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SUMMARY

Current concepts of warfare call for remotely piloted vehicles (RPV) to

perform certain tasks that have been performed by manned vehicles. The

effectiveness of RPVs in performing these tasks depends, in part, on the
effectiveness of the launch and recovery techniques employed. In fact,

the launch and recovery system operation is a critical link in the total
weapons system function.

Boeing and Rockwell, under contracts sponsored by the USAF Aeronautical
Systems Division RPV SPO, studied many RPV confiqurations and launch and
recovery system concepts in terms of mission requirements and life cycle
costs. Because of multimission requirements, subjective weight factors
given to some performance factors, and the degree of which site
preparation, logistics, and vulnerability were considered, widely
differing launch and recovery concepts were arrived at as being optimum
for an advanced RPV system (ARPV). The Rockwell air vehicle is equipped
with conventional landing gear which is used for takeoff and landing.
The Boeing vehicle is launched from a zero length launcher with RATO and
is recovered on air bag skids attached to the air vehicle. Both vehicles
use a hook and cable arrestment system for recovery.

In the Boeing ARPV trade study document (Reference 1), it was noted that
while the tail hook/arrestor cable and air bag skid system represents an
attractive low life cycle cost concept, further investigation of the
system dynamics would be required to fully validate the concept.

Another launch and recovery system that has been studied considerably in
the past ten years is the air cushion system. Prototype systems have
been built and tested for the Australian target drone, the Jindivik, and
for the XC-8A Dehavilland Buffalo, a m 'ium size transport. The data and
technology from these programs, along with developments in mathematical
modeling of air cushion systems, can be used to design air cushion
systeins for aircraft such as RPVs.




The objective of this study effort was to perform dynamic analysis
preliminary design, and cost and performance trade studies of the air bag
skid system and the air cushion concept. The ARPV trade studies data,
air cushion technology and test program data, and computer tools
developed for analysis of air cushion systems were used. Two launch
systems and three recovery systems were studied. The launch systems are
the air cushion launch platform and the integrated air cushion system.
The recovery systems are the air bag skid system, the air cushion
recovery system, and the integrated air cushion system. Both the Boeing
and the Rockwell ARPV concepts were included in the study. The Rockwell
vehicle with conventional landing gear was used as the baseline in the
cost and performance trades.

The government owned six degree-of-freedom computer program EASY
developed by Boeing under contract F33615-77-C-3054 was used for the
dynamic an§1ysis. Dynamic simulations included perturbations to steady
state flight, landing simulations and takeoff simulations.

Cost and performance trade study factors included complexity, fuel
requirements, adverse weather capability, ground equipment and facilities
requirements, survivability/vulnerability levels, reliability and
maintainability, and system acquisition and 1ife cycle cost.

The results of the inflight analysis show that these vehicles are stable
with the air cushion trunk or air bag skids deployed during approach
although a stability augmentation system may be required. Stability
during trunk retraction after takeoff was also adequate.

Landing simulation results show that the air cushion and air bag skid
recovery systems on both the Rockwell and the Boeing ARPV induce high
incremental loads at touchdown. These high loads are the result of the
relatively high vehicle forward speed coupled with the high vehicle pitch
rate induced by the trunk. At higher angles of attack, the aft part of
the trunk touches down first creating a large pitching moment. The
product of the resultant pitch rate and high forward velocity induce an
acceleration force to the vehicle structure. This creates severe
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restrictions on the vehicle approach conditions if the vehicle allowable
load factor is relatively low. It is not severely restrictive for a
vehicle such as the Boeing ARPV with short, small wings that can tolerate
loads to 8 or 10g with little penalty to the structure. However, it is

quite restrictive for the Rockwell vehicle which carries its payload on
the wings.

Landing slideout with the air bag skid system required arrestment to
stabilize the vehicle. Arrestor hook engagement during touchdown
increased the incremental load to the vehicle. Therefore, it is
recommended that cable-hook engagement occur after touchdown.

Induced loads at touchdown appear te be higher with a one trunk
integrated air cushion system than with a system optimized for recovery
only. Thus, the one trunk integrated air cushion system is even more
restrictive on the landing approach conditions than is the air cushion
recovery system.

Landing simulations of both air vehicles with air cushion recovery system
and suction braking demonstrated that this can be an effective, low cost
approach to recovery of ARPVs. However, the required runway length is
considerably greater than that required for recovery with an arrestment
system. For example, the Boeing ARPV with suction braking, landing at
130 knots on a wet surface, requires a stopping distance of 4500 feet.
The required stopping distance with arrestment is only 200 feet.

Stopping capability of an integrated air cushion system with friction

pads is poor. Required runway lengths are excessive for vehicle
touchdown speeds above 100 knots.

The vehicle was unstable in takeoff simulations of the Rockwell ARPV with
both the air cushion launch platform and the integrated air cushion
system with inelastic trunks. This situation was encountered in earlier
simulations of the Jindivik with an inelastic trunk air cushion system.
It is not known if this instability is realistic or is due to a problem
in the simulation model.
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Takeoff simulations of the Rockwell ARPV with an elastic trunk integrated
air cushion system showed that the vehicle was stable through ground
roll, rotation, trunk stowage, and climbout.

Available power for an integrated air cushion system on the Rockwell
vehicle is marginal. However, the power requirement for a shaft driven
fan air supply system can be met by utilizing the limited duration
overload capability of the engine accessory drive pad.

The results of the cost/performance trade studies indicate that the air
cushion recovery system with suction braking and RATO launch is the least
complex, lowest cost approach to ARPV launch and recovery. However, if
available site space is critical, the air bag skid system with arrestment
becomes more attractive.

The results of the study may be somewhat distorted because the Rockwell
vehicle, which was used as a baseline, did not lend itself to adaptation
of air cushion or air bag skid systems. Because of the narrow, rounded
shape of the fuselage, added complexity and weight were required for
installation of these systems. For optimum system performance, the air
vehicle and launch/recovery system must be designed as an integral unit.

xxii
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SECTION I
INTRODUCTION

Current concepts of warfare call for remotely piloted vehicles (RPV) to
perform certain high risk missions that have, in the past, been performed
by piloted aircraft. The capabilities of these vehicles in conventional
warfare have been demonstrated in Southeast Asia and the Middle East. As
a result of this demonstrated capability and of conceptual studies that
have been done, ground based RPV systems are being considered as part of
an overall defense capability. The role of the RPV includes weapons
delivery, reconnaissance, and electronic countermeasures.

Studies of RPVs in these multimission roles by The Boeing Company and
Rockwell International under contracts sponsored by the USAF Aeronautical
Systems Division RPV SPO (References 1 and 2) developed potential
configurations for an advanced RPV system (ARPV). In this program, many
system configurations were investigated in terms of mission requirements
and life cycle cost. Because of the multimission requirement, subjective
weight factors given to various performance factors, and the degree to
which site preparation, logistics, and vulnerability were considered,
widely differing systems were presented by the two contractors.

Boeing studies conducted under the ARPV contract (F33615-75-C-0516)
resulted in the proposal to use an air bag skid recovery system in
conjunction with a ground based arrestor cable device (Reference 1).
Similarly, studies conducted by Raockwell on a RPV for the same
multimission role (Contract F33615-75-C-0518) evolved a conventional
tricycle type landing system, also used in conjunction with a ground

based arrestor cable installation for recovery. These systems are shown
in Figures 1 and 2.

Meanwhile, the technology of air cushion vehicles has been advancing at a
high rate in the past ten years and has been studied as a launch and
recovery concept for RPVs as well as for piloted aircraft. Prototype air
cushion systems have been built and tested for the Australian target
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drone, the Jindivik, and for the XC-8A DeHavilland Buffalo, a medium size
(40,000 pound gross weight) turboprop transport.

The launch and recovery systems selected in the ARPV studies were based
on limited trade studies and analyses. The dynamics of recovery systems
and their deployment were not investigated.

In the Boeing ARPV Trade Study Document (Reference 1) it was noted that
while the tail hook/arrestor cable and air skid system represented an
attractive low life cycle cost concept, further investigation of the air

vehicle/recovery system dynamics would be required to fully validate the
concept.

Since the effectiveness of RPVs in performing its missions depends, in
part, on the launch and recovery techniques employed, a second look at
the factors that determine the rank of these various systems on the ARPV
is appropriate.

1. OBJECTIVE

Establishing the effectiveness of these launch and recovery systems
was the objective of this study. Specifically, the objective was to
perform dynamic analysis, design and cost and performance trade studies
of two launch systems and three recovery systems for RPVs. Two geteric
Taunch and/or recovery system types were considered. These were the
various air cushion systems and the inflatable air bag skid concept. The
Taunch systems include the integrated air cushion system (IACS) which is
used for both launch and recovery, and the air cushion launch platform
(ACLP). The recovery systems include the air bag skid systems (ABSS),
the air cushion recovery system (ACRS), and the IACS.

Recovery of the Boeing ARPV conszpt was analyzed with the ABSS and the
ACRS. The Rockwell ARPV concept was evaluated for launch and/or recovery
with the IACS, ACLP, ABSS and ACRS. The Rockwell vehicle concept with
conventional landing gear was used as a baseline in cost and performance
trade studies of the different systems that were analyzed.
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Dynamic simulation of the vehicles with the various launch and recovery
concepts was made using the EASY Dynamic Analysis Program described in
Reference 3. The Basic EASY program was developed by Boeing under Air
Force contract F33615-74-C-3041 to provide a means of modeling and
analyzing aircraft environmental control systems. The EASY program is a
general purpose program for the linear and nonlinear analysis of system
dynamics using classical techniques. Through a series of Air Force
funded contracts, it has been expanded to model a variety of systems,
including environmental control systems, aircraft flight controls and
dynamics, space vehicle dynamics, electrical power generation, rapid
transit vehicles as well as air cushion landing systems. The program is
user oriented and allows the generation of new systems by calling a
variety of components from the user library. The special component
library developed for the simulation of Air Cushion Landing and Takeoff
Systems under contract F33615-77-C-3054 includes a rigid six degree-of-
freedom airframe which can be perturbed with all normal aerodynamic
forces and moments. The library includes a wind gust model, engine,
terrain and an aircraft flight and ground controller. Components for the
simulation of a simple aerodynamic control surface system are also
included. The air cushion library components include the fcllowing:
Ducts

Flow splits

o

Merges

Valves

Centrifugal Fan

Axial Fan

Ejector

Inelastic Trunk and Air Cushion
Air Bag Skid

Elastic Trunk and Air Cushion

(-~ R R S TR U < IR R (=

An arresting system including a hook, cable and water twister component
is also available from the component library. The user can generate




additional components by writing a Fortran subroutine. Program response
to execution commands include:
0 Steady State Analysis (Single Point or Scan)
Time History Simulation (Linear or Nonlinear)
Linear Analysis
Stability Matrix
Eigenvalues
Stability Margin

©O O o o o o

Bode, Nyquist, and Nichols plots
2. BACKGROUND

The Air Bag Skid System is a recovery concept which employs two
parallel inflatable membranes or bags along the underside of the fuselage
to absorb the aircraft vertical component of kinetic energy, and to
provide support during landing slideout and arrestment. The skids are
stowed in a collapsed state against the fuselage during flight, and have
hard smooth covers or doors to reduce aerodynamic drag and to protect the
skid bag material. During landing approach, a control signal activates a
cold gas generator which causes the covers or doors to open and the skids
to inflate. The covers/doors may drop off or may be retained to provide
a wider upper surface for the skids to react against for additional
stiffness or roll stability. Each skid has a relief valve to limit peak
loads and provide damping upon landing impact. The airframe has a tail
hook to engage a cable arresting device installed in the landing area. A
rather precise guidance/control system is required in order to ensure
hook engagement. An overrun barrier is installed at the end of the
recovery area to provide for missed or failed cables. Tow away for

turnaround is accomplished by attaching wheels to hard points designed
for that purpose.

The skids can be designed as prepacked modules attached to and removed
from the fuselage by quick disconnect devices to facilitate vehicle
turnaround time. The cold gas generator can be sized to accommodate some
bag leakage from damage which may be incurred inflight (battle damage) or
during recovery.



The Air Cushion Recovery System employs an air cushion designed
specifically for landing impact and slideout. The cushion is stowed
against the fuselage, with hard covers or doors to reduce drag and
protect the cushion. The doors may be used to provide a larger cushion
base or to increase roll stiffness. The trunk is usually inflated by
diverting air from the compressor section of the thrust engine. The
forward one-third of the trunk length has nozzles or holes which serve to
provide lubricity in that area, alleviating a "plowing in" tendency. The
trunk contact area is covered with an abrasion resistant, high friction
material to provide drag to halt the vehicle. Relief valves to reduce
impact loads may be employed. The aircraft is towed away for turnaround
by a vehicle with an air supply for both the trunk and cushion cavity.

No external arresting system is required although one may be employed to
reduce the required field length. A final crash barrier may be installed
for safety reasons.

The Integrated Air Cushion System is one that provides an air cushion for
buth the takeoff and landing phases of the aircraft mission. There are
two variations, the one trunk concept and the two trunk concept.

The One Trunk Concept employs a single trunk of elastic or inelastic
material, to provide both the takeoff and landing functions. Upon
rotation, the trunk retracts against the fuselage in the case of the
elastic trunk, or is retracted into the fuselage and hard doors close
upon it to reduce drag and protect the trunk. Since a large airflow is
required for takeoff (compared to landing), a device, such as a tip
turbine fan powered by engine bleed air or an auxiliary power unit (APU),
is needed to draw in air from the atmosphere for trunk flow. Trunk
nozzle configuration is dictated primarily by takeoff requirements
resulting in a distribution of nozzles around the entire periphery of the
trunk. Landing requirements result in friction pads in some areas of the
trunk contact and the capability to reduce cushion pressure after impact
to enable friction pad contact. Remote taxi control is a possible design
variation if the required thrusters are included. Parking bladders may
be included for long term static support.




The Two Trunk Concept employs a jettisonable takeoff trunk and a
prepacked landing/recovery trunk. The takeoff trunk may have parking
bladders and a nozzle pattern similar to the pattern for the one trunk
concept. The takeoff trunk is recovered after it is jettisoned and
attached to a new aircraft for a subsequent launch. The takeoff trunk
configuration and attachment is such that a clean aerodynamic surface is
left when it is jettisoned. The stowed landing trunk is now identical to
the Air Cushion Recovery System defined earlier, except that excess
airflow is available due to takeoff requirements.

The Air Cushion Launch Platform is a launching system that uses a
separate air cushion equipped carriage to support the aircraft during
takeoff. Upon rotation, the platform is released from the aircraft and
is stopped by internal braking or by an external arrestment system. The
platform is recovered by either a tow vehicle or by remote control if
appropriate thrusters are provided. The platform contains its own air
supply and can be designed to carry an additional thrust engine to aid
the aircraft engine during takeoff. Parking bladders are incorporated to
provide platform and aircraft support while the air supply is turned off.

3. SCOPE AND GENERAL APPROACH

This program consisted of the following:

0 Familiarization with mission requirements and the previous ARPV
conceptual studies.

0 Preliminary configuration and assessment of parameters for
dynamic modeling of the vehicles with the various launch and
recovery concepts.

0 A six degree-of-freedom, rigid body airframe dynamic analysis
for each configuration using the EASY dynamic analysis program.

0 Preliminary design to identify system performance and cost
factors.

0 Performance and cost trade study.




Figure 3 summarizes the combinations of configurations that were studied
using the EASY dynamics program. Considering the elastic and inelastic
trunk versions of the one trunk integrated air cushion system as separate
configurations, a total of eight configurations were evaluated. Four of
these were for recovery only, one for launch only, and three for both
launch and recovery. In addition, the clean configuration of both the
Boeing and Rockwell RPVs were studied to determine basic aerodynamic
characteristics.

The dynamic simulation studies included:

0 Vehicle flight stability analysis with the landing system
deployed for all Taunch recovery system combinations. Vehicle
parameter adjustments were made as required for most stable
flight.

0 Landing simulation, encompassing approach, bag or trunk
deployment, flare, touchdown and arrestment or braking for all
landing system configurations. The study determined vehicle and
landing system parameter adjustments required to achieve
satisfactory performance.

0 Takeoff or launch simulation including takeoff roll, rotation,
platform or trunk release, and climbout for the integrated air
cushion configurations plus the launch platform.

0 Arrestor hook-cable dynamic analysis to define limits of hook
properties and aircraft kinematics for proper hook engagement.

Design modifications were made for each airframe/launch/recovery system
combination based on the results of the dynamic analysis. The basic

airframe designs as described in the conceptual studies for the Boeing
and the Rockwell vehicles were used for appropriate modifications to

incorporate the results of the dynamic analysis and the requirements of
the various launch/recovery systems. Design considerations for each of
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Figure 3 Configuration Combinations Evaluated
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the concepts included survivability/vulnerability aspects and ground
equipment and facilities requirements.

A performance/cost analysis was performed on each airframe/launch/
recovery system combination shown to be acceptable by dynamic analyses.
Performance/cost increments were made using the Rockwell ARPV design as
described in Reference 2 as a baseline.

The following factors were considered in the performance/cost tradeoffs,
but only to the extent as they effect or are affected by the launch/
recovery systems:

0

O o O o o o

Complexity

Fuel requirements

Adverse weather capability

Ground equipment and facility requirements
Survivability/vulnerability levels

Reliability and maintainability

System acquisition and 1ife cycle costs, including those related
to site preparation and upkeep.
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SECTION II
DYNAMIC SIMULATION AND ANALYSIS

Dynamic simulations and various analyses were performed for all of the
launch/recovery system/airframe combinations shown in Figure 3 by using
program EASY as the principal analysis tool. Three different operating
regimes were investigated during these analyses: 1low speed flight,
landing, and takeoff. The two different air vehicles and several
different launch/recovery concepts were analyzed during these three
operating regimes. This section describes the configurations which were
analyzed, the analysis approach which was used, the results obtained, the
conclusions made based upon those results, and the configurations
recommended for further study.

1. INFLIGHT SIMULATIONS AND ANALYSIS

Deployment of an air cushion recovery system during the landing
approach flight phase affects the stability and controllability (S/C) of
an air vehicle. The purpose of this portion of the study was to
determine the effects of air cushion and air bag systems on the S/C of
the Boeing and Rockwell ARPV concepts. Other objectives were to identify
any airframe design modifications necessary to achieve acceptable S/C and
to determine the trim conditions for both air vehicles during landing
approach.

The approach that was followed started with the calculation of S/C
coefficients for both air vehicles, with and without the ACRS and ABSS.
The next steps involved the development of program EASY models of the air
vehicles, linear analysis of these models to identify their dynamic
modes, the determination of steady state trim conditions, and the
simulation of perturbations about these trim conditions to verify the
stability or instability of the air vehicles.

a. Development of Math Models
(1) Air Vehicle Configurations
The air vehicles analyzed included the maximum landing
weight configurations for the Boeing and Rockwell designs. Both

12

1



configurations were analyzed with both the ACRS and the ABSS. During
landing approach, the Boeing ARPV payload was assumed to be one empty
AN/ALE-38 chaff dispenser pod carried in the internal weapon bay. This
configuration has a maximum landing gross weight of 1600 pounds. The
maximum landing gross weight configuration for the Rockwell ARPV, Figure
4, has four empty AN/ALE-38 chaff dispenser pods which results in a gross
weight of 4167 pounds when adjustments are made for removal of the
baseline wheeled landing gear and installation of the air cushion or air
bag skid systems. The baseline Boeing ARPV was initially designed for an
air bag skid recovery system so no modifications to the airframe were
necessary for the ABSS or ACRS. Several modifications to the Rockwell
ARPV were needed to install the ABSS and ACRS. The round fuselage of the
baseline Rockwell ARPV does not provide the wide and flat surface needed
for an ABSS or ACRS installation. Attaching the bag or trunk directly to
the curved fuselage results in excessive trunk volume giving poor roll
and pitch stability and damping. Therefore, hinged fairings were
proposed which fold out laterally and provide a wide flat surface for
attachment of the air cushion trunk or air bag skids, as shown in Figure
5. The fairings are supported by either spring loaded linkages or
pressurized bladders.

(2) Air Vehicle Mass Properties
The mass properties for the Boeing and Rockwell ARPVs are
listed in Table 1. These values represent the maximum landing gross
weight configurations for both air vehicles and include a weight
increment for the ABSS or ACRS installations. The ABSS and ACRS
installations were assumed to have equal weights for these simulations.

(3) Aerodynamic Characteristics
(a) Boeing ARPY
The baseline Boeing ARPV, Model 1042-15A, is a

wing-canard-vertical tail configuration as shown in Figure 6. The elevon
control surfaces located on the wing are used for pitch and roll

control. Yaw control is provided by a rudder. The canard surface is a
double hinged, two position panel; it consists of the canard and a canard
flap. During normal flight the surface is not deflected until at landing

13
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TABLE 1
BOEING AND ROCKWELL ARPV MASS PROPERTIES

Rockwell ARPV Boeing ARPY
Vehicle Weight Empty (LB.) 2987 1330
Payload 4 AN/ALE-38's 1 AN/ALE-38
Recovery Weights
Landing Gross Weight (LB ) 4167 1600
Landing Fuel Weight (LB.) 300 50
Landing Payload Weight (L% =) 880 220
I, @ Landing GW (STug~Ft ) 2860 67
lyy @ Landing GW (Slug- Ft2 ) 2680 790
I,y @ Landing GN (Slug-Ft2 2) 5120 570
Iz @ Landing GW (STug-FtZ) 0 20
Vehicle Center of Gravity Sta. 168.6, Sta. 226
7.5 in. above WL 100

airplane CL

Takeoff Weights

Takeoff Gross Weight (LB.) 7359 3320
Takeoff Fuel Weight (LB.) 2196 1446
Takeoff Payload Weight (LB.) 2176 544
Tex @ TOGN (Slug-Ft?) 6240
lyy @ TOGW (Slug-Ft2) 4840
Jzz @ TOGW (Slug- th) 10440
2 @ TOGW (Slug- Ft2) 0
Vehicle Center of Gravity Sta. 168.6, Sta. 226
7.5 in. above WL 100

airplane CL
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approach, when the canard incidence is 5 degrees and the canard flap is
deflected 40 degrees, while the elevons are symmetrically deflected to a
nominal position of -30 degrees to trim the air vehicle. A1l of the
flight control surfaces use electromechanical actuators powered by a 4 to
10 kva engine driven alternator.

Preliminary ABSS and ACRS trunk shapes were developed and used to
estimate the stability and control coefficients for the air vehicle. It
was assumed that the coefficients originally calculated described the
dominant S/C characteristics which did not change significantly as the
trunk size and shape was modified. Therefore, these coefficients were
not updated later as the trunk shapes were modified during the landing
simulations. Changes to the ABSS or ACRS designs which could cause
undesirable S/C effects were avoided. For instance, an ACLS trunk could
interfere with the downwash behind the canard if it was located too far
forward and was too wide at its forward end. Also, a trunk which has a
very wide aft end could interfere with the wing aerodynamics.

Tables 2 and 3 1ist the lateral and longitudinal S/C coefficients which
were calculated for the Boeing ARPV during landing approach with an ACRS
and with an ABSS. The classical notation is listed, along with that used
by program EASY. Ground effects were not included in any of the
simulations. The ccefficients are estimated data based upon methodology
presented in the USAF DATCOM (Reference 4). The general trends of the
bag deployment data are in agreement with the characteristics of wind
tunnel data for the F-8, Buffalo and Jindivik ACLS configurations.

(b) Rockwell ARPV
The baseline Rockwell ARPV is a wing-butterfly tail

configuration as shown in Figure 4. Pitch control is achieved by
symmetrical deflection of the butterfly tail. Wing outboard spoiler
deflection interconnected with differential incidence of the butterfly
tail panels produces augmented roll and proverse yaw. Differential
deflection of the butterfly tail panels interconnected with outboard
spoiler deflection produces augmented yaw and proverse roll. This air
vehicle also has leading and trailing edge flaps which are deflected 30
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degrees and 40 degrees respectively during landing approach. Rockwell
describes the normal landing approach as a descent at 100 knots on a §
degree glide slope and 80 knots just prior to touchdown. When Tanding
with a large crosswind, a decrabbing maneuver is also executed just
before touchdown. The flight control surfaces use electrically powered
actuators.

As with the Boeing ARPV, preliminary ABSS and ACRS trunk shapes were
developed and used to estimate the S/C coefficients for the air vehicle
with a deployed trunk. Because of the high wing location, aerodynamic
interference due to the deployed trunk is not a problem. There is no
definite forward constraint to the trunk size and the only rear
constraint is the tail hook pivot. The USAF DATCOM methodology was used
to estimate those coefficients which were not listed in the Rockwell ARPV
report. Rockwell coefficients are listed in Tables 4 and 5.

(4) Program EASY Air Vehicle Models
Figure 7 shows a block diagram of the program EASY math
models which were developed for the Boeing and Rockwell vehicles. These
math models contain the lateral and longitudinal aerodynamics, the engine

thrust, and the air vehicle six degree-of-freedom equations of motion and
mass properties.

At an early point during the analysis it became apparent that a math
model of the air vehicle stability augmentation system was needed to make
the models dynamically stable. A simple model of an SAS was produced by
using the EASY optimal controller component. The air vehicle state
variables and various error variables are inputs to the controller.
Controller outputs are engine thrust setting and flight control surface
position commands. More detailed information about each of these
components is contained in the program EASY users manual, Reference 3.

b. Boeing ARPV Inflight Simulations
The first analyses to be performed were a series of linear and
root locus calculations to identify the lateral and longitudinal modes of
the air vehicle with the trunk stowed and deployed. Figure 8 shows the
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results of these analyses for the Boeing ARPV without its stability
augmentation system. The dutch roll mode is unstable with the trunk
stowed and becomes even more unstable as the trunk is deployed. With the
trunk stowed, a coupled roll-spiral oscillation exists but as the trunk
is deployed, this oscillatory mode separates into the first order roll
subsidence and spiral divergence modes. The longitudinal phugoid mode is
stable and changes very little as the trunk is deployed. Large changes
occur to the short period mode as the trunk is deployed; the normal
stable oscillatory mode changes into two first order modes, one of which
moves into the right half plane. Simulation of the free air vehicle
response to a small disturbance verified these instabilities.

The existance of the coupled roll spiral oscillation and unstable dutch
roll mode when the trunk is stowed shows that a stability augmentation
system is needed to increase pitch and yaw damping even without an ACLS.
Therefore, the only effect of the ACLS installation on the flight control
system will be a change in SAS controller gains.

To investigate the response of the air vehicle to small disturbances
during landing approach, it was necessary to include a math model of an
SAS in the program EASY air vehicle math model. The optimal controller
component was used for this purpose. The optimal controller is designed
about a linear model of the nonlinear system at a single operating
point. Controller inputs and outputs, the desired operating point, and
controller design weights for each of the inputs and outputs must be
specified. The controller design weights are used in a cost function

which assesses a penalty for system output errors and excessive control
power.

Figure 9 shows some of the characteristics of the controller. More
detailed information is available in the program EASY users manual,
Reference 3.

The optimal controller (OC) component was integrated into the air vehicle
math model and several different OC designs were investigated. The OC
design factors were determined by a mixture of calculations and
qualitative analysis of simulation results.
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X = Xo + x

Ys = Ys_ +y LINEAR MODEL REPRESENTS
0 S PERTURBATION ABOUT OPERATING
Yec = Yco + yr POINT

-]
Jd=1/2 J’(yéch + u'Ru)dt DESIGN CRITERIA COST FUNCTION
o

Q = SENSED QUANTITY WEIGHTING MATRIX

R = CONTROL QUANTITY WEIGHTING MATRIX
Cd = E (dd') STATE DISTURBANCE COVARIANCE MATRIX
Cs = E (w') SENSOR DISTURBANCE COVARIANCE MATRIX

Figure 9 Program EASY Optimal Controller Characteristics
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The response of the air vehicle with SAS to a 15 ft/sec sharp edged gust
at 5 seconds was simulated. The simulation also included a math model of
the landing approach glide path vector. The optimal controller sensed
the position errors which occurred if the air vehicle drifted off the
glide path, and then minimized those errors by maneuvering the air
vehicle towards the vector by moving the flight control surfaces. The
results show that the air vehicle did not become unstable when disturbed
by the gust. The optimal controller responded to the gust disturbance by
changing the engine thrust setting and moving the flight control surfaces
to trim the air vehicle at a pitch angle of 8.5 degrees, a roll angle of
2.25 degrees, and a yaw angle of 1.9 degrees. Figures 10 and 11 show
some of the significant results from the simulation. Although the
controller is a very simple model of the actual air vehicle SAS and
autopilot, it does show that a controller, using reasonable sensors and a
limited amount of control power, can stabilize the air vehicle when
flying through turbulent conditions with the ACRS trunk deployed during
landing approach.

A series of steady state analyses were also performed to define a range
of air vehicle trim conditions during landing approach. The results are
shown in Figures 12, 13, and 14 and describe the air vehicle attitude
when trimmed for various sink rates, glide slope angles and crosswinds
for the Boeing ARPV with the ACRS and ABSS. Results showed little
difference in control requirements between the vehicle with the ACRS and
that with the ABSS.

c. Rockwell ARPV Inflight Simulations

An analysis approach similar to that used for the Boeing ARPV
was used to identify the lateral and longitudinal modes for the Rockwell
ARPV. Figure 15 shows a root locus plot of the results for the Rockwell
ARPV without its stability augmentation system. The phugoid mode is
neutrally stable and essentially remains constant as the ACRS trunk is
deployed. The short period frequency is reduced by 30% as the trunk is
deployed, but its damping ratio increases and it remains stable. No
major changes occur to the lateral modes as the trunk is deployed. The

29




8 ELEVATOR
(DEG)

& RUDDER
(DEG)

& ATLERON
(DEG)

ENGINE THRUST

(LBF x 10)

SINK RATE
(FT/SEC)

: i o
% N o e
f Y e
.:5 2 6 (] 14 12 ;1
-2 X ’—ﬁ\\'\;_ . =
4 \ i E
=L V aifts
0 2 ' ' 10 12 1
16 »
| G N
/
3 —_—— e —— -
) s SO
4 ] \\\\_;7 e ] L et SN
: i T S
0 2 ) ' 10 12 14
1 e
ssf- ’///" e e =
50 NI cocetsniN Se //, ] U
T
] 2 1 [} 10 12 1Z
v bk PR
i e rA
" . il X 7 A R
o \ e TR SR
o A e A
14 / — __ j
= s il

] ]
TIME (SEC)

Figure 10 Boeing ARPV with ACRS Deployed at Landing Approach,
Response of Optimal Controller to 15 Ft/Sec Sharp

Edged Gust at 5 Seconds

30

B ——




ANGLE OF
ATTACK (DEG)

ROLL ANGLE
(DER) ¢

PITCH ANGLE

(DEG) @

YAW ANGLE
(DEG) ¢

ALTITUDE (FT x 10)

= z
5 P —_—
) et
) s ) 10 12
10
2.5 —
2.0
|.J -
:.a{
'ik ]
- s ' 10 12 14
}7 e Lo
: ____— LR
s £ &
. P
x N :
% 3 1 10 12 14
25
20 o ==
1.8 M il
‘o P
B
t% s ] 10 1?2 14
205
zﬁﬂ
|%<—§‘_‘§‘—~~__-§‘—_“ ——
190 h~§§\‘~§§“g‘~—-ﬁ__--_:;;;;;‘ )
95 i—‘

Figure 11 Boeing ARPV with ACRS Deployed at Landing Approach,

& )
TIME (SEC)

Response of Optimal Controller to 15/ Ft/Sec Sharp

Edged Gust at 5 Seconds

33

= ‘k“A_ P




AIRSPEED = 220 FT/SEC = 130 KNOTS
;| THRUST = 300 LBS

CANARD INCIDENCE = 5
CANARD FLAP = 40

=y =0°

AIR VEHICLE ATTITUDE (DEG)

3 ~Y
°© 9
2
‘| L
? 4 3 8 10 12 T4
SINK RATE (FT/SEC)
2.0}
ELEVON ANGLE = -30° - B (DEG)
1.8}
1.6}
~ 1.4}
<
s}
~ 1.2}
[¥8 )
<J
1.0k ¢ ROLL ANGLE (DEG)
8 PITCH ANGLE (DEG)
¥ YAW ANGLE (DEG)
0.8f a ANGLE OF ATTACK (DEG)
Y GLIDE SLOPE ANGLE (DEG)
0.6}
0.4 - ~&- L 4 e I J
0 2 4 6 8 10 12 14

SINK RATE (FT/SEC)

Figure 12 Boeing ARPV with ACRS Deployed, Landing Approach Trim
with No Crosswind, Air Vehicle Attitude vs. Sink Rate

32




AIRSPEED = 220 FT/SEC = 130 KNOTS

1t THRUST = 300 LBS
CANARD INCIDENCE = 5
6} CANARD FLAP = 40 &

AIR VEHICLE ATTITUDE (DEG)
F=1

0 A It 3 Tl iy . :

0 2 4 6 8 10 12 14
SINK RATE (FT/SEC)

¢ ROLL ANGLE (DEG)
g PITCH ANGLE (DEG)
U YAW ANGLE (DEG) i
a ANGLE OF ATTACK (DEG
i ELEVON ANGLE = -30° - Ac(DEG) Y GLIpE SLOPE ANGLE (DEG)
il AILERON ANGLE =& 5 (DEGT
a7 RUDDER ANGLE = &, (DEG)
= & A —— ——A—"’aA
) 5(
Ll
)
=5F
- —)e T — —— ‘SR
< 4}
o
=
v 3 L
anid
&
2 -
1 -
0 L " 1 i " L5 wE
0 ¢ 4 6 8 10 12 T4

SINK RATE (FT/SEC)

Figure 13 Boeing ARPV with ACRS Deployed, Landing Approach Trim
with 20 Ft/Sec Crosswind, Air Vehicle Attitude vs. Sink Rate

33



AIR VEHICLE ATTITUDE (DEG)

AIRSPEED = 220 FT/SEC = 130 KNOTS

[ THRUST = 300 LBS
CANARD INCIDENCE = 5

| CANRD FLAP = 40 a
¢- w = 00

L

0 . ;
0 2 4 6 8 10 12 14
SINK RATE (FT/SEC)
1.61 ELEVON ANGLE = -30° - B, (DEG)
1.4}
1.2¢ B
/_@—'
1.0f
0.8}
0.6} ¢ ROLL ANGLE (DEG)
@ PITCH ANGLE (DEG)
¥ YAW ANGLE (DEG)
0.4F a ANGLE OF ATTACK (DEG)
Y GLIDE SLOPE ANGLE (DEG)
0.2}
0 4 V. 3 —— . A P . ’]
0 2 4 6 8 10 12 14

SINK RATE (FT/SEC)

Figure 14 Boeing ARPV with ABSS Deployed, Landing Approach Trim

with No Crosswind, Air Vehicle Attitude vs. Sink Rate

34




Im.

®S-P EheR ® = POLES WITH TRUNK STOWED
% = POLES WITH TRUNK DEPLOYED
S.P. = SHORT PERIOD MODE
P. = PHUGOID MODE
D.R. = DUTCH ROLL MODE
® R = ROLL MODE
S = SPIRAL MODE
¥
* S, + il.0
P.
R . R S Q
— S S ;
-1.0 % 1.0 T
* T-i1.0
% D.R.
©D.R.
© 1-i2.0
Figure 15 Root Locus Plot Showing Lateral and Longitudinal Modes

for the Rockwell ARPV without SAS

35



roll and spiral mode frequencies increase slightly and remain stable.
The dutch roll mode is unstable with the trunk stowed, and becomes
slightly more unstable as the trunk is deployed. Because the dutch roll
mode is unstable with the trunk stowed, an SAS would be required even
without the air cushion recovery system. Therefore, as with the Boeing
ARPV, the only air vehicle modification attributable to the ACRS
installation is a possible change in the SAS controller gains.

The investigation of the air vehicle response to disturbances during
landing approach required the inclusion of an SAS model into the air
vehicle math model. As with the Boeing ARPV, the optimal controller
component (OC) was used for this purpose. The inputs and outputs for the
controller, along with its design approach, were similar to those used
for the Boeing ARPV.

A simulation was performed with the Rockwell ARPV displaced from the
landing approach glide path vector and simulation results show how the
air vehicle responds to this position error and maneuvers to intercept
the glide path. Figures 16 through 20 show some of the results. These
results show that the air vehicie with a simple SAS model is stable and
controllable. Better response could be obtained by making improvements
to the optimal controller design, but such an effort was not necessary
for this study.

Landing approach trim conditions were also defined by performing a series
of steady state analyses. Figure 21 shows the results from this trim
analysis. The results show how the air vehicle attitude is related to
the glide path angle, sink rate and crosswind.

The analysis approach used for the Rockwell ARPV with the ABSS was very
similar to that used for the vehicle with the ACRS. Results were also
similar leading to identical conclusions.

d. Conclusions of Inflight Simulation
Program EASY simulation and analysis results have shown that the
only impact of the ACRS and ABSS on the Boeing and Rockwell ARPV flight
control system is a possible change in SAS and autopilot controller gains.
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Modifications to the control surfaces or airframe are not necessary if
reasonable constraints are imposed on the sizes of the air cushion trunk
and air bag skids so they do not cause aerodynamic interference.

2. LANDING SIMULATIONS AND ANALYSIS

The principal objective of this study was to evaluate the performance
of several different recovery systems by using program EASY as a design
analysis tool. Air bag skid and air cushion trunk recovery systems were
investigated for both the Boeing ARPV and Rockwell ARPV., The design
variables of each recovery system configuration were investigated to
determine their effects on landing dynamics to identify the conditions
under which satisfactory performance was achieved, and to arrive at an
optimum configuration.

Satisfactory performance meant that several constraints were met. These
consisted of load 1imit constraints, structure-to-ground clearance
constraints, and directional stability constraints. Optimum performance
meant that all the above constraints were satisfied while the recovery
system weight, size, power requirements and complexity were minimized.

The general approach followed was to first construct mathematical models
of the Tanding system components for program EASY by identifying
realistic air vehicle attitude and speed conditions at touchdown, and by
developing preliminary designs for the recovery trunks and air supply
systems. These math models were then used in several three and six
degree-of-freedom simulations which showed the effects on system
performance of variations to the touchdown initial conditions and the
system design parameters. The results of these simulations were used to
develop several parametric design curves which relate design parameters
and touchdown initial conditions to system performance.

a. Development of Math Models

The air cushion and air bag skid recovery systems consist of
several interacting components. The principal components which dominate
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the dynamic behavior of the systems were included in the system math
models. Standard program EASY subroutines were available for all of
these components but input parameters describing each particular piece of
hardware had to be defined. This section describes how touchdown initial
conditions, the air cushion trunk and air bag skid, air supply
components, and arresting gear components were defined for inclusion in
program EASY.

(1) Touchdown Conditions

One of the results from the inflight analysis described in
Paragraph 1 was the definition of mean air vehicle attitude and thrust
conditions when trimmed during landing approach. Disturbances cause the
air vehicle to be perturbed about these mean conditions, and the specific
perturbations which will occur at landing impact are critical to this
study. It was possible to define design envelopes of initial landing
conditions which included all the air vehicle attitude and rate
variables. Each variable was described by a normal distribution, which
was defined by a mean and a standard deviation. The extreme conditions
for each envelope were defined by those combinations of variables having
a joint Tikelihood of occurrance equal to a constant. MIL-A-8863A
(Reference 5) gives rules and tabulated data for defining these envelopes
of landing impact conditions for different types of air vehicle and
landing condition. Table 6 was developed from MIL-A-8863A and shows the
standard deviations for the air vehicle variables describing landing
impact conditions. This table and the MIL-A-8863A rules were used as a
guide in defining the worst case landing impact conditions for the Boeing
and Rockwell ARPVs.

Nose down (negative pitch angle) landings were not included in the
simulations. Landing conditions within two standard deviations (20) of
the mean landing conditions were used to define the envelope of worst
case design conditions. There is a 95.45% probability that these will be
the worst case conditions.

(2) Inelastic Air Cushion Recovery Trunk Design
This preliminary design phase consisted of the investigation

of those parameters which affect the dynamic characteristics of an air
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Table 6

Variation of Landing Impact Conditions

Variable Standard Deviation (ag)
Approach Speed (knots) 5.0
Horizontal Ground Speed (knots) 8.0
Sinking Speed (ft/sec) 17533
Air Vehicle Pitch Angle (deg) 2.25
Air Vehicle Rol1 Angle (deg) 2.5
Air Vehicle Roll Rate (deg/sec) 3.0
Air Vehicle Yaw Angle (deg) 2.5
45




cushion trunk constructed of inelastic materials, the development of
design relationships for the trunk, and the specification of those input
parameters required by the program EASY trunk model. Design details such
as the trunk-to-fuselage attachment method, the trunk material properties,
and trunk stowage method are considered in Section III. Three operating
conditions were investigated including landing approach with the trunk
deployed, landing impact, and landing slideout. The program EASY input
parameters for the trunk model include the trunk installation dimensions,
dimensions of the lubricated area and its porosity, and coefficients of
friction for the lubricated and unlubricated portions of the trunk.

Some of the constraints on air cushion trunk dimensions were outlined in
Paragraph 1.a(l). For the Boeing ARPV these constraints included the
tailhook pivot at the rear, and the canard at the front. Trunk width is
constrained by the fuselage width, unless some type of extendable trunk
support structure is used. Figure 22 shows a design variation which
increases the width of the deployed *runk. However, this configuration
is not practical with the low wing design of the Boeing vehicle. Wing
1ift would be impaired. The only constraint on the size of the Rockwell
ACRS trunk is the rear tailhook pivot. The hinged trunk support fairings
could be lengthened or widened to adjust for various trunk sizes and
fuselace attachment locations. The initial trunk sizes used in the
landing simulations, shown in Figures 23 and 24, were preliminary
estimates of the sizes required. These dimensions were later changed
when landing simulations made it apparent that modifications were
necessary.

Lubrication area, porosity, trunk material, trunk pressure, and runway
conditions affect the friction forces acting on the ACRS trunk. Very

Tittle test data is available on these subjects, especially data
concerning the effectiveness of trunk lubrication. However, some data
were found in Reference 6 which was used to define a relationship between
the friction coefficient and a lubrication flow coefficient. Figure 25
shows the relationship which was derived and Table 7 lists the baseline
trunk dimensions and parameters for the Boeing and Rockwell vehicles.
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TABLE 7
BASELINE ACRS DIMENSIONS AND PARAMETERS

Parameters Boeing ARPY Rockwell ARPV

Trunk Coefficients of Friction

Lubricated Surfaces 0.2 0.2
Unlubricated Surfaces (dry runway) 0.7 0.7
Trunk Porosity .0125 .0125
Area of Trunk Lubrication
Width of Perforated Area (inches) 20.0 10.0
Length (forward 1/3 of trunk, inches) 97.1 114.2
Flow Discharge Coefficients
CDGAP (gap between trunk and ground) 0.9 0.9
CD1 (free portion of trunk) 0.6 0.6
CD2 (flattened portion of trunk) 0.2 0.2
CDA (relief valve) 0.9 0.9
Trunk Damping Coefficient (1bf-sec/in3) 0.02 0.02
Trunk Dimensions
A (horiz. distance between fuselage
attach points, inches) 13 22
B (vert. distance between fuselage
attach points, inches) 0 7
LO (trunk meridian length, inches) 40.84 69.1
Number of trunk elements per side 1 8
Distance between trunk center of
pressure and vehicle C.G. (inches) 0 0
Overall length (inches) 120 108

51




(3) Air Bag Skid Design
The initial air bag skid designs used for the Boeing and

Rockwell vehicles are shown in Figures 26 and 27. Dimensional
constraints for the air bag skids were similar to those for the air
cushion recovery trunks. Since the air bag skid recovery configurations
will use arrestment systems, lubrication is not necessary for directional
stability and was not included in program EASY math models of the air bag
skids. Table 8 lists the initial air bag skid dimensions and parameters
used in the program EASY math models.

(4) Air Supply System
The air supply system for air cushion and air bag skid
systems consists of a power source, a flow generator, flow controllers,
ducting, relief and backflow check valves, air inlets or ram air scoops
and the trunk or air bag. Various power sources and several different
flow generators were investigated.

Alternative power sources include engine bleed air, engine drive pad
shaft power, cool gas generators, compressed gas bottles, ram air, and
auxiliary power units. The baseline Boeing ARPV concept used a cool gas
generator as the power source for its air bag skid recovery system. The
suitability of this power source was evaluated for both the Boeing air
bag skid and the air cushion trunk recovery systems.

Alternative flow generators include shaft driven fans, ejector nozzles,
tip turbine fans, and hub turbine fans. The feasibility of these
components was investigated for both air vehicles.

(a) Boeing ARPV
The Boeing ARPV uses the Teledyne Continental CAE-373

engine. Figure 28 shows the engine's basic dimensions and general layout
and Table 9 lists engine performance data. This engine has only one pad
available for power extraction. This pad is located at the engine inlet
where the current concept shows a 4 kw electrical alternator directly
coupled to the compressor shaft which has a maximum speed of 42000 rpm.
Figure 29 shows the electrical load profile for the air vehicle and
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TABLE 8
BASELINE ABSS DIMENSIONS AND PARAMETERS

Parameters Boeing ARPV Rockwell ARPV

Bag Coefficients of Friction

{(no lubrication) 0.7 0.7
Flow Discharge Coefficients

CDA (relief valve) 0.9 0.9
Bag Damping Coefficient (1bf-sec/in3) 0.02 0.02

Bag Dimensions
A (horiz. distance between fuselage

attach points, inches) 13 21
B (vert. distance between fuselage

attach points, inches) 0 7
LO (bag meridian length, inches) 31.4 47.6
Number of bag elements per side 6 6
Distance between bag center of pressure

and vehicle C.G. (inches) 0 0

Overall length (inches) 120 120
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previous studies indicate that a 10 kw alternator is the maximum size
that could be installed with current technology.

Table 9
MODEL CAE-373 TURBOJET ENGINE PERFORMANCE

Parameter SelieSt S.L. Mach 0.85 20K Mach 0.85
Thrust - pounds 970 1030 585
SFC -pound/hour/pound 1.04 1.35 1.25
Airflow-pound/second 13.60 19.30 9.97
EGT - deg F 1430 1450 1445

(Reference 1)

A moderate amount of bleed air is also available. The maximum engine
high pressure bleed with power extraction is approximately 0.70 pounds
mass per second. Figure 30 shows bleed air pressure and temperature, and
engine thrust as a function of engine speed. The bleed air temperature
is quite high (475 deg F at idle speed), so it would be necessary to mix
this bleed air with sufficient cool air to reduce the supply air
temperature to less than 200 deg F before it enters the trunk.

Location of the air supply system components is critical because space is
very limited on the Boeing ARPV. The baseline air vehicle has the cool
gas generator installed below the engine, where the space available
limits the generator size. The weapons bay provides an alternate
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Tocation. Space exists on either side of the bomb rack, and since the
gas generator must be replaced after every mission, the wide weapons bay
doors and extra room may improve serviceability. The gas source for the
air cushion trunk which requires a higher flow rate than the air bag skid
system will not fit in the weapons bay so it will have to be installed
under the weapons bay where fuel is carried. Fuel volume lost is
equivalent to the volume of the fan or ejector which is installed.

Another important consideration is the typical pressure-flow
characteristic of each component. Reference 7 compares the performance
of ejectors and tip turbine fans using a dimensionless "performance
ratio" and "augmentation ratio" as comparison parameters. Figures 31 and
32 show the two components which were tested, and Figures 33 and 34 show
the augmentation ratio and performance ratio test results. The
augmentation ratio is defined as the ratio of pounds mass of secondary
flow per pound mass of drive air flow. The test results show that, in
general, a tip turbine fan will produce more total flow than an ejector
using the same drive air flow. The performance ratio is defined as the
ratio of the secondary flow rate at various back pressures to the
secondary mass flow rate at ambient back pressure. Figure 33 shows that
tip turbine fan flow is much more sensitive than ejector flow to back
pressure variations. Because the ejector is the simplest and most
reliable device, and because large back pressure variations will occur
for an ACLS application, the ejector was chosen to be included in the
program EASY model of the Boeing ARPV air cushion and air bag skid
recovery systems.

To estimate the size and number of ejectors needed for the landing
simulations, the pressure-flow characteristics of the air cushion trunk
and air bag skids were analyzed at three operating conditions: landing
approach with the trunk deployed, landing impact, and landing slideout.
During landing approach, all of the trunk Tubrication orifices are
exposed to ambient pressure, so trunk outflow is high. During landing
slideout however, many of the lubrication orifices are flattened against
the ground, so their effective discharge coefficient is decreased thus
reducing trunk outflow. Figure 35 summarizes some of the results.
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The number of ejectors, their size, and their primary pressures determine
the trunk inflow. Figure 36 shows pressure-flow characteristics for the
TD-530 ejector. The number of these ejectors and their primary pressures
were varied during the simulations. The maximum possible primary
pressure will be determined by the primary flow source. If bleed air is
used, and a 15% line loss is assumed, then 59.5 psia (44.8 psig) primary
ejector pressure is available with the engine at idle speed. This is a
suitable pressure, but the maximum bleed air mass flow rate imposes a
tighter constraint. The 1imit is 0.70 pounds mass per second, and Figure
37 shows that if two TD-530 ejectors are used, each supplied with 0.35
pounds mass per second, the maximum ejector drive pressure is
approximately 18 psig.

An additional ejector is required if suction braking is used with the
ACRS. Suction braking pressure-flow requirements were analyzed during
the landing simulations and results are discussed in Paragraph 2.a.(5).

(b) Rockwell ARPV

The Rockwell ARPV uses the General Electric J85-GE-4
engine. Figure 38 shows the general layout of this engine. Table 10
lists engine performance data and Table 11 lists characteristics of the
engine accessory drive pads. Four pads are available and pads P-2 and
P-3 are identical. The baseline Rockwell ARPV uses pad P-4 to drive a
small air compressor, pad P-3 to mount the integrated air turbine
starter-electric generator unit, and pad P-1 is the conventional
tachometer drive pad. Pad P-2 is not designated for any specific use and
would be available to power an ACLS air supply system. The maximum
continuous power rating for this pad is shown in Figure 39. It does have
overload capability of 84 hp for five minutes in any given four hour
period and it may be possible to expand these constraints for unmanned
applications like the Rockwell ARPV,

Airbleed is also available from this engine. The maximum bleed rate for

the J85 engine has been set at 3% of total compressor inlet flow. Figure
40 shows these maximum bleed rates for the man-rated J85 engine. If the
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TABLE 10

J85-GE-4A ENGINE PERFORMANCE

NET
ALTITUDE MACH PERCENT  THRUST S¥C AYRFLOW
FT NUMBER RI'M LRS LBR/HR/LD 1.3/SFC

S.L. 0 100 2,950 .932 43.6

97 2,350 .936 41.0

91 1,590 .943 36.8

80 880 1.185 29.6

0.5 98.5 2,640 1272 49.2

92 2,420 1.158 47.6

91 1,500 1.220 42.6

80 490 2.040 34.6

0.8 95 2,700 1.278 S7.4

91 1,790 1.359 53.0

80 340 3.090 43.0

15,000 0.5 104 1,760 1.137 30.6

100 1,550 1.098 29.8

97 1,320 1.109 28.2

91 780 1.191 35.2

80 270 2.078 20.4

0.8 101 1,930 1.222 32.2

97 1,630 1.190 35.0

91 950 1.285 3.4

80 180 3.220 25.4

25,000 0.6 106.5 1,300 1.153 22.4

100 1,070 1.085 21.5

97 890 1.090 20.5

91 520 1.231 18.2

0.8 104.5 1,420 1.198 25.8

1C0 1,235 1.150 25.2

97 1,030 1.145 23.9

91 590 1.289 203

36,089 0.6 107.4 800 1.125 14.2

100 640 1.062 3.3

97 530 1.085 12.8

91 310 1.290 11.4

0.8 107.4 920 1.185 16.3

100 740 1.109 15.8

97 610 1.131 15.0

91 350 1.315 13.35

45,000 0.8 107.4 610 1.231 10.7
100 402 1.161 10,15

97 397 1.198 9.6

91 224 1457 8.5
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J85 current bleed system was modified by installing a larger bleed port,
the maximum bleed could be increased to 2.0 pounds mass per second at
maximum power. At idle power this maximum bleed would decrease to
approximately 1.25 pcunds mass per second. Figure 41 shows the engine
thrust and bleed air properties for a bleed rate of 0.70 pounds mass per
second. The bleed air temperature exceeds the ACLS trunk material
temperature 1imit of 200 deg F so it must be mixed with cooler ambient
air.

The tip turbine fan and ejector components were investigated for use with
the bleed air source. Evaluations similar to those discussed in the
previous section for the Boeing ARPV were performed and results were
similar.

Shaft driven fans were also investigated for this air vehicle. Several
fan drive ‘train configurations are possible, such as:

0 electric motor driven fans powered by an electric generator
mounted at pad P-2

0 hydraulic motor driven fans powered by a variable displacement
hydraulic pump mounted at pad P-2

0 shaft driven fans driven by high speed drive train through a
clutch at pad P-2

Two basic *ypes of air supply systems were included in the program EASY
math models of the Rockwell ARPV configurations - an ejector system and a
shaft driven fan system.

The ejector system was selected as a practical air supply system for the
lower flow requirements of the ACRS and ABSS. It was selected because of
its insensitivity to back pressure variations, low complexity and
reliability. Only the ejector component was included in the air supply
system math model since the dynamics of valves and ducting will have
minor effects on the system performance. As with the Boeing ARPV, the
TD-530 ejector described by Figures 31 and 36 was modeled.
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A shaft driven fan system was included in the math model of air cushion
systems for takeoff and recovery. This system is most capable of
providing the large takeoff flow requirements. Only the fan component
was included in the EASY math model since its dynamics will dominate the
response of the air supply system. Performance data was not available
for an actual two-stage axial fan with the necessary pressure-flow
characteristics. Therefore, a theoretical rather than empirical fan map
was used to represent the fan performance. This fan map was developed to
satisfy takeoff and recovery pressure-flow requirements and is shown in
Figure 42.

As with the Boeing ARPV, space for the air supply system installation is
very limited. Practical installation considerations were not
investigated in detail prior to the dynamic simulations. The approach
followed consisted of 1) making preliminary estimates of the component
sizes needed, 2) including these in system math models, 3) performing
dynamic simulations and adjusting component sizes during the simulations
to achieve satisfactory performance, 4) specifying component requirements
and estimating their size, 5) preliminary design of the system
installation and determination of its feasibility.

(5) Suction Braking

Suction braking requires the installation of a dedicated
flow source for the air cushion. Previous results and preliminary
analysis indicated that low suction braking flow rates will produce
effective cushion suction. Analysis indicated that the TD-530 ejector
would satisfy these flow requirements, so an attempt was made to model
the ejector with the EASY ejector (EJ) component to produce suction
braking. However, due to incompatible input/output requirements,
problems were encountered when attempting to connect the EASY ejector
component and air cushion trunk (TK) component to produce flow out of the
cushion. Therefore, suction braking was modeled by connecting an
inlet-outlet (I0) component to the cushion, with less than ambient
pressure at the outlet of the I0 component to produce a flow out of the
cushion. This flow could be correlated into ejector performance
requirements.

74



006

008

00

SO}3SLUBIORIRY) MO|4-3UNSSAUY URY 2p 3unbLg

009 00S 00Y 00€ 002

001 0

(SNY4 2)

Wdd 002L = N

—_—
— — —

0°0

0"t

0°¢

(91Sd) 4V

75




(6) Arrestment Systems
Some of the dynamic simulations included landing arrestment
of the air vehicles. The program EASY model of the A11 American
Engineering Company "Water Twister" arresting system was used in these
simulations. The general layout of a typical system is shown in Figures
43 and 44.

The principal design constraints for the arrestment systems were the
structural load limits for the two air vehicles and air vehicle-to-ground
clearances when arrestment loads are applied. These limits are 3g
longitudinal for the Rockwell ARPV and 4g longitudinal for the Boeing
ARPV.,

The major design variables for the arrestment system are the air vehicle
tail hook length and location, the water twister damping coefficient, and
the tape drum diameter. Several other arrestment system design
.parameters having minor or negligible effects on dynamic performance were
included as fixed parameters. Design variations were investigated during
the program EASY dynamic simulations while attempting to achieve
satisfactory performance. Table 12 lists the values of the baseline
design parameters for the Boeing and Rockwell ARPV arrestment systems.

(7) Other Characteristics of the Landing Math Models

The program EASY landing math models basically consisted of
standard components defining the air vehicle aerodynamic forces (OL, DL,
VA), the air cushion trunk (TK or TS) or air bag skid (AB) forces, the
air supply system (EJ, FR, I0), the arrestment system (AS), the air
vehicle equations of motion (DS, SG, TT, or TL), and various other table
definition, summation, and multiplication components (TA, TB, S3, S4, MA)
used to combine air vehicle forces or control surface position commands.

Special coding was added to the air vehicle models to generate specific
analysis information. Component TR which performs a coordinate system
transformation is called from inside a loop in subroutine EQMO of program
EASY and is used to calculate critical air vehicle-to-ground clearances.
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TABLE 12
ARRESTMENT SYSTEM PARAMETERS

Runway span between sheaves (ft.) 100

Tape drum to sheave distance (ft.) 10

Initial cable height above runway (ft.) 0.5
Cable weight density (1b/in3) 0.25
Cable cross sectional area (inz) 0.2 (1/2" dia.)
Cable initial stress (psi.) 2500

Tape weight density (1b/in3) .03
Tape thickness (in.) .15
Tape width (in.) 5

Tape drum inertia (1bm-in2) 30000

Cable modulus of elasticity (psi.) 1.2 (107)
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Table 13 lists the clearances of particular interest for each air
vehicle. Component FU was added to calculate the relief valve area; this
variable is not a normal output of components TK or AB. Other coding was
added so that tabular input information for components TK and TS could be
used for parameter variations in root locus or steady state analyses.

b. Landing Simulation Results
The major objectives of the landing simulations were:
o to identify the recovery system parameter values which
achieve satisfactory performance or which provide the best
achievable performance.

0 to develop parametric design information which relates
recovery system performance to variations in design
parameters.

0 to identify constraints on the air vehicle attitude and
sink rate at touchdown.

0 to identify any modifications to the baseline airframe due
to the ACLS installation.

Specific requirements which must be satisfied for acceptable performance
under normal touchdown conditions are:
0 maximum landing impact loads must be less than the structural
Toad Timits for the airframe.

0 the unprotected fuselage and wing tips must not hit the ground.

0 the air vehicle must have directional stability during landing
slideout.

Landing impact loads and ground-airframe clearances were first
investigated using a three degree-of-freedom (DOF) longitudinal model
instead of six DOF to reduce computation cost. The three DOF simulations
could not be used to investigate directional stability, lateral
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TABLE 13

AIR VEHICLE TO GROUND CLEARANCES CALCULATED BY PROGRAM EASY

DURING THE LANDING SIMULATIONS

Clearances (= height above ground of the following
points on the airplane)

Rockwell ARPY

0o Most forward, bottom point on wing tip mounted
AN/ALE-38 chaff dispensers
Left Wing
Right Wing
0 Most aft, bottom point on wing tip mounted
AN/ALE-38 chaff dispensers
Left Wing
Right Wing
o Bottom point on JTIDS antenna mounted on
bottom of fuselage
Forward Antenna
Aft Antenna

o Distance between airplane c.g. and ground

Boeing ARPV

0 Most outboard, aft point on the canard
Left Canard
Right Canard

0 Most outboard, forward point on the wing
Left Wing
Right Wing

o Bottom point on fuselage at STA 131.5
0o Bottom point on fuselage at STA 318
o Distance between airplane c.g. and ground
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clearances, and arrestment system effects on the air vehicle but
approximate impact loads were established. The six DOF simulations were
made after a data base had been created by performing several three DOF
simulations.

Since a multitude of parameters are involved in dynamic simulation of a
vehicle recovery system, parametric investigation of all of them is not
reasonable. Therefore, the key to proper analysis is to select as
variables, only those data that have a major impact on system
performance. The rigidity of this data varies from item to item; some of
the input data are fixed for all cases (for instance, the air vehicle
mass properties and aerodynamics), other input data can be changed to
some extent, but modifications usually require a major effort and have a
large impact on the air vehicle (for instance, the trunk shape and fan or
ejector performance maps), and still other input data are simple to
modify and in many cases are easily adjustable after the equipment is
installed on the air vehicle (such as the relief valve cracking pressure,
the ejector primary pressure or fan speed, and the arrestment system
damping coefficient).

(1) Boeing ARPV Landing Simulations
(a) Boeing ARPV with ABSS

The baseline ARPV, Figure 26, uses an ABSS with an
arrestment system for landing, so this design served as the starting
point for these simulations. Figure 45 shows the layout of the two air
bags. Each bag was modeled in the EASY program as six individual
elements, free to move laterally and vertically relative to each other.
Each bag is 120 inches long, 15 inches in diameter, and attached to the
flat fuselage underbody along a 13 inch chord line. Figure 46 shows a
sectional view of a general air bag installation and the dimensional
terms used to define it. Program EASY requires input data defining the
free bag shape, it then calculates the shape of the bag under various
loading conditions and the loaded bag shape data are then tabulated by
the program. These data have been plotted and are shown in Figures 47
through 49 for the baseline air bag. These relationships will change as

B A =0 > S .

e e i
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the bag cross sectional dimensions are changed. Six different bag sizes
were investigated during these simulations; their free shape dimensions
are listed in Table 14,

Table 14

ALTERNATIVE AIR BAG SKID DIMENSIONS FOR THE BOEING ARPV

Air Bag Model Diameter (in.) Length (in.)
B-ABSS-1 (baseline) 15 120
B-ABSS-2 15 180
B-ABSS-3 30 160
B-ABSS-4 15 160
B-ABSS-5 15 140
B-ABSS-6 15 150

The TD-530 ejector, which was discussed in Paragraph 2.a(4), was modeled

in program EASY for this simulation. One ejector model was used for each
of the two bags.

The initial simulations were one second duration, three DOF longitudinal
landings without arrestment. The purpose of these simulations was to
investigate the landing impact performance of various air bag system
designs to determine~a minimum size bag which would satisfy both load
Timit constraints and longitudinal clearance constraints. These
simulations used initial conditions which placed the air vehicle a few
inches off the ground at an attitude and speed based upon the previously
defined landing approach trim conditions. Touchdown initial conditions
included perturbations from the mean trim conditions. Worst case landing
impact conditions were defined by using the statistical approach outlined
in MIL-A-8863A (Reference 5).
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The first several simulations were used to identify a bag length and
diameter which would achieve satisfactory performance. Results are shown
in Figures 50 and 51. As the bag length and diameter are increased, the
minimum front and rear fuselage-to-ground clearances increase and the
peak landing impact loads on the air vehicle increase. The large
diameter bag requires a more complex installation since hinged panels are
required for the more outboard attachment of the bag to the fuselage and
the bag interferes with air flow over the wing. Also, increasing the bag
diameter did not result in reduced loads to the vehicle. Therefore, this
design was rejected. An air bag design which is 150 inches long and 15
inches in diameter gave satisfactory results in these simulations, so it
was used in the succeeding simulations which investigated air supply
system design variations.

During the next series of simulations, the effects of air vehicle sink
rate at touchdown, the relief valve cracking pressure, and the initial
bag pressure at landing impact were investigated. Results are shown in
Figures 52 and 53. Fuselage-to-ground clearances and vehicle maximum
acceleration are shown. The vehicle acceleration in the landing
simulations of this document is the total resultant acceleration, that
is, the product of the acceleration in each of the three axial
directions. Fuselage-to-ground clearances appear to be satisfactory
during these simulations, but the load 1imit of 6g for the Boeing ARPV is
consistently exceeded when landing at the landing approach sink rate of
10 ft/sec, even at the lowest practical bag pressures and relief valve
cracking pressures. The problem of exceeding the incremental load limit
at touchdown arises partially from the circular cross section shape of
the pags. Increasing the bag diameter to get more stroke also increases
the contact area thus raising the peak load. An eliptical cross section
which would allow an increase in bag height without an increase in width
would alleviate this problem. This approach would increase the
complexity of the bag.

Touchdown load 1imits for an air vehicle are usually established by the
structural limitations of the landing gear and the reverse load
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limitation of the wing structure. With an air cushion or air bag skid
system the landing system loads are distributed along the fuselage so the
wings become the limiting structure. For a vehicle such as the Boeing
ARPV, with a short, small wing and no stores carried on the wing, the
load factor can be increased to 8 or 10g with 1ittle effect on the
structure weight.

The lower limit on the steady state bag pressure prior to touchdown is
determined by the dynamic pressure acting on the bag at landing approach
speeds. This dynamic pressure is approximately 0.5 psig at 130 knots,
therefore a minimum bag pressure of about 1.0 psig will give the bags
sufficient rigidity to prevent flutter and retain their cylindrical shape
during minor maneuvers and wind gusts. A relief valve cracking pressure
of 0.1 psi above the bag steady state pressure is a minimum from a
practical design standpoint.

Another series of simulations were performed which investigated the
effects of pitch angle and sink rate on peak landing impact loads. The
relief valve cracking pressure was fixed at 1.1 psig and the initial bag
pressure set at 1.0 psig for this series. Results are shown in Figures
54 and 55. The points where the constant pitch angle lines in Figure 54
cross the structural load 1imit lines have been plotted in Figure 55 to
form a load 1imit constraint envelope for 6g, 8g and 10g. The shape of
this curve with a minimum sink rate point at a pitch attitude of 4
degrees results from the manner in which the air bag skid forces and
moments acting on the vehicle are affected by pitch angle. As pitch
angle increases, initial bag-ground contact area is reduced so the
effective bag spring rate is lower, resulting in Tower force. However,
as pitch angle increases the bag-ground force moment arm relative to the
vehicle center of gravity increases and the moment acts for a longer
period of time resulting in higher vehicle pitch-over rates. For this
particular vehicle configuration, these counter trends reach a minimum at
a pitch angle of about 4 degrees. Combinations of landing impact pitch
angle and sink rate to the left of those envelopes will result in peak
air vehicle loads below the load 1imit. A line defining the mean landing
approach trim conditions has also been plotted in Figure 55, These mean
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and Touchdown Constraints
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trim conditions were taken from Figure 14 shown in Paragraph l.b. Air
turbulance and wind gusts will cause the actual touchdown attitude of the
air vehicle to be perturbated from these mean conditions. This can be
described as a wide band centered on the mean conditions. According to
MIL-A-8863A (Reference 5), the standard deviations for touchdown pitch
and sink rate are 2.25 degrees and 1.33 ft/sec, respectively. If 20
conditions are used to define the design conditions, the air vehicle sink
rate must be less than 1.24, 4, and 6.5 ft/sec at touchdown for
satisfactory performance with load 1imits of 6, 8 and 10g, respectively,
Ground effects which tend to siow the vehicle rate of descent at
touchdown, will permit a greater sink rate during approach but the
magnitude of this effect was not known. Therefore, it was not considered
in this estimate of the trimmed sink rate limit. From Figure 14, sink
rates of 1.24, 4, and 6.5 ft/sec are achieved when the glide slope angles
are 0.3, 1.0 and 1.7 degrees, respectively.

In general, these mean touchdown trim conditions of pitch angle = 4.25
degrees, sink rate = 1.24 ft/sec and glide slope angle = 0.3 degrees for
the 6g 1imit condition are very restrictive. Therefore, an effort was
made to modify the air bag system design so the 6g load 1imit line on
Figure 55 would move to the right, but little success was achieved since
the most influential design variables were already at their limits.

A design change that may improve system performance would be to change
the bag shape from circular to eliptical to achieve greater stroke with
reduced contact area. The EASY Air Bag Skid model was developed for
analysis of circular cross sections only so eliptical shapes were not
investigated. Restricting the bag width to achieve greater stroke
without increasing foot print area is a technique used in design of
impact attenuation bags such as those used on the B-1 bomber crew escape
capsule.

After an air bag size had been established based upon the three DOF
longitudinal simulations, six DOF simulations were performed to verify
the Tateral stability of the recovery system during landing. These
simulations were made with and without the arrestment system and included

-




approximately the first three seconds after landing impact. Figqures 56
through 58 show that the air vehicle is directionally unstable when it
Tands without arrestment. Roll and yaw angles begin diverging less than
one second after touchdown, and air vehicle loads rapidly increase
because of this unstable motion. Results of an identical landing
simulation with arrestment are shown in Figures 59 and 60. These results
show that the arrestment system gives the air vehicle directional
stability, but the peak loads on the air vehicle are well over its 6g
Toad Timit. Landing impact loads combined with arrestment loads result
in a peak load of approximately 20g on the air vehicle. Based upon these
results, the arrestment system design variables were modified to reduce
the peak arrestment loads. Water twister damping coefficient, tape drum
radius, and tail hook length and location were the principal design
variables to be adjusted. However, if the peak arrestor loads occur
simultaneously with the landing impact loads, the results were still
unacceptable. Each of these events must occur far enough apart so that
the loads due to each do not occur simultaneously.

The previous results for the unarrested landing indicate that the air
vehicle can be expected to remain directionally stable during the first
second after impact. Also, these simulations were carried out with the
air vehicle control surfaces fixed in their landing approach trim
positions. In reality, the control surfaces would be active during the
first few seconds after landing impact, and because of the high air
speed, they will be capable of controlling the air vehicle direction and
heading until its speed has reduced by about 50%. Therefore, the
recovery operations can be planned such that touchdown occurs prior to
cable engagement. Arrestor system parameters are listed in Table 12.

(b) Boeing ARPV with ACRS
The baseline ARPV with the ACRS installation is shown
in Figure 23. This figure shows a cool gas generator supplying primary
flow to the trunk ejector. However, the math model used in the
simulations only included the ejector component since it is the dominant
component of the air supply system. The dynamic characteristics of
primary flow ducting, valves and the cool gas generator are not
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significant in these landing simulations because ejector back pressure
does not effect primary flow.

The original air cushion trunk used in the simulations was 120 inches
long and 30 inches wide. The trunk length being defined as the
longitudinal distance between the most forward attachment point and the
most aft attachment point. The trunk width being defined as the lateral
distance between outboard attachment points. Figure 61 shows the
principal dimensions 'of this trunk installed on the air vehicle. The
sectional shape of the trunk varies as trunk pressure, cushion pressure,
and air vehicle height change. These geometric relationships are
determined by program EASY and are shown in Figures 62 through 65.

As with the air bag skid system, the touchdown initial conditions for
these simulations were based upon MIL-A-8863A (Reference 5) and the air
vehicle mean landing approach trim conditions, as shown in Table 6 and
Figures 12 and 13. The stability derivatives for the air cushion trunk
shape are slightly different than those for the air bag skid shape,
therefore the attitude of the air vehicle when trimmed for a given glide
path and sink rate is also slightly different. These are discussed in
Paragraph 1.b, Boeing ARPYV Inflight Simulation. A1l control surfaces
were fixed at their trim positions during these landing simulations,
unless otherwise noted.

Analysis approach was the same as for the air bag skid system. One
second duration, three DOF landing simulations were made to determine
peak impact loads and minimum clearances for alternative trunk designs
during realistic landing conditions. From results of these studies, a
trunk design giving satisfactory performance was selected.

Various trunk sizes and air supply system designs were investigated.
Trunk length was varied between 120 and 160 inches. Because the air bag
skid simulations showed that an increased trunk width was not necessary,

such design variations were not investigated for the Boeing vehicle with
ACRS.
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The design variables investigated during these simulations to improve
ACRS Tlanding performance included trunk flow requirements, relief valve
cracking pressure, initial trunk pressure at touchdown, distance between
the trunk center of pressure and the air vehicle center of gravity,
addition of a cushion vent to reduce cushion pressures, use of the
elevons to reduce pitch rates and maximum pitch angles at landing impact,
and control of the ejector primary pressure and flow.

The flow requirements for this air cushion trunk are more complex than
those for the air bag skid system because the forward one-third of this
trunk is lubricated. Analysis determined that different steady state
pressures and flows are required before and after landing impact. This
implies that control of the primary ejector pressure and flow are

needed. Different trunk flow requirements would also exist if the trunk
leakage had increased due to damage sustained during a mission. The
controller would sense trunk pressure to control primary ejector pressure.

Results from these simulations indicated that a trunk length of 138"
gives satisfactory performance. Results from several simulations which
varied the sink rate and pitch angle of the air vehicle at touchdown are
shown in Figure 66. Points on these curves where the 6, 8, and 10g load
limit lines are crossed were again plotted and results are shown in
Figure 67. Figure 67 defines a 6, 8, and 10g load limit constraint
envelope for the air vehicle pitch angle and sink rate at touchdown.
These curves follow the same trends as that shown for the Boeing vehicle
with an ABSS which was discussed earlier.

A line defining the mean trim conditions for the Boeing ARPV with its
ACRS deployed is also shown. A1l combinations of touchdown sink rate and
pitch angle to the left of the envelopes will result in satisfactory
landings. When the statistical characteristics of touchdown conditions
are considered, a design touchdown condition can be specified. This
condition is shown as point * on Figure 67 for each of the three load
Timits specified. A clearance constraint envelope is also shown in
Figure 67, but it is not an active constraint for the shown trim
conditions. Figure 68 shows more clearly that longitudinal clearances
are not a problem for this trunk design.
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Figure 67 Boeing ARPV with ACRS, Landing Trim Conditions
and Touchdown Constraints
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Simulations were also made to determine the feasibility of using the air
vehicle control surfaces to reduce landing impact loads. Peak impact
loads occur in the direction of the air vehicle Z body axis.
Accelerations along this axis are caused by a combination of forces
acting along the Z axis and two cross products, UXQ and VXP, where:

Vehicle x axis velocity
Vehicle pitch rate
Vehicle y axis velocity
Vehicle roll rate

o| <| o] <
"

The V and P rates are essentially zero for all touchdown conditions.
Forces along the Z axis are primarily the aerodynamic 1ift, trunk loads,
and the air vehicle weight. For this air vehicle, the.Uxa cross product
is a major contribution to peak impact loads. This air vehicle lands at
a rather high speed of 130 knots, and because it normally lands in a
nose-up attitude, negative pitching moments occur when the aft end of the
trunk contacts the ground. These pitching moments combined with the
rather low pitching moment of inertia result in high pitch accelerations
and rates during landing impact. The elevon control surface can be used
to increase pitch damping to reduce these pitch rates and the
corresponding impact loads. Simulations were performed which used the
elevon as a pitch damper and results indicated that this can be effective
in reducing the peak landing impact loads. The effectiveness of this
method is limited by the maximum available elevon rate. The distance
between the trunk center of pressure and the air vehicle center of

gravity was also varied during these simulations to determine its effect

on landing performance. Figure 69 shows that the minimum fuselage to

“ground clearances are not affected significantly by variations in this

distance, but the peak landing impact load has a definite tendency to
decrease as the trunk is moved further forward on the fuselage. This
reduction in peak landing loads is due to the decreased pitching moment
arm between the aft end of the trunk and the air vehicle c.g. A reduced

‘moment arm reduces the negative pitch moment at impact, which reduces

pitch rate, Q. The cross product UXQ, a principal component of the peak
landing impact load, is therefore reduced.
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