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A. General Introduction
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these models into elementary, intermediate and advanced types. We will
not attempt a complete survey of all such models. Instead, we will
refor +n nr nnnte nthar aiirveve where nnccihle and content nurcelvec
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with an analysis of some of the more popular models currently in use.
A recent cgeneral survev of penetration models has been given by Backma
A 1t general survey of penetration models has been given by Backman
and Goldsmith!.

B. Elementary Models

A principle feature of elementary models is that they are very easy
to use and require little calculation. They are usually constructed by
choosing certain experimental variables which are felt to be important.
These are incorporated together with some adjustable constants into an
arbitrary functional form which serves the ad hoc purpose of producing
at least qualitatively correct behavior. The constants are then adjusted
to give a reasonable or even ''best" fit to the data which is available
in certain ranges of the allowed values of the exper1menta1 variables.

2 o PO | 2 el

The final result is an interpolation formula which is useful within

or her tha
as s those of Newton
hough this reason has less
convenlent electronlc calculators. A better reason
f the functional form chosen is reminiscent of physical
laws so that 1t can be helpful in mentally organizing a mass of data.
We must bear in mind, however, that such functional forms are not based
on physical laws and are purely empirical. A danger can arise if the
user begins to place too much confidence in such formulas and uses them
for extrapolatlon beyond the measured ranges of the exper1menta1 vari-
aDles. At best the pre ions of such an eXtrap01at10n are highly

P S o T 1 Sy PRy TR

cribed as such. At worst
n L
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he user even realizing thi

or

2J. Zook, "An Analytical Model of Kinetic Energy Projectile/Fragment
Penetration, ™ BRL MR 2797, 1977.
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of the two Thor equations3. Five experimental variables were chosen:
strlklng mass (my), projectile presented area (A), striking velocity,
that is, speed (V,) and obliquity (8,), and plate target thickness (T).

Five aa;ustable constants for each target-projectile material combina-
tion were incorporated together with these variables into each of two
arbitrary functional forms, one for the residual speed (vl)
a a a a a
1 2 3 4 5
vy =V - 100 (TA) C (m) 7 (sec 8} " (V) (1)
and another for the residual mass (ml)
bl b? b3 4 b5
m.=m - 10 ° (TA) (m ) (sec 8 ) V) (2)
i o o 0 0
remaining after perforation. Here we use numerical subscripts instead
of letters to anticipate multiplate target applications. For example,
Vi is the speed remaining after perforation of target plate number one,
which of course becomes the striking speed for target plate number two
with V; remaining and so forth. Similarly we have mjy and 6,. These
equatlons were fitted to a particular data set for steel cylinders

impacting ten different target plate materials and the constants were
adjusted to give a least squares type of best fit.

In the Thor equations dimensions are preserved by suitable choices
for the power of ten factors which govern the values of aj and by In
Equatlon (1) the fitting procedure gave positive values for aj and ay
in all ten cases while a3 was always negative and ag was positive but

less than unity for eight target materials and negatlve for two,
magnesium and aluminum. Since a, and a4 are positive these parts of
Equation (1) are reminiscent of physical behavior. The factor (TA) is,
roughly speaking, the volume of the plug which is often punched out of
thin target plates by blunt projectiles and a, > 0 implies that the
larger this plug is the smaller the residual speed will be. This is
reasonable since more energy must be spent punching out and accelerating
a larger plug. One might think that an association of T with sec 8,
should also have been made. A factor. L = T sec g is the line-of- 51ght

thickness of the plate and (T sec 4) 4 with a, > 0 would imply that a
larger L due either to larger T or larger 6, means a smaller Vy, which
is also reasonable. Unfortunately, there is no easy way to split the

a
factor (T) 2 as given to remind us of both plugs and line-of-si

wn

ocht thick-
1ght thick

The authors of the Thor report cited above went on to assume that
for compact projectiles the area (A) is proportional to the two-thirds
a

power of the striking mass and absorbed (A) into the mass factor,
3T7._,.'-41 m1 m k) . 1 7t A an -
Project Thor Technical Report No. 47, 1961.



changing a; to a; and of course a; to a; . When this is done, T is
left free fq be associated with sec 6, and equality of a; and ay would
remind us of line-of- sight thickness. Usually a; and a4 d1ffer by about
25 percent so such an interpretation is not impossible
given for as is not ag + 0.67 as we might expect. Usual

y it is more
like a.,/3.
3
If we set VI in Equation (1) equal to zero and interpret VG as the
erforation limit speed V5, we have for the compact projectile
* *
- ) Y a a a
Ta iTa (-3 a (=3
m) > v, =0t @ seco)’. (3)
(o] ol b o
~ * , ~ 1 1 rzY A
If a, were (- .5) and ag were zero, then squaring Equation (3) and
multiplying by one-half would give
- * - -~
Z2a Za Za
o v2-Luoy ' m % (secoy ! @)
2 o ol 2 ' o :

(m V) = (10) ~ (1) © (sec0) ° (5)

estive of a threshold momentum. When ac is negative as for

d aluminum we obtain a threshold value for a variable Mg V
and physical reminders are difficult to find.

“B£
oQ

If we use Vo from Equation (4) in Equation (1) for a compact pro-

jectile with a3 = - ,5 and a5 = 0 we obtain

[
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considerations and presumably confirmed by numerous experiments. If we

put Equation (5) in Equation (1) for a compact projectile with a,” = .2

q o q p 3
and a. = .

5
*
a a a
vevo-10t @)t m tseceyt wyBav Bty
1 o] o o o} o o ol

which also contrasts with the hyperbolic relation. The latter of course
is derived for zero obliquity and constant striking mass. The Thor
attempt to include non-zero obliquity and mass erosion in a simplistic

formula can of course lead to such contrasts.

These relations are noted here to show that Equation (1) is not only
easy to use but can be reminiscent of some sort of physical behavior and
so aid in mentally organizing a mass of data, provided we take note of
such relations. If we do not, the formula can be as confusing as the
data itself

LaLd avSCai.

In Equation (2) b2 and by were always found to be positive. Positive
b, implies that a thicker target plate or larger plug will cause greater
mass loss which is reasonable. Positive bg implies that higher velocity
projectiles will suffer more erosion which is not in accord with experi-
ence for unbroken projectiles as we will see below. However, if one
looks only at the largest piece of a broken projectile, then positive
bg can describe experiment In most cases b3 is positive and not much

T ace b

1€S5 tnan unlty which suggests the not unreasonable form

mpo=m [1-f (V, 6, D] (8)

In the single case of titanium b,* = - .024. This is inconsistent with
with the other target materials used and could lead one to suspect the
data and/or the fitting procedure. The thought that titanium is somehow
different and that the Thor results are revealing a new phenomenon should
be resisted since we are dealing with an empirical formula not based on
any physical law.

For e1ght target materials b, was found to be positive which is
reasonable since greater mass 10<s is expected for a greater line-of-
sight thickness. For two target materials b, was found to be negative
with b, =-.172 for magnesium and by = - .361 for aluminum. This leads
to the surprlSlng prediction that a greater line-of-sight thickness due
to an increase in obliquity means less mass loss. In addition, it is
inconsistent with the other target materials used, although interestingly
enough the value found for ag for these same two materials was also

inconsistent with the other materials. Again we might suspect the data
and/or the fit. Indeed, at least for aluminum two obvious blunders can

12



be found which might help to account for the negative value of b,. In
experiments 256 and 257 the residual mass was reported to be three or
four times the striking mass., If a simple typographical blunder is not

responsible then possibly a failure to pick out the remains of the steel
projectile couid be the cause. For exampie, if a large piece from the
aluminum target were chosen instead of the projectile or if a piece of
the target adhering to the projectile were included in the weighing
procedure, perhaps an explanation could be found, This type of mistake

is commonly called a blunder to distinguish it from an experimental
error which can be reduced but not removed entirely. Again we should
resist the temptation of thinking that new properties of magnesium and
aluminum might be revealed and await discovery, reminding ourselves that
we are dealing with a purely empirical formula. An argument might be

made that target p1eces adherlng to the projectiie should be recorded as
the residual mass since this combination can inflict more damage behind
the target. If we accept this argument, then to be consistent we should
always record the masses of target pieces. This is desirable, but was

never done in the Thor collection.

If we try to verify an increase in residual mass with increasing
obliquity (negative by) in the Thor data sets for magnesium and aluminum
we quickly find that the data is too sparse and inaccurate to make a
judgment. If we hold three factors constant for magnesium, namely,

T = .75 inches, m, = 240 gralns and V, = 5,400 ft/sec, we find m; equal
to 195.7, 165.4 and 230.7 grains respectively for 6  equal to 0°, 60°
and 70°. It is difficult to believe that a 10° increase in obliquity
could lead to a forty percent increase in residual mass, and similar
behavior is not found elsewhere. Such data is usually labeled anomalous

and calls for a repetition of the experiment before 1nc1u51on into a

formula fit. If we keep T = 1 inch, m = 120 grains and V, = 5,000
ft/sec, we find my = 104.5 and 119.0 (average 111.75) grains at 65 = 0°,
m = 103.7 grains at 45° and 105.2 and 106.5 (average 105.85) gralns at

60°. Here we have more than one experiment in two cases at least and
the trend is not inconsistent with decreasing or even constant mj; as a
function of 8, in view of the experimental errors involved. Other dat
with T, m; and V, constant was not obtained. If we allow V, to vary a
bit we find for % = 1 inch and mg; = 240 grains that for 6, = 0° and

Vo = 4,649 ft/sec, m, = 214.7 grains; for 6, = 45° and V_ = 4,763 ft/sec,
m) = 202,2 grains; and for 6, = 60° and V, = 5 OOO fr/sec, m; = 185.0
grains, In addition we find for T = 2 inches and my = 240 grains that
for 6, = 0° and V, = 5,000 ft/sec, m = 213.3 and 219.0 (average 216.15)
grains while for 8, = 45° and V, = 5,500 ft/sec, m) = 174 7 and 190.7
(average 182.7) grains. Admittedly this information is complicated by
the fact that increasing Vo should also decrease m, but there is no
evidence to support an increase of m; with increasing 6,

The residual mass data for aluminum is even more sparse than for
magnesium and, as we have noted, contains some blunders. About the only

example close to what we want is for T = 0.5 inches and my = 240 grains
where we find that m; = 229.8 grains for 8, = 45° and V, = 2,662 ft/sec

p—
[F3]
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slight decr in V_ should

while m, = 222.1 grains for 6_ = 60° and = 2,638 ft/sec. Here the
ease t c m tin s

nite aof thig

SV i1y JWL 4l opdste UL LiIio
my decreases sllghtly as 8, increases. Of courée with experimental
errors in the order of 10 to 20 percent for m; and at least 10 percent
for Vo it is difficult to say anything about m; as a function of 6, from
this information.

What are we to make of a negative value for b4 or a. in the cases of
magnesium and aluminum? The fitting error was no worse for these
materials than for the other eight An explanation can be found for this

anomaly in the arbitrary functional form of the model in which a 51mp1e
product of variables is strung together and given adjustable exponents

3 ad +ha mancitea A A
fitted to a data set which is unevenly weighted over the measured ranges

and which contains large experimental errors and occasional blunders.

If a different mathematical form had been chosen to fit the same data
set, the result could well be a decrease in residual mass with increasing
obliquity. The same result might be obtained if the same mathematical
form were fitted to a different (more accurate, more evenly weighted)
data set. These observations serve to illustrate the recognized but
sometimes ignored fact that purely empirical models add nothing to our
fundamental understanding and can give erroneous predictions if they are

used for extrapolation.

+ha
LI

an

+
to an r da

a cat micsh+ o3y
ata <l L

t ( ) O mignt give a
negative value for ay, implying that V; would increase with increasing
obliquity, contrary to experience. Or, it might give a value of a;
greater than unity, implying a decrease in V, as V0 increases with the
absurd prediction of embedment or ricochet rather than perforation at
5uff1c1ently high Vj. This kind of possibility is not idle speculation
as is clear from a recently published extension of the Thor procedure to
tungsten fragments penetrating steel and aluminum targets® There it
was found that a fit of Equation (2) to the data for steel targets gave
a value of bz greater than unity, implying a decrease in residual mass
with increasing striking mass with complete disappearance of m for

1~ h Iint + 4+hs + 3 1
sufficiently large m,. Fortunately, the authors point out this particular

danger. Hopefully users of their formula will bear this in mind and
explicitly mention this behavior if they are bold enough to use this
formula for extrapolation. It is interesting to note in this report that
b, is positive for aluminum as well as for steel in contrast to the
nggative value found in the Thor case. This tends to confirm the obser-
vations made above on the nature of purely empirical formula fits to
particular data sets.

hv BRI but that o

A A ~ o e - 1. 2 e - —mmm e mr e -~ .- PR |
Thor Report No. 47 does t make it clear exact how the residu
that mo of
0o incl

0 no e
speed was measured, It merely states
t es al

“G. L. Holloway, M. B. Danish and J. A. Matts, "Penetration Relations

for Tungsten Alloy Fragments versus Selected Target Materials,'
ARBRL-TR-02087, 1978. (AD #0015203)
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Other Thor Renorts before and after No. 47 are also of little he It
is very 11ke1y that velocity screens were used, although depth of pene-
tration into a catcher material is also a possibility. In making such
measurements for oblique impacts it is common practice to cock the target
plate at the desired angle but to leave the velocity screens or witness

plates normal to the axis of the gun which is used to launch the pro-

jectiles. This is done not only because of space limitations or co
venience, but also because the deviation of the projectile from its
original flight path is not known ahead of time and would require addi-
tional experiments and equipment to determine if it could not be calcu-
lated. This practice can lead to errors in the reported magnitude of
the residual velocity since only one component of this velocity is being

measured. In cases where the obliquity is not large or the impact speed
is not greatly different from the exit speed, the neglect of an exit
velocity component perpendicular to the line of fire is not serious

since the deviation is small. However, for large obliquities and marg1na1

perforations this neglect can lead to serious errors. This practice is
illustrated in Figure 3 (p 40) of Thor Report No. 47 where the assumption
of normal impact on a second target is explicitly mentioned (last line of
n. 3R)

p. 38).

C. Intermediate Models

Intermediate models are harder to use and require more calculation,
but not enough to preclude a description of the main features of practical

G ] =

problems using a reasonable expenditure of time and money. They are

based on some type of physical law which is assumed to govern the motion
of the projectile through the target and usually they treat the projectile
as a point mass and contain other simplifying assumptions as well as
adjustable constants. They come under the general heading of particle
physics and as such can be called semi- emplrlcal or semi-theoretical.

Although they require more effort to use than elementary models, they
can be used with some confidence in tentative extrapolations beyond the
measured ranges of the variables. The degree of confidence we assign to

such extrap01at10ns will depend on the kind of physical laws that are
assumed to apply and the extent of the agreement between model predic-
tions and known facts. Ideally such models will predict at least
qualitatively correct behavior even for the extreme values permitted for

A simple example of this type of model is contained in a 1963 paper

by Recht and Ipson®. Using a result of Jameson and Williams® that
projectile and target plug residual speeds are practically the same,
these authors wrote an energy balance as follows:

5B, F. Recht and T. W. Ipson, "Ballistic Perforation Dynamics," Trans-
actions of the ASME, p. 384, 1963.

6R. L. Jameson and J. S. Williams, "Velocity Losses of Cylindrical Steel
Projectiles Perforating Mild Steel Plates,' BRL R 1019, 1957.
(AD #142447)
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tm

1 s
= 9
5 m (9)
where m_ is the plug mass, W is the work done in shearing out this plug
and E i5 the energy lost in other ways. The authors assume that E can

be equated to the energy transfer which might occur in a free collision

between m, and as if the rest of the target were not present. Since
momentum conservation in such a free collision is
m V =(m +m)V 10
N D Vi (10)
with the subscript f standing for free collision, we have
/ 2
1 2 o] 1 o] 1 /va\
< 1 Z 1 0o O
E=E.=>=mn VE°-vy ==m V - =m 1la
f 20 ( o lf) 2 o o 2 ol m o +m \ ( )
\'e P/
A\ /
or
E=21n v? p_\[_ o p) (11b)
2 o0 o \Hl + m }\ m +m }
o) I 0 I
\ VAR /

We have put Equation (1la) into the equivalent form (11b) in order to
point out that the authors implicitly assumed in their paper that the
factor (2 my + my)/(my + m_) can be set equal to unity when they wrote
their Equation (2). Of colirse this requires my to be zero to be strictly

correct or at least Mg << to be approx1mate1y true. In case m, = my,
(a not unreal situation in some case s), this factor is equal to 1.5 )
(not too far from unity) and it approaches 2 if m, >> mp. We will not
make this approximation here and will note the consequences.

At the perforation limit, V1 = 0and V_ = V_,. In this case a

combination of Equation (lla)

and Equatlonu(g) g%ves us

(12)

ST

............ f

approximation,
constant,

n
O
1
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Now if we put Equations (1la) and (12) in Equation (9) and solve
for Vi, we obtain

]
hat
~
P
(9]
ot

which is the authors' Equation (5) except for the 3/2 power of the mass
ratio instead of their first power. This is interesting because
Equation (13) above is exactly the authors' Equation (14) which they
obtained by postulating an extra factor of
/ \N1/2
m
o
m_ o+ m_
N/
to account for perforation of thick plates. If my << my; in Equation
(13), then we have the simple hyperbolic relation mentioned in the
previous subsection.

Another tradition exists in this category of models which analyze
the partlcle dynamics of penetration. It consists of assuming a force
field in which the projectile moves while it is in the target, solving
Newton's second law, and comparing with experiment. Newton himself
apparently followed this procedure in his theory of gravitation. A
learning exercise used in some physics texts asks the student to assi
various forms for a gravitational force field, a simple one being

C (m ) 1 (m ) 2/(r) 3, where the notation is obvious. Then the student

is required to fit the adjustable constants (, er's
data and to give values for these constants as well as their average
error, for example, az = 2 % .002. Explanae'o s for this error in
addition to experimental uncertainties are then elicited, for example,
perturbations by the other planets, and so forth. This method is so
powerful that Newton's contemporaries, Robins and Euler, soon applied it
to projectile penetration of dense media’. They assumed a constant force
field opposing the motion and for constant projectile mass and zero

obliquity their equation

r avmAd A VAan
L, a7, ap ana asz to Keple

m, dv/dt = - a (14)

lization of Equation (14) to include a

7. Johnson, Impact Strength of Materials, N.Y.: Crane, Russak, 1972,
ee. 9-10. '

fu—
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modv/dt = - (a+bv+e v?) (15)

where a, b and c are constants. This equation with b = 0 is usually
attributed to Poncelet (c.1830), while the same equation with a = 0 is
generally associated with Resal (c. 1895). Of course Equation (15) is
also easily solved®
Robertson's 1943 report? is an example of a paper which solves

Equation (15) with b = 0. This author factors the constant a into Aa'
where A is the ''area of impression' of the projectile and a' is called
a ”shatter coefficient". He also allows A to be a function of the depth

penetratlon but he proposes no explicit form for A_except in the
case of a cylinder when A is taken to be a constant nR* for a non-deform-
ing cylinder of radius R. He also lets C A(1/2 Y pt) where Py is the
den

citvy nf tha targat +arial and «~ 3o A

1 A~ ~ P

dimensionless constant which
he calls the "inertial coefficient'". He then uses the relation dv/dt

io .

and T

aensity O Nl 1arget maieriai ana y is a

v dv/d, where z is the depth of penetration to integrate Equation (15)
once using limits V, and vy for v and 0 T for z, obtaining
—cT/mO 2 1/2
Vl - € (vo B voﬁ) (16)
- -
< Cl
2 /m

where V_ " = (a/c) (e

o - 1). Here 2 cT = v Pe AT-=y mp where mp

is the plug mass and 1/2 pt (a/c) = (a'/y). The ratio (a/c) has the
dimensions of a velocity squared while (a'/y) has the dimensions of a
stress. Here the same type of hyperbolic form as above has been obtained
directly from Newton's law with an analytical rather than an empirical
form for Lhc limit speed. Of course this form contains the adjustable
constants a' and v.

Lambert and coworkers!? suggest a generalization of Equations (13)
and (16) to include obliquity and rod length, namely,

8W. Grdbmer and N. Hofreiter, "Integraltafel. Erster Teil. Unbestimmte
Integrale”.

8H. P. Robertson, "The Mechanics of Armor Perforation,” NDRC, Armor and
Ordnance Report No. A-227 (OSRD No. 2043), 1943.

107, P. Lambert and G. H. Jonas, "Towards Standardization in Terminal
Ballisties Testing: Veloeilty Representation,'" BRL Report 1852, 1976;
J. P. Lambert and B. E. Ringers, "Standardization of Terminal Ballistics
Testing, Data Storage and Retrieval," ARBRL-TR-02066, 1978; and J. P.

n
Lambert, "The Terminal Ballistics of Certain 65 Gram Long Rod Penetra-

tors Impacting Steel Armor Plates,'" ARBRL-TR-02072, 1978.
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m i/p
G—T(T,Wr?)( -V P) . (17)

The constant p is 2 plus an empirical factor which depends on rod diameter,
obliquity and target thickness. V, . is an empirical factor related to

these quantities as well as to the rod mass and length. The mass m'

bears a strong resemblance to the plug mass, . If the exponential

factor in Equation (16) is expanded in powers of (m,/m,), neglecting

powers higher than the first, it becomes 1 - (y/2) /m ). 1If the

mass ratio in Equation (17) is similarly expanded we ave 1 - 1/3 (m'/mg)

where m' = Py (vR ) T (sec 8,) 3/4 with R the rod radius. If sec 6, had
been chosen to the first power we would have a line-of-sight thlckness
and m' roughly equal to A choice of vy = 2/3 would complete the first
order equivalence of m' :gd A similar expansion of the mass ratio
in Equation (13) gives 1 - 3mg (mp/mg) .

Tank? hae

Zook“ has con ion by app1v1ng the solution of Equa-

s tradit

tion (15) to that portlon of the Thor data which was obtained for zero
obliquity. This was a wise restriction because, as we shall see below in
the body of the present paper, Equation (15) is only applicable to the
case of zero obliquity. Like Robertson, Zook factors the constant a in
Equation (15) and writes a = C; A H, where A is the cross- ~sectional area
of the projectile and Hy is the Brinell hardness of the target material.
Similarly, he writes ¢ = C3z A py so that his C3 is half of Robertson's
"inertial coefficient", y. Unlike Robertson hé retains the constant b

ad
[

and proposes the formb = C, A /H p“ However, he made no attempt to

justify this geometric mean type of form, nor to justify the use of a
hardness coefficient of any type much less the Brinell hardness which is,
of course, only one of the many such parameters which appear in the
literature. Consequently, a, b and c remain adjustable or empirical
constants in an analytical theory.

Backman and Finnegan!! modified Equation (15) to be
2 2
m dv/dt = - A (a1 + ¢, cos Y v) (18)
where ¥ is the angle between the projectile's current line-of- flight

(tangentto the traJectory) and the current normal to the spherical
surface which is in contact with the deforming target. In order to

11y, E, Backman and Finnegan, "Dynamics of the Oblique Impact and
Ricochet of Non Deforming Spheres Against Thin Plates,'" NWC TP 5844,
1976.
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determine the projectile motion for oblique impacts they also postulate
the following rule. The force opposing the motion is directed through
the center of the sphere and lies antiparallel to the current contact
surface normal mentioned above. Given this postulate, one can then
resolve this force into a resistive component antiparallel to the current
line of flight and a 1ift component perpendicular to this line. Torques
tending to rotate the sphere are neglected and the change in speed, Av,
is calculated for time step, At, from the resistive force component,
while the change in direction is calculated from the 1lift component.

Next, the change of position during the following time interval is cal-
culated using the values of the speed and curvature. Finally, a critical
penetration depth, P*, for plate failure is assumed, beyond which depth
part of the resistive force component is assumed to vanish over a portion
of the contact surface specified by an assumed angle a*. Thus, the model
contains four adjustable constants, ay, Cq, P* and a* which are determined
from data obtained at zero ob11qu1ty The constants a, and ¢y were found
by a best fit to Equation (13) above using the Recht- Ipson _power of unity.
The constants P* and a* were chosen to match observation of crater for-
mation at zero obliquity. Additional postulates about a kind of virtual
origin for the sphere at the beginning of its motion alsc enabled the
authors to calculate crater shapes for ricochet and embedment from the
projection of one side of the tube which is swept out by the sphere along
its trajectory. Since A is a point at the moment of impact with zero
force pointing along the normal to the target face, an initial depth of
penetration must be assumed in order to begin the calculation. In
addition, the outcome will depend somewhat on the size of the time steps
which are chosen and very definitely on the spherical cap which is

taken to be the contact surface at any instant.

An advantage of this model is its ability to predict exit angles as
well as exit speeds for oblique impacts. In addition to perforation

phenomena, r1cochet and embedment phenomena are also treated, something
which is rarely if ever done by other models in this category. An
unsatisfactory feature of this model is the somewhat arbitrary nature of
the rules which have been selected for calculating force components and
crater shapes. Still, it appears to be the most advanced example of its
kind in the particle mechanics tradition of penetrator models. In using
a numerical time and space step method for calculating the projectile
trajectory, this model resembles some of the _computer code techniques

£3 A + k3~ £ A+
"°u011y reserved for S“lVlng the field qd&L 10ns WNicn areé reierrea ito

in the next subsection.

D. Advanced Models

Even Newton's law of gravitation has been superceded by tensor field
equations which predict the existence of gravitational waves and are
currently being used in "black hole" theories designed to explain certain
astrophysical observations!?, Similarly, a large number of investigators

120, L. Smarr and W. H. Press, "Our Elastic Spacetime: Black Holes and
Gravitational Waves," American Scientist 66(1) Jan-Feb 1978, p. 72.
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have abandoned particle physics descriptions and turned to solutions of
the field equations of continuum mechanics in an effort to model the

penetratlon process;1 A summary of such efforts can be found in a paper

by Jonas and Zukas‘“ who also review a number of particle models. We
211 Anmtanmtd Atcmoalaracs hama wrldh A Lar; Atiatnds Aanme Lfonam +ha2o paper:
W1lll CUIILCIIL DUIDSCIVCD JICITC Willl a 1CwW \{u Ltativlls 11vum Licilil paper

"Computer codes are invaluable for obtaining a qualitative
picture of penetrator and target deformation. They provide
details not normally obtainable from ballistic experiments.
Yet, it is not unfair to state that, on the whole, they have
not improved our understanding of penetration phenomenology,
except possibly in the hypervelocity regime."

....the present state-of-the-art in computations is bes
summarized by a paraphrase of Richard's Law, to wit: 'One
good guess is worth a thousand computer runs' .

"Aside from the above considerations, codes in their present
form cannot be relied upon for quantitative data (except by
accident) in the ordnance velocity regime.’

"It is necessary to add here that despite these limitations,
code results for deformation fields often bear reasonable

"
resemblance to those found experimentally.

"Refinements in theory will be to little avail however until
characterization of materials at the strain rates appropriate
to ballistic impact conditions (up to 10° s “4) is achleved
for errors in input will outweigh any gains in modeling.

"The last and most difficult hurdle to overcome will be
determination of reliable and conm putatlonally suitable models
for the onset of fracture and the characterization of failed
material.”

"The use of such codes is neither straightforwagd nor in-
expensive. A typical code will output about 10’ words or
information and cost upwards

sl +* 3 en

led for. In no way can present codes

USA BRL. invit

J. A. Zukas, "Armor Ppno+ra+zon Theory and Exvertment

Enqzneerznq Sctence, Lehzgh University, PA, 1977, Also publzshed as
UMechanics of Penetration: Analysis and Experiment,"” Int. J. Eng. Sct.
16, 879, 1978,

[y
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Although Newton's gravitational law has been superceded for some
purposes it is still extremely useful for most terrestial and solar
system phenomena. Similarly, while continuum models may be useful for
some purposes and may eventually become routine, our present requirements
for further fundamental understanding as well as our needs for relatively
least the main features of practical problems prompt us to investigate
further the possibility of constructing a better particle model. The
purpose of the present paper is to construct such a model so we can
describe the penetration process in a simple yet rational manner. This
should have the double effect of increasing our understanding and provid-
ing a useful tool for making predictions.

22



IT. LIMITATIONS OF A SPEED-DEPENDENT FORCE FIELD

Even the most general force field usually considered (Equation (15)
above) is severely limited. We can note this by writing it in vector form

as follows:

F=- (a+bv+c vz) v = - (%-+ b+cv)V (19)

A > . . . . . .
where v = v/v is a unit vector in the current direction of the velocity
> . . > . . .

v which has magnitude v. If r is a position vector from the coordinate

origin to the center of mass of the projectile, then in Cartesian

. > A I n P .
coordinates r = x i + y j + z k where i, j and k are constant unit vec-
é : i X 22 52 + ;2\1/2

. A
= =v1+V1+:7_l(w1th\'r=(x + YV

= i = A~ a J J N

<y

tors and of course

Here the Newtonian dot convention for time derivative is being used. In
most discussions of this force field in the past, the fact that F is

being taken antiparallel to V is mentioned at least implicitly by the
statement that only zero (or normal) obliquity is being considered.
Attempts are then sometimes made to ''patch up" the result in order to
make application to impacts at non-zero obliquity. These attempts are,

of course, in vain since a direct consequence of I3 being anti parallel

to V at the beginning of the motion is that the motion is necessarily
rectilinear. This is immediately obvious because, if there is no force

. > > . .
component perpendicular to v = vy at time zero, there never will be such

a force component and the projectile must continue to move along its
original straight-line path. In short, curvilinear motion is impossible
in such a force field. Since curvilinear motion, including extreme
cases such as ricochet, is observed experimentally, then a different

force field must be used if we hope to describe the projectile motion.

This observation about rectilinear motion can also be demonstrated
by solving Newton's second law for a constant mass particle with Equation
(19) as the force. We may write

d a >
m o—+ (=+b+cv)] v=0 20
where for convenience we have factored the equation into an operator

(in brackets) and an operand, V. If we take the scalar or dot product

of this equation with v, using ¥V . v = v, we obtain the usual separable
scalar equation

dv

2
ot (a+bv+cv)=20. (21)
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As noted above in the introduction, the solution can be looked up in
standard integral tables. If our interest is in obtaining v = v(s) where

s is the displacement or distance traveled along the trajectory, we can
use the relation dv/dt = v dv/ds, since v = ds/dt. As we have seen,
Robertson has done this for the special case b = 0, while Zook has done
it for the general case. Our interest here is in obtaining v = v(t)
instead. If we define the discriminant

q =4 ac - b2 (22)
then for q < 0,

v = 5%—(h* - AhT e Bha - A By (23)
where h™ = - b + /54, A = (2 ¢ v, - h")/(2 ¢ v - h7) and B = /=a/m,
using the initial conditions v = Vg» S = 0 at t = 0, with

m -Bt +
_ (O 1 -Ae h
s = ( <) An ) ¢ Ga) t - (24)

Alternative solutions for this case which involve hyperbolic tangents
will not be considered here because of the physical requirement that v
decrease with increasing time.

—

Forq=0,a+bv+cv2=c(V+v)2wherev=‘l%=§?c—,so
v vy Tty Syt oy (25)
o m,
and
T c
s = (7?0 en [1 + (;E?(V + vo) t] - Vt. (26)
For q > 0,
v = [/q tan (C - Dt) - b]/(2¢) (27)
s = [2 m, 2n {cos (C - Dt)/cos (C)} - b t]}/(2c) (28)

where C = arc tan [(2c v + b)/¥/q] and D = Vq/(2 m). Our main interest
here is to note from Equations (23), (25) and (27) that v = v(t) can be
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found explicitly.

If we write Equation (20) in Cartesian component form we have, for
example,

d a .

[m0 Fra (V-+ b+cv)] x=0 (29)
with similar equations for the other two components, that 1s, with the
same operator multiplying y or Z. Each of these equations is separable
and we obtain, using Equation (15) or (21),

dx _dy _ dz 1 ,a dv PN
——.—=—'2;,—=——,=-:_— :+b+CV)dt= . (30)
X y z m V \Y
By integrating once, we have
X oy ..z . 1 _ v
2o L= ew [ O] 5y (31)
0Xx oy oz 0 c
't . .
where f(t) = - | (§-+ b + ¢ v) dt. This completes our demonstration,
olv
since Equation (31) says that the velocity components %, y and z at any
time t are always in the ratio that they were jnitially when the com-
ponents were V .. voy and Voz® In other words, the motion is rectilinear

. A . . > .. .
jle will continue along the line of v_. This implies

that s = r, the posit t only one Cartesian axis is
needed to describe th e coordinate rotation will make
h

M L
any one component serve as well as another.

Since v is known explicitly as a function of time we cam also find
f(t) explicitly as a function of time. This can be done with integral
tables or more simply by using Equations (23), (25) or (27) in Equation
(31). If we integrate Equation (31), using initial conditions
z=y=2=8=TF*% 0 at t = 0, we have

X z s T

=—y——=————=_-—-=_-— (32)
v v v \ v
ox oy oz 0 o

where s is given by Equations (24), (26) or (28).
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While it is certainly possible to obtain explicit solutions for
v(t) and s(t) when we use the force field of Equation (15), we have no
real interest in doing so because we know that this field cannot describe
the curved trajectories of real projectiles, except in the limiting cases
of very thin target Plates or very high velocity projectiles when the
motion is in fact approximately rectilinear.

B

erore proceeding it is interesting to note that Equations (27) and
(28) reduce to Robertson's case described in the previous section for
b=20,q=4ac>0 (@ >0, ¢c>0). In particular they become
ol e |
v =¢/< tan Itan— {v ‘IE-\ - Yac t/m (33)
Yc \oVa/ o‘
and
r { 1 1 _
s = (m_ /c) ¢n Lcos 3tan_ (v ‘ﬁg)— vac t/m F /cos ;tan" (v ‘ki)gl.
[} oVa o . o ¥a,
7 { M )J
(34)
At the perforation Iimit Vo ¥ Vg’ W€ require v = 0 when s = T, the target
thickness. From Equation (33) we find that this occurs at t, = (mo//525
-1 . . .
tan (v02 vc/a). If we use this value of t in Equation (34) and 1let
s =T, we find

. ( 7/ -cT/m
Vg = va/c tan {cos

(

which vanishes as T > 0 or mo * = and increases without limit as T + o
or m_ - 0. Since

s

5 -1 —cT/mo 1 i 2cT/mo
tan” <os e = -1=c¢ -1
(4 )

( c
* cos? Jcos_1 {e

then Equation (35) is obviously the same as Robertson's Vog» given
above after Equation (16). When perforation occurs for v > vV, ,» then
t = tl, VvV = v, and s = T. From Equation (34) we can find t1 or the

argument of the cosine involving t, and use this in Equation (33) to
- 1

obtain
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which is Robertson's result in Equation (16) above. In Equation (37) we

. N . . . 2
have used Equation (36) and the identity sec” x =1 + tan X.

Even for rectilinear motion during zero obliquity impacts the force
2

[-(@a+bv+rcy )] might not describe all the observed phenomena
in a natural way. If a > 0, then there is still a force F = - a acting
to reverse the motion when V vanishes in a thick enough target. Thus
ricochet can be described since the rebound conditions, VvV < 0, v=20,
0<s<Tfort<w, and the ricochet conditions, Vv < 0, s= 0, t < « can
be met. However, embedﬁe 't cannot be described since embedment requires
F>0asv->0,0<s<Tast>® and by assumption F > - a as v =~ 0.
If a = O because a = a( ) vanishes, then embedment can be described.

However, embedment will occur only for a particular v  or V 's (depending

)
on the functional form of a(v ) ) instead of over a ¢ inuous range of

i 1aligt

v as observed, We could deflne a(v ) to be zero over a continuous

range of v, but this seems somewhat art1f1c1a1. If a = - a' < 0, then

7 s - 1 - -
F=a'-bv-cvVv and again embedment cannot be described. Neither
can ricochet be described since F turns positive in finite time as v > 0
and the mass accelerates before reaching a turning point (v = 0) an

unphysical behavior which is not observed. A perforatlon/embedment limit
requires F~+ 0, v~ 0, s>Tas t~>~ and can be described only if a = 0,
m 7 h cT/m

- = f I DA
VO.Q.') or VOQ =2 (e 1). no

Ei
[
ot
(¢]
[ealg)

27



case (b = 0) then implies v_, = 0 which agrees with Equation (35) for

0
X

a = 0. Since finite values for Vv, are observed, then Robertson's case

should not be used. A ricochet/embedment limit requires F > 0, v > 0,

s > 0 as t > » and cannot be described since the requirement a > 0 pre-

vents F > 0. If we define a(vo) to be zero for all v, < Vop? then we
eliminate all possibility of ricochet and have only two regions, embed-
ment for 0 < vy < v . and perforation for v. > v ¢ Ricochet or rebound
o) o o)
after penetration for low speed, zero obliquity impact has not been well
explored experimentally, but seems possible.
2

In summary the force F = [-(a + b v + ¢ v7)] can describe only

rectilinear motion and so is limited to zero obliquity impacts. A

perforation can always be described for thin enough targets, and ricochet
can be described if a > 0, embedment over a continuous range of v, can
only be described by defining a(v,) to be zero over this range.
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ITI. FORCES DEPENDENT ON DEPTH OF PENETRATION AS WELL AS SPEED

As we have seen, the constant a in Equation (15) has been modified
to be proportional to some type of projectile area multiplied by a
"shatter" or "hardness'" coefficient. The area dependence is reasonable.
In addition there is a more physical interpretation for the constant
coefficient of proportionality. Johnson’ points ous, the usefulness of
dividing impact regimes according to the ratio (p v~/o) which is approx-
imately equal to twice the crater volume for simple cases. Here © is
the mean flow stress and p the density. This suggests adopting the
form

a=a. 0A (38)

so that Recht and Ipson's W = fT a, o Ads = a, o A T, which is constant
o

if T and A are constant. They argue from machining studies that T is a

constant, while A is a constant at least for a non-deforming blunt
cylinder hitting end-on at zero obliquity. For most metals, except soft
ones like tin and lead, their plastic shear strength is not very depen-
dent on shearing speed!“, so 0 constant is a good approximation.

However, for many projectiles A depends somewhat on depth of pene-
tration, although a constant average presented area like that in Equa-
tion (38) may be quite adequate to represent the shearing force. For a
sphere with radius R, the cross-sectional area at the original target

plate impact plane is n[R2 - (R - 5)2] =7w[2 Rs - 52] where s is the

. . 2 .
depth of penetration. This becomes a constant = R for s 2 R which
applies for the rest of its motion through a thick target. For a thin
target it may be more appropriate to use an average value proportional

to R2 for A in Equation (38). For a cylinder with a conical nose the

. . . . 2 2 .
cross-sectional area at the impact plane is 7 tan” ¢ s where ¢ 1S the2
constant half-angle of the cone vertex. This becomes the constant 7 R
when the cylindrical portion of the projectile (of radius R) enters the

target.

In addition to shearing forces there are also frictional forces
which depend on the contact area between projectile and target and which
may be given the simple form

F._ =

) 3
£ P A (39)

l4p, . Bridgman, Studies in Large Plastic Flow and Fracture, N.Y.,
MeGraw Hill, 1952, p. 284.
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where ug is a constant coefficient of sliding friction and P is the
pressure. In order to write this simple form we must assume that the
stress 1s isotropic as for a fiuid, an approximation which should improve
with higher speeds. If we retain all components of the general stress
tensor we will obtain a much more complicated form which is probably

not necessary for our purpose. Here we will take P to have a constant
average value dllT“an the motion. However, we will take into account the

...... v il ATV L LU AL uUuiie v

variation of Ac w1th depth of penetration s. For a sphere the area of

e ™ 1 . 1 1 ~ r\2 ~ ~, - —
the contact surface is 2 m R s, which becomes 2 n R for s > R. Tor a

conical nose at zero obliquity the contact area is n R (R2 + 52)1/2

where R is the radius of the cone base as well as the radius of the

cylindrical body. When the body of this projectile enters

the target the nose contact area becomes the constant = R (R2 + hz)l/2

where h is the cone height and an additional cylindrical area2 m R s of
the body comes into contact with the target. In general A might be

— 2 _
reasonably represented by the form A = Al + C1 s + C, s with Al’ ¢, and
C2 constant and usually with C2 < C1

For oblique impact and for irregular projectile shapes like those
coming from naturally fragmenting warheads or armor spall and debris,

the areas important for shear and friction forces will be more compll-
cated, although a quadratic form in s is probably still adequate for an
average contact area. Projectile deformation will increase the contact
area as s increases. Tumbling and yawed impact present additional
problems while projectile erosion further complicatcs matters. FErosion

will be considered in a later section of this report.

iles we will adopt a force field which
n

in a simple way namely - (ao + d1 s + d2

, where a_, d, and d, are constants. This form is suggested by the

shear stress, friction and deformation considerations given above. It
seems to be a reasonable way to represent the 'plug shear', ''penetration"
and "deformation' processes described by Recht and Ipson in their 1974
paper!5. The "bulging or dishing" response of a thin target plate also
depends on how far the projectile tip has progressed beyond the original
impact plane. An initial elastic response dependent on the first power
of s is expected, followed rapidly by an inelastic response dependent

on higher powers of s, much as in the form we have chosen. However, the
"breeching or peLdliug mode of plate failure described by these authors
is not expected to depend on depth of penetratlon Instead it seems to
be dpnpndpnf on speed and will be included in the speed-denendent nart

G cLo aill 444 411 A RRCCG TrLTUuc G pPai o

of our force fleld. It is of more importance for thin plates and high

Y5R. F. Recht and T. W. Ipson, "Ballistic Penetration Resistance and Tts

1 .
Measurement, " Proceedings of the First International Symposium on

Ballistics, Orlando, FZorwda, 1974.
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op}%qu%ties since therplugging mode of failure is more common near zero
ob11qu1ty For example thin aluminum plates fail by petaling when

60 > 30° while thin steel plate failure has been described as "h1ng1ng"11.

of radius R Stokes' force is 6nRuv where u is "the coefficient of
viscosity. Thus the constant b in Equation (15) can be given a simple
physical interpretation. The viscosity of solids is a well-known
physical concept1® and for common metals it has been measured at high
speeds"

3
]
=]
]
—
e

Thls could 1nc1ude such non- 11near processes as conversion of kinetic
energy into heat energy (or even radiant electromagnetic and mechanical
energy). For example, Johnson’ estimates the temperature rise in a
penetration to be v‘/(2 C, J) where J is Joule's mechanical equivalent
ca

of heat. Using C_ = 0.1 1/ (gm-deg) for the specific heat of steel or

s from the target such as the pl eared
out at low obliquity, the peta11ng or hinging mentioned above and the
energy used in accelerating ejecta from the impact side of a target
plate as well as assorted bits of spall and other debris emerging from
the rear. This is the usual inertial reaction interpretation.

(IQ
wn
=

Our complete force field is then of the m

~a
UL

[\]

F=-[a +b v+b, Ve o+ d; s +d, s7]. (40)

Admittedly this is an oversimplification which contains for example no
cross product terms in s and v and no explicit functions of pressure,

temperature time or other factors which might be inciuded. However,
we have given simple physical interpretations for the coefficients
1oE, A. EBvans, "Viscosity of Solids,'" in American Institute of Physics

Handbook, N.Y., MeGraw-Hill, 1957, c. 2h.

175, K. Godunov, A. A. Deribas and V. I. Mali, "Influence of Material
Viscosity on the Jet Formation Process During Collisions of Metal
Plates," Fiz. Goreniya it Vzryva 11 (1) 3, 1975, and V. I. Mali, V. V.
Pai and A. I. Skovpin, “Investigation of the Breakdown of Flat Jets, '

0 (1

Ibid., 10 ( 776

.
]
5}, 775, 1874.
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a_, bl’ b2, d1 and d2 which should eventually enable us to estimate their

values from experimental data obtained in studies other than penetration
studies. If we can use such values and successfully predict the outcome
of penetration experiments, then we have gained some fundamental insight
into the penetration process, since these coefficients will no longer

be purely empirical constants. If we cannot do this, we will have to

be content with calling them empirical constants. Still, if we can
adjust them to known data and successfully predict the unknown, we will
in any case have a relatively simple method for solving practical
problems without a large expenditure of time and money.

A more general form than Equation (40) which includes higher powers
of s and v as well as cross product terms was attributed to Thompson!®
by Murff and Coylelg, although in practice they used Equation (40) with
b2 = d2 = 0 and found it adequate to describe embedment in semi-infinite

soil targets. Their suggestion of an infinite series of terms (sn vm)
did not include suggestions for physically interpreting these terms and
so would reduce the coefficients of these terms to empirical constants.

181, G. Thompson, et al., "The Effect of Soil Parameters on Earth Pene-
tration of Projectiles," Technical Report to Sandia Laboratories,
Texas A&M Research Foundation, July 1969.

197, D. Murff and H. M. Coyle, "Prediction Meihod for Projectile Penctra-
tion," J. Soil Mech. Foundations Division, Proc. ASCE 99, 1033, 1973.
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IV. SPECIAL AND GENERAL SOLUTIONS DESCRIBING THE MOTION

As we have seen in Section II, Equation (15) as it stands permits
only rectilinear motion. However, we can write it in a component form
which will permit curvilinear motion, provided we require the coefficients
in our force field to be anisotropic. This is a reasonable thing to do
in any case even for a semi-infinite target since the forces parallel
and perpendicular to the impact surface at the point of impact must be
different. Thus, even for small obliquities the trajectory will be
curved. This is because the impact surface is an interface between
materials of different properties, commonly metal and air in cases of
Army interest. If the impact surface is planar and effectively of
infinite extent but the target thickness T is finite, this will have a
strong anisotropic influence too. The message that a projectile has
struck the front face of a target plate is rapidly transmitted by shock
wave to the rear surface where transmission and reflection occur. Be-
cause of this the resistance offered by the plate perpendicular to the

surface plane is different from that parallel to this plane. In the

cenpard A A - N aatrian (AN Nowtan'e law hecomeg
W Decomes

~1 Jh - 3
SpcLiail case wnere ul - u2 = U 1in Equat.;uxl LTV ), 1IWWilvn S i G

1]
o]
~
=
—
~

. . .2
mo X+ aox * blx x ¥ b2x (x)

and

I}
o

. o « 2
moz+a, + blz z + b22 (z) 42)

where the y-component is ignorable because of the symmetry of an

oblique impact on a plate of thickness z = T. If we allowed a . = a2

b. =b. and b, = b. we would be right back to Equation (15) with its
1x 1z 2x 22

rectilinear motion and other limitations. Now, however, we can find
explicit solutions for x(t) and z(t) which have the same form as Equa-
tions (24), (26) and (28) but which are not in the same ratio for all

time since a F¥a , b #* b and b # b, . Thus curvilinear motion
ox 0z 1x 1z 2X 2z

can be described. However, both ricochet and embedment cannot be
described without artificial definitions for a . We can describe

either perforation and ricochet or perforation and embedment but not
perforation, ricochet and embedment, all three as a continuous function
of v, for given obliquity.

Now consider the special case in which b2 d, = 0 in Equation (40),

leading to 2
m, X *ag. + b1x X + dlx x =0 (43)
and
m 2z + a + b z +d z =0 (44)
(o] 0z 1z 1z



for a plate target. Not only is curvilinear motion possible because of
the anisotropy of the force field coefficients, but ricochet, embedment
and perforation can all be described as a single function of V- The

solutions for each Equation (43) and (44) are well known since we
recognize this differential equation form as that of the damped harmonic
oscillator with constant imposed force a e This force we have already

interpreted as that needed to remove enough material from the target to
make way for the passage of the projectile. If s now represents either
x or z (or y also in the general case), we can write the solution for
each component as the superposition

w
n
>
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+
ve)
(¢]
+
Pel
-~
FEN
w
R

whe;e GS =—aos/dls, Yoo oT - + BS, a = bls/(z mo) and BS =

(as - dls/mo) 1/2. If we take the time derivatives of the component

displacements and impose the initial conditions x = z = 0, X = Vox and

zZ =V , at t = 0, we have
v
- 1 - S N + Y. t
s = 285 <v0S + 6S Y l)e - <VOS + ds Yo ) o S + 55 (46)
and
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for each component. The usual cases for real, zero and imaginary BS

will be studied in the next section. For thc moment we will merely
point out that ricochet, embedment and perforation can all be described
as a single function of vy

As we have seen, part of the constant a_o consists of the term

a5 E‘K; which should depend on the target thickness since a thicker
target requires a greater force to shear out more material. However,
this increase does not continue indefinitely and for semi-infinite
targets the influence of the rear surface interface is never felt so
the force is T-independent. Such behavior can be represented by using
components of the line-of-sight thickness L = T/cos 80, namely,
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Lx = L sin 80 = T tan 60 and Lz = cos eo = T in a form like a25 o] AS =

L
“3s s .
(1 -e ), (s = x, z). Thus for thin targets

[

(1 (a, /a,.)

\L'S) \ 1sl 351

f(LS) ~ A Ls while for semi-infinite targets (LS > ), f(LS) > (als/aSS)'

Another part of a__ is the friction force which can be taken as a
h t

constant (on the Sverage) proportional to the impa ed wit
“1s

He PA Vv = v . Thus we can write a v =~ a 1
S cs oS 0s 0s s Vos T %1s s
* S5 Vos for thin targets. For any target we can write the z-component
of the force as

t Spe a wWiin
= f(L )Y+ c
= 1 u

AN SJ

Fz s [f(Lz) * Clz Voz * blz z dlz z] (48)

which is not zero at t = 0. In addition, the influence of target thick-

L ~n ogovarning the mntlon This

ness = T has been included in the force governing

form also enables us to require the force to vanlsh as t > « for any

case of embedment, including the two limiting cases, the ricochet/embed-

ment limit and the perforat1on/embedment limit. At the ricochet limit

When v = V pi) s = 2 =0 as t > » and Equation (48) becomes

0= - [f(T) + i VozRL] (49)

while at the perforation 1imit (when Vo T VOPL) 7 = 0, z =T, and

T) + C v + d]. T]. (50)

These equations may be solved simultaneously to obtain £(T) = dlirvozRL/
nd c. =-4d._ T/(v - ,) so that £(T) and ¢y

nrt

( -V ) an
WozPL ~ YozRL’ Y1z "1z ozPL ~ YozRL
both depend on dlz' The constant term in Equation (45) then becomes

§ = -a /d._ = - [f(T) +c d
Yz oz’ 1z [£(T) 1z z]/ 1z
(51)
m™
= 1 3 v \/{\_I . -V
Woz 7 YozRL’' *To0zPL OZKL)
which is negative for v__ <V . Since the physical requirement of
. oz ozRL
finite s and s requires
- + Feay
Yo <Y < 0 (52)
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eventually to be negative in the ricochet regime. When z returns to
zero, the problem ceases and the exit velocity component z will be
negative. At the ricochet limit 62 =0and z » 0, z > 0 as t » », For
v < < T>38 >0 1 bed 3 <
vOzRL VOZ VozPL’ I oz 0 and embedment occurs since Zmax T.
For v__ > > a e & .

oz > VozPL’ 62 T, and perforation occurs

If we substitute [f(T) + ¢,, v 1=-4d §_ in Equation (48), we

(e

have
F_=-1b z +d z -8 53
. (b, 12 ( )] (53)
where 62 is seen to play the role of the eventual value of z as t be-

comes arbitrarily large and F_ > 0, z -~ 0. Because of this & will be
called a final position paraméter. z

Similarly, for the x-component

l‘X - lr“JX) ¥ Clx Vox ¥ blx X+ dlx x]. (54)

We also require FX-+ 0, x > 0 at the ricochet limit, so

0= - LY * e Voxre * d1x *pi) (55)
and

0= - [f(L Y 4 v + d x. 1 (56)

- LEAR T Cix VoxpL 1x “PL’ Lo
at the perforation limit where x also vanishes. The limiting values

XRL and Xpp are not usually known. From these relations we find

J=_(1 { - X v
f(Lx) “1x ‘XRL voxPL “PL “oxRL

and

|8163

} - 7 3
“oxPL “oxRL’

Cix = dlx (XPL - xRL)/(vOXPL - VoxRL) which may be substituted into
Equation (54) to obtain
Px = - [blx X + dlx (x - 6x)] (57)
where
S = 7 L VoxrL T RL VoxpL ~ pL 7 Xri) Vox)/ (oxpL T Voxgl)  (58)

plays a role similar to 62. Of course 62 in Equation (51) can be cal-
culated from experimental data for a given eo to within the accuracy

possible for these types of limit measurements. However, the limit
values in Equation (58) are not usually measured and it is necessary to
estimate GX from its definition. This can also be done for 62.
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customary to determine the perforation limit speed v
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) and its x-analog in Equation (58). In this country it is
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thickness, and from Equation (51) we see that 6§ = Twhenv_ _ =v__ .. .
4 T b s ad
From Equation (45) with s = z, we also see that z = . = T (since t » =),
In Germany2® it is common to determine that thickness of target plate
which will just stop the projectile for given striking speed. This limit
thickness,Tz, of course corresponds to the limit speed, VozPL’ s¢ again,
from Equations (45) and (51) z = (& =T=T when v v . For
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In other
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V. ILLUSTRATIONS OF MOTIONS IN THE SIMPLEST FORCE FIELD

In this section we wish to illustrate some of the capabilities of
the force with components F = - (as + bs S + ds s). We will not give
an exhaustive ana]vmq Rafhpr we will show the type of agreement with

experiment which might be expected by showing this agreement in a few
simple cases. For convenience we reproduce the z- component of the
solution for the equation of motion as well as its time derivative,
dropping numerical subscripts:

—

+ -
1 _ YZ t + ‘rz t
z = + v w8, v, ) e - o ¥ 8, v, de I +8,
(YZ -, )
(59)
+ -
: 1 - + Y7 t + _ YZ t
T ( Y D [(VOZ ' 62 Yz ) Y. ¢ - (Voz v oY, )Yz e ]
Y2 7 (60)
* bz / 2
where vy " = - a_ + 8 ,a =" B = elg - d /m and
4 z t z 2m z zZ z' o
o
62 =-T (VOZRL - voz)/(vozPL " VoL T T z/dz' (61)

As is well known, B_ can be real, zero or imaginary. If Bz is real or

&

zero, then dZ < my azz. For dZ = 0 we have a solution analogous to that

which describes a body falling through a viscous medium in the earth's

gravitational field, ag, = Mm.g. However we have already seen that such

a force field dependent only on the velocity is not adequate for describ-
ing an embedment region between ricochet and perforation regions in a
plot of exit speed versus striking speed. Experimentally, velocity
decreases with time which requires

so that z and z will always be finite in Equations (59) and (60). The

same is true of course for the other components. Equation (62) implies

a 2 =d /m_ >0, since d_ < 0 would make 8 > a and Y s 0, leading
z' o z vA z z

N

to a non-physical velocity increase with time. The special case
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dZ =m @, or Bz = 0 requires the degenerate solution
-o_t
z=e 2 [v_-a 8jt-356 1+ 8 (63)
0z z z vA z ‘
-a_t
: 2 v - (v _-a 8)o tj.
= e oz ‘oz z z) z ] (64)
By rearranging Equations (59) and (60) we can find
+
y, t . _ _
e " =iz-v, (- s 3 vy, * 8, %, ) (65)
Y.t
Z . + +
e [z -y, (z-8)1 v, * 8, Y, (66)
If we divide Equation (65) by Equation (66) and solve for t, we find
'[; -y (z-8)3) v, * § vy +\l
Z 0Z z 'Z °
t =t - (67)
- 3 - - v (7 - + 6
(v, - v, ) (lz-7Y, §.)1 (v, Y, )
In case B 0 we find from Equations (63) and (64)
-at .
= + - -o_§ (68)
e [z o, (z GZ)]/(Voz Z Z) (68)
and
= - 21/ 04z (o s3Y v - 8]
t [ (z Gz) + GZ z]/[{z + a (z 8.1 Vg, , 804
. , (69)
=5 [(Vor ~ %2 62)/{2 +a, (z -0
z
Now let us illustrate the application of this solution (and the
analogous x-component solution) by using some of Backman and Finnegan's



datall. Figures 1, 2 and 3 reproduce some of their data for a 1 gram
hard steel (SAE 52100) sphere penetrating a 6061 aluminum alloy plate
of thickness T = 9.53mm. The sphere diameter was 6.35mm. As before,
we will take our z axis anti-parallel to the normal to the impact
surface and our origin at the point of impact with the motion occuring
in the x-z plane. We note that our choice of axes makes Lv =0 =v

oy
S0 6y =0 and y = 9 = F =0 for all t. By convention the obliquity GO
is the angle measured from the impact face normal to the negative of the
striking velocity vector. In order to conform to the conventions of
Backman and Finnegan we will measure the exit angle ¢ = arc tan (x/2)
from the negative of the impact face normal, that is, from the z axis,
to the exit velocity vector. Thus for perforations we will have

0 < 6 < 90°, for ricochets we will have 6 > 90°, while for embedments
0 is undefined. An upper limit of 180° for ¢ is suggested by the avail-
able data near the ricochet/embedment limit, but the data is not good

enough to be sure. There are also indications that 9 - 180° - OO as

v_~> 0 as we might expect since we are approaching the case of ela

U‘:
('J

ti

o in pproachin
rebound (no penetration) for which the angle of reflection is equal to
the angle of incidence. Again experimental evidence is lacking near
this limit to confirm or deny such behavior.

At the other extreme of very large striking speed (v - «) we expect

the exit speed v ~» v, and theexit angle ¢ OO. This expectation has

been verified by experiments with very thin (aluminum foil) targets and
ordnance projectiles which move almost as if the target were not there.
In both extremes (V - 0 and v, > «) the time spent penetrating the

target is very sm a11= That is, the ri

(@]

ochet time, t which 1s the
0 t time, t,, which 1s t

time it takes for z to return to zero, and the perforation time, t

’

which is the time it takes for z to reach the value T, both approaéh
zero for these extreme striking speeds. It is clear from Equation (60)
and its x-analog that the solution behaves properly at these two

extremes, namely,X /[z l» vy /vOZ so 6 = arc tan (xn/zn) -> On = arc tan
02 p’ ’p 0
(vox/v Z) for very large o’ while 6 -~ 180° - 60 for very small v (small
iR < 0 and x, = 0). For intermediate values of v, which lead to ricochet
6 > 180° is a possibility (zR <0, Xp < 0), but there seems to be no
published evidence for this case. For zero obliquity impacts, 00 =0 =
sin6 , x=x=0,v =v sin6 =0and L_ =1L sin 8 = 0 [or
0 ox o o X o
-2z by
(1 -e ) = 0] so F_ =0 in Equation (54). As 6 _ -~ 90°, grazing
in A\
incidence turns into a near mass and no penetration occurs
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Figure 1. Measured and calculated exit speeds for steel spheres vs aluminum plates

at zero obliquity.
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Figure 2. Mecasured and calculated exit speeds for steel spheres vs aluminum plates
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For real 8,, z can vanish only twice. The first time can be found
by letting z = 0 in either Equation (67) or Equation (69) and then

z =z _ can be found by using this value of t in either Equation (59)

or Equation (63). The second zero of 2 occurs as t > . It is of
course possible for t - = to be the only time that 2z vanishes. This
occurs at perforation limits or for embedment in semi-infinite targets.

At the ricochet limit z has already vanished once at the turning
point z = z ax & T. For this limit it vanishes again as z - 0 and

t » . From Equations (67) or (69) we see that this requires 62 =0

which is insured by Equations (51) or (

} when v = v . At the
H oz ozRL

61
perforation limit v__ = v___. and §_ = T in Equation (61) so that z
r <

oz czPL
vanishing and z approaching T makes t > « here too. For embedment in
a finite target, z » 0 and z»8_ < T makes t > =, For a semi-infinite

z
target which guarantees embedment even for the largest v, we can realize,
vA =68 as t > «, Since v increases without 1limit as T increases
max z ozPL
without 1limit in Equation (51), & = 2 depends or .
z max 0z

Figure 4 illustrates schematically some of the trajectories which
can occur during target penetration. These trajectories become effec-
tively straight lines when the projectile exits from the target into a
low resistance medium like the air. Alternative trajectories are
illustrated by solid or dashed lines while dotted lines indicate pro-
jections of trajectories if the motion had continued or if a different
distribution of target material had been present. For example, if there
had been more target material in the upper left of Figure 4(a), then the
x coordinate might reach a maximum in finite time and eventually turn
negative, The solid line in Fioure 4(9\ shows a fvn1 cal ricochet while

2u1ild 1111IC &=+ < a pPaLas A LacL

the dashed line illustrates a p0551b111ty which does not seem to have
been documented in the literature as mentioned above. In the dashed
case illustrated the exit velocity is anti-parallel to the striking
velocity and 8 = 180° + 6 .- Smaller or larger values for ¢ arc possible

with the latter involving a trajectory which crosses itself. This
crossing could occur inside or outside the target. Figure 4(b) illus-
trates possible trajectories when v_ = the ricochet limit. Here

A4 = and & = nE A KL ﬂﬂdvAO

Y ox OXRL anga vx = XRL in qua iGu c X UX an X 7 makes
t > © in the x-component analogs of Equations (67) or (69). If x
remains positive and approaches zero only as t - «, then Xpp, 1 is a

maximum value which x approaches only as t +~ « and the exit angle 0_, =

L

180° as illustrated by the solid line in Figure 4(b). If X turns nega-
tive in finite time and then approaches zero as t - =, then XpL <

X
max

and 9RL > 180° as shown by the dashed line in Figure 4(b) which is the

the limiting case of a dashed line in Figure 4(a). Figure 4(c)
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illustrates by a solid line an embedment trajectory for which v <

DI
v <V PL and z approagheq a maximum value as t - ooz () Of course
o o}
z 0 as t » » even if the final z value = Z ax (solid). The dashed lines

in Figure 4(c) illustrate such possibilities. At the perforation limit
the available data suggest that the exit angle is close to zero. The
solid line in Figure 4(d) illustrates this and, if true, then x_ is a
rL
maximum. Since Xpp 0 as t » =, the other possibility is that Xpp <

X ax if x has already vanished once in finite time. This is shown by

one dashed curve in Figure 4(d). Of course z > 0 and z > 52 = T when

Vo = VorL will make t -+ « in Equations (67) or (69). Finally, a typical
perforation trajectory with the exit angle o - ¢ 1s shown by the solid

ity

Ly

i hi
3 Va4 LU L At J Y . Ia vt i J L1

—

line in Figure 4(6)! As A\ > o0 nF course, 8 > @ Another noss'
g (e) o o
shown by a dashed line is that x vanish while z < T so that X . oceurs

inside the target and the exit angle 6 < 0. A third possibility in
which a point of inflection (x = 0, x > 0) occurs inside the target in
finite time could lead to 6 > OO and is illustrated by another dashed

line in Figure 4(e). A similar type of behavior is possible for ricochets
also but was not illustrated in Flgure 4{a) to avoid crowding and confu-
sion. In short, a variety of trajectories can be described by Equation
(59) and its x-analog although not all of them may be realizable for
particular projectile and target material combinations. For targets
other than plates of homogeneous material or for projectiles with
special shapes or motions at impact, it may be necessary to invoke un-
usual trajectories or to include x-, y- and z-components of motion for
an adequate description. We also note that for recal Bg 2 () with s = x,
z (or y if needed) all combinations such as §_ = 0, BZ > 0 or 6{ =B =
A 4 4

0 or BX > 0, BZ > 0, etc. are allowed.

In summary, there are some constraints imposed on the parameters

a . b< and dq (for s = x, z) from general considerations of plate target

penetration with §_ > 0. From Equation (62) and its x analog we have

S
2 e, a2
1. ~ n 1. N n n - 1 P r trA N 1 PPN . - - <
o> U, b >U, U< d smi|b Z m and O < d & m b Zm
X > Tz ’ X o!Px/ 0)J z o L z/( o)J >

while from Equations (49) and (50)we have a_ =d_V_ . /(v .. - Vv ..)
VA < OLRL VLFL OZKL
since f(T) =~ a, T for thin targets, while c, = - dz T/(vOZPL - VozRL)

in any case. Similarly we can relate c  to dx and a  tod since

f(L.) ~a_ T tan GA for thin targets from Equations (55) and (56). We
A

X

can also find cross constraints between the x and z parameters by equat-
ing Equ t on (67) (or Equation (69)) to its x analog since time
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(like mass) is common to all components. For example, at the time of

perforation, ip = Vp sin ep, Ep = V_ cos ep and z_= T. Since we know

Vp’ ep and T experimentally and can estimate xp experimentally, we can

obtain cross constraints for as many values of v_ (and 60) as are needed.

o

The same can be done for ricochets with x = VR sin GR, z = VR cos GR

z = 0 and x, estimated. In addition (at least for some projectile-target

combinations) other conditions must be satisfied in the ricochet region.
I.z

For example, from Figure 2 it is clear tha R=¥XR ¥ zR2 goes through

a maximum as a function of v_. Thus at some value of Vo dvR/d'v0 =0

2 .. .0

and d2 v /dv_“ < 0, which imposes additional cross contraints. Simi-
n J

larly, from Figure 3 (and similar data) it seems likely that GR = arc

o
[+¥]
o]
Oh

tan (iR/QR) goes through a minimum, so that perhaps d GR/dvo =
d2 8./dv 2 > 0 at some value of v_
K O O

ty case shown in Figure 1 there is no x-component.

‘—\11 11
There is also no ricochet limit shown although one probably exists.
Table I contains eqtlmates made from Figures 11 to 17 of Backman and

Finnegan with estimates of error # .05mm/us on the speeds. For this

C)

n
19
oc

Table I. Limit Speeds vs 60 (1 gm Steel Spheres vs 6061 AL plate)

8 0° 20° 45° 60°
o
cos B i 54 7 .5
v ., (mm/us) ? 5 71 1.06
) .
vOZRL(mm/us) ? .47 .5 .53
VoPL (mm/us) .71 .73 .9 1.2
VOZPL(mm/us) .71 .69 .65 .6
? .22 .15 .07

VozPL VozRL

kind of error we can say that VosRL is approximately .Smm/us over the

whole range, including perhaps 60 = 0°, However, v__,. clearly decreases

e ozPL
as eo increases (T = constant). If we take a, = [vozRL/(vOZpL - VOZRL)]dZ
= [.50/(.71 - .50)] dZ = 2.38 dZ and c, = - dZ T/(vOsz - vozRL)
= (9.53)/(.71 - .50) = - 45.38 dZ for 60 = 0° with

0 < dz < .25 b22 for m_ = 1 gm, then we only have to estimate b_ in
O } ra
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order to constrain d and so a and ¢ . Gudunov and co- k3r517 have

_____ d an , c,- Gudunov and co } 1av
measured the kinematic coefficient of viscosity, v, for copper, aluminum,

lead and steel. They give v = 1.0 m%/s for aluminum, 2.5 m¢/s for
duraluminum and 5.5 m?/s for steel. The dynamic coefficient of viscosity

- . - v = 27 1N
is u = pv. For example, for aluminum with p = 2.7 gm/cm®, p = 2.7 x 104

gm/(cm-sec). If a Stokes type of law were to hold for a non-deforming sphere
om (*gég—ﬁfj (2.7 x 1()4 gm/ (cm-sec))
= .16 x 106 gm/sec = .16 gm/us or 2.5 times this for duraluminum. In
this way we can estimate b, from an experiment of a different type. If
we obtain reasonable agreement with penetration experiments, then we will
be encouraged to believe that the constant b, is more than jgst a fitting
parameter If we take b, = .10 gm/us and d, = .0023 gm/(us)“, we obtain
the solid line in Figure 1 calculated for vo increments of 0.1 km/s (or
0.1 mm/us). The X's are the data points of Backman and Finnegan (their
Figure 11). The model allows a ricochet region for 0 < v_ < .50 mm/us
with an embedment region for .50 < Vo S < .71 mm/us. In the perforation
region there is rough agreement with experiment but the curvature of the
calculated line is less then that of a line fitted through the experi-
mental points. This is probably due to our neglect of the force term

by, vzz. No attempt was made to optimize the parameters. Since 04 = 0,
Vox = 0 and Ly = T tan 65 = 0 so 6, = x = X = 0 for all time for any x-
parameters. The x-parameter values in Figure 1 are dummy values to
satlsfy the program 1nput requirements of the 9830A Hewlitt-Packard

bUmpuLCl (see Appeéend dix).

penetrating axumlnum then bZ = 67Ry

14 and 15) for the same parameters as in Figure 1 except 0
shown by X's The calculated solid curves were obtalned by using a_ =

002 gm/(us) x = .3 gm/us, e = - .4 gm/us, dy = .0225 gm/(us]2 with

b, and d, the same as for 6, = 0°, but with a_ and ¢, determined using
VozPl, = 65 km/s instead of .71 km/s from Tabfe 1. fo attempt has been
made to optimize the agreement which presumably could be improved with
some effort. It might be wiser to apply this theory to a greater variety
of data first to learn more about the trends shown by the parameters.
This will be done in future work before we return to optimizing data
fits.

From Table 1T we noted that v = v cos 6 = .5 was essentially
ozRL oRL o i’

constant, implying that VORL = .5/cos 60. We saw however that VozpL =

cos 60 decreased as 6 _increased, implying that v some

VoPL oPL

is
other function of 6 . If we postulate that v and v differ by a
o v “oPL oRL 7

constant amount, namely, v

o]

oPL = .21 + VORL = .21 + .5/cos 60 so that

VOZPL = .5 + .21 cos 6 o° We can reproduce the values given in Table I.

The parameter a now becomes a =d v /(v - v ) = d
e z z z "0zRL ‘" o0zPL ozRL’ z

(2.38/cos 80). In our calculation for Figures 2 and 3, we assumed that
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d_ had the same value for 6 = 45° as it did for 6 = 0° which made a_
increase as 0 increased. If a_ were to be independent of 6 we would

have to assume d_ proportional to cos 8, Actually, a, is propor
&
to the z-components of the projectile presented area and the contact

area. Consequently a, ought to be proportional to cos 60 instead of

o

-1 : .. . .
(cos 80) as assumed. This implies that d ought to be proportional

=
i
wn

to (cos eo)‘. A similar argument applies to c, whic
d

also propor-

Y
nal t In future work we will explore the merits of including

-3~
Livia

(]

z
the dependence of these parameters on obliquity.

If BS is imaginary, then the motion has a periodic form with decay-

ing amplitude, although for perforations and ricochets less than one
full period will be completed before the problem terminates when the
projectile exits from the target. For embedments a large number of
oscillations would be executed before the motion ceased when t grew

= i -ld /m o 2 with

arbitrarily large. For imaginary 8 = i w i -
y & g Y By tu, Yz o z

2
dz >my @ > 0, for example, we have

-a_t -
z =€ z [—L-(v - a 6 ) sinw_t -8 cosw tJ + 8 (70)
w_ - oz z z z c z A
| & 4
-a t 1
: z 1 2 2 .
= t - — 14 S a + W sin w_t
z=¢ [voz cos @, w, { z Yoz z ( z z )} z J
(71)
with analogous relations for the x-component. As before from Equations
(70) and (71) we can find
—azt .
= - 8§11/ (72)
e sin w_t [6Z z+ v, (z AR t7e)
-o_t 1 .
 t=—[(v_ - 81z
e cos w,t o L, .
(73)
.2 2



where

2 2 2 2 1

_ 1 _ 2 2 Tz
X = W Vo, + 6, (o * v, )1 = E:‘[Voz * 9, (ﬁ:J] (74)
or by dividing Equation (72) by Equation (73)
tan w t = w_ [§ 2 - - ;
z z [ 2 2V Vo (z 62)]/[Voz *; 62) z
(75)
2 2
+ (z - 68)) {a_v - & (o + w )
Z Z oz Z z z 774

The tlmes at which turning points of the motion occur can be found
by settlng z = 0 in Equation (75) with the successive values of Lt
occurring modulo n. The perforation limit can be represented by the
condition that the first maximum of z is equal to the target thickness
(z = T) while the ricochet 1imit can be represented by z _

max 1 max 1
z ., = 0. Since oscillatory embedment is a motion allowed by the
general model, provided d_ > m_«a 2, vA < T and z_. > (0, it might
z oz max 1 min 1
be interesting to design an experiment to look for this event since therc
does not seem to be any information on the subject in the published

<,

ciir b PR VIO I A U S T I 3 e de 2 omoa ]

Sucn dan experiment would Il.quuc 4 motionicss
since this model takes no account of target motion
imation for many targets dnr1no the short times in-

t2UHa 2L AP Ll el gl [SXV B 4 SHivi L Lamls 413

Q m
volved for perforations or rlcochetg) In this paper we will not
further explore the possibility that one or more B (s = x, y, z) may
be imaginary. Of course mixed f_ (one component B “real or zero, another
imaginary) are allowed in genera

&} N
literature. How

e
target (very mass
(a reasonable anp

In summary, we have shown how to apply the solutions of Equations
(43) and (44) to a particular case of plate target penctration for which
experimental exit speeds and angles were availablec in both ricochet and
perforation regimes. The agreement between theory and experiment can
certainly be improved, but the overall agrecment shows promise. An
important improvement in agreement is expected when force terms involving
the square of velocity components are included (as they will be in future
work). This should take the burden of agreement in the perforation region
off the first power terms and allow them to aid the constant and penetra-
tion depth terms in improving agreement in the ricochet regime. The
reader is urged to use the computer code in the Appendix with somewhat
different parameter values in order to get a feel for how this might be
possible. We have also noted the considerable variety of trajectories
which are allowed by the theory, many of which might be realized in
ract

ice with a suitable choice of materials.
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VI. MASS LOSS, EXPERIMENT AND EXISTING THEORY

A. Comments on the Experimental Data Base

The largest data set which relates to the question of mass loss by
a penetrator consists of the Thor collection3 for steel fragments to-
gether with its extension to tungsten fragments . In the Thor collec-
tion residual mass was frequently not recorded, but when it was, it was
never equal to the striking mass. In the extension to tungsten fragments,
thc residual mass after perforation was almost always recorded and was
In other words, if our aim is to

model at least the important features of penetration our model must be
amended to include non-constant mass.

"With low striking velocities, the loss in weight of a fragment
during perfgrgtjon is small and is usually 1onored In such cases, the
residual velocity, alone, serves as a good measure of the resistance of

the target to perforation and the capacity of the residual fragment for
perforating another target. As striking velocity increases, the break-
up of the fragment becomes more and more pronounced until this aspect
of the impact must be taken into account. The residual weight of the
fragment must be known as well as the residual velocity before any
reasonable estimate can be made of the capacity of the fragment for
perforating another target.'"3

There are other data collections concerning rod penetrators and these
also record mass loss as a frequent phenomenon of practical interest’’.
In addition many iidlvidual reports record mass loss.

There appear to be two basic types of mass "loss'". The first can be

described a; erosion or wearing away of the projectile occuring mostly
at the tip or leading edge. This might occur with or without prior
distortion of the tip. The second can be described as fracture or
breakup of the projectile into pieces of more or less comparable size,
differing, say, by no more than an order of magnltude. This phenomenon
can be called a mass "loss" only if one chooses to dlsregara the smaller
pieces of the broken prOJectlle and concentrates on the largest surviv-
~nl1lantnd

ing piece. This point of view was adopted by those who collected the
Thor and extended Thor data sets. An attempt was made to justify this

procedure:

"In many experimental cases,; the weight of the largest piece of
residual fragment approximates the total welght of fragment perforating
the barrier target. At any rate, the capacity of a fragment to perforate
a primary target beyond an initial barrier can be conservatively esti-

mated by considering only the largest piece of fragment which perforates

Y - -~ - m . h o) . PR - PR v ~an ~
2Yg. P. Lambert, "The Terminal Ballistics of Certain 65 Gram Long Rod
Penetrators Impacting Steel Armor Plate," ARBRL-TR-02072, May 1978.



the barrier. This approach is justified whenever the hypothetical
primary target is one for which damage from the impact of small, slow-
moving particles is not anticipated, i.e., damage to such a target will
essentigllv be that caused by the largest, fastest particle that impacts
on it."

The authors admit however the desirability of observing more than
the largest piece so that one can estimate damage to all types of
interior components. However, they seem to ignore the possibility that
the projectile might breakup into pieces of comparable size. Suppose,
for example, the largest piece were 0.4 m_, while threc other picces
half this size but with comparable residual speed accompanied the largest
piece in a debris cone. Then the target damage might be much worse than
that estimated by considering only the largest piece. Add to this the
target plug, spall and other debris and the practical need for recording
more ece becomes clear. lrom a theoretical point of

many such ])1 eces

T PO
ew S
undatcly this was
ngsten fragments
or

b an
s al c T
not done even in the cxtension of the Thor data to tu
ollecti etho C ded only the

which used a similar wallboard c e d
largest piece. However, x-rays were used to measure rc%idjal speed in
some of these later experiments so there may be some unrcported fragment
mass distribution information still recoverable.

If one is to compare a physical theory with cxperiment and not mercly
fit an arbitrary function, at least threc things must be known about
residual penetrator masses, (1) we must know whether erosion and/or

breakup has occurre (2) if erosion has occurred, we must know 1ts
Tas a g N < .
d

ak
vC It
b wu

and/or 1 reakup is caused by use
sification of the data we need.

of a recovery medium, this lead
One might imagine firing into the recovery medium alone in order to
correct for this falsification. Such a procedure might seem to resemble
the calibration procedure which is usually carried out when such a medium
is used to determine residual speeds. However, this is not satisfactory
for mass determinations. For example, it is entirely possible that
incipient cracks produced by the target/projectilc encounter will be

converted into projectile breakup by the recovery medium, although the

t o
s caused by the target If crosi
s a

projectile emerging from the target was intact. To show that this did
not happen would require a pre-conditioning of the projectile comparable
to firing it through a target. For observation of residual masses direct
methods such as x-rays seem preferable in spite of their difficulties.
Some experiments of this type have been performed?? However, the Thor
data collection and its extension do not contain enough information for

2?L,. Herr and C. Grabarek, "Ballistic Performance and Beyond Armor lata
for Rods Impacting Steel Armor Plates," BRL MR 2575, 1976.
(AD #B009979L)
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comparison with a physical theory in spite of the large number of firings
involved. 1In general, they do not tell us the three pieces of informa-
tion enumerated above. In addition, they contain very few cases in

which only one variable was changed while all others were held constant,
something which is essential if fundamental comparisons are to be made.

B. Comments on Previous Models

Some of the advantages and disadvantages of purely empirical models
such as the second Thor equation have been pointed out and will be
elaborated upon below. Mass erosion and breakup is now being incorporated
into some advanced continuum models with of course an increase in the
complexities which already exist for such computer-dependent models.

In the class of theoretical but simple intermediate models there are at
least three which have been nronnipd to describe mass erosion, although

there seem to be none for breakup

The earliest intermediate erosion model was given by Tate?3. He
adapted a modified hydrodynamic theory first proposed by Hill, Mott and
Pack?“, later published by Bishop, Hill and Mott“> and still later
modified by Eichelberger?®. If we assume that the deceleration is
negligible during some part of the penetration then Bernoulli's steady-
state equatlon will hold approximately for the pressure at the stagna-
tion point

1 1
P =z=—pn u +R==0p(v-u)+Y (76)
r 2Ptu 2P~’\ ] \
where R and Y are strength parameters or stresses above which the target
and projectile respectively behave as fluids. Here u is the penetration
speed and v is the speed of the rear of the penetrator for zero obliguity
impact on a target plate, while p, is the density of the target and p is

the density of the projectile. Since u < v, we have

[ ¥ w7 AS APy Rw S J A SMidV AW e w— e
u=——-—1——2—[v—u\/v2+AJ 77)

— o "
where pu = ‘tﬁ; and A = éi-(l - u‘) (R - Y). Since v and u are the
¢

23y, Tate, "A Theory for the Deceleration of Long Rods After Impact,"”

J. Mech. Phys. Solids 15, 387, 1967, and "Fyrther Results in The Theory
of Long Rod Penetratzon," Ibid. 17, 141, 1969.

24Unpublished Ministry of Supply Report, 1945.
25g. F. Bishop, R. Hill and N. F. Mott, Proc Phys Soc 57, 147, 15945.

26p, J. Eichelberger, J. Appl. Phys. 27, 68, 1956.
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speeds of the back and front end of the rod respectively, then the
decrease in length with time 1is

The equation of motion of the back cnd of the rod was taken to be

6LV o= - Y, (79)
assuming only a constant deceleration supported by the strength of the
rod. Equation (79) is not strictly speaking compatible with Equation
(76) which assumes v = 0. It is also for the speed of the rear of the
rod, not its center of mass. Since dt = - p ¢ dv/Y from Equation (79),
we can eliminate dt from Equation (72) and write

d 0
7 =y (v-u)dv. (80)
X 1
If we use Equation (77) in Equation (80) to eliminate u, and integrate
from initial values of ¢ = L and v = V we obtain

FZ____31(5§X)

2 I )

% v +‘«r + A exp F-££~_f7;grv‘ﬂﬂ + A _1Jv2]
Lv+¥v? o a ] Lav(r - w7y (- .

(81)

]

[

Here % cannot vanish for finite V. Tate distinguished several cases.
If R > Y, the rod behaves as a fluid until penetration ceases and u = 0

in Equation (77) or v = 1 q A
Ylu

point, namely QC, is found by using Ve in Equation (81). Beyond this

The length of the rod at this

P I o S O N T U I [ S

point the hydrodynamic theory does not apply. Instea
rod is taken to be a rigid body, and v in Equations ( and (79) is
taken to be the speed of the center of mass with, of urse. u = 0

=EATil LW UT PAVAVL S VS LUl Vi a5 S Wikl 81 “uUul oo u - uU.
& b

The center of mass continues to move forward but the tip merely crodes
in place. Now dt = - d#/v from Equation (78) can be eliminated in
Equation (79) to obtain Equation (80) with u = 0. 1If we integrate from
initial values £ = & and v = v_ to final values " e and v = 0 we obtain

- [

the bulk of the

the final length
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2. =2 exp [- (R-Y)/Y] . (82)

If the impact speed V < Ve the tip merely deforms without penetra-
tion (u = 0) and an integration of Equation (80) from initial values
L =Land v=Vto? = zf and v = 0 gives
1 .2
e = Lexp [- (5 oV)/Y] (83)

ergy density

exponentially on the ratio of the initial kinetic ene
’ﬁ

2= pV° to the rod strength Y. The lack of any penetration is an un-

for the final length of the undeformed portion of the rod which depends
it)

S]]

reasonable feature and holds only for weak rods versus strong targets.
Tate points out that his model only applies to perfectly plastic rod
material for which the plastic wave speed C = 0. He compares Equation
(83) to Taylor'527 result for the deformation of a rod striking a rigid

target, namely,

9. =Lexp [- () V (V+ 20)] (84)
1 &Lx
which reduces to Equation (83) when C = 0.
If R < Y, then the rod behaves as a fluid until u = v, = _-A/(l-uz)

= V2(Y-R)/py from Equation (77). The length of the rod at this point,
% , is found by using v_ in Equation (81). Beyond this point the rod

(&

........... t 2t a rigid body with Z, = Qc' Since the length
does not change, & = 0 in Equation (78) and u = v throughout this second
stage with v interpreted as the speed of the center o of mass or of either
end and Y = %—pt v2 + R from Equation (76). Then Equation (77) becomes
g v 1 2 4R (85)

pr v=r- (3P V ) (85)

which is simply Equation (15) with b = 0, mo=p lc A, a = AR and
] . < = - - - o~ 1 °
c = é-pt A with A the cross-sectional area. If we take v = Z ana

V=1V dQ/dz in Equation (85) and integrate from z = 0 and v

1]

v to final
c

values z = T and v = 0 we obtain Robertson's result, Equation (16), with
V. = 0, namely

Proc. Roy. Soc. A194, 287, 1948.
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T/ = it

1
2 —-—221
U

(86)

~~
N} =
<
A
.
3
[S—

1 1
v o < Y /Rl n— 1 L
+ — V R = — n 1 +
c L 12 P JIn] 2 i H

where T is now the extra depth of penetration in a semi-infinite target
and depends logarithmically on the ratio of the rod's energy density at
the beginning of its rigid body motion to the strength of the target.

If we use vc2 =2 (Y—R)/ot in Equation (86) we obtain T = (ﬁc/uz) 2n (Y/R).

If R =Y, then A = 0 and u = v/(1 + p) in Equation (77) while

Equation (80) becomes d2/i = (p/Y) (5 . ) v dv so
] e 22
R s A ] (87)

5
and the final length ¢ = RF when v = 0 depends exponentially on (%»p V) /Y

and as before can never be zero for finite V. The depth of penectration

1 . . ..
z = ftu dT = T+ % ftv dt. If we use Equation (79) to eliminate
1% o}
dt = - p & dv/Y and use Equation (87) for ¢ we obtain
- up 2 2 ]
z = (/W) [l cep {- gy iy - e
L LS N L] 7 ]
If p_, = p sou =1, then A = 0 and the above formulas simplify
further, "although closed form solutions for z (v) cannot be found for
the general case R # Y unless R = nY with n integer

A model similar to Tate's has been proposed by Walters and Majerus?8.
These authors give a unified theory for zero obliquity penetration by
shaped charge jets or kinetic energy projectiles. In particular, in
their Appendix II for steady-state jet penctration neglecting viscosity

2 et rTrT

they obtain in their Equation (II-1)

O=1fo+p (v-wT- [op+0 ul (89)
28y. P. Walters and J. N. Majerus, "Impact Models for Penetration and
Hole Growth," ARBRL-TR-02069, May 1978. (AD #A056294)



which is the same as Equation (76) above provided o = 2Y and o, = 2R

and the jet is not stretching so that the speed of its rear is equal to

the speed of the interface of its tip with a postulated interaction

region. In the special case R = Y above we found u = v/(1 + n). If z
o

is the standoff distance and we use the form v = (z_ + z)/t, then
v

= dz/dt = v/(1 + u) = (1/(1 + wu)) (zo + 2)/t so

=z [(t/to) 1] (90)
which is the formula obtained by Allison and Vitali?® and discussed by
DiPersio, Simon and Merendino30.

In their Appendix IITA, Walters and Majerus consider penetration by
a rigid rod £ = 0, u = v (the second stage of the case R < Y considered

above) and the lr?nnatlr‘)n (IT1-1) with the hei Uhf of their interaction
region H = 2 becomes
208 v=- (o Vo 0) (91)
c t t

which is Equation (85) provided o, = 2 R. In their Appendix III-B they

consider penetration by a non-stretching jet (or rod) with constant speed
v and obtain as their Equation (III-9) for u

a“+b”"u+c” u2 (92)

=]
"

2 o~H R
with pH a2~ = (o - ct) +pv:, pHb = - (%f-u{ + 2 pv) and p He” =

2 . . . .
(o - pt) where A = 1 r, is the cross sectional area of the cylindrical
rod and p' is the target viscosity. Since p H A is the mass in the

interaction region mov1ng with velocity u, Equation (92) is the equation
of motion for this region or for the entire rod if H = 2. The coefficient
b~ is negative, but the coefficient c” is negative only if p_ > o, while

the coefficient a” is negative only if o_ > o + p v“. Equation (92) has
L
the same form as Equation (15) with a” = - a/mo, b’= ~b/mo and c’= —c/mo
29%, E. Allison and R. Vitali, "4 New Method of Computing Penetration
Variables for Shaped Charge Jets," BRL 1184, 1963. (AD #400485)

30R, DiPersio, J. Simon and A. Merendino, "Penetration of Shaped Charge
Jets Into Metallic Targets," BRL Report 1296, 1965. (AD #476717)
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(with u playing the role of v) and its solutions are formally the same
1

so we can find u (t) and |~ u dt in closed form for any value of q =

4 a” ¢’ - (b‘)2 in Equation (22). Then from Equation (78) we can find

£=L—vt+ftudt (93)

in closed form. For example, for q = 0, the simplest case, we have by
analogy with Equation (26)

(94)

which can be used i
analogous to Equations (
respectively. Sinc C 1ly a constant in practical cases,
especially toward the end of the motion in a semi-infinite target, we

can expect Equation (93) to agree with experiment only approximately and
only during the early part of the motion. Equation (93) requires ¢ to
vanish in finite time for any q, contrary to experiments with semi-infinite
targets, but the agreement is reasonable during the initial stages as
noted by Walters and Majerus. Presumably numerical solutions of their
more general equations will give predictions in better agrecment with
experiment at later times.

) to obtain ¢ (t). Similarly cquations
28) could be used for q < 0 or q > 0
]

93
(
eally a constant in practical cases

ppendix IV Walters and Majerus consider the casc of a non-
= n\ for which fhn\/ obtain Fguation (15) for u = v with

-------- L@aar Lyyudua Wil

0>

£ 21 H u and ¢ = A Py where Tes My and pt are the vield

stress, viscosity and density respectively for the target. The solutions
have already been discussed above and by Zook”.

Another erosion model for zero obliquity impact has been proposed by
Recht3!. This model was previously described at the Fourtecenth Annual
Meeting of the Society of Engineering Sciences at Lehigh University in
1977 and earlier at the Workshop on Mechanics of Impact and Penctration,
December 1976, Aberdeen Proving Ground, Md. An outline of his model
can also be found on pp 25-29 of the Backman and Goldsmith review article
cited abovel!. When the projectile speed exceceds an assumed constant
plastlc wave speed C, a shockwave develops near the tip of the projectile,
eroding it away. When the projectile speed falls below C, deformation
of the tip takes place, shortening it because of lateral spreading.

When this spreading exceeds some critical amount (postulated to be 25

in Recht's application to a case of a steel cylinder impacting a stee

e
()
1

31g, F. Recht, "Taylor Ballistic Impact Modeling Applied to Deformation
and Mass Loss Determinations,” Int. J. of Eng. Sciences, 16, 809, 1978.
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plate), then the material which has spread beyond this distance is
assumed to be sheared off as the motion proceeds.

In arriving at Equation (41) of his 1978 paper, Recht3? considered
that the main projectile changes its mass from m to m + dm and changes
the speed of its center of mass from v to v + dv during the time interval
dt. Here dm and dv are negative. The eroded mass (-dm) was assumed to

have the plate plug speed, v_. More properly, at the end of the
Ir
interval dt the plug speed is vp + dvp, although this will not matter as

we will see shortly. If one makes the same free collision assumption

Rl o Ylrd ~ s A Aale s

that Recht and Ipson made in their 1963 paper cited above® with mp

already formed and constant throughout the motion, then the momenta
before and after this collision would be equal, that is,

+ = (m+ v+dv) + m (v _+dv ) + (-dm) (v_+dv_J. (95)
myomy Vi, (m+dm) (v+dv) p(Vprdvy) + (=dm) (v rdvy) (85)

If we neglect the second order terms dm dv and dm dv_, we find
i

mdv = (-dm) (v-v_) - m_ dv (96)
(-dm) p P P

and if we let (F dt) = m dv with F = -0A, we obtain Recht’s Equation
(41) mentioned above, namely,

o A dt + (-dm) (v—vp) = mp dvp . (97)
More properly, when dm # 0, Newton's law requires

m d‘v’ + v dm = F dt = = g A dt (98)
which gives us from Equation (96)

o Adt + v_dm=m_dv_ (99)
P P Iy

instead of Equation (97) There seem to be at least three shortcomings
in Recht's model. First of all, he makes the unrealistic assumption of
a free collision in Equation (95). In his earlier paper with Ipson he
was able to compensate for this by equating the catchall energy E to the

qual to the speed Vlf after the free

32ppipate commnication to J. Dehn, 14 Dec 1978.
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collision, thus producing an expression for the shearing work W. In his
erosion model above he does not employ energy balances to compensate for
the unrealistic assumption of a free collision, so the error might be
uncorrected. However, as we have noted, he does ignore the theoretical
requirement that (F dt) = m dv +vdm, so that this error might compensate
for the free collision assumption. It might also make it worse. Thirdly,
it would be desirable to use more than a simple constant force F = -gA.
Even his earlier model with Ipson produced a result similar in form to

5
that of Robertson who used F=-(a” A) - (%-y p, A) vT. We have also

t
seen the desirability of including terms dependent on v and on the depth
of penetration, s.

Many physicists take the attitude that compensating errors are
perfectly acceptable in a thecory as long as they result in a definite
prescription for calculations which agree with cxperiment. There is
something to be said for this point of view just as there is something
to be said for purcly empirical interpolation models which also agree
with experiment at least for limited conditions. However, there is also
something to be said for the view that we should not be satisfied with
a fortuitous compensation of errors if we expect to make any progress in
achieving a broader understanding of the physical world. Dirac is one
of the foremost proponents of this latter view.

"My early research work, in the early 1920's was based on Bohr orbits,
and was completely unsuccessful. I was taking the Bohr orbits as
physically real and trying to build up a mathematics for them.... One
sees now how futile such work was.... The Bohr orbits were an unsound
physical concept and should not be used as the basis for a theory.'33

Dirac goes on to relate how his dissatisfaction with the Klein-Gordon
equation led him to develop his own relativistic ecquation for the elec-
tron from which the concept of spin naturally followed. He also de-
scribes more recent efforts by physicists to solve the relativistic wave
equation for interacting particles, efforts which have led to divergent
integrals which are discarded by a renormalization of fundamental
physical constants. Although most physicists are satisfied with this
since their calculations agree with experiment, Dirac gives cogent
reasons for not being content. He then says,

"For these reasons I find the present quantum electrodynamics quite
unsatisfactory. One ought not to be complacent about its faults. The
agreement with observation is presumably a coincidence, just like the
original calculation of the hydrogen spectrum with Bohr orbits. Such
coincidences are no reason for turning a blind eve to the faults of a
theory,'33

33p. 4. M. Dirae, "The Mathematical Foundations of Quantum Theory,'" in
Mathematical Foundations of Quantum Theory, Ed. by A. K. Marlow, N.Y.
Academic Press, 1978.
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VII. A NEW MODEL OF MASS EROSION

A. Development of the Theory

Here erosion is being thought of as a continuous process which can
be described by differential equations. We might expect at least the
dissipative terms in our force field to depend on the instantaneous
values of the mass (m) and /or its rate of change (m). A d1551pat1ve
term accounts for kinetic energy loss by a decrease in velocity 1n
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The viscous loss coefficient by has the dimensions of mass per unit

time so a simple modification of this term might be
~(b, -a&, m s (100)

1 1
15 1S

where €. is a positive, dimensionless constant. When the mass change

ls
rate is negative (m < 0), then the dissipative coefficient bls is
effectively increased, while for m > 0 mass gains tend to offset
velocity losses and the coefficient bls is effectively decreased.

When m=0 we have the constant mass case and return to the original
form of this term. Examples involving m<0 are target penetrators or
space vehicle re-entry shields. Examples involving m>0 might be
rain or sleet in the atmosphere or crystallites precipitating fror
a chemical solution.

(m/m) (3)° (101)

This gives us a reduction in retardation when (m /m)<1l and an

to our original form when

. . . - _ o 2 . .
(m_/m)=1, the constant mass case. We will not treat the v  term 1in
this

~
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Let ¢ ¢ (t) be an arbltrary transformatlon of the independent variable

so that s = ¢ ds/d¢ and § = ¢ (d s/d¢ ) + ¢ (d¢ /d9) (ds/d¢) . Then
Equation (102) becomes

;o o '\,
ds ds ds 2. (103)
bl(g*z) * BlS (d¢) ¥ BZS (d¢) tag dls s+ dZS s =0

\d¢"/ \ '/ \ '/

where M= g (104)
[ g (1-1) #]
Bls [m P + bls + {1 €15) m| ¢ (105)
L \ /]

B, =b, (m/m &° (106)

25 2s o}

Now let us choose ¢ so that at least M and B, are constants and
4o

explore the implications of this choice. One implication is evident
from the form of Equation (103), namely, that whatever solutions we
found for z(t) in Equation (44) can be used to write s{¢) here.
Another implication is that Equation (104) becomes

22 * 2

¢ 0% (104a)
where ¢o is the value of ¢ at t=0. We can also use Equation (104a)
to obtain

m= ¢ dm/d¢ = [ 2M/¢ ] (dé/d¢) = -2m dé/d¢ (107)

and use this to eliminate (md¢/d¢) in Equation (105) to obtain

%) ] v = - ( 1s '%) J b (108)

Now £mae +1 . :
NOW T0r the constant mass case (mozo), Bls=bls ¢ from Equation (108).
However in this case we require Bls=b1 > SO m0=1 This implies

=m_ in Equation £104a). If we put Equation (l04a) in Equation {106)

we find st=b25 &ai)which is not constant. If we had used (m/mo)

instead of (mo/m) in Equation (01), then B25=b2 » also a constant.
s
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Consequently, Equation (108) is the second relatlon we need to solve
for ¢(t) and so m(t) and s(t) Since m—mo/¢ from Equation

O ) . R _ B . .
m=-2 (m/¢") d¢/d¢ from Equation (107), Equation (105) becomes

n - h. A
B =
1s =~ “1s?
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where we have used ¢ =1 and let ¢ = t.= 0 for convenience. Equation

(110) can be integrated once more to obtain

1) 1,

[2 m (els '-;-) /BlSJ}j=t (111)

which gives us a relation between ¢ ana t. The left side of
Equatlon (111) is a transcendental fun ction of ¢ and becomes algebraic

only in certain simple casés such as bls—Bl (the constant mass case

for which ¢=t) or b —O for which

r 1
NN NN .
¢ \mo/‘ uo) .L‘ \\mo,z mo) tj (112)
when we use Equation (108). The generai form, Equation (111}, gives
the transformation which is required to ma ake Mand Big in Equation
(103) constant. By using Equation (110) in Equation (104a) we
also obtain
l in}
b, /B, ) expd -0/ [2m Ly V-
L / ) xPi ¢/ L‘ o \ 1s 2 )° s]} by /Bls} (113)
if b, =8 thenm = m_, . If = 0. then
Dls Byg» t m=m the constant mass case 1f b1S 0, then
B r /° .\ 2
no=m eIll<1>/m =m, Ll+(‘mo/ mo) L.J . (114)
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In summary, instead of assuming a form for m(t), we have made
able assumptions about modifications to the coefficients in our
erms, we have transformed the independent variable in order to

obtain another equation with constant coefficients neglecting the vé

term and have derived a relation for m [¢(t)] . This enables us to
wrlte closed form expressions for the displacement components
s L¢Lt)J provided we require

b //c -l\z 2% / /t\ -_l;\: 1~ ; f - _ _1_'_\ e

I UM 2) T Py T f1y 2) T P12 A (B1 T 2) Liio)
and

B, b, = B, .. = B, b, (116)

1x / 1x iy / bly Blz / 1z A

so that m and ¢ will be the same for all components in Equation (108).
Equations (115) and (116) then guarantee that

o ./ 1\ / 1y ; 1
B -=)=8B € - =)=B £ - =
1x " {f1x 7 2) 7 Py A (f1y 7)) B/ (B1: - ) (117)
\ / v \ ¢ / \
so that ¢ and m in Equation (111) and Equation (113) will be the same

1
in all three component Equations (103) neglecting the v° term. Such
a transformation might be called a constant mass frame transformation,
since, in the new time frame ¢, M=m is constant and is acted upon by

force terms containing constant coeff1c1ents one of which multiplies
the transformed speed ds/d¢. The utility of such a transformation can
only be judged by comparison with experiment.

First let us examine the qualitative behavior of our solution for
m. If we use Equation (111) and Equation (113) in Equation (107), we
obtain

m=m_exp ¢ / [2 m (e, - L\, (118)

o ¢ l ! o\ 1s 2} ;]; Lress
where we have also used Equation (108) We see that €14~ 5 corresponds
to the constant mass case since it makes m = o for all ¢ = t > 0
(bls = B, ) in Equation (111). Here we are interested in the case
m<0 for which it is convenient to write Equation (108) as Bijg = big *

(e, - %ﬂ (-m ).
ls 2 o

o
£



ls 1ls 1s

is positive and increases without limit. If ¢ is also positive, then
both terms on the left of Equation (111) are positive with the second
term approaching a maximum value while the first increases without 1limit

5 VU - 4 illa o
so that for late times ¢ becomes approximately proportional to t.
Negative ¢ is not allowed since both terms on the left of Equation (111)
would then be negative. For ¢ > 0, Equation (118) says that

as ¢ (or t) increases. Consequently a plot of m versus t will be con-
cave upward with m decreasing to the limiting value m (b /Bls)Z as t

increases without limit. In this case, m will truly vanish only when
b, = 0.
1s
<l thenB. 0. IfB, >0 because b, > |e, - =/ (- m)
When ¢ , then < 0. ls 1s 1 > o)
1s 2 s
then b15 > Bls > 0 and Equation (111 a only for the finite

Y | S, PR I S,
) has a solution
al

0<t<t,,,, with ¢ > 0. Negative ¢ is not lowed since the first term
NMAA

on the left of Equation (111) would be negative and eventually dominate

o o, \1/2 Fquations (111
the second term. At t dt/d¢ = = (m/mo) 7 from Equations (i ,

O o =

MAX’

~a N -~

(110) and (104a) and vanishes for

by = [- 21y (e - P/Byg] an (1701 - By /by )] (119)

or

t . =[2m Shym 0 - /) (170 - By /b 01 (120)

MAX o (F1s

From Equation (118), lml increases as ¢ (or t) increases so that a plot

of m versus t is concave downward with m vanishing at t = tMAX' If

B. = QO because b. = |e =l (- m ), then, since
1s ls 1 2t ’
1
[1 - e {- Bis ¢/[2m, (els } EJ]}] 1.,
gim | — B “1=¢/12m /(e s - D]
B, ~0 1s
-7 - {121)
Equation (111) reduces to
i - - (- 122
(2m/C-m)) [1-Y1- (-m/m) t] (122)
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SO tyay = [mo/(—mo)] and ¢MAX = 2 thAX when m vanishes. In this case,

from Equation (118), m = ho and m decreases linearly with time as follows

m=m [l - (-m/m)t] . (123)

.
(- m ) then ¢ must again be positive

before expregqed by
> see that |m| decreases
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and (102), is a particular case of €1g <

describe penetration in a semi-infinite target since m does not always
vanish in such a target.

A similar analysis can be made for m > 0.

B. A Classical Application: The Oscillator with Diminishing Mass

A well-known classical problem is the constant mass harmonic oscilla-
tor in a forcing field and a wide variety of electrical and mechanical
problems have been solved by applying the solution of the basic differen-
tial equation. Suppose the oscillator mass is not constant but changes
during the motion. How does the solution change? An answer has be

given in the previous section which we will now apply to a particul:
case which can be easily tested in the laboratory.

Consider a liquid-filled vessel of constant interior cross-sectional

area A, height ho, and mass m. =m_ + m_ suspended in the earth's
gravitational field by a spring of negligible mass and friction and with
spring constant k. Here m, is the constant mass of the vessel while m
is the initial mass of the liquid so My, 1S the initial total mass. At

time zero the vessel is released from its position a distance S below
its equilibrium position and simultaneously a hole of cross-sectional
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area a < A is opened in the bottom of the vessel. The mass of the liquid

at any time ism = p A h where p is its constant density and h is the
height of the liquid at time t > 0. The speed of recession of the liquid
surface relative to the vessel is v = - h = - m/(pA). From Bernoulli's

principle the exit speed, v_, is related to v by

E’

1 2, 1 2 a2y L L L
5 0 (VE -v) = 5P Vg [1 - (a/A)7] = p gh=p g (m/p A)

—~
[-—
N
E-N

f—

since v = (a/A) Ve by the equation of continuity. Since the total mass

iSmT=mv+ms°mT=m='pAV=—DaVE,then
R [ 5 a2
- m_2g (a/4)
. _‘/20 g A (a/0)° 172 ‘/ 0 _ W o)
v [1- @/0)°] Y h [ - (a/n)7)
If we integrate this equation we obtain
2
2 2
r /;Vg (a/A)" (o A h))

o ¥ n, 11- (a/A)°]

which has the same form as Equation (114) above with

) N 2
Fg @/N? (o Ah) 2e@n® L5y,

° ¥ n, - @n Vn 0 - @/m’]
(127)
which defines the constant K. Fro m Equation (127) we can determine
(- ﬁo), knowing m, g 2 A and ho' A specialized form of Equation (102)
can be used to describe the system we are considering, namely, an
undamped (bls = b25 = 0), harmonic (d = dZS = 0) oscillator with
diminishing mass (mT m < 0) in the earth's gravitational field

(a_ > mg). Thus we have
s
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mp§ 4 (1 - e)) ﬁT s+ks= (- m.g) - (128)

If we let ¢ = ¢(t) be an arbitrary transformation of the independent
variable t as before, we obtain

2 .
+2 d°s + d¢ ds c s+ds .
o] — m ¢d L = 3 fl - ) m 22 4k g o= _ . ¢
Mp ¢ 152 Tt a Tl 1) M v gy T RS Mp & (12Y)
or
d%s ds
M~3 +B == +ks= (- myg) (130)
d¢2 1 d¢ T
where Equations (104) and (105) for the constants M and B. are in this
- . P2 - _ y \
case M = Me ¢ = mo ¢0 = My = Mmoo+ omy and B1 = [mT do/de + (1 - al)
&T] i = - (El - %J ﬁTOEby Equations (105) and (108). 1In this case we have
from Equations (111) and (127)
¢ = (1/K) tn (1 - Kt)~1 (131)
and by Equations (114), (126) and (127)
m m - m = m (\-2 K(I) — e 1 I/A.\Z f13/}‘\
"T - u-V = m = mo < = ‘“O (1 - RNU) (154)
then Equation (130) becomes
dzs ds -2 K¢
M > * B] J5 * ks=-g (m, +m_e ). (133)
dé I ) -

The general solution is the sum of the solution of the homogeneous
equation (right side of Equation (133) set equal to zero) (given by
Equation (45) with 6 = 0) and a particular solution. 1In other words,
our solution has the form

+
Y9

<

Y ¢

s . A—2K¢\
2 g 7 4y © )

s =C

1

+ C

~
i
o2
Fo

(@)
@]
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If we.sgbstitute Equation (134) into Equation (133) and require the
coefficients of the exponentials to vanish we find

i:_i+ (E];Z k/hi_ + 3
Y M T M - =-atiluyw (135)

Ci= - my g/k (136)

C, = - my g/[4 M Kz- 2 KB

s + K] (137)

1
with C1 and C2 to be determined from initial conditions.

If we hang the empty vessel onthe spring it will extend a distance
(-~ C3) which determines k in Equation (136) once we measure m, and g.

If we fill it with a liquid mass m, and keep the hole closed so a = K =
0 it will extend an additional distance m g/k which gives us a second
measure of k once we measure m.. If we open the exit hole and observe

the relaxation of the system, the motion is described by the particular
solution

s=C,+C, e X (@my/k e my (- ke)2/(4 M K5 - 2 KB + K]

(138)
At the end of the relaxation time, 1/K, or ¢ = « the vessel is empty
and motionless at s = - g mv/k. If we measure s at various times during
. . _ 1 . _ o1
the motion, we can determine B1 = (el - 50 (- mo) = (e1 2) 2 m, K,

that is, determine €» since we know m0 and K. Now we know C3 and C4.

If we refill the vessel as before and pull it down an additional
distance (- S), then release it as we simultaneously open the exit hole,
an oscillatory motion is superimposed on the relaxation motion. The
initial conditions are

s =C, +C, + (C3 + C

o 1 2 - S + (C3 + C

2 » (139)

and Sy = ¢o(ds/d¢)o = (ds/d¢)o = 0, which gives
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+ = ~
0 = Coy o+ C,v -2k C,- (140)
From Equations (139) and (140) we find

- + - N
C,= (2« Co*vy S)/(vF - Y ) (141)
+ + -
So Equation (134) becomes
-a¢ . N
S = e [{(2 x C, - o S)/w} SIn w¢ - S cog w |
(143)
+C5 v, 072 Ko R
where C3 is given by Equation (136)and Ca is given by Equation {(137)
This describes the motion unti] the liquid is gone. Again, when the
liquid is gone at t = j/k SeC Or ¢ = w, g = _ m,, g/k by Equation (143)
and the motign Ceases. For t < 1/K the decay of the amplitude jg
described by
e ™ o (1 ey /K (144)
where
1 . \
- ) (- ) /
o B1 ) £C} 2)( .mo; —/ ”07‘\ o i) (145)
K 2m_ K~ 2(m + m K 7 \m o / Y173 )
To o] vV o} %
S0 observ1ng the amplitude as a function of time would also give a
measure of €10 If e, =15 mv/mo, then a/K = 1 4nq the amplitude
1

decays llnearly with time at a constant rate (- K). gIf £ 7 1.5 mv/mo,

ude versus time will be concave np- ard with the decay
magnitude but approaching zerg 4s t > 1/K.

» SO K = o = m0 = 0, then ¢ = t and from Equa-

tion (143)

S = - S cos we ot - LOS g/k (146)

T . -
where w, = /R/m , dCSCrlban undamped harmonic motion of a constant

7

mass w1th constant offset (- ﬂTO g/k). A measurement of W = 2mv o= 20/
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where v is the frequency and t is the period in real time will give
another measure of k.

Wben the hole is opened at t = ¢ = 0, w is a constant only in the
transformed time ¢. We can determine the turning points of the motion

by setting s = ¢ ds/d¢ = 0 {(or ds/d¢ = O since é = TT:%ET-# 0). In the

I [5)
. 4
s-¢ plane the period v, = 2n/w where w = ‘/k - [B,/(2m

P P o /mpo = [By/ (2 mp )]
constant and successive minima occur for ¢n =n r¢ = n (27/w) while real
time successive minima occur at

. \ -K¢, ,, -nK27/w
t = (1-e )/K=0 / )/X (147)
withn =20, 1, 2 , using Equation (131). As can be seen the
difference t 1 t becomes smaller as time increases As expected
n n *
the oscillation becomes more rapid as the mass decreases.

This latter point was checked experimentally by suspending a %V gm
vessel (waxed cardboard carton) of cross sectional area A =_50 cm and
height h = 9.8 cm from a spring with constant k = 1.5 X 10° dyne/cm
determined by hanging various weights upon it and observing its extension.
This vessel was filled with 490 gm of soapy water (to improve the flow)

and a real time period determined by recording the time at which every
fortieth minimum occurred and averaging over ten such measurements. The
time was measured to the nearest 0.01 second using the crystal controlled
timer built into the Hewlitt-Packard Model 55 hand held electronic
calculator. The memory was used to record and average the times, giving
an average period of 0.413 £ .002 sec with the actual difference between
high and low values being 0.2/40 = 0.005 sec. If Wy \/k/mT then

1 —_ R — CNL s
K = ] w = JVUL
To "t ¢

ng)

lower then the value measured by extension. The difference is due to

~ . . s s < < - . PR . 4[-.: ra 7~ h]
friction which we have been neglecting. Actually W, =YK/ mp, - 1by/2me ]

. . .. .. . [ 2
implying that b1 the friction coefficient, is 2 LI k/mTO - w,oE
3 5

8.16 x 10” gm/sec using k = 1.5 x 10 dyne/cm so that b is not

an aiaf s 1 2 ,,,,

negligible and must be known if we wish to calculate the observed decay
in amplitude. For this system with My = 506 gm,oscillations could be

observed for more then five minutes, but the system appeared stationary
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after 7 minutes. A solid brass weight of 500 gm was observed to
oscillate for about 10 minutes on the same spring, indicating a damping
contribution from the liquid motion. Still, we don't need to know b1

3

nCcc
Has> 35 .

o
3

in order to check the fact that mt 1s constant for a constant

this case w = 21/ (.413) = 15.21 sec”

A circular hole was opened in the bottom center of the vessel and

the drain time (until dripping began) was found to be 1/K = 250 sec,

so K = .004 sec’l. Thus the effective diameter was 0.19 cm and the
effective area of the hole was 0.028 cm? which is only 35% of the actual
area of 0.079 cm? (actual diameter 0.3175 cm) because of the well-known
vena contracta effect. The filled vessel was pulled down a distance

S =1 cm and released at time zero while the hole was opened simulta-
neously. As before, the time at which every fortieth minimum occurred
was measured, giving the values in Table II.

[ AR} Ty

Table I1. Times (sec) for Minima of Decrcasing
Mass Oscillator

n 0 40 80 120 160 200 240 280 320 360
t_ (obs) 0 15.98 31.33 45.77 59.38 71.82 83.90 95.36 106.59 117.41

L - 15.98 15.35 14.44 13.61 12.44 12.08 11.46 11.23 10.82
(t -t ,)/40 - .400 .384 .361 .340 .311 .362 .286 .281 .270
‘n n-40""

t_(calc) 0 16.25 31.44 45.64 58.93 71.34 82.96 93.81 103.96 113.45
ii

If we extrapolated (tn - tn ) 40)/40 to time zero we would obtain 0.413

which is the time for one vibration with the constant mass system. The
observed increase in vibration frequency agrees at least qualitatively

with the model. If we wish to calculate w in Equation (147), namely,
| 1 2
o =ykimp - (b + (e - ) (- m )/ (2 )] (149)
3 / C3 ( . 3 27K
we can use hl = 8.16 x 107 gm/sec as above. Since (- mjy=2Km =
3.92 gm/sec, €, must be considerably larger than 1/2 to have much effect
on the value of w. In order to measure £, we would need precise equip-
ment since k »> 2 X B1 in Equation (133) for £ < 106. If we assume
-1 . . . . .
€. = 100, then w = 15 sec in Equation (149) which is not much less
! 1 1
than w_ = 27/(.413) = 15.21 sec . If we use w = 15 sec and K = .004
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iine of Table 1II. These are in reasonaole agreement wW1llh tne opservea

values, although the agreement becomes worse as the motion damps out.
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calculated values agree initially. If the spring were weaker or the
mass heavier, better agreement might be expected for a longer time.

Even the classical damped harmonic oscillator with constant mass
requires a theoretically infinite time for its amplltude to decay to

zero and so does not pertectly describe real mechanical (or electrical)
oscillators which cease their motion in finite time because of factors
not adequately represented by the simple equation used. Similarly, we
cannot expect a perfect description of a variable mass oscillator by a
simple amendment of the constant mass equation.

iven this illustration to show that the proposed amendment

e
cal equation, namely the added damping factor (- m], can

i

ns we have in mind. Of course only
rojectile-target data will tell us how
reement will be. We will make such comparisons in the next
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subsection.

C. Applications to Target Penetration

Tate3" has given time-dependent data for the penetration and erosion
of dural and aluminum rods striking a semi- 1nf1n1te polyethylene target
at zero obliquity. The 5.45 gm rods were 6.35mm in diameter and 63.5mm
long while the striking speed was 1.646 km/s. Figure 5a gives the
position of the tip of the dural rod as a function of time. Tate's
data also gave the position of the rear of the rod as a function of time
but this is not shown to avoid crowding. Instead the dlfference between

the tip and rear which is the remaining length is shown in Figure 5b.

For the dural rod the final depth of penetration of the tip was about
155mm while the remaining length was 18mm, Figures 6a and 6b show
similar data for an aluminum rod which had a final depth of penetratlon
of about 120mm and a final length close to zero (unobservable). Tate's
comment was, "The whole of the aluminum rod is used up in the penetration
process'™.

g, Tate, "A Theor
J. Mech., Phys.

ory for the Deceleration of Long Rods After Impact,"
Solids 15, 387, 1967

~J
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Let us apply our model to Tate's data. We recall that d17 = 0 for

5

a cylindrical rod. In addition we will neglect the v~ force term

(assuming b, v << B‘z)' The displacement of the center of mass is
A 1 B

(omitting the subscript z)

z=:1-rc~a¢) [{v + 8 (- a - 8)} CBq)-{\! + 8 (- a+ )} r\_m’l-»fg
28 o ) ’ 0
(150)
from Equation (46) with ¢(t) instead of t given by Lquation (111) If
the rod density and cross section are constant during the motion we have

from Equation (113)

m/m0 = Q/EO = [ - bl/Bl) exp {- ¢/[2 m (gl-;)/Bll} + bI/BI] .(151)

We recall that B, = b, + (e, - lﬂf~ & ) and will take . = 1—50 B. > 0.
1 1 1 27° o’ 1 2 1
If we assume that the viscosity of polyethylene is v = 0.5 m2/s = .005

2
cm”/us as was done by Walters and Majerus?® based on analogous Russian
measurement s 20

b, ~ 6mRov = 67 (.635/2) (2.7) (.005) ~ .08 gm/us

7

~~
—
j9a]
I
—

As before in o
1

Finnegan we w

11

1

, mace data o€ B, Aliarn o
¢ constant mass aata of Buckman and
S

1 te than the estimated value, namely, b

] 3
.04 gm/us. From Figures 5 and 6 we can estimate m,= - .07 gm/us and the
final position of the center of mass & = 155-18/2 = 146mm for the dural
rod or 120-0/2 = 120mm for the aluminum rod. The depth of penetration

of the tip will be P = z + /2 in either case. For the dural rod we

. - 2 . .
will take 61 = 1 and d1 = 10 5 gm/(us)”, while for the aluminum rod,
A 101 v - 11'\—4 7 - \2
€p = 4and d; = 3.5 x 10 * gm/(vs)

The solid lines in Figures 5 and 6 give the calculated results which
compare reasonably well with experiment.7 The overestimate of P at early
times may be due to our neglect of the v¢ force term which would be more
important at retarding penetration during the carly stages when the

speed is high. It is of course desirable to include this term (though
not the d’z s2 term) and future work will discuss methods of doing this.
For the présent we will compare the solution for the force - (ao + bl

v + d1 s) given by Equation (150) with the solution for the force
2
- (b1 v o+ b2 v9) given by
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“2
[en {(1 + B:-vo) exp (b1 ¢/mo) - b2 vo/bl} - b1 ¢/m0] (153)

a

=3

zZ =

rU|o

where we must take a = 0 to describe embedmen

ot

as explained above.

From Equation (153) we see that as t » », ¢ > «

=]

2> Zyay = B;—Qn (1 + b2 vo/bl). (154)
From Equation (154) we see that 2im z,,, = m_Vv /b, so that
MAA O O 1
b0
2
b1 <mg vo/(zMAx) observed to keep b2 > 0. For the dural rod for example,
b, < 5.45 gm x 1.646mm/us/146mm = .06 gm/us while for the aluminum rod,

1
b, < 5.45 gm x 1.646mm/us/120mm = .075 gm/us. In either case b, = .04
i

gm/us as above is small enough. If we use this value for b1 and the

same values for €, as before, namely, €, = 1 for dural and € = 4 for
ince io is the same) it is clear from Equation (151)

that the calculation of & will not be different than before s
Th am s t 1

independent of as d1 oT b2' The same

Equation (111). Only z and therefore P will change. The dashed line in

Figure 5 gives the result calculated from Equation (153) when we use

b, = .03 gm/mm, while the dashed line in Figure 6 does the same for

aluminum with b, = .052 gm/mm. There is little to recommend one force

aluminum, then (s

c .
rue for ¢ as 1s ¢

poie

The values of the parameters bl’ 60’ mos Vg and § = - ao/d1 were
fixed by experiment, that is, a, v and § were fixed in Equation (150)

as were £ or m_and b, in Equation (151). The parameter £ ( and so

ment with experimental 2 vs. t values. The parameter d1 (and so B) was

adjusted to give reasonable agreement for z (or P) vs. t. Similarly
b, was adjusted in Equation (153). In neither case was there an effort

made to obtain a best fit since our purpose here is merely to illustrate

the potential of the method. Future work should include fitting a
variety of data and codification of the parameters.

~
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emi-infinite target are not commonly
tors in this country (in contrast to
ra . Usually projectiies are

and their residual S[ ecd

is illustrated in thelr F1gure 16 for a 7.78 gm steel rod wit
of 50mm and a diameter of Smm perforating a 6.35mm thick stec
This behavior is entirely reasonable for erosion since for hig

|.-—|

time is spen f i1

nt + tho
~ 1% 6 v ~
ong function of v, and declines with time,

occur as less time is spent in the target.
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Let us use t

he force - (ao + b, 2 + d1 z) to describe their data.
We can determine the amount of time or transformed time ¢ spent in the
target by setting z = T in Equation (150) for a given v. 2 v o= 0.64

mm/us measured by Herr and Grabarek. We recall that at the perforation
limit speed z = § = T and z = 0 as ¢ » «. The ricochet limit speed was

not measured but was taken to be v_,, = 0.55mm/us. In addition b1 was
onL

estimated to be ~ 67Rpv = 67 (.635/2) x 7.8 x 5.5 x 1072 < 2.5 gm/us

using the Russian?? value for steel of v = 5.5 MZ/S = .055 cmz/us.

Instead of cutting b by half as we did for aluminum targets, it scems

more appropriate to divide by five and take hl = 0.5 gm/us. This may be

due to the approximate nature of our model (in particular to our neglect

of v© terms) or perhaps partly due to a lack of Stokes' law transfer from

the explosive plate measurement technique used by the Russians and lon

penetration of steel plates. Such questions require much more investi-

gation and will be left for future work. The actual valucs used for the
oS 2 ] .

parameters were bl = 0.5 gm/us, d1 = 7.78 x 10 gm/ (us), ¢, = 1 and

m = - 0.4 gm/us. Once ¢ is determined for a given v_, then Equation

I A4

(151) is used to calculate the residual mass and the derivative of
Equation (150) is used to calculate the residual speed, namely,

z = ¢ dz/d¢
m .
-4/2 L (v s rag)e B Ly s(agy (aepye (GBI
Yym 28] 0 ]
(135)

~J
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where we have used Equation (104a) for ¢. The results of these calcu-
lations are compared with the data of Herr and brabar k in Figures 7a
7b.
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Since we are dealing with a case of rectilinear motion in the
perforation regime only,we can also describe the data by using the force

. +2 . .
-(a_+b, z +b, z") provided we require a_ to vanish when v. = v _,.

o] 1 2 : o} o oPL
Let us take a = a, T (vo/vopL - 1) with a; small. Now we determine ¢
for given v_ by letting z = T in

v

m +

("on . [.. , -B /n

2=\ )t | (1 - Ae ¢)/(1 A) + (Zb ) ¢] , (156)
Do L 2/ |
. 2 + Vo
the analog of Equation (24) where (-q) = b1 - 430 b,, h™ = - b, * V-q,
4 F'e

A= (2b, v_ - h+)/(2b7 v - h) and B = VTEYmn. Once ¢ is determined
S o calculate the residual mass and the

then Equation (151) is used t
derivative of Equation (156) is used to calculate the residual speed,
namely,
i * dz/dd almO o1 'h+ T : 1 N A A'B¢\ 1571
zZ = = - - A e 1 - A C . 157
® /do Vm Lzb—,JL )7 U J \ J
<
1f we choose al = .001 gm/(us)zf b, = 0.3 gm/us, b, = .01 gm/mm, €, =1
. n the dashed lines in Figure 7. The

tion that the solid and dashed curves are 1nd15t1ng

attempt has been made to optlmlze agreement with expe
han

P e ntna 1y
19

that an even lower value of bl seems appropria

g
calculation for the residual mass is so close to the _prev

ish

T

cluded. If we limit ourselves, to zero obliquity perforations as s
by Tate or by Herr and Grabarek there is little to recommena the

component force -(a + b1 z + d1 z) over the force —Ld + Ul z + u2 z

However, if we wish to include richochet, embedment and perforation in
one unified theory, then the former force is preferable as we have
seen.
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Figure 7. Residual speed and mass versus striking speed for a
long steel rod penetrating a steel plate: measured
and calculated values.
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Table II1I. Calculated Va
Using the Force -(a + bl z +d
v, mm/us .64 .7 1.0
é us o 15.05 7.85
m/m0 .51 .62 .73
v, mm/us 0 .29 .76
Py

lues for Rod Mass and Speed
e

1 %)

1.3
5.56
.78

1.13

1.6

4.34

.82

1.47

Lepul L LTl al

In Herr and Grabarek's report there are some indications that for
1

some materials, perhaps tungsten rods versus steel, the residual mass
might first increase and then decrease somewhat as Ve increases. The
data is not good enough to say that this occurs. If a case is found
in which this behavior occurs, then the above model can be modified
by the addition of a simple ad hoc postulate to include such a case.
For given materials we might expect m, the initial erosion rate, to

depend somewhat on v,» the striking speed.
this might be

A simple representation of

. n
mo=-0 (vo - VE)

where ¢ and n are

A Aot iara :Aqn ) A nknm ar

more negative 10T nigner v .

o
(1 ow) and v

the time to nerfor ation, t

two curves marked v,

., Wil
i

e

i

ine is horizontal). However, it is easy to see
lope on the v, curve would lead to a lower

rnm

1 t ~ llla‘
ol 2
e“would

— 3

ad

Al
ea
ca

o]

d

to a higher residual mass than for Vo1 if t, were the same. Trial

calculations have been made and these have confirmed the ability of
such a modification to represent the occurrence of a maximum in the
residual mass versus striking speed curve with leveling off to a
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dence that

ing evi

will not be presented here since we have no convinc

83



VIII. A MODEL OF PROJECTILE BREAKUP

Here we are thinking of breakup as a discrete or discontinuous process
in contrast to the continuous process of erosion. In recent years
microscopic fracture theories have been advanced and linked to continuum
fracture mechanics by constructing statistical distribution funcgions
which represent molecular bond-breaking or flaw activation rates3S
In this way more physics can be incorporated into a theory which, however,

I
4
)

remains basically statistical in nature. This is partly necessitated by
the enormous complexity involved in giving a deterministic description
to each component of a large ensemble. There is also a virtue in this
necessity since the behavior of large ensembles seems to follow rather
simple laws which are of more interest than the behavior of the indivi-
dual components. Gredenko has expressed this very well in discussing

the molecular structure of matter

"The problem here is not in fact, that of investigating the motion
of individual particles but that of determining the laws to which aggre-
gates of a large number of interacting particles are subject. However,
the laws that arise in consequence of the mass character of the parti-
cipating components have their own peculiarities and do not amount to a
o= T ~

simple summation of the individual motions. Furthermore, within certain
limits, these laws are found to be independent of the individual propert-
ies of the particles that give rise to them."36

Mott
and Linfoot37 were also statistical. At the suggestion of B. L. Welsh
these authors proposed that the number of bomb or shell fragments with

masses between m and m + dm could be represented by the distribution

Early models of fragmentation such as that proposed in England by

l.
2

. and a are ¢
v ang a are ¢

dm, The fact that this di

. +hao .
1S The numoer in

S ANS 4. e 1
trlbutlon fit experimental observations

w
1.)1

4

R. Curran, L. Seaman and D. A. Shockey, '"Dynamic Failure in Solids"
‘nysics Today, Jan 1977, pp 46-55.

388, V. Gnedenko, The Theory of Probability,Trans. by B. D. Seckler,
NY, Chelsea Publ. Co., 1962.

370, F. Mott and E. H. Linfoot, "A Theory of Fragmentation," Advisory
Council on Scientific Research and [lechnical Developments, A. C.
3348, Jan 1943.
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reasonably well suggested the following idea to Mott and Linfoot. If

the number of fragments wiLh characteristic ergth X in the interval
-x/x .

between X and x + dx were C e /%, dx and the length x were proportional

to the cube root of the mass for a three-dimensional body, then

Equation (159) would result. They pointed out the fact that similar
distributions had been used to describe the weight or diameter distribu-
tions of crushed minerals or sand particles38 and discussed the one- and

two-dimensional analogues of nquatlon (LoY) which mlgnt be tnougnt or
if linear or planar breakup were involved.

Soon after, also in England, Ursell3? suggested that the chance that the
umber of fractures be n ought to be given by a Poisson distribution
-AE n, ,

(ML) /n! for a rod of length £ with the expectatlo of fractures being

AL. Transatlantic communications must have been excellent for in less

f
than six months Thomas publlshed a report in the United States showing

+L e e AL M~+s R N llf‘ 1Tmeall ~rnnild ha Ak

that the results of mocTte, Linfoot and ained from
more general considerations which did not require random planes traversing
a volume"0, He pointed out that Equation (159) (or its one- and two-

~an W | Ep § &= 4 U1l

uTrs€ii COuiG 0€ 00 d from

dimensional analogs) does not depend on partlcular breaking mechanisms
such as the simultaneous formation of all fragments, but allows for
example, smaller fragments to be formed at a later stage from larger
fragments already formed.

Thomas' observation on the generality of Equatlons of the type of
Equation (159) has been enlarged upon by Molitz%! who used a Weibull®
distribution to describe fragment masses from shells. This has a
density function

Lo
P4

A
dn = C p-1 e-a(m ) dm

r~\
=
[N
(=]
N

which reduces to Equation (159) when A = 1/3 (or to the 'two- or one
dimensional' analogs when A = 1/2 or 1). Of course, the "one-dimensional"

385ienau, J. Franklin Inst., (1935) p 485
39

i 1 oo n
394, D. Ursell, "Fragmentation

A.C. 3817, April 1943.
404, H. Thomas, '"Comments on Mott's Theord of the Fragmentation of Shells

PN

and Bombs®, BRL R 398, Sept 1943. (ATI #36152)

I/ Y y [
Data and Theories of Fragmentation,'

41y, Molitz, "Einige Bemerkungen zu den Verteilungsfunktionen der Splitter
grdssen, Explosivstoffe 2 Mar/Apr 1973, p 33.

42y, weibull, Statistical Evaluation of Data from Fatigue and Creep-rupture

Tests. Fundamental Concepts and General Methods". WADC Tech. Rept 59-400,
Part I, 1959.
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analog with A=1 is the exponential distribution while the case A=2 is
called Rayleigh's distribution,

Gredenko*3 showed in the asymptotic theory of extreme values that

only three types of limiting distributions exist with Weihull's formula
being the third asymptotlc distribution of the smallest values“%. In
short, Equation (160) is a generalization (w1tn A as an adjustable
parameter) which does not depend on the details of any physical model
of breakup. In fact, it has been applied to a wide variety of physical
and social phenomena®S.

Since pra cal fragmentation experiments require a nen-zero
measurable) lower mass limit, we can introduce a cutoff mass, m
C)
and write Equation (160) as
A-1 -a{m-m )A
dn = C (m-mc) e c dm (161)

which is the usual generalization to include a shift in the origin. Here
A is an adjustable parameter which at least for shell fragmentation by
high explosives experience indicates is less than unity (near 1/2 or

In view of the above considerations about the generality of Equation
(160), it seems reasonable to apply it to pro;ectlle breakup under impact
as well as to shell Lragmeru tion by high explOblveS. When a prOJeCtlle
shatters or breaks into many small pieces during a high speed impact,
then Equation (160) might be sufficient. However, for impacts at ordnance

rojectiles ze

speeds, projectiles tend to break up into relatively few pieces of size
comparable to each other and the orlglnal projectile. In this case
discrete distribution function related to Equation (160) should be more
appropriate. Let us trace a connection between certain discrete and
continuous distributions which will be suitable for our purpose.

438, V. Gredenko, "Limit Theroms for the Maximum Term of a Variational
Series", Doklady Akad. Nauk, USSR 32, 1941.

YE. J. Gumbel, "Statistical Theory of Extreme Values (Main Results)"
c.6 in Contributions to Order Statistics, Ed. by A. E. Sarkan and F. G.

Greenberg (NY: John Wiley & Sons, Inc., 1962.

“SW., Weibull, "A Statistical Distribution Function of Wide Applicability",
J. Appl. Mech., Sept 1951, p 293.
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Consider an interval y and divide it into k parts each of size e=y/k
with k large enough so that subinterval e contains on the average only
one random event. Let r be the constant average rate of occurrence of
events in the interval y. Then the probability of one such event
occurring in the subinterval € is p = r € = ry/k. The probability of
of no events occurring in the subinterval e is (1-p). If these events
are randomly distributed, the probability of finding exactly s of them
in k intervals (k trials) is given by the binomial distribution.

q (s; k, ry) = —& xy/° (1-ry/k kS (162)

s! (k-s).

where s = 0,1,2...k and q = 0 for all other s. Now consider the
limit as k+ «, namely,

- -

J

S 1 k s
lim q = —QP—— lim ——}‘————S lim(1- ry/k) lim(1-ry/k)
koo T ke (kes)t RTgE @ k> = ]
s
o\ 2»1y) 1 L*d [Nl
s! L J

which is the poisson distribution. After division of the numerator
by the demominator the first limit in Eq (163) becomes

k(k-1)k-2)...(k-s*1) _ ;. 1‘112 (\ “\ (1- (s- 1)/15 =1 (164)

1
A LI

J
ko KS \

o]

a

while the third limit is obviously unity. If we le:
s e s

second limit becomes the (-ry) power o t
of the natural logarithm, namely,

- r (1o 1/ Z.] (-1’)’)= e‘r)’ {165)

2 14
im (1%2)

Finally consider the p robabily~that one or more events will occur in

Ak A a) v YS =

the interval Yy, namely,

>

2: p(s;ry) = 2: P(s;ry) -P(0;ry) =1 - e (166)
s=0

[7;3

=
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by equation (163) and the fact that

o - S
‘r - - PN B
— Y(rz) o TV g:‘i) (r;’)’ =TIV JTY _ (167)

w
[ew)

From Equations (166) and (163) it is clear that ¢ ™ is the probability
that no events will occur in the interval y. If we look upon ry as a
continuous random variable it is obvious that the cumulative probabilities

e ™and 1-¢”* have as their density function

d{n/ ) = dn/N = h—(r),) d(rv

[ QYA LY AR B U(L

-T
) =re ™Y dy

s
fo—
(2N
[}

—

an event will occur in the interval from ry to ry+rdy. Here dn is the
number of such events in the interval dy or rdy and N is the total number of
such events. If we integrate Equation (168) over (ry) from 0 to ry we
obtain Equation (166), while if we do the same from ry to =, we obtain e 1Y,
The mean value of y is 1/r while the median value y is (1In 4)/r = .7r.

which is the usual exponential distribution giving the probability that

In summary, we have seen that the Poisson distribution is a limiting
form of the binomial distribution for small p (in particular for
k>> ry >> p = ry/k). We have also seen that sums over the discretec Poisson
distribution which divide the set of possible outcomes into that of no
event occurring and its complement, that of one or more events occurring,
have the form of a cumulative exponential distribution with continuous

density function given by Equation (168).

‘ately general to emphasize the
random variables are not restricted
a particular mechanism envisioned
le, approximate expressions of
seem to follow rather well. For

example, the above analysis is commonly employed in discussions of
reliability or 'time-to-first-failure'" problems. The interval y 1is taken
to be a time and r is a failure rate with ry being the expected number

of failures in time y. Similarly, y might be a time and r an arrival rate
of trucks at a loading dock with ry the expected number of arrivals in

time y. In another application the interval y is taken to be a volume.
For example, if microorganisms are distributed randomly in a body of water
and a sample drop is examined under a microscope, we expect to find ry
organisms if r is the density or number per unit volume., In view of the
great variety of applications for such formulas it does not seem necessary
or appropriate to put much weight on discussions of dimensiocnality.
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If we let y = (m/f)" in Equation (168) it becomes

A .
dn = N e-r(m/p) d[r(m/p)%] = Nix mk'l exp [-rmx/px] dm (169)

.which is Equation (161) with C=NA(r/pA) = =Nla. When X=1/3 Equation (169)

becomes Equation (160) with C1=Na=N(p1/3/r)_1 =N -1/3 if we define u=p/r3.
2 N

In other words, Mott's formula is a particular case of Equation (161) which
in turn is a particular case of Equation (168) which is an exponential
distribution of the random variable y. If m is a mass and p is a mass per
unit volume then x can be interpreted as a characteristic dimension of the
volume in question. If the original volume is cubical and breaks into cubes

then x is the length of an edge and A is 1/3.

) =

If the volume is not a cube or does not break into cubes but the
fragments are chunky then an effective value for A should not be far
from 1/3. If the volume and/or fragments are rods, plates, shells or some
arbitrary shapes, then the a priori value of A is not obvious. If Equation
(169) is to be applied to such a volume it seems better to treat X as an
adjustable parameter to be determined by sample experiments.

As we have noted, Equation (168) is the density function for certain
sums over the Poisson distribution. It is instructive to return to
Equation (162) and repeat the analysis for the particular application of
material breakup. In this case k is the very large number of defects which
are found in real materials, while s is the number which are activated or
converted into breaks in a given stressful situation. Now r is the average
rate of occurrence of activated defects or breaks which are assumed to be

randomly distributed over the interval y which is a characteristic
. avent in this descrintion is a break,

dimension of some type. Since an event in this description 1s eak,
then N in Equations (168) and (169) is the number of breaks which occur
in the interval. The number of pieces will be N+1 which is practically equal
to N for N>>1. Here r or ry is a function of the stress applied to the
body in question and will depend on the manner in which it is applied

as well as on its magnitude. In addition, it will depend on the material
properties of the body as well as its geometry. In the case of an
explosive-filled shell, N is usually taken to be equal to the large
number of fragments collected, A is taken to be 1/2 or 1/3, and u is
treated as an adjustable parameter. Various schemes for estimating u

for certain geometries and materials have also been proposed, starting
with a report by Mott“6. If we integrate Eq (169) from m; to m, we

N§ N..E. Mott, "Frqgmentation of HE Shells; a theoretical Formula for the
Distribution of Weights of Fragments'", A.C. 3642 (1943).
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obtain the number of fragments predicted to be in this mass range for
- =\

given N, A and u Aﬁ(pzs) - If we let m1=0 we obtain the number of fra

which should have mass less than m. or variable less than w2 = Ty

\ 2
=r(m2/p)A, namely,

N(m<m2) =

=ND-eq)

with N(m<m2)/N giving the chance that an individual frag:
mass less than m,. The complementary probability, namely, the chance

that a fragment will have a mass greater than m_, is of course

2!

=W -w

e dw = exp {-r[mz/pjl} =e 2 (171)

AY

Im>m N Aav -
NL 2)/N

—ng

w2
Here m, obviously cannot exceed the original mass of the body before
breakup(mo) so taking the upper limit of the integral to be « is an

approximation. However the error involvedfor explosive fragmentation
is usually small and quite acceptable since even the largest fragment
produced is very much smaller than m . The error is also acceptable in

view of the simplicity of the formula and the experimental accuracy
which can be achieved. In equating N to the total number of fragments

collected we are effectively defining r to be infinite for m>m so that

0). Other

Equation (171) vanishes if m_>m and N(m<m ) = N
1 N J 2 O A8 J

formulations can be found to handle both a cutoff mass for particles too
small to measure and a maximum (unbroken) mass equal to m - These will be

the subject of a future report since they are more concerned with experi-
ments in which breakup becomes shatter, that is, with the high explosive
fragmentation of shells into a large number of pieces or with projectile
breakup upon impact in the hypervelocity regime.

The median value of y, namely ;, is found by setting N(m<m2)/N=0.5 =
N(m>m2)/N in Equations (170) and (171} and solving for Y, = y. Thus
Yy = (In2)/r as before so the median value of the mass is
- NI/ IPTE § V0 NP INRS VO NS VO o
m=p (y) l_(m”r_] =(In2)"" " (/7" 7) (172)



The mean value of y, namely y, is found from

[~ -]
(oo -1
=_Jd ye "7 d(xy) = (173}
Y=
which is consistent with the meaning of r as the average number of breaks
per unit interval. Then the average value we expect for the mass is

/TN =y (174)

by our previous definition of p if A = 1/3. By comparing Equations (172)
and (174) we see that the mean and median values of the mass differ by the

factor (lnz)l/l which is about 1/3 for A = 1/3. Having m < m is character-
istic of a distribution positively skewed (to the right).

In this report we are interested in projectile breakup during impact
at ordnance speeds where the number of breaks is not much different from
unity and the mass of each piece is not very much smaller than the

striking mass m,- Consequently, we cannot afford to set the number of

pieces equal to the number of breaks, nor can we let the upper limit of
any mass integral be effectively infinite. We can however, use the
Poisson distribution since the number of defects or unactivated breaks, k,
is still very large (effectively infinite) in any real material so that
the limiting process of Equation (163) is still applicable.

Equation (163) is a probability distribution for the discrete variable
s, given the continuous parameter (ry). As is well-known, the mean value
of s is

z
Fh
o
H

~3

ich is the average numb
ress conditions specifi
t and P is not neg

ger, is
s)/P(s-1) = (ry)/s T 1 fro

) om
increases as s increases, whi
f ry happens to be an integer,

o t
by ry. Here ry not necessari
arily maximum at s. If we form the ratio
quation (163), we see that for s<ry,

e for s>ry, P decreases as s increases.
hen P has two equal maxima at the modes
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umber of breaks plus one we have

m,=m_/(s+1l) = m /(ry+1)=m /(N-+l) (176)



from Equation (175). In order to estimate m et us make some

AV’

1
reasonable assumptions about ry=N In particular let us assume that Né

CU

is proportional to an energy per unit volume carried by the projectile
divided by the energy per unit volume needed to fracture the projectile,
namely
r oA ~ e |
= 1 2 2
ry = N, = K| = v -V o 177
y=Ng=K|70 (v,"-v. )| /o, (177)

where the density, p, the striking speed, vV , a critical speed, v

~2
-

Y
experimentally. Here K is the constant of proportionality which
measures that fraction of the excess striking energy density which is
converted to intermal energy of the projectile and is responsible for
any breaks which may appear. To account for obliquity it is reasonable
to assume that K is proportional to the line of sight thickness
T/cos 8 so
o
F/cos 80 (178)

where F is a fraction dependent on factors like projectile shape, pitch
and yaw as well as target hardness. Instead of Oy’ which is readily

available for most materials of interest, it might be more satisfactory
to use ¢.€,., where 0_ and €_ are the true stress and strain at fracture

" a [ T T,
Ll.dtt: CA UJ..L“K—HL witrCil CO lb
14 P

i
forces. However, in view of the fact that OF and EF are not readily

available for all materials of interest even in simple quasi-static

tension experiments, we will use o ,» assuming that G and o €. are

in an appr

related for particular materials of interest.

In summary, from Equations (177) and (178) we can calculate the
number of breaks we expect, N., and the number of pieces we expect,

N%+l. Then we can find the average mass from Equation (176) and

or square of the standard deviation) we expect
S aver f the well-known fact that the variance of
the Poisson d1 tribution is equal to the mean namel > TY. Alternatlvely,
alcul di om the prob
S(%;ry) or ev e int

or equal to ry.

i

Let us illustrate the above model by applying it to some data
contained in the Holloway, et al. report cited above"“. Consider a
tungsten sphere of mass 0.45 gm and diameter 0.36 9cm striking a mild
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steel plate at zero obliquity. All of the zero obliquity data for this
case is plotted in Figure §, a total of 39 points. For 24 of these
points the target thickness was 0.16 cm, for 14 of them it was 0.32 cm
and for one it was 0.64 cm. All but three involved spheres nominally

0.45 gm, while three were nominally 0.26 gm. This information is
se i

represented by the different symbols used in the figure. From the
figure we can take V=500 m/s = .leOscm/sec while the density is p=17.1

gm/cm3 and oy=6 kilobars = 0.6x1010 dyne/cmz.

If we assume K=F=0.1 in Equation (178) we can calculate (ﬁB) as a

function of v_ namely, Ny = .1 [%{17.1)(v02-.5‘)x1010 /.6x1010 =

1.425(v02— .25). The results ar
mAV/mo from Equation (176) plotted in Figure 9 as the dashed line.

given in

Table IV
Vo(km/s) <0.5 .75 1.00 1.25 1.50 1.75 2.060 ©
ﬁh 0 .445 1.069 1.870 2.850 4.008 5.344 o
ﬁ§+1 1 1.445 2.069 2.870 3.850 5.008 6.334 =
. . . . .200 .158 0
mAV/mo 1 692 483 348 260

Here we are neglecting mass loss by erosion. Below vo=.5 km/s erosion

is quite small experimentally and from considerations given in the
previous section it should be even smaller for higher i~ For

comparison we have also plotted in Figure 9 the residual mass curve given
by the Thor Equation in the Holloway report" namely,

- . . . 8 . 3324 .9911
mo=m -10"4+ 35161y - 1455 o 7191 sec 6 ) 4048, 1 W) (179)
17 o o o
which in the present case becomes the mass ratio
9911
=1-. ) 180
m,/m, =1 315(v ) (180)

with Vo expressed in k m/s where we have used k=20, eo=0, mo=.4s gm

and T=1.6 mm. For T=3.2 mm the factor .315 becomes .348. For all

practical purposes Equation (180) is a straight line and predicts that
vanishes for v near 3.2 km/s which is not reasonable. In

m /m
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contrast Equation (176) vanishes only as Vo+ ®, As noted before, Equation
(179) also makes the unreasonable prediction that my will decrease and
eventually turn negative if mo is increased while all other parameters

are held constant, since the exponent 1.3324 exceeds unity. Equation
(176) does not have this problem since the average residual mass is
always proportional to the striking mass.

If we change one parameter, namely, © =45°, then we have the data

)
plotted in Figure 10. If we keep F=.1 so K= .l/ 707=.1414 instead of .1,
then Ny is multiplied by 1.414 in Table IV and we have Table V.

TABLE V

v_(km/s) < 0.5 .75 1.00 1.25 1.50 1.75 2.00 o

Nﬁ 0 .629 1.512 2.644 4.030 5.667 7.556
Nh+l 1 1.629 2.512 3.644 5.030 6.667 8.556 =
ﬂAv/m 1 .614 . 398 .274 .199 .150 117 0

the mass ratio in Table V is given by the dashed curve in Figure 10
hich ower than the dashed curve of Figure 9, following the trend

s lo
of the data for the largest pieces. Equation (179) with e =45° leads to

1

m/m = 1-.431(V )" it (181)

which is plotted as the solid line in Figure 10 and predicts negative

m, beyond V_=2.34 km/s.

Since we have a Poisson distribution for the number of breaks, we

= r example
£

v
7

k

< W

1.
partial sum (£=0) is .220, while for 2=1 the cumulative sum is .553.

Consequently, the median number of breaks is s=1 and the median number

of pieces is 2. Thus half the time we should find fewer than 2 pieces

and half the time more than 2 pieces with an average mass fraction

m./m=.,398. If we count the number of data points above and below the
e

d line in Figure 10 for the range 0.9<V <1.1 km/s, we find ten below

and ten above if we include the three eroded masses with mllmowo .98. This

is fortuitous since each data point represents the mass fraction of the
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tribution about

largest piece found, and we cannot expect a 50/50 d
s in e V with ry=ﬁ£=4.93,

the average mass. If we consider v =1.5 km/:

e e

- 0

the partial sums are .018, .089, .233, .426 and .621 so the median

number of breaks is s = 4 and half the time we expect to find more or
less than 5 pieces with average mass fraction .199. All six of the data
points near V_=1.5 km/s in Figure 10 lie above the dashed line. This

is consistent”with the fact that the variance of the Poisson distribution
is also equal to ry so the distribution spreads out as ry increases and
the largest pieces are all likely to be above average in size. Similarly
the smallest pieces are more likely to be much smaller than the average,
although no data was reported to confirm or deny this prediction.

In the report by Herr and Grabarek?? an effort was made to observ
the masses of all the projectile pieces as well as target debris down to
a cutoff size of 0.019 gm. For example, on pp 103-4 of their report
they give particle data behind steel targets 6.35 mm thick struck at
zero obliquity by tungsten alloy rods with mo=3 .89 gm and L/D=49.2 mm/

2.46 mm = 20. For Vo=.776 km/s the projectile was intact with a

residual mass of 1.782 gm, indicating an erosion loss of 2.108 gm. They
also reported a target plug of 0.991 gm and nine fragments with average

mass of 0.075 gm totalling 0.673 gm. If these were all projectile
fragments, then (2.108-0.673)=1.435 gm was either out of the field of

view or distributed as fragments smaller than the cutoff mass. At v_ =
.869 the projectile broke into three pieces of .311 gm, .739 gm

and 1.238 gm, totalling 2.288 gm with average mass of 0.76 gm, indica-

ting a possible erosion loss of 1.602 gm, less than the 2.108 gnm
erosion loss at the lower v, as expected. They also reported a target

plug of 0.765 gm and 15 fragments with average mass 0.062 gm, total
0.925 gm. If these were all projectile fragments, then (1.602-0.925)=

0.677 gm was not measured. At v_ = 1.384, the projectile broke
into four pieces of .285 gm, .408 gm, .460 gm and 2.313 gm with average

mass 0.867 gm, totalling 3.466 gm, indicating an erosion loss of only
0.424 gm. They also reported a target spall fragment of 0.143 gm

and 20 other fragments with average mass 0.0476 gm and maximum mass
0.058 gm totalling 0.953 gm. Obviously not all of these rragments could
be projectile fragments since their total mass exceeds the erosion loss

of the projectile. At east half of them and probably most of them

3
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This case resembles the previous case in that tungsten projectiles
strike steel plate targets at zero obliquity. However, the target
here is thicker by a factor of 2 to 4 while the projectile is a long,
thin rod rather than a sphere. Let us assume that the dominant

0
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difference is the projectile shape. Since such a rod striking at a
slight yaw of 2 to 3 degrees is more likely to fracture than a sphere,
let us increase the value of F or K in Equation (178) by one third so
e W S T 2 are 2 aos oy
that ‘B .333 times larger or Np=1.9(v_"-.25). This gives us the values
n Table VI.
Table VI

v N, N,+1 m_,/m' m' m c) m s s -

o B NB 1 AV Mo o(obs) Av(cal ) AV(obs) s s+1 Pieces(obs)

.776 .669 1.669 . 599 1.782 - - 0 1 1

. 869 .960 1.960 .510 2.288 1.167 .763 1 2 3
1.384 3.163 4.163  .240 3.466 .832 .867 3 4 4
Here m' is taken to be the sum of the masses of the projectile pieces

observed after perforation and so does not include the mass lost by
erosion. Presumably the eroded mass survives as particles too small to
measure and breakup of the eroded mass occurs as the projectile exits

the target So m, is taken to be the mass to be broken in Equation (176).
By using N_=.669 for V= .776 we calculate S(0;.669)= .512 so

s=0 and the median number of pieces predicted is one in agreement with
the observation of an intact projectile. It is meaningless to speak of

+4 L ballliligito cal L2

an average mass of the nro;ectlle pieces in this case. By using N_=.960

s e == (=2 M
Lo e
IUI'
amo
2GUT

the

deviations are
expected of course because of the small sample size and the large
variance. Surprisingly, both the number of pieces and the average mass
observed at v_=1.384 km/s are quite close to the values predicted.

v

This is encouraging. However, much more information is required before
we can say that this model has been validated by comparison with experi-

ment. ThlS too will be the subject of future work.
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IX. CONCLUSION

The advantages and limitations of a number of previous descriptions
of target penetration by

approaches have been proposed which incorporate these advantages and
overcome many of these limitations. A deterministic particle model for
an eroding penetrator has been proposed and the simplest versions of this
model have been illustrated by comparisons with simple experiments.

The model seems capable of describing three dimensional trajectories in
a target consisting of various density components distributed in an
arbitrary manner. Although the illustrations given here have been

for single plate or semi-infinite targets, extensions to other targets
of interest such as multiple (possibly spaced) plates, convex or concave
cubes, etc., are obvious. In addition, a stochastic model has been
proposed for projectile breakup and illustrated both for chunky fragment
projectiles and long rod penetrators. Thus, the principle features of
penetration in the ordnance range can be described in a theoretically

sound yet simple manner, readily adapted to practical calculations and
a broader fundamental understanding of npnefrnf1 on.

a.lulug G vivauwva undamental unaersdandin 1S SabLiaLiVils

a nroiectile ha
a projectile have been reviewed, and new

Much work still remains to be done. In order to consolidate the

gains already made here, many more comparisons with experiment are in
order. From a theoretical point of view it would be advantageous to

find closed-form expressions for s(t) and m(t) using a force which depends
on the first and second powers of the speed as well as on at least the
first power of the depth of penetration. In view of the long history

of this unsolved problem, this may not be easy to do and approximate
solutions may have to be employed in order to describe hypervelocity

penetrations by this technique. This reminds us also of the desirability

of obtaining a simple, closed-form solution for both projectile and

shaped charge jet penetration in a unified theory as well as a unified
model of projectile breakup, jet particulation and high explosiye
fragmentatlon. Another area where much work remains to be done involves
the mass and velocity distributions which describe the target debris.
Little experimental information is available to guide or check the

model maker much less the vulnerability analyst who might use such a
model. However, now that a simple method is available to describe
ricochet, this long -neglected feature can be incorporated into vulner-

ability codes after suitable experimental checks have been made
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APPENDIX

A COMPUTER CODE

18 REM THIS PROGEAM FOR THE HP 923268R CALCULATOR COMPUTES AMD FLOTS EXIT
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