BOUNDARY REGULARITY
FOR SOME NONLINEAR ELLIPTIC
DEGENERATE EQUATIONS

Haim Brezis and Pierre-Louis Lions

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706
August 1979

(Received July 20, 1979)

Approved for public release
Distribution unlimited

Sponsored by
U. S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709
UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

BOUNDARY REGULARITY FOR SOME
NONLINEAR ELLIPTIC DEGENERATE EQUATIONS

Haim Brezis and Pierre-Louis Lions

Technical Summary Report #1987
August 1979

ABSTRACT

We consider the nonlinear elliptic degenerate equation

\[-x^2 \left(\frac{3u^2}{3x^2} + \frac{3u^2}{3y^2} \right) + 2u = f(u) \text{ in } \Omega_a \]

where

\[\Omega_a = \{(x, y) \in \mathbb{R}^2, \ 0 < x < a, \ |y| < a \} \]

for some constant \(a > 0 \) and \(f \) is a \(C^\infty \) function on \(\mathbb{R} \) such that \(f(0) = f'(0) = 0 \). Our main result asserts that: if \(u \in C(\bar{\Omega}_a) \) satisfies

\[u(0, y) = 0 \text{ for } |y| < a, \]

then \(x^{-2}u(x, y) \in C^\infty(\bar{\Omega}_{a/2}) \) and in particular \(u \in C^\infty(\bar{\Omega}_{a/2}) \).

AMS (MOS) Subject Classifications: 35J60, 35J70

Key Words: Boundary regularity, nonlinear elliptic equations, degenerate elliptic equations.

Work Unit Number 1 - Applied Analysis

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
SIGNIFICANCE AND EXPLANATION

Special solutions of the Yang-Mills field equations of theoretical physics may be obtained by solving a boundary value problem for a nonlinear elliptic equation in a two-dimensional half space. This equation degenerates at the boundary of the region and this degeneracy makes it a delicate matter to study how the solutions behave near the boundary. In this work it is proved that the weak solutions previously known to exist are in fact smooth up to the boundary.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the authors of this report.
1. Introduction

This paper deals with the question of boundary regularity of solutions of a nonlinear elliptic degenerate equation of the form

\[-x^2 \Delta u + 2u = f(u) \text{ in } \Omega_a \]

where

\[\Delta = D_x^2 + D_y^2 \]

\[\Omega_a = \{(x,y) \in \mathbb{R}^2; \ 0 < x < a, \ |y| < a\} \]

for some constant \(a > 0 \), and \(f \) is a \(C^\infty \) function on \(\mathbb{R} \) such that

\[f(0) = f'(0) = 0. \]

Our main result is the following

Theorem 1. Assume \(u \in C^\infty(\Omega_a) \cap C(\overline{\Omega}_a) \) satisfies (1) and

\[u(0,y) = 0 \text{ for } |y| < a. \]

Then \(x^{-2} u(x,y) \in C^\infty(\overline{\Omega}_a/2) \) and in particular \(u \in C^\infty(\overline{\Omega}_a/2). \)

Equation (1) occurs in the theory of multimeron solutions to Yang-Mills field equations (see [2]). More precisely the equation in [2] is:

\[-x^2 \Delta \psi + \psi^3 - \psi = 0 \text{ in } \Omega_a \]

together with the boundary conditions:

\[\psi(0,y) = \pm 1. \]

If we set \(u = \psi \pm 1 \) we find

\[-x^2 \Delta u + (u\pm 1)^3 - (u\pm 1) = 0. \]
that is (1) with \(f(u) = -u^3 + 3u^2 \). In [3] it is only proved that \(\psi \) is continuous up to the boundary (except at the points where \(\psi \) changes sign). Theorem 1 shows that \(\psi \) is \(C^\infty \) up to the boundary (except at the points where \(\psi \) changes sign).

We thank A. Jaffe for suggesting the problem and C. Goulaouic for useful discussions.

2. Some lemmas.

The proof relies on some lemmas.

Lemma 2. Assume \(u \in C^2(\Omega_1) \cap C(\Omega_1) \) satisfies:

\[
|\Delta u + 2u| \leq a(u^2 + x^4) \quad \text{on} \quad \Omega_1
\]

for some constant \(a \)

\[
u(0,y) = 0 \quad \text{for} \quad |y| < a.
\]

Then, there is a constant \(\delta \) such that

\[
|u(x,y)| \leq \delta x^2 \quad \text{on} \quad \Omega_{a/2}.
\]

Proof of Lemma 2. For \(b < a \) set

\[
M_b = \sup_{\Omega_b} |u|.
\]

Since by (5) \(M_b \to 0 \) as \(b \to 0 \), we may fix \(b \) so small that

\[
ab^2 < 1/2
\]

\[
aM_b < 1/400.
\]

We shall establish that

\[
|u(x,0)| \leq Ax^2 \quad \text{for} \quad 0 < x < b,
\]

where

\[
A = \max\{ab^2, \frac{100 M_b}{b^2}\}.
\]
The conclusion of Lemma 2 follows easily. In order to prove (8) we introduce
the function
\begin{equation}
 v(x, y) = Ax^2 - Bx^4 + Cy^4
\end{equation}
where A is defined by (9),
\begin{equation}
 B = \frac{A}{2b^2},
\end{equation}
\begin{equation}
 C = \frac{M}{b^4}.
\end{equation}
A direct computation shows that
\begin{equation}
 -x^2 \Delta v + 2v \geq a(v^2 + x^4) \quad \text{on } \Omega_b,
\end{equation}
\begin{equation}
 v(x, \pm b) \geq M_b \quad \text{for } 0 < x < b,
\end{equation}
\begin{equation}
 v(b, y) \geq M_b \quad \text{for } 0 < y < a,
\end{equation}
\begin{equation}
 a \sup_{\Omega_b} v \leq 1
\end{equation}
\begin{equation}
 v \geq 0 \quad \text{on } \Omega_b.
\end{equation}
We now derive, using the maximum principle that
\begin{equation}
 u \leq v \quad \text{on } \Omega_b.
\end{equation}
Indeed by (14) and (15), $u \leq v$ on $\partial \Omega_b$.

Suppose, by contradiction, that $(u-v)$ achieves a positive maximum at
$(x_0, y_0) \in \Omega_b$. We would have
\begin{equation}
 \Delta(u-v)(x_0, y_0) \leq 0.
\end{equation}
On the other hand, we deduce from (4) and (13) that
\begin{equation}
 -x^2 \Delta(u-v) + 2u - 2v \leq a(u^2 - v^2) \quad \text{on } \Omega_b.
\end{equation}
Therefore

\[2 \leq a[u(x_0, y_0) + v(x_0, y_0)] \]

\[\leq a M_b + 1 \quad \text{(by (16))} \]

and thus \(a M_b \geq 1 \) — a contradiction with (7).

Lemma 3. Under the assumptions of Theorem 1 there exist constant \(\beta_k \) such that

\[|D^k_y u(x, y)| \leq \beta_k x^2 \quad \text{on } \Omega_{a/2} \]

for all \(k = 0, 1, 2 \ldots \)

Proof of Lemma 3. Since \(f(0) = 0 \) we have

\[|f(u)| \leq C|u| \quad \text{on } \Omega_a \]

and by (1)

\[|\Delta u| \leq (C + 2) \frac{|u|}{x^2} \quad \text{on } \Omega_a \]

It follows from Lemma 2 that \(\Delta u \in L^\infty(\Omega_{a/2}) \). We deduce from the \(L^p \) regularity theory (see e.g. [1]) that \(u \in C^1(\Omega_{a/4}) \). In particular \(D_y u \in C(\Omega_{a/4}) \) and

\[D_y u(0, y) = 0 \quad \text{for } |y| < a/4 \]

(since \(u(0, y) = 0 \) for \(|y| < a \)). Also, differentiating (1) with respect to \(y \) we find

\[-x^2 \Delta(D_y u) + 2(D_y u) = f'(u)D_y u \quad \text{on } \Omega_a \]

By (2) we have

\[|f'(u)| \leq C|u| \]

and from Lemma 2 we see that

\[|f'(u)| \leq C \beta x^2 \quad \text{on } \Omega_{a/2} \]
Consequently
\[
|f'(u)D_y u|^2 \leq CB(|D_y u|^2 + x^4),
\]
and Lemma 2 applied to \(D_y u \) shows that
\[
|D_y u| \leq \beta_1 x^2 \quad \text{on } \Omega_{a/8}.
\]
The conclusion of Lemma 3 for \(k = 1 \) follows directly. When \(k \geq 2 \) we proceed in a similar way, by induction, differentiating (1) \(k \) times with respect to \(y \).

Lemma 4. Assume \(\psi \in C^2([0,a]) \cap C([0,a]) \) satisfies
\[
-x^2 D^2_x \psi(x) + 2 \psi(x) = h(x), \quad 0 < x < a,
\]
where \(h \in L^\infty(0,a) \).

Set \(\psi(x) = x^{-2} \varphi(x) \), then
\[
D_x \psi(x) = -x^{-4} \int_0^x h(t)dt, \quad 0 < x < a.
\]

Proof. Indeed we necessarily have
\[
\varphi(x) = \frac{C_1}{x} + C_2 x^2 + x^2 \int_0^a \frac{ds}{x^4} \int_0^s h(t)dt
\]
for some constants \(C_1 \) and \(C_2 \). Since the last term remains bounded as \(x \to 0 \) we must take \(C_1 = 0 \), and the conclusion follows.

3. **Proof of Theorem 1.**

We have by (1)
\[
-x^2 D^2_x u + 2u = x^2 D^2_y u + f(u).
\]

Let \(v(x, y) = x^{-2} u(x, y) \). We deduce from Lemma 4 that
\[
D_x v(x, y) = -x^{-4} \int_0^x \left[x^2 D^2_y u(t, y) + f(u(t, y)) \right] dt.
\]
Set $g(u) = u^{-2}f(u)$ so that by (2), g is a C^∞ function on \mathbb{R}. Changing the variable t in (19) into $s = \frac{t}{x}$ we find

$$D_x v(x,y) = -x \int_0^1 \left[D_y^2 v(sx,y) + v^2(sx,y)g(s^2 x^2 v(sx,y)) \right] s^4 ds.$$

(20)

It follows from Lemma 3 (applied with $k = 0$ and $k = 2$) that

$$|D_x v(x,y)| \leq C|x| \text{ on } \Omega_{a/2}.$$

(21)

Next, if we differentiate (2) k times with respect to y we obtain, using Lemma 3, that

$$|D_x D_y^k v(x,y)| \leq C_k \text{ on } \Omega_{a/2}.$$

(22)

for all k.

We may now differentiate (20) once with respect to x and k times with respect to y and we find that

$$|D_{xx} D_y^k v(x,y)| \leq C_k \text{ on } \Omega_{a/2}$$

for all k. Proceeding by induction we obtain estimates for $D_x D_y^k v$ and the conclusion of Theorem 1 follows (note that we have even an estimate of the form $|D_x D_y^k v(x,y)| \leq Cx$ when i is odd).
REFERENCES

Dept. de Mathématiques
Université Paris VI
4, pl. Jussieu,
75230 Paris Cedex 05

HB/PLL/jvs
Boundary regularity, nonlinear elliptic equations, degenerate elliptic equations

We consider the nonlinear elliptic degenerate equation

\[
- x^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + 2u = f(u) \quad \text{in} \quad \Omega_a
\]

where

\[
\Omega_a = \{(x,y) \in \mathbb{R}^2, 0 < x < a, |y| < a\}
\]

for some constant \(a > 0 \) and \(f \) is a \(C^\infty \) function on \(\mathbb{R} \) such that
Our main result asserts that: if $u \in C(\bar{\Omega}_a)$ satisfies

(2) $u(0,y) = 0$ for $|y| < a$,

then $x^{-2}u(x,y) \in C^\infty(\bar{\Omega}_{a/2})$ and in particular $u \in C^\infty(\bar{\Omega}_{a/2})$.

$\text{ABSTRACT (continued)}$