained which was also shown to be consistent [11]. When k > 3, some
jointly efficient estimates were obtained by Boes [11]. By an estimate

8 (x) = (61(5), 62(5),...,ék(§))joint1y efficient for 0 = (8, 05,...,8,)
in some set U, we mean the ellipsoid of concentration of §(§) centered at
9, coincides with the minimum ellipsoid of concentration. Again, by con-

k-1
sidoring the risk defined by R(0,8) = I ay Var ei
1
all unbiased estimate of ¢ = (01, 02,...0k) and for some constancs
. k-1
1y Bypeeedy - Then, it is obvious that R(6,8) > 2 a Ii

(o)) = (g0 ! and 14(0) = El(aai“"“)(aej a,,h)] and where h denotes

, where § € U = set of

(6) where

the likelihood function. Denoting L(e) vl a, I (e), by 0 efficient
1

estimate of §, we mean R(§,0") « L(9). Let ¥ = (8= (8), 0,,.00,0,):

k-1
8,20, ¥ & 3 1}. Boes [12] has shown that if 0* is a point in a®
1

for which L(0) attains its maximum, then the 6*-efficiont estimate

§(e) = ((3!(9*). 6,(8%),...,0,(8") is a minimax unbiased estimate for ¢

in the sense that sup R (g(g').g) < sup R(Q.QJ v §E U. This is a very
desirable result ifesuch a minimax unbiased cstimate can be found. Some
examples werc given by Boes. It is interesting to mention an examplo to
sco the simplicity of the estimate. I€ k = 3 and oach component is uniform

such that fl « 1in (0,2), £2 » 1 in (2,4) and £3 = 1 in (1,3). For some
2 2 : 2 '

(any) constants 3y it is scon that the minimax unbiased ostimute is given
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Ny-Ns o Ng- Nz .
by (e , 92) = (--~+ — 7 ) where N, = number of observations

falling in (i-1, i], i =1, 2, 3, 4.

Finally, by the approach of curve fitting, Preston [88] proposed to
fit the mixing distribution by piece-wise polynomial arcs. Here it is
assumed that each component density is discrete. The estimations given in
[28], [98] and [74] are all step function approximations to the mixing dis-
tribution. Hence, polynomial approximation would be more preferable and
accurate if the approximations are appropriate. Let é(u) denote the poly-

nomial approximation of G(a). Preston [88] considered the estimate of form
m

G(a) = 151 jZO a1J zij(u), where
0 a < Bi
by (@) = [(a-8,)/ (8, -8, B, << By,
! Bie1 S

(zio(u.) = 1}, {uij} are sequonce of parameters and B. are constants. Hoence

G(a) is a polynomial of degree r. Denoting Lij xy= } f P(s.u)d&ij (a), we have

s<x
N m
H(x) = 2 uij Lyj (). Honce, if G(a) is an estimate of G(a), A(x) should
izi j=0

be an ostimate of H(x). Using the obserQed sample to form an empirical dis-
tribution function Hn(x) as another estimate of H(x), the paramoters (°1j) to
be determined are thus so chosen that H(x) is as close to N (x) ss possible.
Take tho Kolmogorov type of criterion, D(H, .H)= lnxlu (x]-n(x)] (°ij} are
chosen that D(N , 1) is minimized subjoct to the constraint that G(a) is a
distribution function. Some special case that G(u) is a step functioa, picce-

wise linear, piece-wise quadratic, hive been discussed. To study the goodness

of the ostimate &(u) for G(a), & criterion K(¢) = I (g(x) - qh(x)) h(x) is
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defined. It is shown that é(a) is good from an ewpirical Bayes point of
view if E(X(qﬁ))(the expectation is taken with respec to random sample) is
small. Some numerical examples are studied and D and K are computed. How-
ever, for the practical and general purposes, a good choice of location of
Bi is not clearly established. It is also obvious that if Hn(x) is not
close to H(x), the estimate ﬁ(a) would also be unrcliable. Asymptotic
properties of ﬁ(u) are not given though it may be consistent or weakly con-

vergent.

3. Testing Statistical Hypothesis

Most papers concerning the inferences about mixture densities are
related to the estimation of parameters. In practical sit-
uation, it is desirable to know whether an observed sample is from a pop-
ulation which is a mixture of two known populations. Generally, we may

be interested in knowing whether the distribution function of one

population is a mixture of the distribution functions of the other two
populations. This kind of inference is quite differont. to that of
estimation. On the other hand, w¢ may, sometimos, wish to know whether
the mean of a mixture population is equal to some known values. This is

the standard hypothesis testing problea.

Thomas [124] in 1969 considered the problem whether one population is

a mixture of two othor populations. Let the three populations be denoted,

respectively, by v, Y and v and the associated cdf be donoted by

1 .
Pl(x), Pz(x) and Ps(:). Let the nth random obgervation from ui_bo denoted

»

by x‘“ (i « 1,2, 3. lot R‘ donoto the rank of xil in the samplo

(X“. %10 XS‘!. Wo will denote Xiy by X, when there is no conlusion. Tthomss
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[124] proposed a 0-1 valued statistic t which is defined by

0 if (RI’RZ’RS) is an even permutation of (1,2,3),

t(R.,R,,R,) =
17°2%73 1 otherwise.

It has been shown that if s is really a mixture of LB and Tys then

E(t) = %. It was pointed out that, in fact, the mixture can be extended
to k(k > 3) components and with the same definition, the result holds.
Suppose n, samples, n, samples and n; samples are drawn respectively from

M Ty and T Define a symmetrized U statistic by

1
(3.1) th = ———0 }]  t(R.,R,.,Ru)
n amn,n, i,7.k 11772573k

where the summation is over all possible values of i, jandk and n =
min (“l’ Ny, nS). Then, t; is asymptotically normal. In fact, it has
been shown [124] that (t} - %auﬁ”éf;(o,x). the standard normal, if Fy ¥ F,.
Hence, t, can be used for the test of the null hypothesis that Fs is a
mixture of FI and F,. However, it is to be noted that the mixture of Fy
is not a necessary condition for E(t) = %u

Now consider thu following situation of null and alternative hypotheses;
HO: Fe(x) = gFi(x) + (l-q)Fz(x) for all x for some 0 < a < 1, Hl: Fe(x) =
aF!(x) + (l-u)Fz(x) has a nondegenerate solution at x = a and no other
finite solutions, Then, under H,, it can be shown that

B(t) > 4 1f, and ¢ty if, £5(a) - af,(a) - (1-a)f,(a) > 0
while E(t) = %‘undér Hy. It can also be shown that vur(ﬁ;) + 0 under H, and
H,. Hence, the‘two-siﬁed test '

Reject Hy if |t"' - %I > € (I_:)

is consistent for testing uo sgainst ul for some significance levelb.




} : g Let Rj(l) denote the number of xlj's less than or equal to ij

and let Rj(S) be the number of X, _'s less than or equal to X, . and let

3r 23

Sr(i) (1 = 1, 2) denote the number of Xij's less than or equal to XSr’

Then the statistic t; defined by (3.1) can be expressed as

B 3 ! 2 L 2
t* = T S (1) + L R.(3) - £ R.(1).
S L Moty j=1 J M2 j=1 I

n n

‘e

. From this and some other relations the proportion a can then be estimated

by
X i) s "2
(3.2) a = (n1 521 Rj(S) 2 mn, 3)/(n rfl Sr(l) + n, jfl Rj(S) - "1“2"3)'

‘i (-3

Aiso, let & = Py{X1 < Xz}, then ¢ = ] F‘(x)sz(x) and § can be estimated
by n,
(3.3) § = jil Rj(l)/nln2

(3.4) Lot 8y = Fi00 Fy0) F00  (141,2),

.
o4 e s AR T R A S AR S

_- Then, the probabilitias 28 ~and 282 can, similarly, be estimated by con-
? sidering these. triplas (xll, xlr’ xzj) and (xli. xzs. xzj). respectively,
i o "~ where 1 #. ' i o
: - Let Pin(x) denote the empirical distribution functions associated with
" (1 =1,2,3). Supose a is calculated such that
(3.5) E(d ~ a) =0’
3 8- e «Xo0m),

-~ Define -

5. e (&Pmm . (1_-;.)_ Pan(X) = By, ()% dFy ()

-

i
£ Sy (3.8) ,1;2 f F (x) + (l-a) FanlX) - TSu(x)) dFq(x).
é'. - . - . o
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Then, it is shown by Thomas [124] that under the hypothesis that Fs(x)
is a mixture of Fl(x) and Fz(x), for any € > c,

(3.9) 1imp_ (|7 - rﬁzl <€}=1.

n-rw

By (3.6) - (3.8), we have, ignoring the terms O(n'l)

2

(3.10) E(TAZ) =g V- 1 a(1-u)(1420) - a(1-0)(1-20) §

202 - (-, - 204 - e(1-0)%) 8,.

Now suppose Fs(x) = a(X) Fl(x) + (1-a(x)) Fz(x). ‘Thomas [124] considered

the following hypotheses

HO: a(x) = a, forall x, 0 <a <1
Hl: a(x) # constant,

Using the estimate of agiven by (3.2), Thomas [124] was able to

show that
var(x'%) = 0(1)
whore 1'% is dofined by (3.8) and thus under H,, for any c > 0
lim P_ {|p_| > che1
nee r ‘“.,
where l)n is the difference between the estimates of the two sides of (3.10).
The critical region: Reject Hoiif IDn] > ¢ so proposed by Thomss [124]
is thus consistent and asymptotically unbiased.” Note the treatment of tosts
is non?parnuotric. | _ ‘
For a parametric consideration, Johnson (s8] ;tuéied_the same pjobleu

that an observed sample was consistent~with,i€ being from a -ixtnie 6f two
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symmetrical populations. Hence, for his case, he assumed F. and F2

1

are specified and both have symmetrical densities with means u., and iy and

1

common variance 02. Let Xj denote the jth observation from 7w,. Johnson [58]

3
considered the statistic

(3.11) a, = (Xn - uz)/(u1 - ”z)

which can be easily shown to be unbiased for a. For some given a define

(3.12) vy, ={! ifX<a
0 otherwise.
Let p, = P (X, < a| u} =1, 2).

Consider another statsitic
A (3'13) Q)’ = (Y = Pz)/(Pl - pz)

which can also be seen to be unbiased for a. If &x und &y differ greatly,
this may be regarded as cvidence that xi are not distributed as a mixture

of the two given components. -Along this approach, Johnson [58] was ablo to -
- show that = Var(&x - &yl was independent of unknown a, and, therefore, the

~1/2

statistic (&x - &y)[\!ar(&x - &y)} shouid have approximately a standard

norral distribution. However, this approxjnntion-ﬁs too rot th and in-
accurate. kor some special normal coamponents, hc:usgd Jﬁ]&x - &y)v"/2

as a test statistic which is approximately standsrd normil for large n,

where V= n Var(&x - &y) can be, in fact, caléulhfcd. Sowe computations

of the test were also made for some special cases. Another test hased on

the statistic U, = %xi . %(n‘ N u,)| was proposed. It was noted that U, .
"always has the same distribution whether xi comes frou.tt-orng. fho

nusber of xi's between u, and M, have a binomial diéirﬁbation with vqrauoters

n and O(Iul - uzlla) - %lif 'y iz roally a mixture of two normal componcuts.
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Comparisons of powers based on the two proposed tests has been made by
Johnson (58] and it is shown that the latter test is more powerful. These
tests are all based on simple statistics of observations. The choice of
a defined by (3.12) and the distribution of the test statistics may be
needed for some further studies.

For the problem of testing whether the mean of the mixture density
is equal to some prefixed value , Blumenthal and Govindarajulu [10] con-
sidered that FS(x) with mean 6 is a mixture with proportion a of two
normal compcnents Pl(x) and Fz(x) which have different means but common
variance. They considered the hypothesis HO: 0=0vs Hi: 6>0. A

Stein's two-stage procedure was proposed. First one computes the sample

'> variance Sﬁ of sample of size m(> 3) from s which is defined by

m
PR
izl

2
LR

then, éne takes a second sample of size N-m, where
: & .
N = max {m, [—%—]},
(x) denotéﬂg'the greatost integer value of x not exceeding x and z denotes
sowe spocified constant. Then one computes T « AN X/S, where X, is the total
sample observed. The critical region proposod for rejecting H is:

T>t where t, “denotes the 100a percontile of the t-distr;bution with

-l d-a a,e

d.f.. Let R denote the random unobservable number of observations among

: denote, respectively,

the aean of Fl(x) and thx)—and their common variance. Thgn, it was shown that

BT« t[R,SEAY = 0(as08) + (/8/R) ¥(a/a8) - [c(s? - (w/0)?y -

(8 a=-68) » 0(l/(rn - W)

7
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where & = ((u, - u)/0), 6 = (1 + 22 at-an? i :st - o

and ¢ = A% a(1-0) (20-1)/66" given that R = r, s2=sandN=n. If
2y /2
[2+4 8%a(1-a) + Azo(l-u)(Za-l)z] + 183V2(2+6%) 0(8) a(1-0) (20-1)/308%]

/o < 1, then the cdf of T was to be ¢(£) - [£9(£)(1+£2)/86%(m-1)] -

with error term O[max (m‘l‘s, /o)] where § = (t - (G/vr)) and ¢(x)

and ¢(a) denote, respectively, the standard normal cdf and its density.
Based on this distribution, the sizes of the Stein two-stage test were computed
for some special given values of m, 4, a and the first kind of error. The
test is good in the sense that the size is small comparing to the one ox-
pected. However, in many situations, the values of a or even the values
of & are unknown, and when this is the case, the two-stage test can not
be carried out.
As it has been pointed out in part A of Section 2 that on many occasions,

a difficulty that the statistician is confronted with for the estimation of

" the parzmeters in the mixture density ris that it is unknown if the observed

sample is mixed consisting of some pther samples with spccified-of unspac-

ified densities. This is a quostion that has been studied in this section.

4. Multiple Decision (Selection and !lanking) Pmbleas for Mixture ef

Distributions
Suppose a population v consists of k-subpopulaticns,' say, #, ¥,... A
such that in a sample an individual observation coacs from ¥, with probability

oy (=1, 2,...,k). Let £ (x) denote the density function of a randow ob-

- servation from v,. Then the density of u randow observation from  is piven
' k

by a finite mixture f£(x) = & o fi(x) ’m some situatxom. basod on saupling
1

from ¥, we are mte*osted in -&aiectms SOME nj s0 that tho associated aj

- aarian vy sy .
(S DN N
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the largest among all probabilities ai (i=1, 2,...,k}. We call this

kind of selection problem the first kind of selection in finite mixture.
When the density fi(x) is degenerate at a certain point with probability
mass one, this special situation becomes the problem for the selection of
the most probable event in k categories i.e. the multinomial cell selections
problem. On the other hand, suppose there are k populations, say, n!,

ué,...,né such that the density of a random observation from w{ is given by

m
a finite mixture gi(x) 3 X 8. fr(x) (i=1, 2,...k), where each component

1
density fr(x) is fixed, may be specified orunspecified . By sampling from
cach population, we are interested in selecting some w§ so that the associated

parametor °jr is the largest (or smallest) among all Gyps OgpoeeeOy for some

- prefixed r. For convenience without loss of generality, we may take r = ],

that is in the mixture, we put the component fr(x) under main consideration
in the firs: place so that we may consider the selection of the largest

(smallest) gjl."we call this kind of selention the second kind of selection
in finite mixtures., Whenm = 2 and f‘(x) and fz(x) are both degenerate with

different values, the second selection problem becomes the usual selection

" of the best coin (see Gupta and Sobel (47]). It is to be noted that both

kinds of selection occur in the compound decision problems as proposed by

Robbins [96] in which mixing distributisns correspond to some prior dis-
tributions. In this section we restrict oursclves to the second kind of
solectiaﬁ.r First of all, we consider the case whoen the sawple size is saall
and thon gcnsider the large sample size situation. In this scction, a1}

cosponent donsities will be assumed identifiable.

4A. Samll Sample Size Case

In this part we impose no restriction on the parameter space. Basca on
the given samples of size n from each population we wish to select a subset

*
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of populations which includes the one we desire most with high probability

" which is pre-assigned before the experiment is carried out. This approach

is called the subset selection formulation. One can refer to Gupta [46]

for more details,

a) Procedures based on discriminant points

'Suppose Tis Myseees™ are k populations such that the cumulative dis-

tribution function of ™ is a mixture of two components given by
G (x) = a; F(x-8,) + (1-a,) F(x-0,) i=1,2,...,k
for some unknown a € (0,1) with 91 < 62.

Let @ = {a = (al,az,...,ak): 0 < a; < 1}.

X

Let X n denote n independent observations.from T To

110 %2000
select a subset of populations containing the one associated with the
largest @, we consider the fullowing rule R(xu), which is based on some

fixed point Xq which selects a non-empty subset of populations when sam-

" ples are taken. For a given point X let Ni denote the number of ob-

servations from ™ that are less than or equal t» Xqr We define R(xol:
Select LI if and only if

N, > max N; - ¢
PTG )

for some positive constant c.
Suppose 61 and 62 are known; without loss of gencrality we may assume
%

the random variahle Ni is a binomial randow variable with perameter n and

= 0 and e2 u A, If P is specified, set Pl(xo) w P(xo-d). Then, since

ay P(xo) + (1~ai) Fl(xd) it follows that Pi < pj, if, and only if,

Py

L Y

ALY Since G, (x) is stochastically increasing with rospoct to oy

AT

@ o Wy
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E the probability of a correct sclection {(CS: correct selection means
selection of any subscet which includes the population with the larger ai)
is thus minimized in the set {(a,a,...,a): 0 < a < 1} (see Desu [29]).
We thus conclude,

k-1

m
Theorem 1.  inf P {CSlR(xo)} = inf I H (c +1r; ¢, xo) h(r; «, xo)
' ) gGQ b Oi(!i 1r=0

!

{

‘ -

} 1

! where H(i; «, x,) = I h{r; o, x,) and
‘ 0 r=0 0

i

h(rs a, xg) = () [0F(xp) + (1-a) F(xgT [0(1-F(xy)) + (1-0) (1-F; (x 1" T,

To choose Xq» we see that when F is symmetric about 0, the best choice

0 is given by Xg ® %, If F is not symmetric, by a geometrical argument,

it is clear that it suffices to choose X0 in (0,4) so that the right hand

of x

side of Theorem 1 attains its maximum. When & is unknown, we need to consider

the infimum of the right hand side of Theorem 1 for all 4 > 0 and ‘then choose

) some X, » 0 so that a supromum is attained.

i o m

: Corollngx_m' ‘Suppose G (x) = ¢ LT F_(x) iz a finite mixture of m identi-
: ' rel

. . fiable cumulative distributions function, i = 1, 2,,,.,k. If for any

- . N m

: Byor 0, % .8 = 1, thexe exists Xo such that F (x,) > x B, F.(x )and for
.E g 7: m Lo m, ‘:13 B . - .

-\,g‘his xo “2 3:: F (xa) z:: o ¥ 9{3"0) 1\'f“.‘_amd onl_y,if [ 1 > “iir-'ﬁ Then, for

o the <electiun uf samo populations asso¢éated thh the largast “il’ we have

v ‘\Vi‘ .
inf P {csla(xoai . inf [ £ R hop (lep)“ S My p (l p)“‘jiF ll
o€ osper de0 10T yeo -

P

Proof: e¢f4§e 5i5iQ'uijlfl~aii) o=, 3.;...p;'i,~_i;-2..;;;m. »Then} S

S AR AR B BETE v e e
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.




’ ’ = H - P

% o G; (x) @ Il(x) + (1 ail) rli(X} where

é m m

; F (x)= ¢ 6., F,(x) withé.,,>0, ¢ 6,, =1,

- li( ) j=2 1] 1( ) 1] j=2 1]

i : L By given conditions, we have ajl > a, if, and only if, pj > pi where

Py = 85,y Fl(xo) + (l-ail) Fli(xo) which is the associated parameter of the
. binomial random variable Ni' The problem thus becomes the selection of the

largest Ps which is discussed in Gupta and Sobel [47] and Gupta, Huang and

} i Huang [443. For k = 2 the infimum tékes place at p = %-and for k > 3
asymptotic results and lower bounds are obtained.

We note that when Fi(x) = F(x-ei) with el > 62 >...>6k the conditions

N S gy anke <

| in the corollary are satisfied~iffajr/(l-ajl) > “ir/(l'“il) forr=2,3, ...,m..
N 2 . The optimal choice of X, is impossible unless F and eis are specified. For a
N . detsiled discussion of the computation c reference should be made to Gupta

L, .7 - and Sobel [47] or Gupta, Huang and Huang [44].

- . ’ . 2 . 2
_~_Cotqllagz 2: If Gi(x)Aa ai.¢(x, 61, ol) * (l'ui) (x; 62, 02) where

'59(1;'9, ozl'denotes the normal cdf with mean € ard variance 02. then

,
IR e

. 1) 1f 8 <6, and ay = 0,, the best choico of x, is given by (0, + 0,)/2,
i 5 i) if al b O,nnd;ez = § > 0, the bost choice of X0 is the real root in the -
é ?’ intervai;(g,d) of the cquation

n S T AT 2,2, 2 2 o

> L :_._(02 -_ql)xo . chun . olA - Zol gy (6n g, - J al) ¢,

% 2 - iii) if 0, and 6, arc unknown and 0, < 9,, then for any x ,A

R - inf Pq {CSIR(xo)) = B(k,n,c) which is the same oxprossion as on right hand
P side of Corollary 1.

f'fié

Vg

(b

5
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The proof of Corollary 2 is straightforward and hence omitted.
Next, we consider the case of a mixture of three identifiable cdf's.
Suppose

Gi(x) = a, Fl(x) + Bi Fz(x) + Yi Fs(x) where
a < Y3 = 1- a - B , 0 < Y S i=1, 2,...k.

We consider a rule which is based on two discriminant points, say, X5 and

X (x0 < xl). Let Ni denote the number of samples from LY which lie in

(xo, xl). For the selection of the largest Bi’ we propose the following

rule:

R(XO, Xl): Select m iff

N, 2 max N, - 4

i

Then, we have the following theorem:

Theorem 2: If Pi(x) ] F(x-ei) with 61 < 62 < 03 and F is symmetric about

¢, then, for xoe(ﬂl, 62) and xle(ez, 63) with Xg ~ 6, =8, - x

1 3 1’

inf p {csl'n(xo. x,)} = B(k,n,d).

-

r.__Proof~ Ni is a binomial random variible with parameter [P (xl) - Fs(xl) *

F3(xg) - Fylxgdlay + [Fy(x)) - Fylx) ¢ Pylxg) - Falxg)18, « [Fy(x)) - Fy(x)].

The conditions of the choices of Xy and X, and the symmetry of F imply the

" goofficiont of a vanishes and the coefficient of‘ai is strictly positive.

HODLG, Py < pj if, und only if, Bi < Bj This complotes the proof,
There are (nncountahly) many choices of X, snd xl.the discriminant
points. Howover, the ones that maximize F(x = 8,) « F(x; = 85) ¢ F(x, = 8¢) -

F(xy - 0,) with x; - 8, = 8, ~ x, would be optimal in the sense that the
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ey

infimum of the probability of a correct selection (with respect to the

parameter space) is maximized.

Corollary 3: If Gi(x) = a, ®(x; el, 02) + Bi d(x; 62, 02) Y d(x; 93, 02)
| : with e1 < 62 < 8, Then, the optimal choices of X0 and X, are those which
‘ (x,-8,) -(6,-x,)
§ maximize [ 12 ¢(t;0,02)dt and minimize [ 270 @(t;0,0%) dt with
: '(63'x1) '(ez'xo)'(es'ez)

! ; the restriction X0 = Bl = 93 - X .
. (r 1
[ o Proof: Proof follows from Theorem 2 and by noting that f w(t;ez,l)at -
f a i X
L X e,  (027%) 0
y [ wtegnde = (f - ) @(t;0,1)dt
| ; X0 =(85-%,) - (03-%5)-(85-%,)
é % b) Selection Procedures Based on Sample Means

We assume G, (x) = o, F,(x) + (1-a;) F,(x) such that F,(x) < F,(x) for
all x. For the subsot sclection of populations associated with the largest

a;, We propose -

e B2 e O A NG B BT

R,: Select », if, and only if X, > max X, - ¢
1 i i j b]

. Then, we have the following

£

Theorem 3: inf B, {CS|R,} » inf [ H"D(xs ¢, o) dh(x,a)
' a - 0cagl - :

-

L GEATIRR HEI

where.
T | | iH(x,a) = x(?) a (120)" p;j , r;‘“‘j)(nxi with

Pzr(x) being the r convolutions of Pi(x).

" Proof: Since Gi(x) is a stochastically increasing family of distributions

f | ‘ with respect to LY hence PQ{CS]R) attains its infimum in the set

~ {(a,8,...,8): D'ca<l). Wo also note that .
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Zj <n x|s=j} P{s=j}

e g e aieeies 1 ¢

where Yi and Zj are independent random observations corresponding to Fl

and F2 respectively.

Corollary 3: 1If Fi(x) d(x;6, i kP ) (i = 1,2) with el > 62 and o) £ 0,5

thcn , e e 4

1nf P, {cslnl} = inf | Tz (’5(‘5 oIt (1ogy2-icd 8(t(9,,0,,0,,0,,0))]
0<a<l j=0 i=0

-~

where £(9),0,,01,05,) = [(1-5)(8,-0,) + nel(Go} + (a-9) a2/ [(ies) of +

(2n-i-§)03].

4B. Results for the Case of Large Sample Size
For convenience, we define some notation first. For a prefixed integer

m, we define

m
(4.1)  <0,1>" = ((a)5050.058): 0, >0, Ta
1

Lot 91(3;6). Pz(x;e),...,Fm(x;e) be m identifiable cdf's. We denote

(=1 e

(4.2)  F(x;0) = (F (x;0), Fa(xi8),...,F (x;0))
o | o
P {4.3) a, = (un. °i2""‘°iu)' e, (] <0.1? .

A finite mixture with m component P(x;8) is defined to be the inner product
of cortain a € <0,l>'_ and F(x;0) i.e. A
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(4.4)  G(x;0) = a « F(x;0)

]
" ™M3

a; Fi(x;e)

i=1

Let Tes TgseresT be k populations such that LAY has cdf G(x;gi) 1or some
. . m

unknown but fixed parameter a, € <0,1>". Let ;1> Xig0e Xy, tem

independent observations from T i=1, 2,...,k. Let Gin(x) denote the

associated empirical distribution. Let ) denote a real-valued continuous

- m
: function on <0,1>", Let A[I](g) 5.A[2](g) 5"'5-A[k](9) denote the ordered
i values of A(gl). X(gz),...,X(gk).
\ Based on n independent observations from each population, we are in-

terested in selecting t (1 < t < k - 1) populations, say, n_ , n_ ,...%®
- - o, T,

) are the ¢ largest namely, x[k](g),.‘.,

such that k(grl), A(grz),...,k(grt

A[k-t*l](g)' We call these populations thé't best.

Wo approach the problem using the indifference zone formulation. For

AN T e e

given 4 (>0), we define

e

. . L] . ‘m .
(4.5) Q(r;a) = {(gl. ?2"”’?k)' a € fo,l> . xi'k-.t*l](g) > X[k_t'(g) + A}

EEREL -

Also, for convenience, we define the k-cartesian product

(4.6) 8= <0,15% x <0, x...x¢0,15",
Por specified F(x;¥) and A, we consider our préblel on the configuration
a(r;48) for given A using thq_ ihdifferance zeno approach,

Let H(x) be some specifiéﬁ cdf, Lot-g be a sample of size n from a
population with density a, + F(x;¥) for some 90‘5,<0,1>', and lot G, (x)

denote the associsted empirical distribution. For a € <0,15", we dofine

R s B B o Pt i o LV S e Y

P e
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(4.7 S(esH) = [ (2 + F(xi0) - 6 (x) dH(x)

for some given value of 6,

a) Continuous Case

We assume that the parametric form of each component Fi(x;e) is con-
tinuous in x for each 6 and also that it is continuous in 6 for each x. If
n independent observations are drawn from a population with mixture demsity
G(x;go) for unknown a e <0,1>m, the value én which minimizes S(a;H) seems
a good estimate for e in the least squares sense. It is to be noted that
én is a statistic and is a function of H(x). A good choice in some sense
for the weight function H(x) is not simple. Bartlett and Macdonaid [21
study some special case for m = 2. For m > 3, the situation is complicated.
A natural and reasonable cboice of H(x) would be Gn(x) which is the associated
empivical function. This choice has been studied in [19] and {18]. For an

alternative choice of H(x) consider G(x;g) =a -f(x;e) which has been studied

in [70]. For a fixed p (0 < p21), wo take

(4.8) H(x) = pa - f(x;e) + (1-p) Gn(x).

Associated with each v, we dofine, analogous to (4.7),

(4.9)  S(@p) = [ (o * F(xi0) - G (x)) aH(x)

where H(x) 1s defined by (4.8) and'Gi“(x) is tho empirical distribution

function corresponding to L (1 =1, 2,...,k). Define ; to be such that

(4.10)  S,(d,:p) = inf _ S,(aip).
‘ ) i "i ee‘o‘l>n i 7' ¥

The existence of éi can be shown to hold. For a fixed p (0 < p < 1), wo

dofine a soléction rule Rp as follous;
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Take n independent observations from each LA and compute a, = gi(xil,
X{ps++»X;,) which is defined by (4.10) and (4.9). Let xmcé) < A[Zl@ <

-

ool Ap o (a A a a
£k (g) denote the ordered values of k(gl), A(gz),.. .,x(ak) .

[k-t+1](c~')'
A random mechanism is used to break the ties. By a correct selection (CS)
we mean a set of t populations associated with the t largest values A(al),

A(gz) seee ,A(gk) is selected.

Definition 1 A selection procedure R is consistent with 'respect to X if

lim lim inf P {CS|R} =1
440 n a€Q(r;A) &

Definition 2 A selection procedure R is asymptotically strongly monotono

with respect to A if x_(gi) < x(gj) and for any € > 0 implies

lim  sup P {m is selected|R} - € <lim  inf l‘»‘m{uj is selected|R}
e o€a(2;8) O mee  a€0();0)

Theorea 4 ‘Rp is consistent and asymptotically strongly monostone with

respect to a continuous ).

Proof: (a) We show that 'éi *a, with probat‘_:i,lity one for each i = 1, 2,...,k.
Now, by the Glivenko-Cantelli theorem, for € > 0, I N(€) _.such' that, whenever
n> NE), ' ‘ '

Pelllp gy + F(xi0) ¢ (1-p) Gy (0] - 6, 0] <€) = Piplyy « F(x:0)

- G, (%) <€) = 1

Replacing dP'“(x) by d{p T Fo {1-p) Gin(x))aad fal-low'..the_jrsaw arjupent

‘as given in the proof of Theorem 2 in [19] the result follows.
{b) Consistency of-% :
'Sin_ée Ais cohtinuous it follows thus A_@i)' - xtgi)'&ifh'probability one.

Bt meaihon S, s fae et

ik e
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Now, by the Egoroff's theorem, for € > 0 and 6§ > 0 there exists Ni(&”,d),

/\i and Bi such that the sample space is decomposed to be Ai U Bi with

By the complement of A, and P(B,) > 1-€ and on B, [A(a,) - A(a)]< 8

whenever n > Ni (€,8) uniformly in e € <0,1>m, i.e. Ni €,8) i; independent

of G, Note that x(c:xi) depends on n. Set N = NI(G,G) +,.. Nk(e,é) and
k

set B = N Bi’ Then, P(B) > 1-€, and on B, whenever n > N,
i=]

max IJ\(a ) - Moy }|< & uniformly for each (ay, 02,'...%)632. Now, for
1<i<k

any P* € (0,1), and any given 4 > 0, choose § = 3~ and € = l-p* _Since on

Q(r;4), A[k-ul] lk 1] 2 >4 = 38, Heﬂce:, we conclude that -

P?{A(Qri) > A[k_t](g‘)o i=1, 2:"':‘“{91.1) > x[k_t](g)} > pt

Va€q(d,a). Hence, we have shown that for every 4 > 0,

lim  inf va{csla } = 1. This is the consistency of R_.
e a€R(A;4) P P

(c) Suppose A(a;) < Ma,).

(i) If k(ai) < x(k t](“) and A(u ) > x(k te ll(u) ‘!‘hen. ta!gp;-;i* ;%‘and :

go through the arguments given in the previous part (b), we can éo?;clude SR

that  inf p. {n, is solectele } > inf 'p“fcs[a }'2_% whenever
aen(r;a) * T sean;e) L o

n > “0 B N (4) for some No. On the other hamd. for cach n ke -NG." (: is

selectedln e (solection 18 not comct]ll"} Honce, P fvi is wlecwdn‘z

i- P, (CSIR ) < m Voea(aia), dee. o sup  polx is se;eatediﬂ y < i for
een(d;e) o °

-

oa
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(ii) Suppose Soth A(gi) and A(gj) are no larger than A[k-t](?)’ Then,
for €> 0 and by the arguments in (b), there exists a subset of sample
space B and an integer NO such that P{B} > IJ% and for n > NO and on B,
max la, - .| < %u Let E denote the event {m, is selectelep}. Then
1<i<k

=ENB+ ENB®.. Hence sup P_(E) < sup Pa{t (i B} + sup PQ{E n 8%y

a - a - a ~

A

n g%
'Q{B } <

oM

< sup PQ(E N B} + %— since P(,{E n g} V o&Q(r;A). Noting

a

-

bl
=3

that, for any cEQ(k;A),Pg{E N B} = 0 since, on B a, < u[k-t+1] -3 -

(iti) 1f X(gi) and A(gj) are both no less than k[k~t‘1](9), the argument

is analogous to the case of (ii). The proof is complete.

Remark 1 Let tl’ tz,...,t be positive integers such that each t, is no

(1)
larger than k-1. Let a(tx, tyreeenty ) = ((a . uz.....u.) Q(R-ti*ll

E:)t 1 i = 1, 2....,m) whero a%}% denvtes the j-th largest value of
:the 1-th component of “1’ Ggpenssly und we denote nr " {a(l) aSZ)....m(m))

._lf for*each‘i:wo arc desired to seloct the t lay gest in the i-th component
'>‘sinultaneously. then. usxng the sta:istics (al. a,,...ak} which are defined

‘by (4. 10). associatad with the i th couponeut ‘we select these populations

which have the ti largest values ‘in the i-th uomponent of (u(i). uéi). ‘.,uél))

(i w ], 2..,..m) It can bc shauu that the siunliaucous selections are also

o 'consistcnt aﬂd asyupto*icaliy strongly uonotane on a(t,., t,.. . k)‘

'}Definxtiun 3 A selcction pr&scduro n is con%istent “of order O(A(A)) (o(A(A)))

1»1:» respout :o A if Yim inf @ (ealn: | (liw inf P Ies[Rl » 0.

L by oA ,A) . a0 a€n(A;a)
. u»a(A(A;) T neo(Aa))




H
K
i
N

PP P A

ot e, 2t AT e, B iy

ees e

50

Theorem 5. Rp is consistent of order O(AG) with respect to A if A

satisfies Lipschitz condition. (- % <8 < 0).

Proot: We note that, by the Glivenko-Cantelli theorem that suplGi(x) -
X

Gin(x) + 0o(1)|»0 WPl as n»» for each i. For any fixed i, let é(gi;p)
denote the m-1 equations for which each equation is differentiated with

respect to aij’ j=1,2,...nm-1, where gi = (ail’ aiZ""’aim-l’ 2 a )

j=1 !
Then, the first element of é(gi;p) for j = 1 becomes

1 v 1-
n Z 1[)] 0 ){ % Fr 1[3]’e ) %’+ 3324
1 D

< < .
where xi[l]-"'-xi[m] are order statistics from LI Apply the analogous

. -1/2
arguments in [19], we have Ixfgi) - \(gi)l < O(n6 1/2

} for all but finite
n with probahility 1 (0 < & < 1/2) aince A satisfios Lipschitz condition. Now,

take |A(§i) - A(gi)[ =4 and let A+ 0. Then, as n + =, A » 0 and we have

-2
e 0(51'25 ). This means as 4 + 0, the rate of divergence of n is to the
-8
order (§) - . Inorder that inf P (CS|R} = 1 it suffices to take [
. a Ctel 7o
. a §(r3L) S
2 . 6 . - . LTI
n = (“) .a5 4 » 0;

tot & donote the arithmotic mean of r indopondont estimates of a,
where v {s some integer. This means vn saiplos are drawn from sach population.
And for cach subgroup of n samples, we obtain an estimate éi for;tho'ﬁopuiation

* . If nis large, Ma,) = u.,, and t » 1, we propose the following rule n;.
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?\ Rp: Select T if gi1:3 gji}for al) j # i, where . is the first
b component of éi"

Theorem 5. If n is large, t =1 and k(gi) =y, the projection function,

then we hive

| = K /A

inf P {CSIRZ} > [ m o(h.z + T2 jde(z)
e TP Ty ) %)
"f_‘~ > 'where &(x) denotes the standard normal distribution and
L a2 [ [ 6 (00N-G(y)]dB.(x)dB, (y)
‘ . J . ~(p<x<y<m J ) ) J H
L where
'f Bj(x) = Fl‘x;el)cj(x) -,!m Fl(x;&l)dcj(x)
% for j = 1, 2,...,k and
i
: 8.4 €O €00 Ty, 8. = a,.
(D R (ST I (VU 1}
§ - Proof: It has been shown in (18] that éi is asyutotically norisal and
R hence, the first component of @, say g,y is asymptotically normal with
¢ mean a,, and variance ' ‘
op =2 [ [ 6(x) [1-6,(y)1dB, (x)db, ()
§ . Sl DA
i
P where
! | e
3 B (x) » Fy(xi0,)6;(x) - L Fy {x3€,)46, (x).
{
¢
%
i,
e
. &
i
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Henee, whea nois darge amd t = 3, we have for «"W(Ai;A)

IR} = a o i = - =
p(}{cs,ap} P(}(ukl 2 ayy, 1, 2,...,k-1oy, lgik a, b
) Moy - o) | T ey - a5 /;(ujl - )
B Pu{ a z g, O * o }
- k j k k

| v

(where Z Z,,,...Z.k are iid standard normal)

1 "2

= k-1 @
= [ 0(55 2+ éié)défz)
-= j=1 j j
» %1
> é(ajz . gfé }do(z) (by a lemma in [45])
® j=1 {i+1]

where j* a[l]/G[j#l]’ 1) < 2] LA This completes the groo?.

Asymptotic relative efficiency of Rp with raspect o RB
We assuse m = 2, t » 1 and A is the projection function. In this case
we have G{(x) *a, ?1§x:61) 0'{1-ni) Fz(x;ez) fqr irr 1, 2,...,k and we

denote a, instead of a. Suppose Fl(x;eii and thgzezl are not spectfied,

hewevor, we assuse there exists some poiat X, known, such that Fl(;c;ei)

# V:(xo;ézi.' Assume F(x,18)) » Fylxgi8y). Then, we see that a, > a ir,
and only if Gi(:u) > Gj(xu). Hence, selecting the best it equivalent to
selecting the population associated with the largoest G(xn;ﬁi) value,
For a givén i, 1 ¢i ¢k, and j, 1 5 J &, define
1 b X

ij. < %

. E-4
ij {o othetwise
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and define

o>
~
fad
(e}
S
]
iHoe~-13
-

Then, it is obvious that éi(xo) is a binomial random variable with cdf
B(n;G(xO)).

We define a selection procedure Ry as follows:

RB: Select the population T which is associated with the largest Ci(xo).

When n is large, we use the normal approximation. Let Fl(x ;0 )

Fz(xo;ez) = d > 0. Then, by the result of [114], we have asymptotically

, )
n & cz(p*)(l-AZdS)/ZA“dg when A ~ 0 and p* + 1. Again, by the Feller's
2

z
2

inequality, we see that ¢(z) = 1- We obtain cz(p*) = (1} +
2T 2 p

Let n and n, denote, respectively, the sample sizes associated with Rp

Ry when inf Pu{CS} = P* is satisfied for both rules. We define the

gEQ(A;A)

asymptotic relative efficiency of Rp with respect to RB by ARE(RP;RB) =

(28]

and

-—T-~—7-as P* > 1 and 4 + 0. It follows from the previous result and the

resalt in Theorem 4 we have

2(1'1)*):. Al 548 dg
ARE(R RB) = lim 75 = 0
A0 1-4 d0
p*+1

However, if we take 1-P* = A + 0, we have an alternative eificiency defined by

ny (P*,8) 2A6*3‘5 &
ARE“(R iRg) = lin ] 1M et = 0
BT 0 MOPREY g 1 dg
A=sl-p*

This shows that'Rp is good compared to Ry
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h) Discrete casc

In this case, we denote F 2, ..,Fm as discrete distributions such
that the outcomes from each distributjon with cdf Fi, for some i, can be
classified into s(> 2) states. Let the probability that an outcome from
Fi belongs to state £ denoted by Pig: We assume FI’ FZ,...,Fm are all
specified and p;, are all given, _

for & €E<O,1>m we define a mixture distribution Gi by Gi = a4y Fl(x) +
%5 Fz(x) Yook Fm(x) Then, Gi(x) is also a discrete di stribution such

that the probability of an outcome belonging to state j is given by '

855 7 %51 Pyj * %42 Pyj rootag pmj for j = 1, 2,..,55.

We assume that there exists a lower bound 8y such that g.j 2852 0 for all
i=1,2,..,k,3J=1,2,...,5. Letn samples be drawn from "i and let nJ
denote the number of outcomes which belong to state j.. For any g é

(al. Ugeosostty )} we dofine the Matusita distance (see | 71]) as;fo;log§{f;5'

/.
TR §,(a) = F A ./;302}1/2
jel

where g ; X a ) Si(g) is thuz a function oﬁ <0,1>m,
' fal : ‘

let a denate a value in <0, 15- such that bi(ui) nttains ity infimum
ior bivon w and k, to eeloct the t bost with respoct to A, we prOpase the

follcwing sclcctian procedure.

ey ,Seleat,nr{gar ,...,w it, and ouly if
L o 3»1‘ 2 _»;»t

\(n ). A(u )....,A(u } are the € largust vutues of.
L tA_ .

\(u!). \tnz,,...,z(uk), uhxch ure defined by>(4 11;.__ :_'
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Theorem 6. The selection procedure R is consistent and asymptotically

strongly monotone with respect to A if A is continuous.

Proof: It has been shown in [71] that for our case éi >a. with probability
one in the usual sense of convergence of a sequence of vectors. Therefore,

A(éi) > A(gi) WPl. Appling the analogous arguements given in the proofs

of Theorem 4 we can conclude the same results. This completes the proof.

Lo sy

A —m.‘
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