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Loreword

This report is submitted as part of Contract AF33(033)9£32,
which was administered by the Aeronautical Research Laboratory,
VIADC, under RDC No. 465-1, Aerodynamics of Compressible Fluids,
with Mr. Lee £. Vasserman acting as project engineer. The work
reported was done at the Graduate School of Aeronautical
Enginecering at Cornell University during 1950.

The investigation was suggested by the thesis of
Dr.F.K. Moore (Reference 2). It was desired to check Dr. Moore's
analyeis and to extend his calculations to severaliadditional
practical cases. The project was carried out under the immediate
supervision of Professor W,R,Sears, who originally suggested the
problem to Dr. Moore and directed his thesis research. Acknowledg-
ment is also due to Mrs. Anne B. Kane, who worked faithfully and

diligently on the extensive numerical calculations reported here.
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Abstract

The metnod of expansion in powers of a thickness )

parameter'éfis employed to calculate supersonic, in-

viscid flow about symmetrical arrow-head wings lying en-
tirely within the tip Mach cone., In this method, the first-
order terms in € constitute the familiar, linearized
Prandtl-Glauert approximation., The method is one of itera-
tion, so that the A the approximation always depends on the
(L )th, ete.

Here the second approximation, i.e.,<the terms
in € and €%, are computed and plotted for a family
of arrow-head wings having various leading-edge angles and
thicknesses, and flying at various Mach numbers, It is
necessary to use Lighthill's method to determiné the strength
of the attached conical shock.,

Publication Review )

The publication of this report does not constitute
approval by the Air Force of the findings or the conclusions '
contained therein., It is published only for the exchange and
stimulation of ideas. |
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. WILLIAMS, Colonel, USAF
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Introduction

The problem to be considered is one in which dissipative
phenomena appear only within the shock wave. Since this entropy
change is of third order in thickness, it may be neglected in a
seconddorder theory. Hence the entire flow field may be considered
isentropic aﬁd irrotational, and the introduction of velocity
potential is justified.

Thé exact flow over a conical body in an ideal, uniform
supersonic flow 7 .cld is conical.} By expamding the solution in
powers of a geometrical parameter & , one sees that each term of
the expansion must alee bev conical. |

As disturbances may not propagate upstream, the flow over an
"arrow head" wing is identical with that over an infinitely extended
body.

That the solution to the differential equations of motion
can be expanded in powers of thickness parameter can be justified by
assuming an expansion in terms of diminishing order of magnitude and
proceeding to satisfy the successive boundary conditions, For a flat
airfoil, the first-order solution is formed to be of order ¢ (thickness
parameter), This is dictated by the boundary condition on the normal
velocity at the airfoil. On the airfoil, except at or near singular
points of the first order solutioﬁ (e.ge, leading edges), the same

boundary condition then requires that the next nontrivial approximation

WADC TR 52277 1



.be of order £% , and so on. This statement may be checked
against the Eoundary condition formglated in Eqe (29). Thus, the
power expansion in ¢ 1s the only expansion which will satisfy the
boundary conditions on the body. Recent work by Lighthill indicates
that, to second order, the power series expansion in & properly
describes conditions at the Mach cone as well.

Further, it is expected that the solution, to each order will
be analytic at some plane (e.go, & plane of symmetry) near the thin
body; thus, the value of each approximation on the body can be ex-
pressed as a power series in & , the leading term being its value on
the plane of symmetry, say. As will be shown later, one may then
formulate boundary conditions at the plane of symmetry to all orders.

Eroderickland Lighthill have solwed corresponding problems
of the supersonic flow about bodies of revolution and, in order to
satisfy boundary conditioné at the surface, have found it necessary
to introduce ﬁonregular terms involving the logarithm of the thickmess
parameter. This is a consequence of the fact that the axis of the
body (corresponding to the plane of symmetry in the present case) is
a singularity of their solutions.

In the case of supersonic conical flows over slender bodies,
an attached conical shoek wave occurs in the vicinity of the leading
Mach cone. In the linearized theory of such flows, it is customary
to assume a zero-strength shock located at Mach cone, Lighthill has
pointed out that while the assumption of zero shock strength is valid

for the first (linearized) approximation, the true shock strength is

WADC TR 52=277 2
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"s second order in disturbance velocities. He presents formmlas that

provide a quantitative second-order description of the flow nemr the

shock wave in terms of results of the linearized solution. Lighthill's

results will be used here to provide boundary conditions at the Mach
cbne °
The pressure coefficient is given by

P - P
L kU™

{/)

C = ec+ ¢ (1)

Denoting the velocity vector by

viveed e dYe ]« e e ] e £ (ew e ] (2)

where the unit vector +' 1ies in the streamwise direction, and

L= Ft=1 (3)

and appiying the isentropic eqations of motion, we have

CI/) - - Z(M‘,)/U)
(L)
12)_ _/ LY - u") L “) Y s .
Cl= =[RS H) - Y )+ () e ()] (5)

Thus, for pressure coefficient, one needs in addition to all three

first-order cartesian velocity components, the second=-crder correction

to the streamwise velocity component as welle

WADC TR 52277
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w -
S =
P -
J: -
C =
U =
M =
ﬂ =
M,V W oa
E,A =

v =
v* =
L,re =

Y, 49, h
A/ D)K =

Notation

cartesian space coordinates

conical radial coordinate

Tschaplygih radial cooordinate

space, conical, and Tschaplygin angular ordinate

complex coordinates in the Tschaplygin plane

pressure

density

pressure coefficient

free-stream velocity

Mach Number

a constant based on free-stream Mach Number

cartesian velbcity components in the directions , 4, and
respectively

angles - See Fig, 2

velocity potential

velocity of sound

ratio of specific heats

the Laplacian operator

geometrical quantitites in the Tschaplygin plane - see Fig, 3
flow functions

constants

Subscripts:

oa signifies evaluation in the free stream

b signifies evaluation on the body

WADC TR 52277 Y
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a signifies evaluation on the plane of symmetry
P  signifies particular integral
c signifies complematary function.
The subscript notation for partial differentiation is used
where convenient. .
Superscripts:
(n) denotes the order of approximation.

Primes denote ordinary differentiation.

w TIP MACH CONE

WADC TR 52-277 5
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PART I~THEORY#*

A. The General Case

(1) Differential Equations for the Velocity Potential

For the scheme shown in Fig. 1, the isentroj:ic equations of

motion are

(@3- 9) Gy + (a7~ PD Ty + (4> ) 52z

(6)
“Z¢x?’7ﬂ‘;_2¢?%%2—2¢x¢zﬁxz=0
a® = A + X;—l‘ (v?*- & 2 ¢/‘—" #at) (7)
Tt is assumed that
P o= Ux+ep@s e29PPe.n, (8)

Introducing Egs. (7) and (8) imto Eqe. (6) and collecting terms of

_order € and €%, respectively, one finds

2 )’ :
/5 ¢XX - yyuj - 90 i = O

23

(9)
- . (2
/62¢xxl)" ¢77r) = jﬂzl )

_ Mx 2 0 w? v?g//)"
4,417/( ), + B A ] (10)

Eq. (9) is the equation of the linear-perturbation theory.

| The solution for ;ﬁ’z{villbe composed of a particular solution
of Eqe (10) and a complémentary solution satisfying the homogeneous
counterpart of Eq. (10), which solutions, taken together, satisfy the

boundary conditions appropriate to the particular case considered,

WADC TR 524277 7




(2) Transformations and Particular Integrals

_ A transformation introduced by Tschaplygin is applicable
to conical flows and changes the three-dimensional hyperbolic equations
for velou ty components into two-dimensional Laplace's equations. The

transformation is introduced as follows:

1/74‘2, _ -1 % . 7
=£=5 @ = Jan 7 T (11)

Applying this transformatio: to Egse (9) and (10), it is found

that
VZQ(I)(J‘w) - vz.v,u)= VLW“):-':O
(12)
2
VZM'(Z)=/§.(/-:‘).3 [’?"S + S (/-3 5:;_7
r s ) ) (13)
Vs g GrasesVemwd,
+5(/-5F covwhg - (1-5D 4 w/');W] (1h)
(2 ’ .
Vi =i [ e sV 1s)
+ SC~s%) e w Ay 4 (1es) P covw hsw ]
where
b= AP [ D2ty w ]
= (16)
and ~
2 r-/ 2 2 _ =
.D = / * 2 MN 7 A U/ﬁ
(17)
The following transformation may now be introduced:
J-:-.se"“"’; EESC-L'UJ
(18)
8
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and one finds Jhat

v?= 4(91/7595) (19)

which makes it possible to detine the following functions:
f(5) + 3 (5) = DAu"
Fol3) + F:05) = AV (20)
- [¢
Fol3) +dst5) = AW

and to write a particular integral for *’ after numerous integra-

tions by parts in Eq. (13), as follows:

(Z) Az S 9 2 (,)L “)7. (,J"
== — oW
Pry =7 7555 25 [‘D “wo J

2 P P focei[ 2

-

(21)

Expressions for vl;,") and w; “similar to the above can be obtained
from Egs. (1) and (15).
It is cleara this point that the solution given in Eq. (21)

will be infinite at the tip Mach cone (5=/) unless the derivative in

»

the first right-hand term vanishes there. This is an example of

L3

singular behavior that concerned Lighthill in the investigation

already mentioned. - In the cases considered in detail here, in which

WADC TR 52-277
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the body lies entirely within the tip Mach cone, this derivative
does in fact vanish, since the linearized theory leads to vanishing
perturbation velocities at this cone. Consequently, the second-
order solution is free of this particular difficulty, and one needs

Lighthill's technique only to establish the upstream boundary condition.

(3) The Boundary Condition on the Body

One prescribes simply that the flow through the body surface
vanish to the second order of approximation. It would be convenient
to satisfy this boundary condition at some mean plane, as is custom~
arily done in the linear theory. The assumption of analyticity of
solutions at this plane enables one to do this. The details of this

procedure will appear later in an illustrative example.

(L) The "Boundary Condition" at the Mach Cone

Since it is Amtended to deal herein with velocity components
rather than the potential, it is necessary to formulate boundary
conditions on these quantities at the Mach cone, As has already been
mentioned, the formulation of correct boundary conditions to be satis-
fied by the perturbation velocity components at the tip Mach cone is
based upon Lighthill's detailed analysis of the conditions near the
shock wave. It may be of value to review briefly the salient features
of his method,

The correct upstream "boundary conditions" are actually the
ghock-wave equations, applied at the shock-wave location, which is

WADC TR 52-277 10
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(33

)

upstream of the tip Mach cone and is therefore outside the region of
applicability of the method set forth above. To obviate this diffi=-
culty, Lighthill introduces a transformation of coordinates from 7 , w
to R , cw , which may be written in the form

| 7 = R+ gr(w) ¢+ é‘ﬂ”(w)+'“

where the successive functions /»” (w) are to be determinea as the
calculation progressese The method of approximations in 'succeésive
powers of ,E- is then formulated in terms of the new independent
variables R , tw o The singularity of the differential equations is
thus shifted to the location R=/ , instead of 4y =/  The choice
of the functions rediw) s made, however, in such a way as to avoid
divergence of the method at R =/ e It is then found that the shock
wave occurs for R </ = i.e., in the region of convergence.

Lighthill next introduces the Rankine-Hugoniot shock-wave

" equations tb connect the conical flow to the flow upstream 'of the

shocke This leads him to fictitious boundary values assumed by the
velocity components at R =/ + In particular, consider the perturba=

tion velocity potential
Y= UxFI(R, )
Ux [ FUR W) + e F R, W)+ ]

i

i

According to the shock-wave equations, this quantity is continuous
across the shock = i.e., it has the value zero just behind the shock
in the present probleme. ILighthill shows that the corresponding values
to be applied at A =, are |
£ w) = FPClLw)=0
S 1 (22)

WADC TR 52-277 11




(2 Tl 4 h J
74 [/,LU) =2_,£2 Q-—>/ /__]

Furthermore, in any case where the body lies entirely within
the tip Mach cone, it is found that r“(w) is idemtically zero.
This means that, at any point in the flow field, 7 and R will
differ only to second order in € . Thus, away from the vicinity
of the shock wave, the independent variable R in the functions 7 7R,w)
may be directly replaced by / without introducing any error greater
than order &7,

It follows from the fact that /(%) is zero a that
the differentisl equations satisfied by ¥~ (R, w) and #7(R,w)
are just the equations.equivalent to Egse. (9) and (10) and, hence,
to Egse (12)-(15) (the only differences being those due to the
definition of the va;'iables). Finally, then, to the order of
approximation contemplated in this paper, it will be correct to solve
Egs. (12)-(15) and to apply at 4 =/  the boundary conditions (22).
From the definition of # "2 (R, w)  and the relation (11), it
follows that these are equivalent to

u

U— / "(;‘J —,(; S:/: o
2) 4 o)
u M, u 2
/——/ = ~crrr) =] A “ U
v At ls—sy /-5

(23)
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(5) The Irrotationality Conditions

Applying the Tschaplygin transformation to the irrotationality

conditions ~
ﬂzzb\f')(/- !/;(—.;L(;/' V:é:w;

and evaluating them at the plane w = o s 7T 4 one obtains the

following useful relations:

1)

/3[ o =77 /-5t M)] (2l)

~ [“’SUJ,, = v (25)
(2 JL
ﬁ[ )] _5)‘-
;(DLM_(U + V-(”L;- W c:f)]d
(26)
: ey I+
(7] = = p5F [ ul]
(27)
(n)
L] =25 75 [
(28)

WADC TR 52-277 13-



Be Arrow-Head Inside Mach Cone

(1) Statememt of Problem and Formulation of Boundary Conditions

Fige 2 shows the configuration of the body - an"arrow-head"
at zero angles of attack and yaw with respect to a free stream of
velocity [/ and Mach Mumber A~ o € is the thickness parameter.
| After certain geometricai maneuvers, the boundary condition

at the body for 7 > ¢ may be written as

/%z]b:'é/sﬂx]b_ € oTA [@jﬁ (29)

Assuming analyticity of solutions near the plane of symmetry, one

writes

/-%{n}y,y,z)]b = /CP;)]O + € %/x,yj + é’*/, (% 4)~+ 1 (30)

Substituting expressions (8) and (30) into Eqe (29) and collecting

terms of like order in €,

[gn)]o - U (31)

(820, = = 4 L4, - a5,

(32)

-

Egse (31) and (32) are applicable on the plane of symmetry within the
leading edges.

Utilizing the Tschaplygin transformation, noting that =,
represents the Mach cone, and defining ¢ as the s-coordinate of
the leading edges, Egse (31) and (32) may be written as

WADC TR 52-277
14



i ‘ w =1 (Q)‘-’O, §<()
[ [W ]o /2 ‘ (33)
F [w'?), = =¥ (wy + (], - 3T 70T,
e ( w=0, s<?)
(3L)

By symmetty,

[w™] = [Mf")jo =0 (W=a, fL<s<i) .('35)

,u.m) is even in both < and ;

v’ isevenin z , 0ddin¥ [ (36)

is

w "™ is odd in 2, even in ¥

On the circle s=/,

[M“)/ ) M/'Il)_']s:/ - 0
e g 4T J (37)
[U ‘Z_:/_ (d/./-/)ﬁ!' /.:Y—»/ /-5

The differential equations applicable in the Tschaplygin plane
are givén by Egs. (12)-(15). Use will be found for the irrotationality
conditions (2L) through (28).
Fige 3 represen{;s the Tschaplygin plané, in which the problenm
will be solvedo Stated in its simplest terms, the pl-an of attack

will be as followss

33

(a) Find 4%, v and w'%, which satisfy differential Eq. (12),

"

and the irrotationality conditions, subject to the boundary conditions

developed aboveo

WADC TR 52-277 15




™y,

(b) Find the particular integral for '™ using the
expression (21). To this will be added the complementary function
required to ensure satisfaction of the boundary conditions, thus
completing the solution for 4%,

(¢) Using these results, apply Egse (4) and (5) to find the

pressure coefficient.

(2) singularities

Certain difficulties are encountered in carrying out the
above procedure because of the presence of singularities in ' and v
and, hence, in all components in the second approximation, at the
leading edges. This is dus to the subsonic nature of the flow at
these edges and the consequent stagnation in the component of velocity
in the plane of symmetry and normal to the leading edge. A perturba=-
tion theory always fails to represent stagnation conditions and provides'
singularities in velocities instead.

One would expect that the singularities arising in this problem
at the leading edtes would be of the same types as those appearing
in the case of an infinite yawed wedge, when the angle of yaw is
sufficient to provide subsonic normal flow at the leading edges This
normal component woﬁld contain the only singularities., Further,
the subsonic two~dimensional flow over a wedge will have the same type
of singularity as that of the infinite yawed wedge; the incompressible
(M é-o» ) two-dimensional flow over a wedge will afford the same
singularities as the compressible subsonic case, inasmuch as the leading
edge in the latter case represents a stagnation point in whose neighbore=

hood the local Mach Number is nearly zero.
WADC TR 52-277 16



Examination of the incompressibleg two-dimensional flow over
a wedge shows si&ugplarities at the leading edge of the logarithmic
type iﬁ the first approximation and the square of the 1ogafithm and
the logarithm in the second approximation. These singularities are
all integrables These, then, are the singularities to be expected in
the "arrow-head" case,

Admission of such singularities raises the question of
uniquenesse It is known that a potential problem has a unique
solution when suitable boundary conditions are prescribed on a
closed contour, provided the solution is to be regular everywhere
inside. If singularities are admitted, an ambiguity may be expected -
i.e.y certain harmonic functions having singularities may be intro- -
duced without disturbing the boundary conditions. One therefore
inquires what harmonic functions having singularities of the type L/:—l/
and/or ( £4w/5-0/)" on the axis of symmetry may be added to the
regular solution for o /M‘L%atisfyihg the appropriate boundary
conditions, without disturbing these boundary conditions. Thus, in
accordance with Egs. (2L), (36), and (37), it is required that such
a singular function have zero angular derivative on the axis of A
symmetry, be even in both 4 and Z , and vanish on the unit circle, It

may be shown that the only singular function meeting these requirements

is the following:

KIW/J@M(G)-»I%/@)_,zw(/(r,)—ﬁwmrﬂ] (
38)

WADC TR 52-277 17
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Similar reasoning leads to the following ambiguous term for v-''or v-'*’

(n)

K /ﬁm/n)—/M/r;)—lm(ff‘/)+£ﬂ””*/] | (39)

The constants K, ‘and K ;nﬁave superscripts indicating the order
of approximation involved.

Since w''4nd w'*have boundary conditions on value, they can
have no ambiguity of this typee Therefore, knowing w~ “Jand W/f," one
may find K,(/; K,(z,) K;(;)and K. Egs. (25) and (26) are con=
vénien‘b for this purpose.

' It appears that the lack of uniqueness discussed above arises

because of the abandonment of the velocity potential in order to take

advantage of the simplicity afforded by the Tschaplygin transformation.

(3) First-Order Solution

(2) Solution for v "’= The differential equation is given in
Eq. (12), and the boundary conditions are given in Egse (33), (35), and
(37)s By analogy with incompressible fluid theory, the solution may be
written down immediately, using the stream func{,ion for the incommressible

source:

W")z-(%)/9,+91_’/'523*ﬂ‘f_ﬂ) (Lo)
- 0

(b) Solution for «'”= The differential equation is given in
Eqe (12) above. The boundary conditions are those given in Egs. (25),
(36)y and (37), and from Eq. (2L):

[4(_‘:)')]0:0 (s<4) (L1)

WADC TR 52-277 | 18
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1%

It is ’plain that the solution ahalytic inside the unit circle is
identically zero, leaving only the constant K'“to be found., Applying
Eqe (25) to Eqs. (38) and (LO), and, for convenience, evaluating

terms near the leading edge, one may immed ately write

w ,/9_%77 [Alﬁ)*ﬁwr'f?) Lo (tr,) - L\,./In,)] (L2)

(c¢) Solution for v'2 By a procedure similar to the one employed
to find 44", it is found that

(L3)

(1)

<

) + L//m)]

3
I

(d) Information Obtained from the Above Solutions. = Expanding (LO),

~ one finds that

¢ = - U//@/,,)[//fﬁ)/z] .(hh)

and from Eq. (42) is obtained
Zwl, “(’)/U 4 /-f-! 4.0 - -/
S /-3 /}TT e = w) (L5)

Eqe (L5) may be substituted into the results of Lighthill for the
strenghh and location of the shock wave.
For use in finding « /¥, one puts «''y ', and w’“)int

complex form to conform to the expressions (20} above.

WADC-TR- 52=277 10



(L) Second-Order Solution

In philosophy, the solution for «'*’is obtained in the same
way as was /x,win the preceding paragraph. In detail, the procedure

is as follows: One may write

e (2
wu™ = 46/0)+ u‘)

WP < v\/;;m-/» "‘Qm (L6)

“where u;) is obtained from Eqe (21), V‘ﬁl\)is obtained from a similar

2
expression and ,a: g.nd M/Zl z)sa.t:i.si‘j,f Laplace's equation in the Tschaplygin

B A T.T\\‘

plane,

(a) Find « ;') 3 note that the functions obtained from the
integrations indicated in Eq. (21) may be -complexe l/t;:)may be found
in real form by adding to these complex functions any convenient
functions oi“S ory alone.

(
)+ 74 cz) satisfies the boundary

(b) Find « ’such that «p
conditions (2L), (36), and (37) and has no singularities of order
. higher than ( 4,,/s-¢/)° . Expression (38) is to be included

in .« /Y,

| )
(¢) Find Mn o

(d) Find w.'® such that wj 7+ w; ™ satisfies the boundary
conditions (3L), (35), and (36) and has no singularities of order
higher than ( 4, /s-4/)" . Note that no boundary condition on ‘¥
at the unit circle is appiied.

(e) Apply Eq. (26) to find /<,‘z). This step is simplified
by considering only those terms that are singular at the leading

edge. The equation will contain terms singular at 5 =/{ , and one
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may require the equation to be satisfied upon arbitrarily close ap-

proach to the point ¥ =4 . 411 terms nonsingular at this point
may then be dropped, and all nonsingular factors in singular terms
may be evaluated at § =/ o The term involving the unknown K ,(2.)A
has a derivative with a simple-pole type of singularity. Thus, one
needs only to formulate Eq. (26) for terms having simple poles in
derivative., Finding K ,{z) in this way makes it possible to ignore
any boundary condition on w- Jat the unit circle, since its
application would result in a regular fﬁnction,that would make no
contribution to the determination of Kk ),

This procedure has been carried out and formulas have been

obtained from which computations can be made (Part II)e
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PART II COMPUTATION AND RESULTS

A, Computation and Results
In the cases computed, the following values are used:

U=1, y=/4
My= 12, J2, 2.
{ = 2./, 0.3, o0.78.

o

& = 2° ¢° I1o0°

-

Introducing the notations

B*= 7+ p,? Al e 2z & &
z,v; - / 1 e/ -/ -/
2 v .
£ = U A 2| +1 -1 =y +1
N = US 1LY S+ =1 +r =
T L
- — RN 4 U rpAE v
Eim—t8 min, =L S705 E=-17L
3
= £ 2 2 2
AI 2 ,Z. E') - AZ:—ZEnZK/f' EZE‘ —93/%11 é‘, /f—,(‘)
- & ~2
A3—<:“"” (1# &35 "'53/—;1*54/,‘/11) Ag = /;1251153
13 . ) 3
As frsznf4 A= ZESE = Ay
— * . 24* 3
A?" (/_,e;)w.ZE E_g Aé—(mt;Enzéq
2 2 1+
D’=“4—//‘(9,25-;1/'*21"21'231{7;* E.,._/-:'—(\)
__2Z_. 4t 3
Pr= T 26 D-’f:-fz/:jlzé_lf«;
Py =2 /—‘(ZE (/*SLZ.*éJ’/,lL-fé’/f,()
a3
De = - /7'(;.,2.'5-1262_ Dé_ (r-<*)? zE
2 . .
‘D7=“—f’-l)25 [(+ &; ) +€3[//r1‘) )]

= — 24 =47 _3_ /e2er
D} ‘(/,”»)\Z En 54 03 =1 ZE,,'{/rE‘/ + {3 T

L

2
—21;‘ ES (17 fugl- § L0074 £4)
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and further putting «“in the form
= P, + & + 99_3
the procedure of computation can be summarized as follows:

a) Evaluate ( Sﬁ, )o for a series of values of 5 according
to the formula (p. 1LL, Ref. 2):

(D), =7 [l ) st bry) Lotr) - Lt )] F [ty 2utlr) - Bt i)
+ i [ A 1/'7)_4.,{1@)],—2’?[2“,1..,) i dry) e tre) + Fn(r2) ]
bbb BT (23 920 ) (i be5) # (204t - 0] |

+ 9 153 o Gn)][20000) + [ bttr )] [ 2215 ] ]

+ 54 Ui)% [ﬂ7e‘1flh) + ngb(n) + "74*'(9):"”14 Lr{ry]

+ 3L, (5)53 [,%' b (€r,) + g nlrs) + Ng bnirz) + n;_éw/l"a)]

+ 90 {{ by ~ bt )] 4 Ll 1y = LnlOre)] ]

+n,2 {0 5 ho e g trg) ][ Cnrs = 6l €%)] |
t+ (Lory - b 7/":3[A L) - butlry)] + Py (bt ~2a 5 ]+ 102 R —Alﬂ]j

e[‘""~+‘~57/4~’/)+4/m}+ Lo # £0rs = 2(£ Ry r AR |
Sl s [ Car tr) ol i) ¢ £t + AT 7}

+ '7,7 (05T 4, 005) #dati v brty 4 £t 1) =2 Lod -2[£.R,+ & Ry]
ven (4R » LRy ]+ 49,
-f-‘é K2 Ao 7y + B v - bt dsy) —th»(l’g)J

where

YA 78 = -Aq ”/55/%(53/ (‘+L§n
OxEELlZ ng = As . ”/(.Eff %ﬁ%j

.”3- /_ﬁ;: n,,.a Ae n,7_::_ -3n,é

“’4-':' - N = Ay

hez E” _‘:’_ n,2 = Ag ;

r28 &
¢ = A, 1,35 - Aq ‘f‘,/._(EJ - J..ET’)
Ny = Az "o = 7 :’%-L/EJ‘%;L—L%)
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fp), =28 f—""“[uz e2Z (8 L
0 . / 4 /Z")) j

/4—./1#1") +htr-2Y) - A—.(Zé)]
+ £, z,‘_[»t-—»f/—f(‘) chn (1) = bt )]

_41/—(1 tAcL bl22) + B /-_-2—2_2‘,,(;1)
L /4L
C“ = ——E.? 2’7 [.&. f142) —A..,(/-()]

L.r:- /-IL[( FEI)A[/-*.I)_(—B—/"'/@Ek)z“'(""e)]

() , L 2
K, 71'@:'/43—’—3‘ 7*A:[_A../z,e)-{] + Ag -A‘/i-fl—c—l + zAy b (1ma D)

tAg [A (1=27) -4n (u)] —Ag [l rtly) -2 ti-2) ]

P RS

/-rL [z ’*( J—L./z)] — TZU)

1‘-777‘ /

(/ z) )(E [A.//N‘) tLf1-4™) - 14/:?)7 |
~E L it -zumw_xa/u)]}

/e 4\_5‘5 [,7,1‘:._,—5;."27 [/4(\— /_(L —1(]/

- : EZ - / =~ Lo R L*
(- l’jz( ) " ) lz;//'l‘jz 4% -2 é{/—'l‘:)q
24 £, N
i (A=t -]
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b) Taukte ( %) p for series of values of < from the
formula ( De 1)-!.8, Ref, 2):

-£0f)

Whire
R, =

/?LE.

Fy A > > ¥
-0 LY J [
oo om

kloi

/?,/5-;
R,2 =

Then since

(501)@ may

0= é,/[.v—-j.ﬁnﬂ.]sza?;z"'?]y + k’r-fa‘a;z* ’}_,zf + ks [6,,](65.]

phog (R ][ Ztan] ¢ (A (Loti 4 bard) + (A P EE YR (i #5a13)
b (w=6) 50 [ RO+ Ly 0] + (T7-0= 8203 [ Ry brr R 6 ]
¢ bt R) 2 [kohari b Rybar] + 40 0)2 [y bars + ke ba 1]
b Ryq L latsmbag]r 4k, (B3 &] + & [n-6-C]ar [62+& ]
+ &y (Lt LR s3] + Rig =6 8745 [ Lan+ £55]"
¢ Ry [O~BT "+ £ (RO (hym + R a7 +( Rip= K] bl ]
t Ll RO B b, )bnrs + Chgrh )]
# Ca[ AR+ AR ] + RIY

) : Y ()]
= [>/E/2+fx)j+'q‘7 1?14“ ‘77[@(/ -9t (1 -0 Zz'?— /-4
252"-/-,4, b/SE _;_2 fz_ /L_*_%:
4 E;*" _ £ i
- /i’/b: ‘4 ZT:IFII:Z\-
-4[51-52'7 v E sl
kim = - [E g LT - )
Av + AstZ 3 2 (-9~ +B7 7=z
= £ I L2
- Ay +ASFLY) . R, p = Lir ———;'_"l\_
(A3 +AY) L, = 25"
As—=Ab

' » 3 & 2
S [As rATH B S omh o]
P KLy & €
[ ™" % Zgn 7]
~E3" = Ry
(P, )q is even about both vertical and horizontal axes,

be expressed in a Fourier series

>
(%)0 = 5'/4. -f-;@,.,_(‘,aagno\)

where

b4 n
Ry, = 7—7-.'-/ fﬁjamgnwdw = ’?—/(ztfv)@wanw dw
a9 [
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@€ ,, is evaluated by graphical integration using a planimeters
Thus the regular hammonic function associated with boundary value (1)
is

8¢
¢L = 2'449 + Zqzn.slﬂbuz 2 )
/
24
where (g{)ar. £La, + ,Z_Qpn_w-n
#.) ¢ is then evaluated at the series of values s picked above.
©) A Fourier analysis of (% _), is made for Lighthill's result
on Mach cone (Appendix), which gives on w =0 ,
50 on
(%)o =LA, + gfqzn-‘ ~
where A:n is obtained from formulas furnished in Kppendix.
d) Results of a), b), and ¢) above are added to give (. D, .

e) M(I) )

and « “are computed from (42), (L3).

£ ¢’

and Cp{”are computed from (4), (5).

In performing the calculations, resort has been made to
various geometric relations furnished by Appendix A, Ref. 2.

The computation procedure is illustrated by tables for the
case of Afe=./2. £ =2 3 o, The computed results for «’’, u'*’
Cpl'y (;SLJ for various Mach mumbers and values of A are plotted
in Curve 1 to Curve 20, Note that different scales have been
adopted in plotting the curves. For A1y =/Z, plots of «and G
at s=o against £ are shown in Fig, 21, For L =0.3 ,

plots of « and ¢pat s=o against A, are given in Fig, 22, In

both cases 2% = 6° is used.
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B, Concluding Remarks

The theory and computation formilas adop’ced in the present
report are mainly taken from Ref, 2, by Dr. F, K. Moore. Those not
to be found there are given in the Appendix to the present report. '

The boundary condition on Mach cone given in Refe, 2 is incorrect.
Prof. Wo R. Sears pointed out that Lighthill's result in Ref. 3 should
be introduced. Refo 1 lis the corrected versione. }

TheAcomputations have largely bean carried out by Mrs, Ame
Kane,

The effect of & on the difference- between the first and
second approximation, as expected, grows with £%,

The reason that the _discrepancy' between. first and second
approximation changes radicaliy with decreasing planform angle A
is.tha'b the parameter £ is not, in fact, an ideal thickness parameter.
A little reflection shows that &/ = £ el A might be a better
choide. Indeed, the boundary value on the singular line inside the
unit circle of the conical plane is given by £’rather than 2 .. Thus
even far such small values of & as might seem evider_r_bly to ‘meet‘ the
requirement of 1inearizatioﬁ, the value of £’ can still cause break-
down, provided A be sufficientiy smalls It is suggested therefore
that the present second approximation might be improved by expanding,
instead, in powers of &',

It might also be of interest to note that, so far as computdion
results indicate, the present theory predicts a particular value of
L (= ¢.3) , for which 'the{ first-order solution gives good approxima=
tion irrespective of Mach number. A further investigation to see

whether this is a coincidence is also suggested.
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APPENDIX

In order to utilize Lighthill's result, it should be noted
that in his discussion, physical polar coordinates (¢, w) were used,
while in the present report, conical coordinates (S,w)are useds The

problem can be stated in following manner. In the differential equation

2 )
Ve = H(T’-,LU) (1)

a solution of the form
. .

is sought, where

VZ¢J:O

(3)

and Sp_-‘, satisfies the boundary conditions

(%), tw=0) = © (5)

G (w) is obtained from Lighthill's result on the study of conical
shocke Thus, since ¥, is analytic inside the unit circle s=/ ,

it takes on the form

733 = g/};,‘ 37 coz 20
(6)
Now using Lighthill's notation, Ref. 3, we have
“ e (fenfh) (M
ulas) = - URS = - Ut (R=/)
(8)
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So /ﬁfi)fg:/ = "2 /?1_

over r=s=/ (9)

N3 J—;sz | n = ‘ (10)

and since _)[
e

- L

= sv (Fxen w4 %Mw) =ﬁ’/,}(v¢o'zz.u+ W w)

~°{_.V‘—/._. 4\/2— /+1‘L (11)
= — U ‘
(dm n=y T lﬁww(’rl‘)'ﬂ4~£‘w~ow (12)
= gy ¢ Cored
(d‘/l-f\f A=) . ) G+ 4[‘_'“"_&’-@ (13)
So d'fn. — _ ! oA v ol
(a//'*"‘,-,,)ul Alw) rEs (d_—_JTrT ot T )
4T i+ A ,
ST ) B et w (1)
i.e. Xl mMF 200 (a'+/)/éézM‘f (/?-(‘)"
G(w) = -2_/?" A ) = '77\-/‘?"" Clipt)i v uwsrw]t
= Z—Al"’c’o—z}nw (15)

and finally we arrive at

od
($), = -U S Asns™” (16)
A /e A .
'Where Aa = %%(fv-/)(fgy)“,/_p_)z. ,jlv

A, = '_’/?6{ (¥r1) /‘;) yr/‘zz{:"‘ ")
Ay = 7’76:(o*+l) (7":’) 9‘(,_; f)i(f/j% f
Ao = L )DL O ) o
A = ftrey hr ZASE—
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/6 ﬂ4_“if’*‘(.27_ / Coe M udy
Avn= a0 o 7 o (/—acoul*
2 = 24 Jr-ax (~L¥
T 1A /—a” = 1+ A (18)
/DWtc‘éj Z = e"o. [FUNY ﬁm | ‘ . ,
2T e madb j{;_‘(;"”r?'”“)(-;‘)ofz__ (2 +1) (-, 553,02
o (1-aco2B)? (r-Ferp)]% (B e -0-2)* A
e ) !
2 (Z w/ ) dE = -2L 9,
= - — = e = - - L
OIL\?ZM-’/'?-S_)L(?-:‘_)I q'l. ZR&.
<L
=2 (Roy + Ra;)
o Rens = - /-JT=-av r A mat (19)
S_S =/ yF = - R —'—a——- )
a
= _ _2Jimaz2 - oz
= a SIS =R
o / 2y % < ¢
@% = Cooyf of 77 an: z—,::_—,g r”r-H)(j“) g/ﬂw)(}z)

[7]
= 5, nlm-n) (377, % ""‘?n)

»H =)

[F] onilly Logoot wllipsn, Luwmictin Ly 2 (20)

/an / ‘f/w)
’ f2) = L~ dw
f /?) —2rr£'j/(‘w-2)\'
'€, Flw) .
S T
@ A O e e
s Az ) Tie-g)t /);=5
- m(5"LIT) 4 (575 B 2§(8 73T
(§-* (§-5)7
7444 v (21)
o (57
w = i’] Z » /m~ﬂ) (S“‘?-2: -S_ Mhz’?)
o (/— 4 m&)" atl / .
L3RS ) #(STEs™) 25 (TR
(§-5)2 (¥ -3)2
(22)
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