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PREFACE

The work accomplished on the Defense Nuclear Agency
"Boundary Layer Measurement Program," DNA001l-76-C-0080 is
described in a two volume set of final reports as follows:

l. Volume I - Boundary Layer Measurement Program -
Boundary Layer Acoustic Monitor Development,
Characterization and Installation (PVM 12 and
13, STM-12), K-79-54(R), DNA 4873-1.

2. Volume II - Boundary Layer Measurement Program -
Aerodynamic Phenomena Transducer Development,
K-79-54(R) , DNA 4873-2.

Volume I describes the development of the Boundary Layer
2coustic Monitor (BLAM) in addition to the laboratory and wind
tunnel tests which characterized and evaluated the BLAM. Alsc
described in Volume I are the flight qualification tests and

flight hardware characteristics used on the PVM 12, PVM 13 and
STM-12 flights.

Volume II describes the laboratory development and evaluation
of the Aerodynamic Phenomena Transducer (APT) which is designed
to simultaneously monitor the presence of acoustic fluctuations
(turbulent flow) and measure the static pressure exerted on a
heatshield during flight. Arc heater test results are included.

The authors wish to acknowledge the efforts of Lt. Cmdr.
R. Nibe and Major T. Swartz of the Defense Nuclear Agency,
Lt. Col. J. McCormack and Capt. M. Elliot of SAMSO (ABRES)/RSSE
and Lt. Col. R. Jackson of SAMSO/MNNR, in addition to Mr. Wally
Grabowski of the Aerospace Corporation. Each of these individuals
contributed significantly tc the success of this overall program.
The KSC prcgram manager for these efforts was Mr. T. Meagher.
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AThe becquuerel (Bq) is the St unit of radicactivity; 1 Bq = 1 event/s.
*#The Cray (Gy) is the SI unit of absurbed radiation.
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Amerlcan Soclety for Testing and Materials.,
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SECTION 1
INTRODUCTION

PVM PROGRAM

The PVM Boundary Layer Acoustic Monitor (BLAM) had the
major objective of placing acoustic instruments on flight test
RV's which would acquire data on boundary layer transition
during reentry.

The BLAM is a new concept for determining boundary layer
characteristics by sensing the external surface pressure
fluctuation transmitted through to the inside surface of the
heatshield by acoustical stress waves. This concept had first
been tested on a Flame* flight sponsored by DNA; the results
of that test indicated that significant acoustic amplitudes
were present and that transition phenomena were detected.

The positive results obtained on the flame experiment
stimulated additional flight and reported herein. The flight

data was generated on MK-~12 type reentry bodies of the Space and

Missle Systems Organization (SAMSO). Two BLAM channels were on
each of two reentry bodies on two Prcduction Vehicle Monitor
(PVM) 12 and 13 flights (total of 8 channels). Subsequently,
four BLAMs were installed on the System Test Monitor (STM)

12W flight. These data were all generated on ICBM trajectories
on the Western Test Range.

*
Flight-Launched Advanced Material Experiment.
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Before the BLAM could be applied to a full-scale RV,
several equipment modifications and tests were necessary which
were included as tasks in the PVM BLAM effort. The contract
called for work to be accomplished in the following areas:

1) Sensor design and fabrication;
2) Electronics modification:
3) Flight qualification testing;

4) Liaison with RV contractor and DoD organizations
involved with the flight test;

5) Participation in an on-going wind tunnel test
program.

The primary objective of the STM-12 effort was that of
instrumenting the RV's with small BLAM sensors which occupied
smaller volume than the PVM sensors. The sensor was designed
with half the diameter and approximately the same height as the
PVM gage. 1In addition to flight test installation and qualification
tests, more extensive data were taken of the installed BLAM
frequency and directionality responses.

N Sections 2 through 5 of this report relate the work accomplished

ad

on the PVM/STM BLAM efforts. 1In Section 2 the sensor opti-
mization, characterization and electronics design modifications
are described. Section 3 describes the flight qualification
tests and Section 4 is a summary of flight test activities.
Section 5 reports the results of ground tests, principally in
two wind tunnels, and conclusions are reported in Section 6.
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SECTION 2

GAGE OPTIMIZATION AND CHARACTERIZATION

2.1 SENSOR DESIGN

The Flame and PVM-12 BLAM utilizes a 2.54-cm diameter
quartz crystal which convefts»acoustical stress waves into
electric charge. This charge is converted to a voltage in a
high impedance load at the input to a transistor preamplifier,
which in turn, drives a coaxial cable connected at its other
end to a signal conditioner. The output voltage of the
signal conditioner (or electronics) provides a 5-volt full-
scale signal to the RV telemetry which is related to the
acoustic pressure fluctuation amplitude on the RV surface.

This gage, a photo of which is shown in Figure 1, is
identical to that used on Flame with the exception of material
added on the outside surfaces to provide electrical isolation
from the heatshield. Fibreglass sheet (.025~cm thick) was
placed on the front face of the crystal and .0076-cm mylar on
the exposed cryastal cylindrical surface.

Mechanical mounting is provided by bonding the front

surface to the heatshield with a thin uniform layer of epoxy

glue. Additional strength is given by three screws through

a flange to the substructure of the RV. The screws can be

insulated from +he aluminum case by fiber shoulder washers
as required.

The electrical voltage output of the sensor is in direct

proportion to the stress in the crystal. Stress is appled to

the crystal by external acoustic pressures being transmitted
through the heatshield to the sensor located on the inside

11
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surface. The mounting face (as seen in Figure 1) is coated

with thin metal and is also connected to the cable shield.
The back face of the crystal is connected to the internal

preamplifier. This construction ensures gocod shielding
from stray electric fields.

Two simulation techniques were applied during the PVM
effort to provide characterization data on the frequency
response of the BLAM. The first was that of applying a known
sine wave voltage to a crystal which was acoustically coupled
to the heatshield at the BLAM position. The second method
imposed a sinusoidal force on a small area surface of the
heatshield by an electrostatic technique. Because the
crystal exciter used in the first method was itself resonant,
it was used only for qualitative checks of the BLAM installa-
tion. A drawing of the exciter and application techrique is
spown in Figure Z, The output of the BLAM during these tests
appeared at frequencies associated principally with the exciter

crystal resonances. However, the technique proved very useful

to check the entire as-installed BLAM system.

The electrostatic or capacitive simulator was used to
determine frequency response functions of the BLAM installation.
A typical response curve is shown inr Figure 3; peaks are seen
to occur at frequencies of 50, 113, and 168 kHz. Lower
amplitude responses below 30 kHz and above 300 kHz are also
exhibited by the gage but are not shown on the plot. The
response can be electrically filtered by the signal conditioner
as appropriate to remove the low or high rrequency content.

The data in Figure 3 were taken with the sensor mounted on

1.27-cm thick carbon phenolic material and a surface acoustic
pressure of approximately 35 N/m2.<
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STM-12

The BLAM developed for the STM-12 application is similar
to the PVM gage excepting for a smaller diameter. The STM-12
sensor includes a 1.27-cm diameter quartz crystal and the case

size is proportioned accordingly. A photograph of this BLAM
is shown in Figure 4.

The BLAM's installed on the STM-12 vehicles were tested
using a portable electrostatic stimulator built for that
purpose. This apparatus included a high output voltage
amplifier and a variable frequency oscillator. Approximately
500 volts peak-to-peak sine wave from 10 to 150 kHz was
obtained for exciting the acoustic waves on the surface of the
RV. The surface of the RV was protected from the high voltage
by placing an intermediate aluminum electrode between the
exéiter and heatshield. A thin RTV membrane coupled the
acoustic wave from this auxiliary electrode to the heatshield.

Resﬁlts of the as-installed BLAM tests are shown in
Figures 5, 6, 7 and 8. Each gage was measured at two
frequencies at which resonance peaks had been observed.
These curves show the directionality of the gages vary with
location but consistently drop off in response within one to
four cage diameters. Transducers 1 and 2 were installed at
an aft station which has lower curvature and exhibit greater
rate of amplitude decrease with distance when compared with

number 3 which is behind a highly-curved surface farther
forward on the RV.

A frequency response curve for one of these gages is
shown in Figure 9; this curve exhibits a typical BLAM
responge showing resonance peaks at 34, 80, 140 and 280 kHz.
All four gages had similar frequency responses.
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2.2 ELECTRONICS DESIGN

An extensive optimization of the electronics was under-
taken to improve performance over that obtained from the
Flame gage. In Flame, an automatic gain control (AGC)
amplifier was used producing the input-output voltage
characteristic curve shown in Figure 10. It can be seen that
resolution above 2 volts output is poor, thus necessitating a
modification of the circuit. Because the magnitude of the
noise to be detected was unknown, it was decided to continue
with the non-linear amplifier principle used on Flame, but
design it to have a linear characteristic when plotted
logarithmically.

The block diagram of the resulting circuit is shown in
Figure 11 and its amplitude input-output characteristic is
plotted in Figure 12. While the curve is not fully linear,
the resolution was improved greatly over the previous circuit;
approximately 4.5 orders of magnitude are spanned by the
amplifier. The circuit includes a simple input voltage
regulator and a temperature-compensated differential detector
in the output. The circuit performs well up to 1 MHz and has
a iow frequency roll-off starting at about 100 kHz. The curves

of Figure 13 show the amplifier frequency response at two
output levels.

Components of the amplifier are mounted on a small printed
circuit board which is placed in an aluminum box and hard-
potted with epoxy. Mechanical design of the amplifier box is
shown in Figure 14. Weight of this amplifier is 80 grams.
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SECTION 2

FLIGHT QUALIFICATION TESTE

To establish reliability of the BLAM, a comprehensive set
of environmental tests were conducted. The criteria for these
tests were established during discussions with Aerospace,
General Electric Company, TRW, and SAMSO personnel directly
concerned with the PVM 12 and 13 flights.

The types and levels of environments resulting from these
comnunications are given in Table 1. Tests were conducted on
two complete PVM BLAM channels as per Table 1 and were 100%
successful. A report of this work was completed and forwarded
to concerned organizationsa. Additional tests of the same
type and level were completed on the sensorAdeveloped for the
STM-12 RV's. As with the PVM sensor, the results were success-
ful (no failures). A report was completed and forwardedlo.
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TABLE 1 FLIGHT QUALIFICATION ENVIRONMENTS

Vibration-Powered Flight

Shock-Powered Flight

Acceleration-Linear
Tenmperature

Spin/Spin Acceleration

Endurance

Electromagnetic Interference
Conducted Emission

Conducted Susceptibility

Humidity (Non-operating)

A

Random. Level 25g rms dis-
tributed as per required
spectrum.

Up to 825g as per required
shock spectrum.

140 g's 2 minutes

71.1°C one hour

2000%/sec?® to 2000°/sec
operating

2000°/sec? to 8000°/sec non-
operating

150 hours

Less than 50 MV p-p

Less than 25 MV p-p for specified
input coniitions.

MIL-STD-310 Method

507.1 Temperature
57.20C max.

i

3
i
q;
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SECTION 4

FLIGHT TEST ACTIVITIES

4.1 GAGE CHARACTERIZATION TESTS

Each of the PVM and STM-12 BLAM channels fabricated for
delivery to G.E. for later installation or for spares were
subjected to a series of tests for operational assurability
purposes.  Statements governing the Operational Assurability
tests were included in a specification for the BLAMg. The
OA tests included temperature soak at 71.1° and sinusoid-
swept vibration from 60 to 2000 Hz at 3.5 g rms level.

All fligl.it test amplifiers were tested for their input-

output voltage transfer characteristic in accordance with the

specification9 . The data for the amplifiers delivered to

G.E. are included in this.report in Appendix A. These curves

are obtained by exciting a preamplifier at its input and
recording the d.c. voltage output; the input frequency used
was 200 kHz for both PVM and STM amplifiers.

4.2 LIAISON/ICD ACTIVITIES

Early meetings were held at G.E. in order to agree on

Interface Control Drawing details necessary for the installa-

tion of the BLAM's on the PVM and STM RV's. Documentation

provided by KSC included circuit diagram, sensor and electronics
mechanical drawings, cabling and connection data. The drawing

was produced by G.E. and signed off by all organizations.
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Installation of the sensors on the RV's was to be
physically effected by G.E. with KSC present and monitoring.
To facilitate this operation KSC prepared an instruction

memorandum detailing the steps to be followed. After instal-

lation and with electronics connected, a checkout procedure

was written which would permit a qualitative excitation of
the BLAM to ensure that the channels are operative.

All gages were installed successfully and produced good
results as reported elsewhere.
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SECTION 5

GROUND TESTS

5.1 INTRODUCTION

Wind tunnel tests were planned and carried out to test
the BLAM in a controlled flow envircnment with the purpose of
characterizing its mode of operation. It was hoped that the
results of the ground tests would then be used to provide
better understanding of BLAM flight test data.

The first test was completed in the small laboratory,
room temperature, continuous running Mach 3 tunnel at Aerc-
nutronic Ford* in Newport Beach, California. Dr. A. Demetriades
is in charge of this facility and assisted in planning and
carrying out the test.

The second test utilized Tunnel 8 at the Naval Surface
Weapons Center in White Oak, Maryland. Dr. Fred Morrison and
Mr. Frank Baltakis provided planning and test assistance.

In both tests, the approach was similar; the free-stream
Reynolds number of the flow was varied to cause transition in
the boundary layer to move across the positions where the
BLAM's were installed. Output from the BLAM's were compared
with temperature and pressure sensors. The following sections
describe the individual tests in greater detail.

Ah s

E3
Now Ford Aerospace and Communications Corporation.
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5.2 AERONUTRONIC FORD SUPERSONIC WIND TUNNEL TEST

The BLAM
was placed at various locations on the exterior surface of

The test arrangement is shown in Figure 15.

the tunnel side wall.

installed 28 cm downstream from the nozzle.

wall is 1.9-cm thick lucite.
were as follows:
Mach No.:
Total Temperature:
Supply Pressure Po:
Reynolds Number:

A ported pressure transducer was

The tunnel side
Flow parameters for the test

3.0 + .03

38°%C

210 to 730 mm Hg abs
1,970,000 to 6,693,000

meter—-1

By varying the supply pressure from low to high, the transi-
tion region was caused to traverse the side walls from down-
stream at low pressure thence upstream past the BLAM
location towards the nozzle.

Results from a pressure sweep are shown in Figure 16

for both transducers: BLAM and ported pressure. It can be
seen that the pressure gage responded very well to transition
on the side wall. The BLAM output, however, appears to be
linearly related to the total pressure, not indicating a

significant change in output in the transition zone.

An explanation for the apparent lack of BLAM response to
transition is that the frequency response of the blam extends
from 75 kHz upward to 500 kHz while the ported pressure gage
responds to frequencies below 20 kHz. In wind tunnel experi-
ments of this type, transition pressure fluctuations in the

boundary layer may be significantly higher at low frequencies.

A rd 1

' et

T e . . . © e e s -

-




TR s e

| ZEEERR TR

NOILVIIVISNI 1S31

(wo gZ=Xx)
3609 paysod

© e e e com————————r . - =

G13¥INOI4

MOPUIM

9609 pajsog

35




——— - - - _—  — T—— vy, - T

AC0

¥o

—_ - —— —————— > % - —~————

NOSI¥YAWNOD 1NdiNO ¥3DNASNVIL 9| INOI4

B4 ww ° 4 IFuNSSIUL TVIOL
0tL 0£2

SSVIO MOIHL W2 /7°| NO Q3ILNNOW
4ANdiNO Wvg

LNdLNO

A9VO Q3130d

UYNINY

AINITINgNNL

jo—— TV NOILISNY ML —




~

o

High frequency components in the boundary layer are not lacking
but must compete with the relatively high noise background from
the nozzle and other upstream disturbances.

In addition to radiated tunnel noise, the tunnel wall
vibrating in a diaphram mode added to the sensor output.
During the test, both d.c. voltage from the electronics signal
conditioner and the a.c. output from the sensor were monitored.
It was noticed that the sensor output had a dominant frequency
of 16 kHz or 25 kHz depending on the thickness of the tunnel
side wall window. For 1.27-cm optical glass, the frequency
was 25 kHz and for 2.54-cm lucite it was 16 kHz. While higher
than the lowest plate resonance, such frequencies could well be
excited on walls of these thicknesses.

Table 2 is a listing of BLAM data from the test. Listed
are the d.c. output levels, corresponding sensor a.c. levels and
the amplifier midband gain compared to the ratio of sensor and
d.c. outputs. These data show that the dominant frequencies in
the sensor output, even though amplified much less, could have
obscured the presence of high frequencies generated by trans-
itional/turbulent boundary layers.
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TABLE 2 BLAM DATA ~ AF/SWT
P_ = 730 mm Hg

o
PREDOMINANT SENSOR ELECTRONICS D.C. MEASURED
RUN FREQUENCY OUTPUT OUTPUT RATIO MIDLAND
kHz mv r.m.s. mnv DC/AC AMPL. GAIN
2 25 3.6
88.9 3900
4 25 320
5 16 4.4
43.2 4090
6 16 190

Overall conclusions from this test were that low frequency
attenuation or mechanical mounting to eliminate acceleration
response must be added prior to future wind tunnel tests.
Some indication of transition was present in the data of
Figure 16 in that the slope at lower pressures was steeper
than that after transition. The signal-to-noise in the data
is too low to permit a positive conclusion in this feature.

5.3 NSWC TUNNEL 8 TEST

5.3.1 Summary

This test was planned witbh the following objectives

a)

b)

c)

d)

BLAM characterization

Correlation of the acoustic level and thermal
transition monitors

Measurement of transition movement over the model

surface

Provide backup data for the PVM flight tests.
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The facility NSWC Tunnel 8, was chosen because it provided
parameters suitable for measurement of poundary layer trans-
ition phenomena on conical models. This tunnel is well
calibrated and has the performance characteristics seen in
Figure 17 for the Mach 8 nozzle. Additionally, another DNA
program with contractor Prototype Development Associates

(PDA) was being planned in the same facility and it was
requested by DNA that KSC implement this test in a cooperative
effort, using PDA hardware and entry to Tunnel 8. Since PDA
had designed the sting interface and data acquisition system,

KSC then designed the mating heatshield and nosetip. After

some liaison, this approach was worked nut and the remainder of
the test was designed.

The test matrix is shown in Table 3. Test variables
included angle of attack, spin rate, and Reynolds number
(or total pressure ~ see Figure 17). Runs were patterned to
provide increasing complexity of conditions and to permit
comparisons of parameters before proceeding with the next
run. The four runs shown in the matrix were completed over
a two day period.

The test model was a 9° half-angle sharp cone with
20.3 cm base diameter; the nosetip was stainless steel
fabricated by KSC and the frustum was carbon-phenolic heat-
shield procured from Hitco. The frustum thickness was
0.953 ecm. The frustum was instrumented with six BLAM's and
six thermal sensors installed as shown in Figure 18,

The BLAM's installed on the heatshield for this test
were identical to those described in Section 2.0 which were
installed on the PVM-12 and PVM-13 reertry vehicles. The
thermal sensors were similar to calcrimeters and are
illustrated in the cross-section drawing of Figure 19. The
thermal sensors were fabricated from a short piece of ceramic
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RUN NO.

TABLE 3 NSWC TEST MATRIX

CONDITIONS ' ACTIVITY
a =20 ® Tunnel and Instrumentation
Non-Spinning
RE Sweep Set Up
a =20 ® Acoustic-Thermal Comparison
Non-Spinning .
RE Sweep ® Shadowgraph Correlation
a =20 ® Acoustic-Thermal Comparison
Non-Spinning .
Tunnel Pre-Heat @ Shadowgraph Correlation
RE Sweep
a = 2.5° ® Acoustic Directionality
Spinning .
Tunnel Pre-Heat ® Shadowgraph Correlation
RE Plateau
490
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FIGURE19 WIND TUNNEL MODEL THERMOCOUPLE SENSOR
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tube, one end of which a copper film was vapor deposited. A

constantan wire was then inserted in the tube and peened over

to hold it in place. The final step was to plate the end of

this assembly with copper to form a .005 cm end covering.
The sensing thermocouple junction was formed by the copper
plating in contact with the constantan rod.

This sensor
exhibited a time constant near 15 msec.

After the Aeronutronic-Ford test, it was recognized that

additional filtering and acoustic isolation would be needed
to obtain good signal-to-noise ratio.

Two specific measures
were undertaken:

1) Provide acoustic isolation for the
heatshield to decouple it from the sting vibration and

2) electronically filter out the low frequency components

picked up by the BLAM sensor. Fiqure 20 illustrates the

method used to isolate the heatshield from the substructure.
"O" rings were used between support rings and a silicone

rubber damping wafer was placed between the nosetip and
heatshield.

To filter out the low frequency components in the sensor
output, an amplifier was designed to have sharp rolloff below
200 kHz. The frequency response function of this amplifier
is shown in iigure 21. This amplifier was also designed to
have a linear amplitude function as contrasted with the BLAM
amplifier. A linear gain was used because the boundary layer
noise was expected to be very low in‘amplitude due to low
static pressures on the model.

5.3.2 Tunnel 8 Test Results

Data from the test model were recorded by NSWC either
digitally with a computerized sampling system or on analog
tape with a Honeywell 5500 c.c. recorder. Model thermal sensors

44
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and tunnel conditions plus a timing signal were recorded on
the digital system at a rate of approximately 50 samples per
second. Data channel allocations are shown in Table 4.

TABLE 4 TUNNEL 8 TEST DATA CHANNELS

Digital
0 through 7 PDA Force balance outputs
8 Time shared: P, scan 1
To scan 2
9 a - angle of attack ,
10 through 15 KSC thermal sensors T1 through T6
16 Time ‘
Analog Recorder
1 through 6 KSC BLAM outputs

7 IRIG Time

5.3.2.1 Run 1. This test was a 20 sec. run intended
to establish data quality and levels prior to a data run.
It was found that a large low-frequency noise content obscured
BLAM data and that the thermocouple output was very low.
Filters were added to the BLAM circuitry and gain was
increased in the thermocouple channels prior to Run 2.

$5.3.2.2 Run 2, During this 25 second test, P, was
increased gradually over the test period to provide a R
sweep. A plot of the tunnel conditions is given in Figure 22
showing Po and R versus time. The R data were obtained
using P, and T, plus the conditions of Figure 17. The tunnel
was not pre-heated prior to taking data.

é
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Data from the BLAM and temperature sensors are plotted
in Figures 23 through 28. The adjacent thermocouples and
BLAM's have been assigned the same numbers and plotted in the
same figures. There is some uncertainty as to the relative
placement of the BLAM data on the time scale because time
code was not recorded during Run 2. By using discontinuities
in the data, an attempt was made to line up the traces, but
a one or two second error could exist. Sensors numbered 1 and
4 are at the forward-most station on the model, diametrically
opposed. Numbers 2 and 5 are located in the center and 3 and
6 are near the aft end. Sensors 1, 2, and 3 are on one
azimuth as are 4, 5, and 6 (see Figure 18 for reference
locations).

Several features are of particular importance in these
figures relating measured noise level to flow characteristics.
First, it can be noted that the BLAM channels exhibit a
change of level between 10 and 12 seconds into the run and
that all except the forward thermocouple traces show a
change of slope at about the same time. The tunnel flow
conditions at this time are pressure of 3 to 4x106 N/m2 and
Reynolds number of 6.9 to 7.5 million per meter.

Other inVestigatorsl'2'3'4’5'6 who made measurements of
boundary layer noise in wind tunnels have reported similar
noise amplitude characteristics, showing that the root-mean-
square noise level in the transitional boundary layer
increased orders of magnitude over that of laminar flow.

The transition nois: level was also larger than that from the
boundary layer at Reynolds numbers (R ) where full turbulence
had been just achieved. These same researchers also noted
that the boundary layer condition can be related to R_; i.e.
the flow progressed from laminar to transitional to full

turbulence as R, was increased.
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The acoustic level traces in Figures 23-28 early in the
run were high then decreased immediately, a feature which can
be attributed to tunnel or tape recorder transient. As R
increased and the boundary layer entered transition, peak
noise was measured near 14 seconds on all channels correspond-
ing to R_ of about 107 m°L.

The thermal sensors which were placed along side the BLAM's
indicated a significant change in heating rate occurring at
about 9 or 10 seconds. This heating rate change is seen in the
slope of the temperature curves which are plotted in Figures
23-28. The forward stations (Transducers 1 and 4, Figures 23
and 26) did not show this characteristic in the thermal data,
whereas the BLAM's at these forward stations did show a small
transitional bump in the data. The transition bumps in transducers

5 and 6 were much greater in amplitude and closely correlated with
the temperature rate increase.

5.3.2.3 Run 3. This test was similar to Run 2 in that
a pressure sweep was used to vary the boundary layer conditions
in an attempt to record transition on the model. The major
difference was that a higher pressure was achieved in Run 3
and the tunnel was pre-heated to obtain more uniform flow.

Tunnel flow parameters and sensor data are plotted in Figures
29 through 35.

Data from the BLAM's prior to 8 seconds were not recorded
in this test due to the tape recorder not being turned on in
time. The aft and center stations, channels 2, 3, 5 and 6 do
not show transition except for a slight increase at the
beginning of the traces. The thermal data for these stations
indicate transition occurring prior to 8 seconds which would

be consistent with the Reynolds number at which transiticn
occurred in Run 2.
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FIGURE 33
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BLAM channels 1 and 4, on the forward part of the model,
show the characteristic transition bump but at a higher R  that
was experienced in Run 2. This bump is a good indicator of
transition since it is known that transition on a cone moves
forward as R, increases. Thermal sensors 1 and 4 show slight

increases in slope at the acoustic transition time indicated by
the BLAM's.

A series of Schleiren photos taken during Run 3 are included
in Appendix B, Figures 54 through 59. These photos show progres-
sion of boundary layer turbulence from aft toward the model tip
as the flow Reynolds number increases. While not having the
best contrast, the primary indicator in the photos showing
turbulence is the fine white line close to the model wall. This
line is not visible where full turbulence exists.

While the correlation of optical indicators and acoustical
signals has not been established, the photos show transition
near BLAM's 2 and 5 at 10 to 12 seconds in the run. This corres-
ponds reasonably well with acoustic and thermal data shown in
Figure 34. It is believed that the acoustic signal is generated
in the transition zone in the boundary layer forward of the zone

of breakup seen in the Schleiren photographs.

5.3.2.4 Run 4. In this run, data were taken with the
model spinning and at a 2.5° angle of attack with respect to the
flow. Tunnel operating parameters are given in Figure 36 which
shows three R_ plateaus of 4.6x10% m™1, 6.6x10% m™! and 10x10°
m_l. Data were taken during each of these plateaus from the
BLAM channels. Due to the long duration of the test, tempera-

ture data were meaningless due to thermal saturation.

BLAM data from channels 1 and 4, the forward-most sensors,
indicated a fluctuating level corresponding to the spin rate
of the model. The traces obtained are shown in Figure 37.
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Data from the remaining BLAM channels were poor in quality and
are not included herein.

An analysis of the data showed that the outputs were
phased 180° with respect to each other, which would be a proper

" indication if the noise sourrne were greater in strength on the

side of the model which was fixed with respect to the flow. A
cleose comparison of film and BLAM records (which both had good
IRIG timing marks) showed that the peak of the oscillation
occurred when the BLAM was on the leeside of the model with
respect to the upstream direction.

Martelucc:i.'7 showed that in such hypersonic flow conditions
at an angle of attack transition will move forward on the lee-
sidé ray. The relative amplitude of the BﬁAM sensors correspond
well to that fror Run 3 (e.g. Figure 30) at similar Reynolds

numbers.

An expanded view of simultaneous output from channels 1
and 4 is presented in Figure 38. The BLAM output exhibits
asymmetry and a central dip in amplitude on the peak, both of
which features can be expected as a result of asymmetric trans-
dition on cones. The dir in the peak can be atiributed to a
narrow zone of full turbulence in between transition zones.

The photos of Figure 38 also illustrate the directionality of
the BLAM in that the zones »f transition are well defined. This
is particularly visible in channel 4 trace where the dip at the
veak on the leeward side is apparent. Details less than 0.1

the circumference of the model can be seen, an exceilent
indication of directionality.

Additional c¢onfirmation of boundary layer condition was
given by Schleiren photos, in Figure 39A, B, and C. Figure 39C
was taken at time 50 éeconds, just prior to the data shown in
Figure 38. All photographs show a well-defined boundary layer
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Re= 3.6 x 106 nf’
a=25°

FIGURE 39A RUN 4 BOUNDARY LAYER PHOTO



VS,

FIGURE 398 RUN 4 BOUNDARY LAYER PHOTO
Ro=6x10%m!

a =2,5°
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FIGURE 39C RUN 4 BOUNDARY LAYER PHOTO
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on the windward side; on the leeside, no defined layer can be
seen so that the flow is'probably fully turbulent. The appear-
ance of the boundary layer on the leeward side is such that
turbulence extends forward to the position of transducers 1 and
4 at all these ReyndldS'nuﬁbers. On the windward side a forward

progression can be seen in the turbulent zone as Reynolds number
increases.

oL S

L e aA e




o LG o o

e !

SECTION 6

CONCLUSIONS

BLAM sensors were successfully fabricated to meet the
environmental requirements of an actual RV and were installed

on schedule in both the PVM & STM vehicles. The 2.54 cm diameter

sensor was characterized as having resonant peaks at 50, 113,
and 168 kHz when installed on a carbon phenolic heatshield
with 1.27-cm thickness. The smaller sensor developed for
STM-12 application exhibited resonance peaks at 40, 80, 220,
and 280 kHz. The BLAM electronics were designed to have
nearly a five-order-of-magnitude dynamic range by utilizing a
logarithmic technique. This amplifier permits recording of
acoustic data not heretofore obtained in flight tests.

All PVM and STM-12 BLAM units successfully passed the
flight qualification tests with no failures. The reliability
of these units was also established by the flight test results
in which 100% data were obtained.

Wind tunnel tests were partially successful and showed
that the BLAM and heating rate sensors responded similarly to
the boundary layer transition. 1In addition, the sensors
produced an output which fluctuated with the aspect angle on
a spinning sharp nose model. Because this output occurred on
the leeside of the model, the conclusion was made that
transition was being detected.
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APPENDIX A

PVM AND STM

BLAM CALIBRATION CURVES
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APPENDIX B
RUN 3 SCHLEIREN PHOTOS
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FIGURE 54 RUN 3 SCHLEIREN PHOTO
Re= 3 x 106/meter

Run Time = 5.7 sec.
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FIGURE 55 RUN 3 SCHLEIREN PHOTO
Re= 4 x 10/ meter

Run Time = 7.6 sec.
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FIGURE 56 RUN 3 SCHLEIREN PHOTO

Ro= 5.6 x 104/ meter
Run Time = 10 sec.
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FIGURE 57 RUN 3 SCHLEIREN PHOTO
Re = 7.2 x 10¢/ meter
Run Time =12 sec.
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FIGURE 58 RUN 3 SCHLEIREN PHOTO
Koo=12.5 x10% /meter
Run Time = 19 sec.
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FIGURE 52 RUN 3 SCHLEIREN PHOTO

Ro= 14.5 x 10%/meter
Run Time = 26 sec.
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