EFFECT OF SURFACE EXPOSURE TIME (SET) ON STRENGTH OF ADHESIVE BONDS TO ALUMINUM

MARIE C. ROSS
NATALIA PETRIANYK
ELIZABETH A. GARNIS
RAYMOND F. WEGMAN
DAVID W. LEVI

AUGUST 1979

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Destroy this report when no longer needed. Do not return it to the originator.
EFFECT OF SURFACE EXPOSURE TIME (SET) ON STRENGTH OF ADHESIVE BONDS TO ALUMINUM

Marie C. Ross Raymond F. Wegman
Natalia Petrianyk David W. Levi
Elizabeth A. Garnis

Surface exposure times (SET) at 23°C and 50% RH for 2024-T3 aluminum subsequently bonded with EC-2214 adhesive did not affect the bond strength for SET up to 30 days. SET at 54°C and 95 ± 5% RH gave much lower bond strengths that did not further change with increasing SET. The difference in strength is believed to be due to the formation of a hydrated aluminum oxide on the aluminum surface at 54°C and 95 ± 5% RH. This hydrated oxide functions as a weak boundary layer.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>1</td>
</tr>
<tr>
<td>Experimental Procedures</td>
<td>2</td>
</tr>
<tr>
<td>Materials</td>
<td>2</td>
</tr>
<tr>
<td>Surface Preparation</td>
<td>2</td>
</tr>
<tr>
<td>Surface Exposure Before Bonding</td>
<td>2</td>
</tr>
<tr>
<td>Bonding Procedure</td>
<td>2</td>
</tr>
<tr>
<td>Method of Testing</td>
<td>3</td>
</tr>
<tr>
<td>Conclusions</td>
<td>3</td>
</tr>
<tr>
<td>References</td>
<td>3</td>
</tr>
<tr>
<td>Distribution List</td>
<td>7</td>
</tr>
<tr>
<td>Figures</td>
<td></td>
</tr>
<tr>
<td>1 Comparison of strength data at two SET</td>
<td>5</td>
</tr>
<tr>
<td>conditions.</td>
<td></td>
</tr>
<tr>
<td>2 Linear Weibull plots for two SET conditions.</td>
<td>6</td>
</tr>
</tbody>
</table>
INTRODUCTION

Earlier work on several aluminum alloys in these laboratories (refs. 1 and 2) has indicated that surface exposure times (SET) up to 30 days have little or no effect on subsequent adhesive bond strength and durability. At first glance these results would appear to be at odds with those of Smith and Kaelble (ref. 3). The latter authors found an initial marked drop in strength with SET, followed by a leveling-off. However, bond strengths in reference 3 were measured after using SET conditions of 54°C (129°F) and 95% RH. The SET conditions in references 1 and 2 were a better approximation of shop storage conditions (23°C (73°F) and 50% RH). In an effort to reconcile these results we have selected a system for which we had previously determined strength-SET data (refs. 1 and 2) and have carried out additional studies using 54°C and 95% RH as the SET conditions.

RESULTS AND DISCUSSION

The results for the 2024-T3/EC-2214 system are shown in figure 1. This figure shows clearly that there are marked differences in strength behavior, depending on which SET condition is used. At 23°C and 50% RH there appears to be no significant difference in strength for SET times up to 30 days. However, at 54°C and 95 ± 5% RH SET conditions, strength initially falls off precipitously with SET and then levels off. These results generally are in accord with the earlier work (refs. 1 through 3).

It has been reported (refs. 4 and 5) that aluminum in hot water forms a hydrated oxide layer that is cohesively weak. Although adhesives bond readily to this oxide, it serves as a weak boundary layer and markedly reduces the resultant apparent strength of the bond. Under the elevated temperature and high humidity conditions of 54°C and 95% RH SET it seems reasonable to suppose that such a weak boundary layer is formed. This would be especially favored in the case of condensing humidity.* This weak boundary layer would then account for the marked strength reduction. Smith and Kaelble (ref. 3, pp 63 and 64) also report evidence for failure in a thick oxide layer after SET at 54°C and 95 through 100% RH. They also found indications that aging had caused a structural, as well as a thickness, change in the oxide.

Linear Weibull distribution plots (ref. 6) are shown in figure 2. All of the data for each SET condition appear to fall within the same distribution. The correlation coefficients are 0.983 for SET at 25°C and 50% RH and 0.976 for SET at 54°C and 95% RH.

EXPERIMENTAL PROCEDURES

Materials

The aluminum alloy used was 2024-T3 bare, 0.025 cm (0.063 in.) thick.

EC-2214 is a modified epoxy paste manufactured by the Minnesota Mining and Manufacturing (3M) Company. It has a viscosity at room temperature suitable for trowel application. Curing is achieved at 121°C (250°F) in 40 minutes. It requires only contact pressure for joint formation.

Surface Preparation

The panels were washed with acetone and treated by immersion in a solution containing one part by weight (pbw) sodium dichromate, 10 pbw concentrated sulfuric acid, and 30 pbw deionized water. The solution temperature was 60°C (140°F), the immersion time 10 minutes. The treated panels were rinsed for 1 to 2 minutes in running tap water at 40°C (104°F), rinsed with deionized water at room temperature, and dried in an air-circulating oven at 60°C (140°F).

Surface Exposure Before Bonding

All but the control specimens were conditioned in a controlled environment of 54°C (129°F) and 95 ± 5% RH for periods of 2 hours, 4 hours, 15 hours, 24 hours, 48 hours, and 72 hours.

Bonding Procedure

The panels to be bonded were removed from their conditioning environments no sooner than 30 minutes before bonding. For the control specimens (0 hours conditioning) bonding was effected after the oven-drying. The EC-2214 was brought up to room temperature before application to the panels by means of a wooden tongue depressor. Curing was accomplished in jigs to control the overlap [1.27 cm (1/2 in.)].
Method of Testing

A Baldwin Universal Test Machine was used for load applications. The load rate was 16.5 MPa (2400 psi) per minute.

CONCLUSIONS

1. For the 2024-T3/EC-2214 system SET at 23°C and 50% RH gave strengths significantly higher than SET at 54°C and 95% RH.

2. The difference in strengths is believed to be due to formation of a hydrated aluminum oxide on the aluminum surface at 54°C and 95% RH. This hydrated oxide functions as a weak boundary layer.

REFERENCES

Figure 1. Comparison of strength data at two SET conditions.
Figure 2. Linear Weibull plots for two SET conditions
DISTRIBUTION LIST

Commander
U.S. Army Armament Research and
Development Command
ATTN: DRDAR-TSS (5)
 DRDAR-LCA-OA (15)
 DRDAR-LCN (5)
 DRDAR-LCU (5)
 DRDAR-QA (2)
 DRDAR-TSF (2)
 DRDAR-QAA
 DRDAR-QAN
Dover, NJ 07801

Commander
U.S. Army Materiel Development and
Readiness Command
ATTN: DRCPP-PI
 DRC-QA
5001 Eisenhower Avenue
Alexandria, VA 22304

Commander
U.S. Army Missile Research and
Development Command
ATTN: DRDMI-EAM, Mr. E. A. Verchot
 Chief, Document Section
Huntsville, AL 35801

Commander
U.S. Army Armament Materiel
Readiness Command
ATTN: DRSAR-LEP-L
 DRSAR-ASF, Mr. H. Wohlferth
Rock Island, IL 61299

Commander
U.S. Army Electronics Command
ATTN: DRSEL-TL-ME, Mr. Dan Lichenstein
 DRSEL-TL-ME, Mr. A. J. Raffalovich
 DRSEL-TL-ME, Mr. G. Platau
 DRSEL-PP-EM2, Ms. Sarah Rosen
Fort Monmouth, NJ 07703
Director
U.S. Army Tank-Automotive Research
and Development Command
ATTN: DRSTRA-KMD
Warren, MI 48090

Commander
U.S. Army Materials and Mechanics
Research Center
ATTN: DRXMR-FR, Dr. G. Thomas
DRXMR-PL
Technical Information Section
Watertown, MA 02172

Director
U.S. Army Industrial Base Engineering Activity
Rock Island Arsenal
ATTN: DRXIB-MT (3)
Rock Island Arsenal, IL 61299

Commander
USA Troop Support and Aviation Materiel
Readiness Command
ATTN: DRSTS-MEU (2) Mr. E. Dawson
DRSTS-ME(2) Mr. C. Sims
DRSTS-MEN(2) Mr. L. D. Brown
DRSTS-MEL(2) Mr. Bell
DRSTS-MET(2) Mr. Ceasar
P.O. Box 209, Main Office
St. Louis, MO 63166

Commander
Corpus Christi Army Depot
ATTN: DRSTS-MES (STOP 55) (2)
DRSTS-MESA, Mr. T. Tullos (2)
DRSTS-MESP, Mr. Bulloch
Corpus Christi, TX 78419

Commander/Director
Chemical Systems Laboratory
USA ARRADCOM, Bldg E5101
Aberdeen Proving Ground, MD 21010
Chief
Benet Weapons Laboratory
LCWSL, USA ARRADCOM
ATTN: DRDAR-LCB
 DRDAR-LCB-TL
Watervliet, NY 12189

Director
U.S. Army Engineer Waterways
Experiment Station, P.O. Box 631
Corps of Engineers
ATTN: Mr. Hugh L. Green - WE SSS1
Vicksburg, MS 39180

Commander
U.S. Army Medical Bio-Engineering Research
 and Development Laboratories
Fort Detrick
ATTN: Dr. C. Wade
Frederick, MD 21701

Commander
USA Aviation R&D Command
ATTN: DRDAV-EQA, Mr. W. McClane
4300 Goodfellow Blvd
St. Louis, MO 63120

Plastics Technical Evaluation Center
U.S. Army ARRADCOM
ATTN: Mr. H. Pebly
 Mr. A. Landrock
Dover, NJ 07801

Commander
Harry Diamond Laboratories
ATTN: Mr. N. Kaplan
 Mr. J. M. Boyd
 Library
Washington, DC 20438

Commander
Chemical Systems Laboratory
ATTN: DRDAR-CLB-PM, Mr. Dave Schneck
Aberdeen Proving Ground, MD 21010
Commander
Tobyhanna Army Depot
ATTN: Mr. A. Alfano
Tobyhanna, PA 18466

Director
U.S. Army Ballistic Research Laboratory
USA ARRADCOM Bldg 328
Aberdeen Proving Ground, MD 21005

Commander
U.S. Army Materiel Development and Readiness Command
ATTN: DRCPM-UA, Mr. C. Musgrave
 DRCPM-LH, Mr. C. Cioffi
 DRCPM-HLS-T, Mr. R. E. Hahn
 P.O. Box 209
 St. Louis, MO 63166

Commander
Natick Research and Development Command
Natick, MA 91760

Commander
U.S. Army Engineer Research and Development Labs
Fort Belvoir, VA 22060

Department of the Navy
Naval Air Systems Command
ATTN: Mr. John J. Gurtowski (AIR 52032C)
Washington, DC 20360

Naval Ordnance Station (NOSL)
ATTN: Mr. W. J. Ryan, Code 5041
Southside Drive
Louisville, KY 40214

Naval Avionics Facility
ATTN: Mr. B. D. Tague, Code D/802
 Mr. Paul H. Guhl, D/033.3
21st and Arlington
Indianapolis, IN 46218
Commander
U.S. Naval Weapons Station
ATTN: Research and Development Division
Yorktown, VA 23491

Commander
Aeronautical Systems Division
ATTN: Mr. W. Scardino, AFML/MXE
Mr. T. J. Aponyi, Composite and Fibrous Materials Branch, Nonmetallic Materials Div
Wright-Patterson Air Force Base, OH 45433

U.S. Army Air Mobility R&D Laboratory, Headquarters
Advanced Systems Research Office
ATTN: Mr. F. Immen, MS 207.5
Ames Research Center
Moffet Field, CA 94035

Naval Ship Engineering Center
ATTN: Mr. W. R. Graner, SEC 6101E
Prince George's Center
Hyattsville, MD 20782

Mare Island Naval Shipyard
Rubber Engineering Section
ATTN: Mr. Ross E. Morris, Code 134.04
Vallejo, CA 94592

Hanscom Air Force Base
ATTN: Mr. R. Karlson, ESD/DE, Stop 7
HQ, ESD
Bedford, MA 01731

Naval Air Development Center
Materials Laboratory
ATTN: Mr. Coleman Nadler, Code 30221, AVTD
Warminster, PA 18974

Defense Documentation Center (12)
Cameron Station
Alexandria, VA 22314