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INTRODUCTION

Significant progress has been made in recent years in modeling
the interior ballistics of small arms weapons systems. In the past,

"K_ small caliber ammunition designers resorted to empirical methods
(ref. 1) based on experimental data (ref. 2) to design propelling
charges. However, with the vast amount of research done on deterred
small arms propellants, enough information has now been obtained to
successfully model the burning of these propellants and the interior
ballistics in a variety of small caliber weapon systems.

EMPIRICAL MODELS

The most successful empirical small arms interior ballistics
model was probably developed by H. P. Manning at Frankford Arsenal
(ref. 2). This model comprises a series of curves on experiments
by which selected optimum ballistic parameters of propellant weight
(C), projectile weight (W), maximum pressure (P), and expansion ratio I
Um/Uo are related. From these sets of curves, the ballistic performance
of many small arms systems can be calculated. The velocity of a system
with given values of C/W, P, and UM/Uo can be obtained by using the
equation:

v.~. V )(V
where V5, *6 is the velocity at that ratio of C/W obtained at an ex-
pansion ratio of Um/Uo = 5 and peak pressure of P = 60,000 psi j
(413.7 MPa); Vx/V& is the relative velocity normalIzed to unity at anI expansion ratio of 5, and Vm/Vso is the velocity relative to the
velocity at a peak pressure of 60 kpsi (figs. 1-3). The Manning

"I curves work well for both IMR and ball propellant within the range of
C/W, Urn/U, and Pm shown in figures 1 through 3. For example:

Given the following data for .30 caliber ball cartridge M2,

Projectile weight 150 grains (9.72 x I0-3 kg)
Propellant weight 49.9 grains (3.23 x l0" kg)
Bore area 0.0732 in.' (4.72 x 10" mi)
Case volume 0.25 A (4.10 x lO-Sm3)
Bullet travel 21.9 in. (.556 x m)
Maximum pressure 51.2 kpsi (353 MPa)

"I ...J • : , .. ' " .... ... . ... .................
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calculate the muzzle velocity as follows:

C 49.9 o;•' - • - 0.333

{v " zs -

S~where: 2610 is read from figure I1 1.106 is read from figure 2 andL : 0.981 is read i'rom figure 3. For comparison, themuzevlctwa
acualyrecorded as 2832 ft/sec (863 m/s).

I S

SDickey (ref. 3) has programmned these curves for use on a computer:

V 0.073213 ]xoge C/2. + 4120

O..668 0.2S

V5 V6 tsc 83ms

,1•= . 4 1 P. weeP has units of kcpsi

wh oyear s (read from foreu1, another empirecal model from his

" many yead o m figur e 3. For caliber weapons. He also refer-
ences several other such models that have evolved over the years (ref. 5).

D k As has been previously mentioned, empirical curves apply to
.. ,ystefls which use selected optimum ballistic parameters. To obtain-informiVtion about systems with parameters (i.e., C/W, +_, or O /U )

V m*

I • outside of normal limits or to obtain more detailed information~ a~out
•:: system characteristics, one must use t~ore sophisticated analyticalinterior ballistics models.
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ANALYTICAL INTERIOR BALLISTICS MODELS

Propellant Deterrent Technology

Propellant with uniform chemical composition is used in large
caliber ammunition. Conversely, small arms weapons generally operate
at higher loading densities and pressures and shorter ballistic cycle
times, requiring tVe use of deterred propellants. Deterrents are
applied to the surface of the propellant and diffuse into the grain.
They reduce the energy content of the gases and slows the burning rate
during the initial burning phase. This leads to a more progressive

type of burning. Progressivity in large caliber ammunition is
normally achieved by the geometric design of the grain. However,
because of the higher loading densities required, progressivity can
be better achieved in small arms by use of deterrent. Although the
deterrent content is only a small percentage of the propellant grain
(i.e., 2 to 10%), the surface of the propellant contains a consider-
ably higher concentration.

The advance in small arms propellant deterrent technology (ref. 6)
has permitted better understanding of and simulation of small caliber
interior ballistics systems. This technology has evolved through the
application of such investigative techniques as microtoming followed
by chemical and microscopic examination to establish the rature of
the composition gradient (refs. 7-10).

Also, additional investigations involve the use of infrared
spectroscopy (ref. 11) and autoradiography (refs. 12-13) to determine
composition gradients. Much information has been obtained through the
use of closed bombs, Stiefel and Davis (ref. 14) obtained apparent
burning rates of small arms propellants from closed bomb data and
suggest the Serebryakov (ref. 15) method for establishing the deter-
rent gradient.

The most successful use of closed bombs for obtaining burning
rate data on deterred small arms propellants was probably achieved
by Riefler and Lowery (ref. 16). They used specially prepared pro-
pellant samples of various homogeneous compositions in a closed bomb.
Data from the ignition and burnout phase are neglected so that the
empirical constants during the complete burning phase alone are cal-
culated. Using statistical techniques, they obtain the burning rate
coefficient and exponent for the burning rate equation of the form
R = APn. These factors are described in terms of the percentage of
deterrent (DBP) and the percentage ol nitroglycerin (NG) and poly-
nominals involving web size.

6
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In the development of small arms ammunition, two terms, relative
force and relative quickness, are used to describe propellants on the
basis of their closed bomb performance. Relative force is the ratio
of the force or impetus of a test propellant to the force of a standard
propellant, measured at the same initial temperature and loading density
in the same closed chamber. Relative quickness is defined as the time
rate-of-change of pressure (dp/dt) of a test propellant to that of a
standard propellant measured at the same initial temperature and load-
ing density in the same closed chamber1 .

Analytical models of deterrent concentrations and thermochemical
chayacteristics have been formulated for interior ballistics models.
Trafton (ref. 17) simulates the variation of surface deterrent con-
centration with depth by assuming that the surface deterrent concen-
!:ation is nuzsiderably larger than the average measured value of the
total grain and that it then decreases linearly (with grain volume
burned) to a value of zero at some depth in the grain. To compute
the penetration depth of the deterrent, he assumes that the deterrent
does not change the propellant density and that the changes in deterrent
concentration occur between equal volume increments of the grain. He
has further modified (ref. 18) his model to include a stepwise con-
centration to a given depth.

Gottlieb (ref. 19) et al, have conducted 'both analytical and•

experimental studies on the effective progressivity of deterred
propellants. They have been able to simulate P vs P traces of both J

adiabatic and nonadiabatic closed vessel firings. To accomplish this
a system of differential equations by which pressure, fraction of web
burned, amount of gas generated, system temperature, and wall tem-
perature are related as functions of time was formulated and solved to
simulate closed chamber firings.

In the United States today, the ball propellant used in almost
all small arms ammunition is manufactured by a solvent emulsion pro-
cess that results in bulk mixtures of va, -ying grain sizes and different
chemical compositions (i.e., different levels of deterrent) for dif-
ferent sieve sizes. Trafton assumes the deterrent content varies
inversely with grain size. Thus with this model, one can take into
account both the effect of different grain size distribution on gas
production and the effect of different grain size on the chemical
composit-ion.

'Olin Corporation uses WC 846, which is the propellant for 7.62 mm,
as a reference propellant. E.I. DuPont de Nemours Co. uses IMR
4350 as a standard.

7



Trafton also uses a separate thermochemical computer model to
calculate impetus and flame temperatures for the varied chemical
compositions that include the rssumed deterrent concentrations com-
bined with the base propellant. Also, with his model, one is able to
treat nonsimultaneous ignition of the propellant charge by use of the
simplified assumption that the total surface of the propellant grain
ignites smoothly at a uniform rate from the primer end of the charge
forward as a function of time. This effect can be important in simu-
lating small arms interior ballistics.

Analysis

The interior ballistic equations used by Trafton were modified
from those of Baer and Frankle (ref. 20) to include the effects of
deterrent coating and nonsimultaneous ignition. These equations are
shown in table 1 and include:

1. Energy equation.

2. Equation of state.

3. Mass fraction burn rate equations.

4. Equations of projectile motion.

Goldstein (ref. 21) has modified Trafton's program to accept a
simplified model describing the thermochemical properties and burning
rate of deterred rolled ball propellant. His model includes the
following:

Assumption No. 1

Each grain in the charge is of uniform geometry and has
dimensions determined by the equivalent mean radius R obtained from
the sieve size distribution of the propellant lot. This dimension
is given by:

3 FiVi]

Fi/Voi

where Ri = average radius of a propellant grain from a given sieve
cut (ref. 22).

Voi = initial volume of propellant grain of radius Ri.
Fi = fraction of charge weight or volume with radius Ri.

L 
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Table 1. Interior uallistics equations.

Energy Equation
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This method of defining R has %o7-, used previously when one con-
siders heat and mass transfer and reacti-.n at the fluid particle
surface interface (ref. 23). Kitchens, (r.A. 24) in treating flame
spreading through a propellant bed, used mean diameters discussed by
Zabrodsky (ref. 25). They are described by the equations

1 Xl X2 Xn
TA dT1 d2 dn

or
d = Xldl + X2d2 + .... ÷ Xndn
B

where X1 is the weight fraction of a narrow fraction of diameter dl.
Subscripts A and B are used to represent the two different methods of
determining the mean diameter. Smith (ref. 26) assumes that the
characteristic grain dimension (i.e., diameter) is distributed normally
about a mean value.

Assumption No. 2

The penetration of the propellant grain by the deterrent
follows Levy's findings that the migration of modifiers into ball
propellant can be characterized by a diffusion front exhibiting high
concentration gradients that result in sharp lines of demarcation
between various layers. This is in accordance with normal plasticizer-
polymer difus 4 on systems. Smith assumes that the deterrent diffuses
in a manner similar to conduction of heat in a semi-infinite solid.
Since the penetration depth of the deterrent represents a distribution
of values, a three3 layer grain model was used and found to give satis-
factory results.

Assumption No. 3

The penetration of the nitroglycerin into the propellant
grain is complete. This assumption applies mainly to relatively
small grains with high nitroglycerin-to-nitrocellulose ratio and it
simplifies calculations and yields favorable results.

Assumption No. 4

The geometry of the propellant grain is that of a disc with
rounded edges (fig. 4).

If 0 is the distance the deterrent has penetrated a grain of
rolled ball propellant, then the equivalent mean volume of the central
nondeterred region (Vy) for this assumed geometry is

10
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Vy = 2w Cw - ro)(ro- + w'(ro- r - ro)+ - (ro-

where ro is the radius of the outside edee of the propellant grain
(web/2). This rolled-ball grain becomes an oblate spheroid in
Trafton's model whose volume is given £'y

Vgi - (n/6) Di' di

Also, his model (ref. 27) can handle other geometric forms including
single perforated grains with different burning mechanisms inside
and outside the grain. By assuming a surface deterrent concentration
and complete nitroglycerin penetration, Goldstein was able to calculate
the composition of both the deterred and nondeterred regions as well
as the depth of deterrent penetration. To determine burning rate in
each region, he used Muraour's equation (ref. 28) that relates burning
rate (r) with flame temperature (TO), i.e., In r = A + B To where A
and B are constants at a given pressure and are obtained from empirical
data (refs. 29,30).

In Trafton's model, the burning rate varies linearly with flame
temperature. At a fixed pressure level, note that the flame tem-
perature alone may not be the single factor by which the propellant
burning rate is determined. Adams (ref. 31) in his study of the
combustion of double-base propellants, also points out the effect of
chemical structure in addition to flame temperature on the burning
rate.

Trafton's model has also been exparded to take into account
temperature effects on the ballistic pecformance of small caliber
ammunition (ref. 32). The temperature of the ammunition used in
small arms has a significant effect on the performance of the weapon
(ref. 33). The two factors that were considered most important in
determining the temperature effects were the temperature sensitivity
and the low temperature fracturability of the propellant.

Sensitivity (w )p is defined as () = lnr

On integration, the following is obtained r r'e (Cw) (Ts-Tso)

where r is the burning rate at conditioning temperature Ts, and r'
0

is the burning rate at some reference temperature Tso. The relation-
ship 'between the burning rate and the flame temperature can be derived
on the assumption that the gas phase reaction rate independently con-
trols the burning rate (ref. 34) For pressures normally encountered
in small arms ammunition, this assumption appears reasonable.

12
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E CS
The temperature sensitivity is thus given as (w Y) 2 - S

2' Ru Tf, Cp

where E = activation energy for gas phase reaction (ref. 35)

Cs = specific heat of the solid per tuiit mass

Ru = universal gas constant

Cp = specific heat at constant pressure

The sensitivity of each layer can thus be determined because the

flame temperature is directly related to the composition of the

propellant layer under combustion.

Fracturability is believed to be the cause of the anomalous

behavior (refs. 36, 37) of ball propellant at low temperatures.

Internal stresses are induced into ball propellant during the rolling

process at the time that it is manufactured. This leads to breakup

during low temperature firings when the matrix has become embrittled.

This can in turn produce pressure-time records for the chamber that

4' are equal to or greater than those obtained at ambient firings. Ashley

defines the term "fracturability" (*) as the increase in weight per-

centage of smaller diameter propellant particles fractured by the

primer blast.

Trafton used the Pidduck-Kent function (refs. 38,39) in his

model to describe the pressure gradient in a small arms weapon. This
approximation appears to work satisfactorily for small arms systems.
He later (ref. 40) included frictional effects between the barrel and

gas. However, recent tests (ref. 41) have shown that the ratio of

projectile base pressure to breech pressure (which the Pidduck-Kent
describes as a constant) does indeed vary as the projettile travels

down the barrel. Other inputs to his model include bullet pull,

estimate of muzzle velocity, primer thermochemical information and

empirical ignition delay, and engraving and frictional resistance of
the projectile.

Energy losses resulting from heat loss are estimated by a semi-

empirical relationship described by Hunt (ref. 42) and Corner (ref. 43).

This is the same equation that is used in the Baer and Frankle model.
Krier (ref. 44) has developed a small arms heat transfer model that

solves the unsteady, turbulent, compressible boundary layer developed

behind a moving projectile. This boundary layer is coupled to an

inviscid core that supplies the boundary conditions at the edge of the

boundary layer. The inviscid core solution is obtained from previous
experimental investigations.

•. 13
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The boundary layer solution provides the necessary information
to solve for the temperature history at the barrel wall. This
solution is used together with a one-dimensional axisymmetric heat
analysis to calculate the radial heat conduction and temperature
distribution in the gun wall. Also, proper account is made of the
curvature of the barrel wall. Experimental data (ref. 45) on the
heat transfer rates in small arms cartridges are available.

SPECIALIZED INTERIOR BALLISTICS MODELS

In recent years, substantial progress has been made in describing
interior ballistics phenomena in terms of nonsteady two-phase flow
(ref. 46). This technology has also been used in small arms interior
ballistics.

A two-phase flow model by which one can take into account shock
waves in the barrel has also been developed (ref. 47). With this
model, one can use the method of characteristics to solve the mixed
hyperbolic-parabolic equation used to describe the system. The
potential advantages of models in which the method of characteristics
approach is used over the classical models (such as the Baer-Frankle
model which use lumped parameters) are extracted from reference 48
and listed in table 2.

Several interior ballistic models (ref. 49, 50) have evolved in
which the Lagrangean form of the equations is used for time dependent
fluid flow. Joglekar and Phadke use an interactive model building
approach to build their interior ballistics model (ref. 50).

14
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Table 2. Comparison of approaches.

Classical method Method of characteristics

Motion of the propellant is un- Motion of the propellant can be
accounted for. handled in the weapon.

SBurning rate is a function of Burning rate is a function of local
either chamber pressure or space gas pressure and velocity.
mean pressure.

Correction factor is needed to Gas velocity and pressure gradient
estimate gas velocity and pressure can be calculated at any location
gradient. (Piccuck-Kent approx.). and time.

Effect of chamber geometry Any chamber geometry can be
(chambrage) cannot be accounted handled.

= ffor.

Pressure waves behind projectile Method of characteristics has
cannot be handled. Modification capacity for high performance
is required to predict pressure small arms rifle systems by being
distribution in high performance able to handle chambrage, wave
small arms rifle systems. motion, gas friction, propellant

motion, and gas venting.

ii
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SPECIAL ASPECTS Or SMALL ARMS INTERIOR BALLISTICS

Small arms interior ballistics systems have characteristics

that am.e quite different from larger caliber systems. Small arms
systems are normally cycled by gas energy from the propellant gases.
This function requires the gases to leave the barrel some time before
muzzle exit and to continue escaping for a considerable length of
time afterward. As a result, enough gas can be removed from the
barrel to affect the ballistic performance of the system. Also,
since many types of small arms are shoulder-fired, some gas energy
may be used in the weapon recoil (ref. Si). The small bore area of
small arms also creates greater problems with heat transfer and
erosion (ref. 52).

Gas Transmission Systems

Many small arms syst',ms are gas-operated automatic weapons that
have a gas-driven meuhanism to operate the bolt and its associated
moving components. The timing and pressure of the ga•s cylinder are
regulated by the location of the port along the barrel and by the
diameter of the orifice through which the gas flows.

Several types of gas systems are used in swall arms systems
today (refs. 53,54,55). In some systems, gases pour into a gas
chamber when the p rojectile passes the port. This then results in
press-re on a piston whose motion is delayed by bolt locks that are
rot released until chamber pressure has dropped to safe levels for
cartridge caje extra..tion.

Another system that has been extensively studied (refs. 56-60)
inc( rporates a long gas tube through which a portion of the pro-
pellant gas in the barrel, drawn cff when the bullet pasges the port,
is sent to a bolt mechanism in the r.ar of the rifle to cycle the
weapon.

In e.esig,,ing pxessure ports in automatic weapons, Beans (rSf. 53)
assumes that the flow is incompressible and turbulent and that the
pressure losses •nrough th3 different passages are determined from
pipe fitting data in which nozzle and diffuser efficiencies are used.
He t,lso treats in detail the flow into a power cylirder where a
connecting rod is actuated.

Spurk (ref. 55) obtains a solution to the problem of describing
the flow in the gas tube by making use of the method of matched
asymptotic expansions. He also assumes a simple polytropic relation-
ship bitween the pressure and temperature to specify these parameters
at the port after the projectile has passed:

16



Similarily, he uses incompressible flow contraction coefficients to
describe the decrease in mass flow through the port.

Using the method of characteristics approach (table 2), Goldstein
(ref. 58) simulated the compression and shock waves measured by

ITHorchler (ref. 61) in the gas tube. Experimental data of the flow
of the gases through the port have been obtained and a theoretical
model (ref. 62) developed to describe both the nonsteady flow that
occurs when the projectile first passes the port and the quasi-steady
flow following port opening. In this model, the method of charac-
teristics is used to describe the nonsteady flow from the barrel and
throtigh the port, and a two-dimensional compressible potential flow
solution employing the Karmen-Tsien pressure correction formula is
used to describe the quasi-steady flow.

After the projectile leaves the barrel, Hugoniot's equations
(ref. 38) are used to describe the flow of the gases from the muzzle.
Also, through the use of the Lagrange approximation, the fluid proper-
ties in the barrel at ti:- port location are determined and, therefore,

I the boundary conditions for the flow through the port are specified.
More recently, (ref 63) interest has been directed toward finding a
three-dimensional viscous tube flow by which the Lagrange's approxi-
mation can be satisfied.

SPressure Waves

Shock waves and/or combustion instabilities have often been
observed in the testing of guns (refs. 64-67). Since the start of
the work done by Kuo (ref. 68) mathematical models have been developed
to the extent that these ballistics anomalies can now be partly under-
stood.

Kitchens (ref. 69) and Gerri (ref. 70) have used the method of
characteristics to extend the KVS model (ref. 68) over a different
length propellant bed. Recent work (ref. 71) done by Gnrri with the
-use of a 7.62 m I.D. vented bomb with a shear disc indicates (figs.

t S 5Sand 6) that:

V
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1. The initial primer pulse and the primer vent geometry
set the stage for all subsequent evernts.

2. Intergranular pressure transmission contributes to the
ruptur3 of the shear disc.

3. Propellant grain deformation and frictional forces at
the chamber walls greatly affect. the progress of the combustion wave
through the propellant bed.

Experimental studies (ref. 72) have been conducted on 7.62 mm
blank ammunition. These indicate (figs. 7-9) the multiple reflectiolis

L' of shock waves and characteristic waves within the barrel between the
month of the cartridge case and the blank firing attachment (BFA). The
computer code by which the problem of two-phase flow in a small arms
barrel is solved with shock waves has also been developed (ref. 73).
Compression waves and shock waves have also been evidenced (ref. 75)
in the gas transmission system of some small arms weapons. High-speed
photographic studies of small arms firings in a windowed chamber gun
have been conducted to gain insight on primer and flaefront phenomena
(ref. 74).

A survey (ref. 76) of recent studies in large caliber weapons
indicates that the basic mechanisms responsible for generating pres-
sure oscillations in gun systems are associated with the ignition and
combustion phases and early projectile motion phase of the interior
ballistic cycle.

SCONCLUSIONS AND RECOMENDATIONS

Although there are many different types of small arms interior

ballistics models, each has certain advantages for specific applica-
tions. However, considerably more experimental testing and modeling
are required to determine such quantities as:

1. Engraving, friction, and air pressure forces.

2. Strain energy or work dore in deforming barrel walls.

3. Shot start pressures.

4. Recoil energy.

20
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[ 5. Kinetic energy of propellant grains.

6. Propellant gas frictional energy.

7. Gas leakage.

8. Pressure transients.

9. Erosion factors.

to The emiialmdl have been programmed and successfully used
to redct heperformance of different system designs. They are
paricuarl usfulin performing system analysis for proposed new

weapon requirements. The analytical models have particular applica-
tion to ammunition design. They can be used to determine the effect
of variations in propellant compositions, deterrent concentrations,

grain dimensions, and geometry on interior ballistics performance.

chne ri rcsigtcnlg speevn h ytmThey are also a means of determining where a specification may beI

characteristics. Interim ballistics models provide the information
needed to determine whether enough energy is available to properly
cycle the weapon so that it can function reliably. They also supply
input data for the neat transfer and erosion models used to predictI

barrel temperature and wear.
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