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FOREWORD

This report was prepared by the Mapping and Charting Research
Laboratory of the Ohio State University Research Foundation under
USAF Contract No. AF 18(600)-90. The contract is administered by
the Mapping and Charting Branch of the Photographic Reconnaissance
Laboratory, Weapons Components Division, Wright Air Development
Center, Wright-Patterson Air Force Base, Ohio. Ir. A.S. Rosing is
Project Engineer on the project applicable to the subject of this
report.

Research and Development Order Nos. R-683-L4, "Research in
Photogrammetry and Geodesy for Aeronautical Charting," and R-693-58,
"Aeronautical Charting Systems," are applicable to this report.

This report was originally initiated at the Ohio State University
Research Foundation as OSURF Technical Paper No. 159.
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ABSTRACT

In the present Technical Paper are given the outlines of Intrinsic
Geodesy, a theory by which the gravity field of the Earth may be analyzed
by using only the results of actual measurements, and without any ad-
ditional assunption on the structure of the field itself. Any geometrical
or mechanical element that would not have a physical reality is therefore
excluded.

After having specified the aims of the oroblem and the means by
which it may be solved (Introduction and Section I), short summaries on
the elements of vector and tensor calculus are given (Section II and
III).

By the help of this calculus, the study of the gravity field of
the Earth is performed, using coordinates innate in the field itself
(Section IV-), and several applications to practical problems are shown.

Somigliana's field is finally suggested as the most appropriate
for generalizing the usual ellipsoidal Geodesy in a three dimensional
scheme (Section V).

PUBLICATION REVIEW

The publication of this report does not constitute approval by
the Air Force of the findings or conclusions contained therein. It
is published only for the exchange and stimulation of ideas.
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INTUIMNS GZOD]IS

IUMDNGIX TION

As for any other Science, the development of Geodesy has been

greatly influenced by the historical process; In our Science it led

us from the primitive idea of a flat Earth to the actual concept on

the shape and size of our planet, and its internal structure.

In early times it was discovered that the Earth could be approxi-

mated by a sphere, and already the Greeks and the Arabs tried to deter-

mine its radius. Only much later the theoretical works of Galileo,

Newton, M•gens, and Clairaut led to the ellipsoidal conception of the

shape of the Earth that was definitely proved by the celebrated ex-

peditions of the AcadeuV of France in Lapland and in Peru as early as

the second quarter of the 18th century.

As geodetical work progressed and methods and instruments were

greatly improved, it was soon discovered that even the ellipsoid could

only be regarded as a further approximation for the shape of the Earth;

and the idea of the Geoid (Listing, 1873) became essential.

Notwithstanding, and since the times of the expeditions of the

Acadezq of France, the ellipsoid was still the dominating feature in

Geodesy; not only it was and is still universally used in practical

Geodesy and surveying1 but it also affects most of theoretical research.

It my be pointed out at once that the function of the ellipsoid

in Geodesy may be regarded as two-fold. Sometimes it is accepted as a

good approximation to the Geoid, and therefore confused with it. That
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happens mostly in problems of practical Geodesy, such as triangulatioi..

Sometimes it is simply regarded as a standard surface of reference, with

respect to which the "anomalies" or the "deflections" of the Geoid are

referred. But several times its use is promiscuous, and it is not easy

to discern what in the results is due to the actual structure of the

Earth's gravity field, and what is affected by the ellipsoidal assumption.

It seems, therefore, of some interest to establish a theory leading

to the study of geodetical and geophysical problems, abstracting from

any hypothesis on the shape of any level surface in the gravity field

of the Earth, and leaning, therefore, only on the data of actual measure-

ments.

Moreover, since the time Geodesy did no longer confine to the study

of geometrical problems on the shape and the size of one particular level

furface, and started studying the dynamical problems of gravity, its

concern became more ample, and its aim more precise. Geodesy is the Science

devoted to the study of Earth's gravity field. The study of the geoid

became a particular problem in this general definition.

Our study must, therefore, not be confined to one particular level

surface, but must extend to the third dimension in such a way as to

link in an overall picture both the geometrical and the dynamical aspects

of geodetic problems.

The difficulty to overcome at first lies in the fact that Operative

Geodesy must always refer to coordinates suitable for carrying out actual

measurements; if independence from any exterior, arbitrary system of

reference (like the ellipsoid, or cartesian baricentric axes, etc.) is
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claimed, then the coordinates to be used must be innate in the field

itself. We will therefore call such coordinates intrinsic, and our

study Intrinsic GeodesX.

Also, in such study we will only consider entities having a

physical reality and quantities susceptible to undergo actual direct or

indirect measurements which Operative Geodesy is already able to perform,

or would be able to perform if appropriate theoretically conceivable

instruments should be available. A itandard surface of reference (like

the ellipsoid) or a standard field of reference (like Somigliana's

field) should be soaertimes used for testing the actual gravitational

field of the Earth; but the particular assumption of such standards

would never affect the general results.

We already remarked that the ellipsoid may be correctly regarded

as a standard reference surface in two-dimensional Geodesy for referring

the discrepancies between it and the Geoid. The most natural extension

of such concept in three dimensions is given by Pizzetti-Somigliana's

field of gravity, which was accepted in 1930 by the Stockholm meeting

of the International Association of Geodesy on the suggestion of

Dr. Lambert, Prof. Cassinis, and Prof. Somigliana himself. Somigliana's

field is fully determined, on account of the celebrated Stoke' s theorem,

by giving the ellipsoid as one of its level surfaces (usually

Hayford's International Ellipsoid), by the well-known angular speed of

rotation of the Earth, and by the equatorial value of gravity on the

ellipsoid itself (usually g. - 978.049 gal). On Somigliana's field is

based the international formula for normal gravity, the coefficients

of which have been determined by Prof. Silva and Cassinis.
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The principles of Intrinsic Geodesy may be very easily particularized

for Somigliana'a field, and the results used as a standard of reference

or as a good first approximation in ihatever geodetic problem the third

dimension is involved; and that, in a perfectly similar way to that in

which the ellipsoid is used in two-dimensional Geodesy.

Modern techniques tend indeed each day more to extend geodetic ex-

ploration in space, as is shown, e.g.,by the impressive fact that in

classical Geodesy only measurements along geodesics and lines on a

surface (Geoid or Ellipsoid) were considered, and that at present times

optical and electronic devices allowinstead ,the measurement of distances

along lines in space, which may be very closely confused with geodesics

in space, i.e., straight lines.
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INTRINSIC GEODESY

SECTION I

1.1 Object of Geodesy

We will first point out the object of Geodesy, as it is referred

to in the present lectures: it is the study of the gravity field of the

Earth.

As it is very well known, the field of gravity ( - gravitation +

centrifugal forces), in the same way as all conservative (non-dissipative)

fields, may be thoroughly described by means of a single space function,

the potential function as introduced first by Laplace, in all points

exterior to the volume occupied by attracting masses. The object of

Geodesy may be also formulated, therefore, as the study of the potential

function, or also of the shape and size of its level surfaces (equipotential

surfaces), and of their orthogonal trajectories (lines of force).

It is also very well known that the study of a potential field

involves geometrical and mechanical aspects; for instance. the problem

of determining the size and shape of each of two near equipotential

surfaces is of geometrical nature, but that of specifying the value of

the corresponding potential difference (the work to be done by trans-

ferring the unit mass from the one surface to the other) is a mechanical

one, vhich involves the concept of "force" (gravity).

'We may add that in this scheme the aim of Topography (Surveying)

is merely the study of the shape of the actual physical surface of the

Earth, referred to the above gravity field, or in a more simple way, to

a particular level surface of the same.
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1.2 Two Aspects of the Gravity field of the Earth

The study of a potential field may be considered from two

completely different points of view. The first (also historically) is

based on Newton' s law of gravitation and on elementary laws of centrifugal

forces; i.e., it is based on the consideration of the "cause" of gravity

itself. It admits, therefore, an interaction between attracting masses

and is called, therefore, by Hermann Weyl •/ the "Fernwirkungsgesetz"

(principle of action in distance). Its fundamental equations are, as

it is easily seen,

W nf +grad•d-VW

rv 2

where W is the potential of gravity in a point P of the space, due to

the attracting masses of density/A distributed in the volume (V), and

to a rotation of angular velocitycu; f is Newton's constant of gravita-

tion, r the distance between P and any point whatever of (V), R the

distance of P from the axis of rotation. Moreover g is the vector of

gravity (the gradient of the potential W). (Here and in the following,

overlined letters like j will stand for vectors.)

We may also refer to the above principle as an integral

principle, owing to the fact that the knowledge of the whole distribution

of attracting masses is required for computing the integral in (I-1)

It is the principle followed in the classical works of Clairaut,

Helmert, Bruns, etc.

The second principle may be referred to, on the other hand, as a

differential principle, no longer involving the knowledge of the distri-

bution of attracting masses. Weyl refers to this principle as to the

S Hermann Weyl, Raum, Zeit. Materie - Vorlesunren Uber allgemeine

Relativit~tstheori, (Berlin, 1921). (Also in French.)
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"Nahowirkungsgesets" (principle of action in proximity). This denomina-

tion is due to the fact that only the knowledge of the field's structure

in the immediate neighborhood of a given point is wanted.

In other words, the gravity field may be studied here as an "effect",

independently from its "cause" (the distribution of masses); and it is

well known that the gravity vector I must satisfy the following two

fundamental (differential) equations:

rot i - V x E - 0 ; div 2 - v" I - 2w - 4v f, • (1-2)

The first equation affirms that the field is conservative, and

the second that a rotation is superposed, and that in general in the

point P where j is considered, masses of density, are present (the

last term disappears in vacuo, and to the greatest approximation in

free air).

The differential principle has been followed Wy Stokes primarily,

and his theorems are of utmost importance in Geodesy; and later on by

Pizzetti, Somigliana, and many other prominent geodesists and physicists.

The outstanding importance of the second principle lies in the

fact that it is completely independent of the distribution of attracting

masses, and it may therefore be applied with great advantage in Ge-

odesy, where the distribution of density in the interior of the Earth

is unknown.

1.3 Geodetic Position of the Problem

We have so far outlined the problem of gravity from the stand-

point of mathematical physics. Our task is now to examine it from the

point of view of Geodesy, i.e., of experimental science, and to specify

suitable methods for the practical exploration and numerical definition

of the field itself.
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On account of its independence of the knowledge of the Earth's

interior, in the following we will confine ourselves to considering

only the second principle stated above.

Our problem may be simply formulated as the problem of studying,

in a given domain, the vector I of gravity, and other vectors connected

with it in a very simple way. Such vectors are, for instance, the unit

vector 7 of i (• - -g 71), where g ( a scalar) is the intensity of

gravity, or Ogravityl; the derivatives

d2-gd;~ d2 6i
dSP $ -• " dd' S'

of the same vectors in given directions, the vector

- grad g (1-3)

(the gradient of gravity), etc., and the only difficulty is to find a

way of defining numericalLy the above absolute (not connected with a

particular reference system) entities.

A vector itself is not a measurable entity. Only its components

(or projections) with respect to a given system of three carbesian

axes are numerically definable and therefore apt to be measured by

means of suitable instruments and methods, and to be used in numerical

(or algebraic) computations. We are therefore forced to choose, in

Geodesy, reference systems of three axes (orthogonal or not, unit or

not, but not coplanar) in respect to which to consider the components

(or the projections) of our vectors, and it is a question of fundamental

importance for the practical ine in Geodesy to have in mind that:

(1) the axes of reference must have an immediate physical reality;

(2) no additional hypothesis must be made in connection with the

gravity field itself;

WADC TR 52-149 8



(3) the components (or projections) of all vectors to be
considered may be easily measuredw

The three conditions above exclude therefore, for instance, an

absolute cartesian system of reference for the whole Earth, which would

not have a physical reality and would make it therefore impossible to

measure coordinates and components.

So far as the possibility of having a single system of reference

for the whole Earth, satisfying the above conditions, is obviously to

be excluded, we are obliged to choose suitable local reference systems,

one for each point of the field in the region to be considered.

As a first solution, reference systems of this kind would be

given by orthogonal unit systems of axes in any point, one axis being

directed towards the Zenith, a second towards the North, and a third

towards the East. Such systems are often used in local geodetic surveys

of limited extension, and we will refer to them as local astronomical

systemsw•a £ch system satisfies obviously the three fundamental condi-

tions stated above and has, therefore, an intrinsic definition.

But we must always have in mind that the extension to a wider

domain, as is often considered in Geodesy, requires the different systems

of reference to be connected each to the other in such a way as to make

it possible and easy to transfer all mathematical properties from one

system to the next, or also to ccmpare the components (or projections)

of the same entity referred to different points in space.

We will see that the local astronomical systems are not convenient

for such purposes, in spite of their very simple definition, and this

is due to the fact that it is not easy to connect them each to another.

We will see, on the contrary, that another system is much more suitable

for the same purpose, though its definition is a little more complicated

than the foregoing.
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l.4 Object of Intrinsic Geodesy

The task of our study, Intrinsic Geodesy, may be: we must

define in any point of our gravity field a system of three non-coplanar

axes., sach satisfying the conditions stated in 1.3,r and give a rule

as simple as possible for connecting each system to the next one.

If we are able to do this, we will also be able to develop every

geodetic research on an actual basis without referring to any arbitrary

hypothesis (like that of the spheroid or the ellipsoid), nor to any

system of reference not accessible to our measurements*

An easy way to reach this result, as we will see in more detail,

is to establish in the whole graviV field an intrinsic system of

curvilinear coordinates, i.e., coordinates whose definition is implicit

in the field itself and do not need therefore any additional assumption.

We will see that the most suitable coordinates to be used for this

purpose are those defined by the foilowing coordinate surfaces:

(1) the family of equipotential surfaces themselves; we at-

tribute to each surface as parametric coordinate the corresponding

value of the potential;

(2) the family of the surfaces connecting all points in space

having the same astronomical latitude 1; 4 is at the same time the

parametric coordinate connected with this family;

(3) the family of the surfaces connecting all points in space

having the same astronomical longitude X; X is at the same time the

parametric coordinate connected with this family.

The coordinate lines are therefore:

(1) the isozenithal lines (intersection of 4 and X surfaces),

connecting in space all points having the same Zenith (same 4 and k);

WADC TR 54-149 10



(2) the geodetic meridians (intersection of W and X surfaces);

(3) the geodetic parallels (intersection of W and I surfaces).

All entities so defined have a physical reality; the equipotential

surfaces can be materialized by a level; astronomical latitudes and

longitudes may be also easily measured; the difference of potential W

is, with abstraction of an insignificant numerical factor,, the dynamiic

difference of height.

Attention is recalled to the fact that geodetic meridians and

parallels should not be confounded with North and Last Lines., i.e.,, the

lines whose tangents are directed in each point towards the North or

East., and also that geodetic parallels and meridians do not cut in

general at right angles.

As it may be easily seen, the systemi of coordinates so defined

is intrinsic; in fact,, we did not use any additional hypothesis., or

any exterior element other than the axis of the World to which astro-

nomical latitudes and longitudes are referred. Moreover, the direction

in space of the axis has a physical reality and maV be used for ex-

perimental measures.

The coordinate lines so defined give us now the possibility of

fixing the position of any point in space by means of its three para-

metric coordinates #, X., and W. And moreover, the coordinate lines

defined above enable us to draw at each point a system of three funda-

mental vectors tangent to the lines themselves. Furthermore, as we will

see in more detail afterwards., the same coordinate lines will allow us

to connect the systems of fundamental vectors in neighboring points and

enable us, therefore., to compare vector entities at points far apart.
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SECTION II

VECTOR CALCULUS (ELEMENTS AND NOTATIONS)

2.1 Preliminary

In the following we shall consider absolute entities, like

points, vectors, and homographies, which all are independent from any

system of reference; and,on the other hand, relative entities, like

coordinates, components, and projections, which all depend not only

upon the absolute entity they represent, but also upon a reference

system of coordinates.

The absolute entities are studied by the Vector Calculus, and

the relative ones by Cartesian Geometry in the elementary case of

rectilinear reference systems of coordinates, and by Tensor Calculus

in the case of general curvilinear coordinates. (See reference 4, 5,

6, 11.)

The difference of two points P2 - P1 - T defines a vector; we

may writes therefore, also P2 - P1 + X. From this point of view, i

may be also regarded as an operator leading from PI to P2"

A vector is completely defined by a direction (of the straight

line joining P. and F2), a sense on it (from P1 to P ), and a magnitude,

or modulus, or length (of the segment P.P.). A vector may be represented

by an arrow. All vectors specified by the same three qualities stated

above are said to be equipollent. The point from which the vector starts

is immaterial.

We will always use an overlined letter for indicating vectors.

The same not overlined letter will represent the modulus (length) of

the vector (a scalar).



A unit vector is sometimes called a versor; sog for the

instance U -I is a unit vector; we have therefore T - a Tr. A9 a

vector may also be defined by its modulus and its unit vector.

Let us have two infinitesimally near points P and P', and put

P' - P - dPi dP is therefore an infinitesimal vector, and we may say

that the differential of a point is a vector. If ds be the length

PP'. then ! . dP is a unit vector. If P and P, are two infinitesi-
ds

mally near points of a curve, then T is the tangent unit vector to

the curve in P.

We assume that the operations of sum and subtraction, and

multiplication by a scalar of vectors are well known.

Scalar product of two vectors T and F is indicated by

a.b (Italian notation, 1 x U) (read I dot B, or also i scalar U)

and gives a scalar (a pure number). If e be the angle between the

(positive directions of the) two vectors, then we have

- a b cos 6

Scalar or dot product is distributive and commutative.

Condition for orthogonality of two vectors: a.S 0

Vector or cross product of two vectors is indicated by

a x 1 (Italian notation, Z A S) (read a cross r, or also a vector ).

For full definition of vector product a preliminary orientation of space

is necessary. If we are given tnree (non-coplanar) vectors V2., li, V3,

(in the given order), such orientation is fixed by the rule that an

observer situated along one of the three vectors would see the other

two (considered in cyclic order), the one at his left, the second at

his right, following one of the two schemes:
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( f1 V3

I. scheme V'2 v v 3  V2 va

II. scheme V3  V2 V1  V3  V2  V1

In the first case we will say that the orientation of our

space is dextrorsum, or clockwise, whereas in the second case it is

sinistrorsvmý or anticlockwise. We will assume for our space clock-

wise orientation.

Vector or cross product of two vectors T and E is a new

vector W the direction of which is perpendicular to both the

directions of I and U. Its sense is such that (ZB,•) be a posi-

tive trihedron (dextrorsum in our case), and its modulus ab sin e.

Vector product is distributive, but not coimnutative:

i x Ua- 'X

Condition of parallelism of two vectors: 0. =

Triple product, or mixed product, or box product of three

vectors i, U, E is the scalar

V -i Bi~ F- iXiU.E - 'Exg . B - FXc i a-

=1. .X F- F.x = .cx5 (EI-1)

Z -b xa m ..... .

We give here some useful elementary formulae:

WADC TR 52-149 14



(I x -') x - E. = f - V. F IT,

K x (1 x ) =. U . - I.'5 ',

(ix x ~7+ (9 K u x I + (r. x K) x ~ 0.,

(ix ).(~x C =T.) a

[I~b~J V.ii 15 vaV. i.~
W I.1r w.B W. F.I (11-2)

(xb x (-c xd i a )b- [bcd.'ý

S[� ��]�dc - [-a b c] ,

a [E' -Eb[da + - [a -a] S) ' a ji ] '] -0,

c- - (1abU) #0) .

Condition of coplanarity of three vectors: [a b c] - 0.

Rules for differentiation of products are the same as for ordinary

products:

d(I . -) in.dA+ U. di,

d(a x ;) a x db + d x b, (II-3)

diE. c-] da x b. c + a- x db'. C + a x b-. dc.

2.2 Cartesian Components: Differential Formulae

If we are given a positive system of three orthogonal unit

vectors (i, , is), we may always write

'i - &J aaja + aj13 (11-4i)

a.. a., a. are the components (and also, in this case, the projectiors)

of a on the three axes: a - a=
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We have:

ii, ia U

a~ba~b a~b2 +ab 3  %~b % 3

b, ba b3

Mn-5)t(i'"S)
a, a2  aL3

[iS ) b- b2 b3 ,

0 1  C2  C3

Positional vector of a point P referred to an origin 0 and the

system (il, ja, i 3 ):

P-o0- X + Xi 2 + X13  (11-6)

(x,, x2 , x3 ) are the cartesian coordinates of P.

A furntion W(x 1, .2 , xs) - W(P) is a function of position.

'ge call gradient of V and write grad W or also VI

(read nabla I) the following vector:
a* - aw - awF-

gradi- W -- j 1 . + - (11-7)

"Kgrad" is an operator between scalars and vectors.

It is immediately seen that grad W . dP - dWf it follows that

grad W is always perpendicular to the surfaces W(P) - const.

If we are given a vector U - if(P) function of position (the

components of which are functions of P), we shall call curl or

rotation of U and write rot U or also V x 11 the following vector

rotu+ Xxlm1  *j. x- + 3 X5-X3

8113 - 1u1  'U 3  -1~3 81
8Cx. ax3 &3 aL2 x, 3X2

a a D

U1 U2 U31
WADLC TR 52-149 16



"rot" is an operator between vectors and vectors.

It follows immediately that

rot grad W VxV W = 0 (11-9)

A field of vectors 1 (P) such that rot U - 0 identically

is called irrotational or conservative. In such case, a scalar

function W(P) exists, such that ii(P)-grad W(P). W(P) is called

scalar potential, or potential of the field.

If we are given a field of vectors U(P), we shall call

divergence of U and write div 'U or also v . U the following scalar:

div - - - +- + (II-i0)
;2 ?x2 0 x3

"div" is an operator between vectors and scalars.

We have identically div rot V - 0; and, conversely, if

div U - O, it follows U - rot V.

A field such that div U - 0 identically is called solenoidal;

it follows that every solenoidal field is the rotation of a new field

of vectors (vector potential).

Combining the two operators div and grad we put

div grad W - A2 W - V.VW -V 2W, (II-ll)

the new operator &2 (between scalars and scalars) is called the

Laplacian operator.

A given field U(P) may always be written as the sum of an

irrotational and a Solenoidal field. We have

S- grad W + rot V , (11-12)

and also it may be written as

S- grad W + m grad n, (11-13)

where W, m, n, and Y are suitable scalar or vector finctions of P.
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It is very important to point out at once that although the

foregoing differential operators (grad, div, rot) have been defined

for the sake of simplicity by the help of cartesian coordinates, they

are absolute operators, as we can see from the following vector

formulae which may define as well the operators themselves:

grad W . dP - dW I

rot .dPx S . S P - 6U& . dP (II-14)

(div U)dP x 6P . aP - 6Px aP . dU+ aP x dP . SU + dPx SP . a,

where d, 6, a are differentials in three non parallel nor coplanar

directions.

Following formulae may be derived immediately from the foregoing:

gzad(V + W) a grad V + grad Wrot (U +V) - rot U + rot V,

grad &W a a grad W + W grad m

rot m - a rot U * grad m x U, (11-15)

div WT - a div i + grad i n

div u x V - i. rot E- i.rot v.

2.3 Homographies

A linear operator (transformation) a between vectors and vectors,

such that

CLa W u

a(1 + 1) - (L * + a , (distributive property) (11-16)

Q(m 1) - ma , (commutative property)

will be called a homography.

Lach homography transforms parallel vectors into parallel

vectors, and vectors parallel to a plane into vectors parallel to a

plane.
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Moreover, each homography may be fully determined by the corre-

sponding vectors of three (independent-non parallel to a plane)

given vectors.

Proper homography is a homography transforming vectors non

parallel to a plane into vectors non parallel to a plane.

Singular or degenerative homography is a homograpki transforming

a group whatever of independent vectors into other vectors parallel

to a plane, or even parallel to a direction.

Some special homographies are:

(1) homothety (proper homography)

Q - m (real number) a m F (k arbitrary). (I1-17)

(2) axial homography (singular homography transforming a group
whatever of independent vectors into a group of vectors parallel

to a plane)

CL x , X U xx (II-18)

(3) dyad (of Gibbs) (singular homography transforming each vector

into a vector parallel to a direction)

S=H (u.,v) a, a 61 (. X- V (II-19)

(4) dilatation (proper homography)

Homography satisfying to the condition

1 . CL T- T. CLI . (11,20)

A homography may be indicated also by the following notation,

which defines it fully:

fu v w\) ~ •i-

/ i.e., -
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In the case of a dilatation, there may always be found three

unit vectors (principal directions) i-., 1, such that

a 1. 1a 13 .(11-22)

The three invariants of an homography are I.yL Izaa IG

(first, second and third invariant) and are defined by the

following formulae:

IQ . ;.V. " V X W. aU +W X U. a. V + U g V. 9W,

i3a .U X V . W - (a-U) X (07). Of) . (11-23)

The vector Va of a homograpby a is defined by

2Va. x u .aW .av (u, v, a arbitrary vectors). (II-24)

The dflatatimg Da of a is defined by

Du - a- Va x . (11-25)

The conjugate Ka of a is defined by

Kam- D- Vax . (11-26)

The cyclic Ca of a is defined by

Cain M z- Q . (11-27)

Theorem 1: Da is always a dilatation.

Theorem 2: A homography may always be written uniquely as

the sum of a dilatation and an axial homography, as follows:

*- Da + Vgx K a-D• - Va x . (11-28)

We have

* is a dilatation if 0

a is axial if Da a O

f T •a a -a
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Som important formulae:

V (a + P0 ) atl + VlpP IVMU m M~lid 9

V (cip) = W+Vp , Vm =m~a

D (a +p) - Da + Dp , 0 Ima V

K (a+ p) - Ka* K p Kma -MI ,

C (a+ P) A-Ce +CP, CMM ==CU

3. - 3m , I2a 313.? I3 3 3

Va =o , Th =a , Ka = , (umacalar)

12( i xV) - 0 ,(i• )2 U X , 3 (X;Q)- 0 axials (1-3)

V(iiý)- ii D( x') -o , K(iXý ).-Z,

I1 H(IV) - U.V , I2 H(i, ) - 0 , I3 H(iv)- 0 ,

2 VH('",) - 7 a •, 2DH(U,f) - H(UV) + H(•U,) , 5

Comutation theorem of Jacobi:

i.4 - F. Kai (11-31)

(1, ., and Y arbitrary homography and vectors).

x (pa) - IIQ Ip + I• + lap - IZ(a +p),

I2 (PC) - 13 13,P (11-32)

2.4 Spatial Derivatives of Vectors

ITO will define the operator LV and call it spatial deri-
dP

vative of the vector U - •(P), as the homography which applied to a

displacement 6P, gives us the corresponding increment SI undergone

by U:
Si = -• . (11-33)
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d-
if we apply the operator dP to a given unit vector i,

d•_P

-- a gives us the derivative of U in the direction 1. For this
dP

dii
reason a may be called the spatial derivative of U.

We have the following absolute expressions for rot U and

div U:

rot U _ 2V_, div U- I2• (1)-34)

Furthermore, the following important formulae may be noticed:

dU - dV._
grad T. v- K. v + K u . (n-35)

If ii, i0, i-3 be a constant orthogonal system of vectors,

and U- • + u2 i2 +u~i 3  ,

then

rot U - l grad Ur r ,

(11-36)
div U - I~ grad ur . r

Some theorems follow:

Theorem 1: If everywhere in a given field U. rot U - 0, then

three scalar functions of position m, n, and p exist, such that

U- mgrad n

rot( • ) - 0 , (11-37)

(P- 1/Mn)

Theorem 2: If everywhere in a given field div i =0,, then

two scalars m and n exist such that

S- grad m x grad n (11-38)
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Theorem 3: For an arbitrary vector field V, scalars m and

n exist such that

rot ' - grad m x grad n . (11-39)

2.5 Cartesian Components of Homographies

We may consider the cartesian components of a homography.

If (i]) are the orthogonal unit vectors of our reference system and

a the homograpkq considered, we may put

ai1 - a,, i 1 + a3. i 2 + a.3  j 3 ,

•- a• 1 + a. 12 + a3• (11-40)
2ti 21 1 22 231-

Gj. 3 -a 3 1 i1 +a 3 2  1 2 +a 3 3  1

The matrix (j ars 1 gives us the components of a homograpkV

and defines it completely. In fact, if we put

S- ur Urr, we will haver-1

*= - U2., Ci + UiL23 + u 3a13 "

" a ( a 1  + u2a2 . + u 3 a3 )1  +

+(ula., +u2a2 , + %a,)i 2 +

÷(ua, 3 ++ua 2 3  Ua3" )i3

We have, therefore:

a re " ar, is " (11-42)
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We ,,v, fwuthe'mor.:

C a£ % 1 %3

A £3%A32 a331

a , & a , a 3
a,, %a & 3I

Za3a 3% 3 a 3

%IL11 1/2(a.. + a2) 1/2(a 1 3 + £31)

D 1 :/2(L21  + 'L1) % 2 1/2(a33 + a3 2)

1/2(a31 + 83) 1/2(a32 + %3) a 3

2Vu Z (£23 - £&3.a) + ( a3) - a3)t + (a% -

0 1/2(aza - a 2 l) 1/2(a13 - a,,)
VX i 1/2(%a - •,2) 0 1/2(a23 - a3)

1/ 2(a 31 - a£ 3) 1/ 2(a 3 -- a. .) 0

S0 +a 3 -&* (11-4•3)

TLx a -a 3 0 +IL

+ a2 -a , 0

WADO% VR -V12
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li d l I K d -al l + a za + a 33

a2 2  a., a3, a3l a 1 1  "12
a -+ + U I•c

a3 2  a + a.. + a 1 a 2

al a12 a 1 3

3 a %i a 22  a2 3  2IKa

a_. a3 2  a 3 3

a - 7 a H(I I) (decomposition of a homography into dyads)

Furthermore:

Pu l aU 2  aU 3

__ a-_ ,- N aji ')u3

_2 13) _P

duall a'aai

dP FzX2 3

"rot 12 
+ +

-J au GI- - au all U 2 a

A W div grad W 1+ a-

dP X- (1-44)
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d (grad W), -i w 1 2 W133 raý
13 d2PW2"2

dP W2w" 3 r ayxia 5 (Hessian)

gradm x grad n. grad p a a

1u - au a u ( Jacobian)

a lap i
a1 1  axz ax 3
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SECTION III

TENSCR CALCULUS (ELEMENTS AND NOTATICOS)

3.1 General Rectilinear Reference Systemu

We have studied so far, absolute entities like vectors and

homographies, and also absolute operators like grad, rot, div,

, etc., either without using any reference system of axes or coordi-

nates, or only using cartesian orthogonal unit systems.

As we will see, it is instead often very important to refer the

same absolute entities and operators to general cartesian systems

(i.e., not unit, and not orthogonal systems), as happens in the

infinitely small domain around a point using general curvilinear coordi-

nates. (See reference 3, 40 6, 7, 8, 9, 10, 11, 12.)

As a first step, we shall confine our study to rectilinear

carteslan coordinates, neither orthogonal nor isometric, as they may

be specified by a point 0 (the origin) and three (not coplanar and not

unit) vectors 7--, V-, :f, our fundamental (or base)vectors.

If we are given an arbitrary vector 1 and we want to define

U by means of our reference systeJ we alwomy may express it as a

linear combination of the fundamental vectors, as follows:

u3i" .+u3 ? + u3 i- z U8V (III-1)

1 2 v3 a a

(lower case Roman indices have here and in the following the range from

1 to 3); or also we may define it by means of the three scalar products

u,- fM. 11. 7a ; u 3 - U. V3 (111-2)

Both systens of numbers ur - (u1 , u2 , u3 ), or also

Ur - (uO, u2, u 3 ) allows us, with the help of our reference system

of vectors, to reconstruct Vj ur or also ur are therefore called the

components of i in our system.
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More precisely, ur are called the contravariant components

of U , ur the covariant ccnponents. Contravariant and covariant

components are in general different. They coincide only in the

elementary case of cartesian orthogonal unit reference systems.

The rason for the denominations covariant and contravariant

given to the two kinds of components is due to the fact that, by

transforming the original fundamental vectors Vr into other new

fundamental vectors v' by means of a linear transformation

r

V,- a I ~ V(i +4-h)
r r r 3 r s

the two kinds of components of the same vector do not transform by the

same rule, as we will see at once.

(Summation Convention). We will use in the following the con-

vention to dispense with the sign Z, all times an index is repeated

in a monome twice, once as a superscript, and once as a subscript.

Thus, for instance, we will write the following formulae:

us- ~; V,.inai 5  (111-5)

The letter used for the summation index (dummy index) is

immaterial (like s in the foregoing formulae), and any letter may

be substituted at will for it. An index which is not repeated

(like r in the foregoing), is called a free index.

Let us now have, in the first system of reference

Ur- r - r and U --lU MU.V
ura, -u. rin the second;

then

" sVs = uir- Ur S(I
Uinr =u v U - t u (111-6)

and therefore

us u'r rs (law of contravariance) , (III-7)
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and furthermore

u "U@Vr r -UoV 5 - 4US (law of covariance). (111-8)•ý0 Vr - '2r uv I

As we see, 4 transforms like the fundamental vectors

vs themselves (they are therefore cogradient to the same, and the law

of transformation is covariant); the ur transform conversely by a

different, contragradient law with respect to the fundamental vectors,

i.e. they are contravariant to the same vectors.

In a quite similar way we may consider the components of a

homograptV• o and put

ars - Mr" 's (covariant components). (111-9)

It may easily be seen that these components transform by the

following generalized law of covariance:

a I. (IIl-lO)

3.2 Reciprocal Vectors

We will define a set of reciprocal vectors TO with respect to

our fundamental system Vr by putting

Vr.• "T r (Il-ll

where S s (Kronecker' s symbol) has the following meaning:
r

a t - 0 if sa r

r 1 if r-12)

Thus for instance v-. is perpendicular to both V, and is3

It may be easily seen that the general expression of :7 is

givenby

-B +1 + (111-13)
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(we identify the indices differing by multiples of 3); and reciprocally

•r+I -r r+
- y! X V

Vr [72. V2 ;V3

Moreover

[VI T2 V3V [VI iZ VA](i-5

By the help of the reciprocal vectors we also may write

r - _r
ur - u.V (111-16)r

In a similar way we may put

rs _r -3
a -= -v -V (contravariant components of a)

r. r -

a - • . V (111-17)
•.8 S

(mixed components of a)
es _s

a -CM *v
r. r

By a transformation of the fundamental vectors V , ther

reciprocal vectors transform contravarianty.

We may put

VI3 " Ay , (111-18)
p

and have

ss ti 9a p t s' ,s 8 .s a A Vt v a " ~~ (1ll-19)

r r r pVt" rp t r t (

and finally
ts s
tA S S (111-20)
r t r
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s1

This formula shows that 11 At 11 is the inverse of the

matrix 11at f". Our formulae read now:
SSr

-' M a ,v = A v'
r r s S r

(covariance) ,
s r

Ur rr ' as Asr (111-21)

r r_S -s s
w Av v W .v

s r (contravariance)

ur Arvs u3  s r

S r

3.3 Tensors; the Fundamental Metric Tensor

3.3.1 All systems (single, double,...) of members like Ur, u r

rI r.
ars, rs a r a,.. having the meaning specified above, connected

to the fundamental system of vectors (or its reciprocal), and

transforming accordingly to the above rules of covariance or

contravariance, are called tensors (of order one, of order two, etc.).

If we are given two vectors

UUV aUTr s v v V (111-22)

we may form their scalar product in several forms:

-- rs ra r S r
r s rs r s r s r r'

having put
g =y- _ g rs _r -s gsr (1-3

.v = g , g =v .v -g(I-3
rs r s sr

It may easily be seen that g rs and grS are, respectively, a

covariant and a contravariant double tensor. We call them the funda-

mental metric tensor in covariant and in contravariant form.
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We also have

-r r a...-s.UU- mU-.Vr Vr iUSs" # 1 gsus v, (I11-24)
Urv v r vs : r g ar V

and therefore

u -g U . (11i-25)
r sr

In a similar way we may find

s u r grz ,a . g ,g a (111-26)
r grsu a=rs rp sq

The fundamental metric tensor allows us to compute the scalar

product of two vectors, and therefore to establish a linear and angular

metrics moreover, it allows us to "change the variance* of the

components of a given tensor, i.e., to deduce the corariant components

from the contravariant ones, and conversely.

We also have the formulae:

so -g
r r S rs

(111-27)

_r M
S e r g grS

i.e, gr . are respectively the covariant, mixed, and con-

travariant components of the fundamental system of vectors and its

reciprocal.

3.4 Operations on Tensors, Invariants

Addition of tensors. The addition of the corresponding components

of two tensors of the same kind and order gives another tensor of that

order and kind; thus for instance:

=r br r
a +.b - c a r.+b r scr

r r r" at st st
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Product of tensors. The product of the components of (two)

tensors of any kind or order gives another tensor the order of which

is the sum of the orders of the two given tensors; thus for instance:

s s pq n pqna b = c , ab - c ,a b cr s rs r r rst m rstm

Contraction of tensors. If we make an index of contravariance

and an index of covariance the same in a given mixed tensor, so that

it becomes a dummy index, and we must sum for it from 1 to 3, the

result is a new tensor, the order of which is reduced by two; thus:

rst st rst t rst t
a - c , a . d , a s e , etc.rm m rs sr

Invariants. If we contract completely a tensor of even order

with as many indices of covariance and contravariance, the result would

be an invariant (a scalar function of position, the value of which

does not depend upon the fundamental system of axes); thus:

r rs rsa = b ,a c , a =d .
r rs sr

Contracted multiplication. We may multiply two tensors of any arder

and contract at the same time with respect to a couple (or more than a

couple) of indices. The result is a tensor, or an invariant, thus:
r

"br b c (- a.b, scalar product of a and b; invariant),r

"r a (a) 2 (square of the length of a; invariant),r
r. bs s r.
"a b - c (homography a of mixed components a applied to vector.S .s S

br- - vector •s-c V) ,
r s

p r
a b = c etc.
rs pt st
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Quotient law of tensors. If the result of the contracted

multiplication of an arbitrary tensor by a given system gives us a

tensor or an invariant, then the given system is a tensor.

Thus, for instance, if we are given a system of the third order

A(r,s,t) and we take an arbitrary tensor bs, and we know that
r

A(r,s,t)bs - c t
r

where ct is a tensor, then A(r,s,t) is also a tensor and must therefore

be written as
rt

A(r,s,t) = a
S

The foregoing rule allows us to recognize the tensor character

of a given system. It is very important to stress that the tensor

used as factor (in our instance b ) must be completely arbitrary.
r

A particular case is to use as test tensor the product of tensors

of the first order; thus, for instance, if

A(r,s, t)x y z = c (an invariant)t
t

A(r,s,t) is a tensor and must be written as a . We may also say
rs

that the coefficients of a multilinear invariant form in the
r s

variables x , y , z are the components of a tensor.
t

We m.V also observe that the contraction of a tensor of the

first order and the fundamental (or reciprocal) vectors give us a

i_vector., i.e., an absolute entity; thus u vi v U.

3.5 General Curvilinear Coordinates

In the foregoing we have merely used cartesian rectilinear

coordinates, i.e., the same system of reference for the whole space

considered. Thus, for instance, if we were given a vector ! the
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r
components of which would be a (or a ) at a given point P of space,

r

and we transport by equipollence the vector 9 to another point Q, the

components of X would remain unaltered. The same may be stated for

tensors of any order and kind.

In marx instances it is, however, not possible or convenient to

use cartesian rectilinear coordinates. Let us confine our attention for

the sake of simplicity to a plane; it is always possible to use on it

cartesian rectilinear systems of reference, and the foregoing theories

may be very easily applied with some slight modifications (summation

from 1 to 2 instead of from 1 to 3, obvious modification as to the

reciprocal vectors). But this would no longer be possible if we

consider a curved surface (not developable)on which no cartesian

system of coordinates is possible.

But even in three dimensional space it may happen that we were

led to use curvilinear coordinates (for instance, spherical coordinates,

cylindrical coordinates, ellipsoidal coordinates, etc.), as may be

suggested by the particular problem we are dealing with. In more

advanced geometrical theories we may even consider curved three

dimensional spaces in which no cartesian system of reference would be

possible.

In such cases the foregoing simple theories cannot be applied

and we must establish other rules for the definition of the components

of our absolute entities, like vectors, homographies, etc. in any

point of space, and for operation on them.

Let us consider, for the sake of simplicity, the ordinary space

and imagine to have established a system of general curvilinear coordi-

nates y1 , y 2, y 3, such that we have a one-to-one correspondence between
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r
the sets y . (Y, y 2 , y 3 ) and the points P of space. It is well

r
known that the equations y - constant give us the three families of

coordinate surfaces; each surface will be specified by one and only one

r
value of the parameter y , The intersection of the surfaces of the

three families give us the "congruence" of lines, the coordinate

lines, each of which is specified by a pair of coordinates (yr,yl).

r+2
Along each coordinate line only the third coordinate y may vary.

OyY, _ (r and
Let us consider, furthermore, a point P(yo,YoYo) = p(yr),

at this point the three vectors

63 C) (111-28)

0 0

These vectors have obviously the directions of the coordinate

lines through the point, in the order. Thus, for instance, V. is

directed along the intersection of the surfaces y. yo and y o yo

The direction of them is that of the increasing y's, and the length
ds

is given by the ratio of an infinitesimal displacement along the

line and the increment of the corresponding parameter.

Thus if a general system of curvilinear coordinates is given in

space, we are able to define in a very simple and natural way a funda-

mental system of vectors, one for each point. It is obvious that the

systems so established are different each from the other not only as

their orientation is concerned, but also in their interior structure.

By this way, we are now able to define in each point the components

of our absolute entities, i.e., tensors, by simply applying the theories

stated above for rectilinear coordinates. The only difference is that

the same entity (a vector, for instance,) will not have the same

components at different points of space, as was the case in rectilinear

coordinates.
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The further question is to see how it is possible to connect

the different fundamental system of vectors we have established at

each point, each to another, so as to make it possible to compare the

same absolute entity at different points, although its components are

different from point to point.

Before meeting this problem we may observe that we may obviously

write
dP - -!4p'yl + ___'2 - d'a (111-29)

Byl~ aTY 8y 'BYi

andi thus dyi are the contravarient components of the elementary dis-

placement dP. (In the case of rectilinear coordinates yi would be

the contravariant components of the positional vector P-O; this is

no longer true in general coordinates, and is replaced by the foregoing

differential relation.)

Also we have

dP.dP - do2  ; .V jdyidyJ - gijdyidyJ, (111-30)

having written gij for Vi.Vj gij is therefore our fundamental

metric tensor. It defines completely the internal structure of the

fundamental system of vectors (Vi) at each point. As we can see, it

depends upon the position of the point considered (in the case of

cartesian rectilinear coordinates it was constant for the whole space).

3.6 Connection Coefficients

Let us consider a point p(yr) of space, to which the fundamental

system of vectors -- is related, and an infinitely near point

pt(yr + dyr) - P + dP (4p - Vj dyJ) to which the fundakental system of
vectors (ir) - _P--

r - yr may be related, we may put

- + dv" (111-31)

and we want to evaluate dVi .
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As a first step, and as far as dvi is a vector attached to P,

we may write

dv- W i ,k (111-32)

k
W i being thus the contravariant components of dVi at P.

lMoreover, Uk depends upon the displacement dP, i.e., upon its
i

(contravariant) components dyJ; and so far as we may confine ourselves

to a first approximation (we neglect infinitesimals of higher order)k

we m4y always write t as a linear combination of dyj :

k ,k J
10. Jdy , (111-33)

and therefore _ k

dv - dyJ
i ij

The are systems of the third order, called connection

coefficients. Their knowledge gives us, in fact, the means of connect-

ing our fundamental system of vectors to the neighboring.

The connection coefficients are not tensors, as may be easily

understood considering that a tensor is essentially an entity attached

to one point of space only, whereas the [-s are attached to the point

and to the neighboring.

We may find an algebraic expression for the connection coefficients

if we only consider that

dV i " .Y3• (111-35)

and thus

FV h (111-36)
zyi Iij 1

~o :yJ



-k
if we multiply this equation by v we got

1V .• = io-i (III-37)SJ ~h j

which gives us the requested formula.

_k 8k
Let us remember now that v .v and differentiatei i

partially with respect to yk:
k k^-vi _-k • - o

__ v + "iWByj -

we may therefore write the following expressions for the Ps:

k- k -- 4" • -N"
'ij - .Vi W f--1 y1 . V v -

-2p _k -k (111-38)
M OVy

The I's are also called, if expressed algebraically,

Christoffel symbols of the second kind. The Christoffel symbols of

the first kind are expressed by the following relations

k v(iJ, h) - g i (jih) - L-- " ( -39)

Both the symbols of Christoffel of the first and of the second

kind may easily be expressed in terms of the fundamental tensor gij

and its first partial derivatives. But we are not interested in

developing these formulae, that are to be found in each book dealing

with tensor calculus.
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We may only give a formula that will be useful in the following

and which establishes a simple relation between the Christoffel symbols

of the second kind and the value D - Igij of the determinant of the

fundamental tensor.

We have

,ý~ 7 ~i V ij Z: -av

By-k - vj . + vi .-- (ik, j) + (j4i),

and moreover, by contracted multiplication by gij:

g9 ayý + =2 A

We now observe that gij might be written as follows:

g ayi

G'3 being, by definition of gij the algebraic complement of

gij in Jgiji (Gij = D gij).

But G i . is nothing else than the sum of three determinants

obtained from gij by substituting one of the rows with the derivatives

of the corresponding elements, and therefore, as it is well known,

this development gives us the derivative of D:

1 ii Bg-. 1 2D 8 lg D

And finally we get the requested formula:

r ' lg D a 1g VF 11-0rk 2 ay• (I-1o)
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In a three dimensional space the number of Cnristoffel symbols

of each kind is 27 ( - 34), but only 18 are distinct, owing to the fact

that the symbols are symmetrical with respect to the two lower indices.

r -s
We will still daerve that by multiplying dP - Vr dy by v , we get

r r syr av-S'dP -- Vr"-Vd r 'y-d

and therefore, by the definition of the gradient, Ne may write

V8 - grad yS , (Ill-4i)

i.e., the reciprocal vectors of each fundamental system are given by

the gradients of the parametric coordinates at that point.

3.7 Absolute Differentiation
-r

Let us have a field of vectors U(P) - u v , each vector beingr

attached to the corresponding point P; we may compare U(P) to the

neighboring vector U(P+dP) - U(P) + diii. As a particular case, we

may have identically du - 0, i.e., the field of vectors would be

formed by equipollent vectors.

From ui - u v we have by differentiation (interchanging some
r

indices)

dU. -dlVr+ u dvr - ) dy+U
(III-42)

-k + U Z )dk yb u ir r-

and not u -k - hdy as would be in the case of cartesian

rectilinear coordinates. £-r
The presence of the term -u is due to the fact that in

in passing from P to P + dP not only U has varied, but also the

reference system of vectors.
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We put r

-r Ik " 'dk/h ("n-43)

(read uk derived h) and call uk/h the covariant derivative of

uk ; we also ma7 call

the absolute differential of ur

In a quite similar way we may obtain for contravariant components

and for double tensors the following formulae

k k +r r-k
u/ -ah -U 

"rh

& ICAs...l B7 a Fak' jkfýý tc.

Going back to our first differential formula, it is very wortI7

to be noted that it may be written as follows:
-kb

dT - u v dy (111-46)
k/h

.-k
and that this formula is derived from the expression - - u v by

k
the ordinary rule of differentiation in cartesian rectilinear coordi-

nates, only substituting the covariant derivative u in place of~)Uk k/h
the partial derivative . We may also aay, therefore, that the

fundamental vectors behave as constants with respect to the covariant

(tensor) differentiation.

This is a way of expressing the fundamental theorem of Ricci.

We may now consider the particular case where dU - 0 identically,

i.e., the case of a parallel (equipollent) field of vectors. In this

case we have
u k/h- 0 identically,

and therefore

WUk A Tr 

(111-97)
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3.8 Equation of Straight_ ines

If we are given an arbitrary curve (I') in parametric form

T. y(s), a being the arc wasured on the curve, we may put for the
i

sake of simplici - - Xi. Thus, if we call T the tangent unit

vector to our curve at P, we have
- i

- dP .v idy Xj 11-8
do do i

the X is are therefora the contravariant components of the tangent

unit vector to a curve.

As it is well known, Frenet's formula gives us

dT - K• Kv i (111-9)
do i

k being the first curvature (or flexion) of (f), and

K a i the unit vector of its principal normal. The same formula

may be written in tensor form as follows:

i rd t 9't vX/ Xr.-Y (because d• ý _ •
/ r ds ayr • (111-50)

If X = 0 identically, our curve is a straight line, and there-

fore k! r

/r -X 0 (11-51)

may be regarded as the tensor differential equation of a straight

line in space referred to general curvilinear coordinateso We may

also write more explicitly
i

r k ~ ' )X r 2Q

and moreover, remembering that k r. Xr q . dr y-i
-yr ds d32

ds2 kr (111-52)

This is the final form of the differential equation of a straight

line which we will use in the followingg
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3.9 Some Complements

The great help we are able to find in tensor calculus is

essentially due to the fact that formulae may be written in a very

.ccamjat and transparent form even though they contain a great number

of terms, and moreover on the fact that the following rules hold:

(1) A zero tensor (the components of which are zero) in a given
system of coordinates, is identically zero in each other
system of coordinates (in fact, the transformation between

different systems is linear and homogeeous).

(2) Two tensors (of the same kind and order) identical in one
system of reference are identical in any other system.

(3) The properties of symmetry and of skew-symmetrj of a tensor
ae irvariant for any transformation of the base vectors and
indicate therefore an intrinsic property of the entity
represented.

Therefore a tensor equation presents an absolute character,

whatever may be the system of coordinates used for writing it.

We will at once show some consequences of the above rules.

First of all, we may very easily recognize by another way that

the Christoffel symbols are not tensors; in fact, they are all zero

in cartesian coordinates, and this is no longer true in whatever

other system of coordinates.

Secondly, let us consider a vector U- u v. and the homograpby
diid . In cartesian coordinates we may write, as we have already seen,

U--T

__aU-
1  Du U3

c axi 2 X ax? (I1-53)

ax3  ax3  8x 3
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and d Z

div - U +W2 + K3

If we wish to preserve the tensor character of the formulae

written, we must replace the ordinary partial derivatives by the covariant

or tensor derivatives, and we will therefore have in any system of

coordinates

diviiU A (111-55)

Also remembering the expression for u /J we have
i aui

u /i - 4. U r '

and using the formula recalled itt 3.6:

- lai ur W/TI (r zui
div i -u + ;;F -" V'D- 1;1

("11-56)
1 ZV-ui

3.10 Curves in Space

Let us have a curve in space defined by its parametric equation

P - P(s), s being the arc of the curve. We immediately have that

ds ("II-57)
ds

is the tangent unit vector to the curve.

Considering that 1. - 1, we have T.dd~ 0,, and therefore
- dP

t and s , are orthogonal. We put

d t - d 2 P 'f 1 1 - 8ds ds•1  (III-58)

Sbeing the unit vector of the principal normal to the give curve,

and p being the radius of first curvature (or flexion) of the curve.
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Let us next call b the unit vector normal to both n and

t and such that the system (T,ri,b) may be positive. We have from

b.b - 1 and b.t- 0.

L b.- 0 1 -Lb.T +- 0. and therefore also L t O.
ds ds ds

db
That means that d is perpendicular to both b and t and is

directed therefore along H. We put

db HU -

ds T
and call 't the radius of second curvature (or torsion of the curve,

From H.n -, 4 .T - 0, H.5 - 0 we get after this by

differentiation, taking into account the foregoing formulae,

da ds #'ds

and therefore

- U

da ) -V

The set of formulae which we summarize

- dff V b d~bn
da p ds f~d (111-59)

are known as Frenet's or Serret's formulae.

The plane of t and H is called tangent plane to the curve;

the plane of i and b is called the rectifying plane; and the plane

of F and " is called the normal plane.

3.11 Curves on a Surface

Let us now consider a curve (P) on a surface T; we will

indicate by N the normal unit vector to E, and by R the principal

normal to (T). T being always the tangent unit vector to (V)
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(perpendicular to both i and N), we may also consider the positive

trihedron (surface trihedron) (t,1,) of normal unit vectors, and put

F.n=cos , B.b=cose

n.B sine , N.b = sin ,

0 being the angle of obliquity of () on .

Therefore:

nF Ncos + Bsin 6

b--Nsin 8 + cos 8 (111-60)

N- n cos e -b sin e,

B -n sin 9 + 1 cos e)

By substituting these formulae in Frenet's formulae we easily

get

d Ta Pg .

ds ~g

which are called the generalized Frenet's formulae for the surface

trihedron; and where we have put

1 cos_ (normal curvature) ,
Pu P

. sin • (tangential or geodesic curvature) , (111-62)
Pg P II-2

1 1 de- + ÷ (geodesic torsion)

For geodesic curves on the surface we have identically • -

and therefore a - do - 0; thus for geodesic curves:
ia

1 1 10 1.1
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3.12 Surfaces

Let us consider a surface Z and its normal N, and take an arbitrary

displacement dP on 2. If we give the point P the displacement dP,

17 would become N + dN; and from LN, - 1 we have that Nod0 0, i.e.,

da is a tangential vector.

The homography (of Burali-Forti)

o- (111-64)
dP

such that cdP - dN gives us the law of variation of N in any direction

and defines therefore the shape of Z in space.

If we consider the parametric form of -,

p P p(y', ya),

y2 and y9 being two parameters, we have

dP -2 d 7- ,2 dy2  - V dyl - gaV4 dyf, (111-65)

and therefore

ds 2 - dP.dP Edy?2 + My' c19 + Gd? - g4dya dy,

(first fundamental form of 1)

having put

go V , I, g, 2 = g 2 , Fm - *: . ý V2 . v', 92 2 =QG= ' 2. 72 '(111-66)

The gm (CL, f 1,2) are the components of the metric (first)fundamental

tensor of I in our coordinates y=.

We may observe that F'- V• cos 6, where e is the angle of

the considered coordinates lines on Z; and therefore

Cos . s in 0 = "f---7 (111-67)

Considering now % we may put

a Vs . -U bp (11-68)
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and call bap the second fundamental tensor of Z. We have

FVbN VP a b -'dyP ("II-69)

and moreover

dN.dP - bap dy' dyP (second fundamental form of 2). (111-70)

Finally we have

a.&- ba V d .i' Vb P d g" b1 8 dyP dyS - cp dyP dyl (111-71)

(third fundamental form of Z)

and c, ba- bi is called the third fundamental tensor of 1.

We may observe that -dN.dP - N.d2P because d(N.dP) -

=dR.dP + IT.daP - 0 , and also that from

V.dP = 9.7. dya

we get by partial differentiation and interchanging the indices (

andS:

DR - dy_ _ dy 0

(111-72)

O vP dyP +i•. F dyP •-0

"and therefore

N V b - . - b (111-73)

The second fundamental tensor is therefore symmetric and is

usually indicated as bag M (D,D',D"). Also, it follows that the

homography 0 is a dilatation, owing to the fact taat the property of

symmetry of tensors is invariant with respect to any transformation.
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We remember now that

ZY"-hap

and differentiate this formula covariantly with respect to yr

Remembering also that the fundamental base vectors (and their

reciprocals) may be regarded as constants with respect to covariant

differentiation, we get

Interchanging c and • , the central part of the equation

written remains unaltered (on account of the symmetry of the second

partial derivatives, and of the Christoffel symbols of the second kind

with respect to the lower indices); and therefore

bap/P - bap/p • (111-74)

This expresses in tensor form the 1ainardi-Codazzi equations,

which give the integrability conditions which the second fundamental

tensor of a surface must satisfy.

Moreover, if we take a displacement dP in the direction of the

unit vector T on Z, from

T.dP - dN B

aý Tt ds t n

we immediately have that

u-. - - (normal curvature of Z in the direction ( )
(III-76)

rt.B i (geodesic torsion of Y- in the direction T).
g
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The united directions ja and "E of Z, such that

FP2 L2 (111-77)

(which always exist since Or is a dilatation) give us the principal

directions of 6"; P, and p. are the principal radii of curvature

of Z. Along these directions the geodesic torsion is zero.

Also Ir gives us the mean curvature L+ L and I
PI Pa'

the total curvature 1 of 7-
N P2
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SECTION IV

INTRINSIC GEODESY

(See reference 44, 51., 52, 53)

4.1 Intrinsic Geographic Coordinates on a Surface (See reference 6, 27)

If we take a constant anticlockwise (sinistrorsum) trihedron of

orthogonal wuit vectors (-a, -a 3 ) and a variable clockwise (dextrorsum)

trihedron of orthogonal unit vectors (1i, i., 1 3 ), we may always write

il" - sin f cos X.ai - sin 4 sin X. 12 + cos 0. 3,

i2 = - sin X. + cos X. a2

13 cos 0 cos . ii + cos 0 sin X. 92 + sin 0. Z3
(IV-I)

S" - sin t cOos .T1 - sin X. -2 + cos -6cos .- 3  ,

a 2  - sin k sin .X + Cos X. 2 + cos 4 sin .3

nCos II + sin . i 3

where @ and X are the latitude and longitude (respectively) of 13 with

reference to * 3 as an axis (world's axis directed towards the North)

and the plane (a1 , # 3) as fundamental meridian; and we understand

that i 1 must always be in the plane (13 , •), i.e., directed towards

the North.

By differentiation we get immediately

dT 1 = - 2 sin dX -1 dt
di2 - i. sin t.d -d 3 " cos.df , (IV-2)

di3 = . d@ + i 2 cos. dK

and therefore

d1 3 . di 3  ' (d13 ) 2 
- d4 + cosa#dka . (IV-3)
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Let us now take a surface Z, and its normal T at a point P

and establish a correspondence (Gauss's spherical correspondence) such

that f - T3 • Under a certain hypothesis of convexity for the surface

which we will assume, the correspondence will be one.-to-onej and we also

may therefore attribute to P the coordinates 0 amd X of 13. We will

call them the intrinsic geographical coordinates of P on Z. In the

case in which Z is the geoid, the intrinsic geographical coordinates

coincide with the astronomical coordinates.

We then have

6-dP-d -d! dt + 1 co oe d),

i, and i. give us the North and East directions on Z.

If we now consider the fundamental vectors on I connected

with the intrinsic geographic coordinates, V.

(the directions along which the longitude, and latitude

do not vary, i.e. the geodetic meridians and parallels on Z), we

immediately have from the foregoing formulae for our second fundamental

tensor:

b, - D a - .: -' , b 2 1 uD' - V1 - .2 co, ,

b12 DO M "-N (IV-4)-•- , "- v. b& DO -a -1-. v• -- ., Cos ,

and therefore

11 D - cos *

- - D'. (IV-5)
v 2  J- D - ix ocos 53
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If we multiply these relations and remember that g1 1 m - V1. ,

we iimediately get

g•, E =Da +D' 2

Cos• a

&x " gal = F - D'(D + D- ) , (IV-6)
cosg

gaa " G a D'O + DV2

C os0

Although in general the first and the second fundamental forms

are not related by equations in finite terms, in this case (of geographic

intrinsic coordinates) they are, owing to the particular spatial meaning

of the coordinates themselves.

As may be seen, the total curvature of E is given by

X = -- Cos* (IV-7)P 02a 'Dii - D'

Two vectors a and S such that

a. 0 0 (iV-8)

and said to be conjugate with respect to a-; it follows from the fact

that cr - K-(because a is a dilatation), that

Z.oU-F.Oa ,

and therefore the property of being conjugate is reciprocal.

We have from the foregoing that

•--i 1 d + i2 cos *dX - adP -o- -v d• + aV 2 dX,

and therefore

V3 12 -z ý1 1 - V3 r 7 - 0, (Iv-9)
S- 1, cos -V2  ti- -o,
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i.e., the directions of . and v. are conjugate respectively to the

directions of i 2 and'!,. This leads to the theorem first formulated

by Pizzetti: the direction of the meridian (parallel) on .a given

surface is conjugate to the East (North) direction with respect to the

homography of Burali-Forti (or also with respect to the indicatrix of

Dupin). (See reference 31, 32)

We also may observe that
. 1 - -cos i - -D, cos - . D DD

DR D" c(IV-1O)va V1Q s • in w - -- tg ir- - i
con 1'D co 06

give us the aximuths g and w of the meridian and of the parallel,

respectively, and that

V% ,• v Z " • cos 0 - D' (D + -Do , cos DO =D + - ) ( I - f
Cos'* Vif P o + •O I-1

give us the angle e between the meridian and the parallel.

4.2 Curves on a Surface Referred to Geographic Coordinates

If we remember the generalized formulae of Frenet and put

V=ixcos A + 1i sin A (A- azimuth of T)
(IV-l2)

dt dA - dA di3 di
di = sinA- + CosA +a--cooA+ =a si A

ds~d dde d

we immediately get the important formulae valid for an arbitrary curve

on Z
1 - sin* +X d

Pg ds d, (IV-13)

Ir=cos * sin A coA d

P31 doad
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For a geodesic we have therefore

1. 0o dA . dX (IV-aJ)
dsg o ds "

koreover, we may write

xc-,X a~ di , (IV-i5)

and therefore Xa * k are the contravariant components of the
ds

tangent unit vector • to a curve P - P(s) on Z . If this curve

would be a geodesic, the ye's would satisfy to an equation similar to

that we found in 3.8, i.e.,

ds2 • (Iv-16)
ds' - -

This formula may be differentiated successively; remembering

that, for instance,

do dsi

we easily get

al- ,
ds 3  X X (IV-17)

These developments allow us to generalize for a geodesic line

drain on a surface, Legendre's series for the computation of geographic

coordinates from polar geodesic coordinates, (see reference 47) i.e.,

a.~ aS2+
CL +4 ~ 5 s ~ X6 ~ + 2 ' _.e (IV-18)Y0  0 2! da 0 3! dSk)o

For the azimuth we get in a similar way the following expansion:

+ k a+ + + , , .(IV-19)
0 \-ds 02! . 3a, .

WADC TR 52-149 56



The contravariant components Xa are easily expressed in terms

of the aximuth A as follows:

T . t,.' - 3. • -c oo A . X1 .F )÷ 2- . •

- - DX 1 _ DtX)
2

D,)X' + D")L2
t "1 2 -sin A - Ccos .

and therefore

L (_ D" cos A + D' cos * sin A)A

X2 -1 (D' cos A- D cos #sinA) , (IV-20)A
2

A -DD" - D'

Formulae perfectly similar to these may also be established

for a curve on z , provided the geodesic curvature be known as a

function of the arc s.

4.3 Intrinsic Geodesy in Space; Absolute Formulae. (See references

16, 44)

Let us consider now the vector j of gravity in space and put

g--gn ; (IV-21)

as it is very well known, B is the normal unit vector to each equipo-

tential surface of gravity, and g is the intensity of gravity. We

take jr and ff in opposite directions.

If we differentiate the foregoing formula with respect to P,

we obtain a homography (Ebtv5s's homography)

"dP - grad W, (IV-22)
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w bing obviously the potential of gravity; we also will write

dI
M- -- (IV-23)dP

and call o- the generalized homography of Burali-Fortl (generalized,
! because bes, o-is no longer related to a single surface, but to a

family of surfaces, the equipotential surfaces).

We immediately get

2j.j . a d -6 -- g•-n• (Iv-24)
dP dP dP

where the meaning of dg is given by the formula:
dP

I & = udg
dP

The operator !A is therefore identical to the operator grad g,
d?

an h•perhomograptr operating between vectors and scalars,

_q. grad g ; (IV-25)

dP

grad g is called the gradient of the intensity of gravity

(grsdtet of gravityV).

Our formula may now be written, remembering the dyads, as

follows:

Z- g a- - H(grad g, 1) , (IV-26)

and therefore also

cm--zW+ H(grad g, , (IV-27)

The relations between ZJ' and o- now established give us in

the simplest way the relation between the mechanical (zW) and the

geometrical ( cr ) structure of the gravity field if we confine our

attention to its characteristics of the second order.
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The gravinetric gradient •q iamL at• be eqpresaod by

means of TZtj we obierve, therefor4 tha t for ary two 'ectoxrs and

7we have, rwomi n Jacdbi's theorm (11-31) and (II-•35),

grad(Zy-j).dF d(Zyj) - j.dif + iZdj ca .P + k !f dP
S dP (IV-28)

MK !fydP + Kli dP- (INK dT-d

dP dP d? dP

d di
(K is the conjugate of I ). If! and 7 are the gradients of

dP dP

two scalar functions, then

dP dP dP dp

and we have in this case

grad(-X.y) + (IY-30)

Thus

grad(j.j) - grad g' - 2g grad g - 2 1 - 2W1,
dP

and therefore

grad g T-I-U n o (IV-31)g

We also have in consequence

i 1r - H(v,,zI .(IV-32)

We may observe that the homograpby d" is a dilatation if

considered on a surface (as already seen), but it is no longer a

dilatation in space. *e have in fact

--g W+ H(,grad g), (IV-33)

because KU • r- ; and, therefore,

K -ff. 0, (IV-34)

and 1f is the null direction of K 0 (but not of or )
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The vector grad g is always perpendicular to the surfaces

g - constant, which are called isogravitational surfaces.

Since I is a gradient, we have furthermore

rot g - 0 - - rot g R - - g rot H + Hx grad g;

(Iv-35)
rot n Ix grad g.g

We may, moreover, observe that

,R- - -L ZJ + H(grad gW)

r v of g

gradr g being the component vector of grad g tangent to the

equipotential surface F (also called the surface gradient of g, or the

horizontal gradient of gravity).

Owing to the fact that R x n- 0, we may therefore also write

rot - n= L W gradZ g = ix cH. (IV-37)g

The vector a--f - -71 gives us obviously the derivative of
dP

the normal unit vector iN along the line of force; its modulus is

therefore L - F (curvature of the line of force) and its direction is

R

that of the principal normal N' to the line of force itself. If we

call furthermore tf the binormal to the line of force, we will have

nx a-n - rot"n --
R (IV-38)

R -- grad g.N'
R g x "

Considering now the divergence of f , we would have

dim R - - div !- - - 1 div - •. grad-
g g g (Iv-39)

L. (47fr - 2w)2 - grad g.i)
g

(f constant of gravitation, • = density of matter).
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The divergence of 'R has a precise meaning; let us consider

the homography

-a- - H(f, 'H) - 1i - H(Hn.] ; (IV--4O)

we have

f -=0 ; ci -i (t - tangential vector); (IV- 41)

i.e., Cr. operates on tangential vectors like a- and gives a null vector

if operating on normal vectors to ' . We call therefore a-j a surface

homography; we immediately see that it coincides with the homography

of Burali-Forti for E which we had already considered.

We also have

I1 d's - 11a- H(-, H) = Il- H . H- 1- (IV-42)

since n and a- are orthogonal vectors. Ia- equals now the mean

curvature H = + 1 of 1 therefore

H - div -- (47rfS- 2f - grad g. ) (IV-43)g

This is the celebrated formula of Bruns, which may also be

written as follows

ggrad g . =H - (2c.? - 4 7 f). (IV-44)

The first member is often called (improperly) the vertical

gradient of gravity.

4.4 Local Astronomical Reference Systems

Let us consider at a point P the local system of orthogonal

unit vectors (ili 2, i 3 ), at which as usual i3  is directed (like 1)

towards the zenith of the equipotential surface 2 at P, il towards

the North, and i2 towards the East. Along the axes (i 1 , i 2 , i3) we

imagine to measure the cartesian isometrical coordinates x, x2 x3 .
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We will furthermore put

a__w a 2 w 3wr . , W Is r , (V-45)
a r c Wr - a xr axs 

s rxs(xr

and also we will write

Wrs g "

We immediately have that g - W, and

g grad W - - g i 3 ,

""1 W 2 W13

IC,_ = d g r a d W , d2

dP dP 21 22 23

W 3 1  W2 W33

(IV-WT)
-WrsZ r 3. . Ia.ZJ sr ,

r S s- - r

tJ W i7 +W i +1W i
2 1 1 212 2 23 3

3 1 -1 + w33'2 + w133 3

The formulae written justify the name of EOtv's homography
I! II

given toTJ , as Eotvos was the first geodesist who considered systematically

the second derivatives of the potential.

Furthermore

IiL.Y- div I= W1 1 + %2 + W3 3 - 2W2 - 4- ,

grad g =-ZJi3  W 1 2 - W321 33 3

W w 2 0

0- w2 1  w22  0 (IV-48)

w w 0

31 32

and therefore we get

H - - w11 + w22 , K - 1Jo w11WZ2a - w 2  (IV-.9)
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4.5 General Intrinsic Coordinates

The directions forming the local astronomical trihedron

(il, 12, 13) have already an intrinsic character and may therefore be

materialized by actual physical measurements proper to Astronomy and

Geodesy; but this does not imply that the same trihedrons are the

principal trihedrons of a triple congruence of coordinate lines. In

fact, we would not be able to find three congruences of curves inter-

secting in a point and having at this point the given directions of

(iI, i2, i3).

We will overlook the proof of this general proposition and

will confine ourselves to observing that if we consider any equipotential

surface and draw on it in a point the North and East directions, the

normal 1.3 along these directions would not cut in general the infinitely

near surface along North and East directions.

The astronomical local systems of vectors are therefore not

suitable for defining a general system of coordinates in space.

We will instead chose as general coordinates in space the

following:

(1) the intrinsic (astronomical) latitude on each equipotential

surface, 0 or y;

(2) the intrinsic (astronomical) longitude on each equipotential

surface, X or y2 ;

(3) the potential W or y

The three families of coordinate surfaces are therefore

(1) the surfaces of equal latitude ,

(2) the surfaces of equal longitude ,

(3) the equipotential surfaces.
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We may observe that the parameter W (the potential) is

measured, with the exception of an inessential additive quantity and

a factor, by the dynamic height.

The three congruences of coordinate curves are

1. the geoidal meridians (along which only 0 is varying) ,

2. the geoidal parallels (along which only X is varying) ,

3. the isozenithal (or isovertical) lines (along wnich only

W is varying)

The three fundamental vectors are therefore

ap - ap ap P aP aP
BP. ~ - - . 3  (IV-50)V, .2•. 2--' a•x a-y 1 aw •33

The direction of 3 is the null direction of 0-; in fact,3

4dP - dH, and therefore, since 13 is the isozenithal direction,

If we would attempt to express the fundamental vectors (vr )

in terms of the local astronomical unit vectors ( T r), we only want to

remember that VI -, , av3 - 0, and moreover, that

aP - aP7grad - " S , • - "- g "1 *v 3

because

grad 9 * dP - dW

If we, therefore, put

v, a,,i + a. 2 i 2 -

= a 2 1 1I + a2 2 1 2  (Iv-51)

v3  a 31'1 + a3 2 '2 + a 33a3313 ,
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and remember that

c1 w 1 1j 1 I+ w1 2 iz

C 2 - W21 1 + w22 13 2 (IV-52)

o"i-3 = 31 I + W3 2 12  ,

we will have

rVI=. i1 = (anw31 + a1 2 w2 L)-i1 + (a1•W12 + aaLawj2)ia

Or 2  i- 2 cos 4 - (a 2 1 w.1 1 + a 2 2 w2 1 )i, + (a 2 1 wI 2 + a 2 2 w22) , (IV-53)

cV3  a 1 1  -a 2 2  + a3 3W 31 )T1 +a 31 W1 2 + 3 2W 22 + 3 w 2 i

and, therefore, immediately
W22 w1 - D'

W1 2= -- - D . a2 " -os @
al1  K D 12 K .

W 1 2 os* W1 1 cos -D"
a - K - - D' ; a 2 2  + - (IV54)

K K cos I

2 COS2 $
K = w1 1 W2 2 - w t A D D" - D12

and, moreover,
aw a + +a w 0

31W1l 32W21 33W31 =

"a3 1 w1 2 + a 3 2 W2 2 + a 3 3W32 = 0 , (IV-55)

- a33 g =I,

and thus
W1 3 W2 2 - W 2 3 WI 2

a 31  gD HI $

w23w1,g-W13W12 _ - H2  , (IV-56)
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We thus have finally:
D -- i• D' :

Cos • -

D- - 7cos 1

- -- Hi -Hi --
3 1 1 2 2 g 3

The meaning of H and H may be seen by observing that

SV0, - H 1r '
3 -o H 2  g 3

and that
cr _nr -• grad . g.

3 g.

Therefore

H, c-1+H I gradj

and multiplying by V, and V , remembering that grade 'Vi V 27

and, furthermore, that 0-1.v1  - .0 - 1, 0-1. -2

-Va. i- CM Cos ,

we get

, H2  (IV-58)

and, therefore,
- -- 9' -

v -- D - 1
cost 2

Co -- ?'a (IV-59)

v2 1- • cos* • ; -

3 T. ..Cos$ ~ 2 g ~
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and also
D" 'T 1 -- TV ÷T-v2

A1  A

DOB cos* D cos kM V I A 2 (IV-60)

Sg h cos g k cos -
13 A2 9l A ~ V3

having put for simplicity

D"•3A I 3 A
h DtH2 - (I g

cos @ g cos* cos @( -

k DH_ DH,1  w2 3 A --- (D-D_) (IV-61)

cos g cos* cos* aXg of g

4.6 Reciprocal Vectors; Components

We will now consider the reciprocal vectors r , given by the

relations 1 r. , ; we get by easy computation
8 S

D" - D' cos i- g h cos: -
A- grad t - - A 3

g D ' D cos 4) g k cos f7

V2 grad ), A DO (IV-62)

V3 -grad - - g 1 3

and also
1 3. = -D r - D'• V2 _ -:3

-D D" V2 _ 3V3

1 2" - 1V~&y (IV-63)cos* cos cos ,t

13 g
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The contravariant components dyr - (d4, dX, dW) of a dis-

placement dP- dx' + 2dx 2 + i1dx3  are related to the local

cartesian coordinates dxr by the formulae

d " dy' R---" dx + DIcos*dx2 g h cos dx3

A A A

DI D costdx2 + g k cos # dx3

dX dyA

dW - dy 3 - -gdx 3

dxl= - D dy'yD 2 y 1 (IV-6 4 )

2D- DIdyD- 2 1 dy9

1
dx2 -- d dy'2~

cos t cos t cos F*X

dX3. I -dy3
g

The metric fundamental tensor is given therefore by

+ 12D" D'H2
2,D' (D + D H, + DE

cos2  Co cos *

g c(D + D'I+ -D 2  D'H + . (IV-65)

DD12, 2+ 2 1

C os---I cos 1t

4.7 Mainardi-Codazzi Equations; Christoffel Symbols

It is now very easy to compute Christoffel's symbols of the

second kind, only remembering their definition as given in (3.6):

h ~ ....h i h -h-h h V yh 4Vh
W/ij TRy- 2 "1 1 _ ( 87
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Before doing this, we must, however, assure that the second

derivatives of the point P be reversible, i.e. ,

ZyJ ayi

This leads us to a particular form of the so-called Mainardi-

Codazzi equations (integrability conditions) for the coordinate

surfaces.

We will confine owrseles to the eomputatioe of oiLly one pair of

derivativas; we heve tums, for instance,

ýS .i8' - D- tg D)sin Coin+ D ) , ,
ax 7L DCosO

. z. D +÷ D" tg #)+ D'iat aY2 -a •' iCos '

andý therefore,

3D'I -1' ÷ D sin 0 cos 0 + D" tg 0 - 0 . (IV-66)
a. ax

Operating in a similar waV on the other fundamental vectors,

we easily get the required integrability conditions:

for the* swfacea

a; aD'
-- +-H sin - 0

H2 N F1o Hsin f + I cos t- 0
a x aW CosO g

for the X surfaces

aC a W g

aHa 8 D' 1 (Iv-67)
9T aw cosO
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for the W surfaces

+ D'tg 0
ax 84'

_D" 3D' + D sin f cos t + D" tg - 0

The Mainardi-Codazzi equations, or integrability conditions,

simplify in the following if we remember the meaning of 1i and H3 :

aD ?'

9 D' tg*-O

a *" aD'

3D _1 __ 1(v-)
-- ' -g- a- ( I V - 6 8 )

aD' dl-- tg *I- g +
aw *J~ 4dg

4D W cos 4- sin cos 4T . + 4 -1

The last three equations yield us the rate of variation with

the dynamic height of the second fundamental tensor of the equipotential

surface, and allow us, therefore, to extend in the third dimension

the properties of our equipotential surface.

It should be noted at once that the same rate of variation for

the intensity of gravity is yielded by Poisson-Brun's formula, as will

be seen.
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Moreover, for the Christoffel symbols of the second kind

we get:

F1 1  ipD1 o 2D1 aDI + D, ' D + D gh cos 4

r ~i at axD

f--,<:.., . $- k + 2D -D -D - + D, gh c os / - , cos,

a1.1 ax d

133 3 - '- cos +- g y- g • h cos it ,

"D' , " ( Do, + D gk DI , (Dv')

F a 1 31A

l a a -r ( a D I -' D I ')
( A D D-o + D g2k COS + tg C

D= 2D' + 2 D' -D - 3D + D- gk cos p ,F = 2 1* ( D a x-D -- D kcs g-

2 , 1( I 3 D" , -2J-'+ ý-- D k cs

213 2 D aDI D t,
2- r2 " D-a"- Do3irZ3 31

S 1 D cos - DI - - kcos ) ,
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rf 3 -g D; f3 12 - r .. -- g DI; 22 9 D"

n13  of F3  . -3g g -
r3 a331 n 23 r32 33 7

c c os + V 3 3 -
"g A Hcg

sa g Cs* (Dh 2 + 2D' hk + D' k) +

Also, by expanding the values of h and k

n.- [g(D,, DO 2 D1 t

2 " g - ' ) O + DD' sin 0 cos B] ,

T1 DX 1

- (g "- D -- + I (Dfr' + D' 2 ) sin 2 t + 2 D" 2  ]

Tax' 1 (D,,-t -) 7g ,

DO cos ,

g

[D"1 DO ;if $

1 [g(D D O. - + 2 DD, D O ] , (IV-70)

11" 2. -x g

rl g (D D' -I D2 sin 2 ]
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S=1[g (D- - -- • D -DD, sin D2 D" 2 D' D" tg ],

ax 'go g x a x/o

21 DO(D sin 2 + D tg--1
23 a[x g 2 , g

+ D- coo 2 ] ,
g

gh 5 - a3 DO g/33 T•[ -e( -

=3  - gD f -gD' ; f -g ,
F I 1 gD 2 9D 223

F33 -- ' I "2'02- 4w'g f" I: DD' D ( )2)

-r 
3 Ig g M a a#)a - 2 DO

1 ( D"
TA cos 2 2

4.8 Components of Some Vectors and Homographies

It is now easy to give the components of some important vectors

and homographies in our fundamental system of intrinsic coordinates; we

get, for instance,

for the vector 'I of gravitY gi - - grad W

covariant components: gi 3 -' i ."3 - (0,0, i) ,

i

contravariant components: g .i ., 3. g3i - (g 1 , g33 2  g 3 3 ) -

.(_h cos - gkcoo 2)

SA

for the gravimetric gradient grad g

covariant components: g/i . a
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for the homograpIy ZJ= d grad
'- dP

covariant components:

W. - g - grf ) _[ avi* Vi W7~
ij ij

gD gD' 0

gD' gD" 0 (IV-71)

~~2U Mg g

for the homography ' = H(grad g,

0 0

Hij 0 0 g * (IV-72)

for the generalized 3urali-Forti's homography C-= +-
g g

-D -D' _4

Sij " -DI -D"I '1 (IV-73)

o 0 0

Brun's equation may be written, therefore, as follows:

Jg 2 L2 -h rf a D cos2 @ + D", __• D. ( )' 2 D+
CIW g g gA C

and it yields us the rate of variation of the intensity of gravity with

respect to the dynamic height.

• ~C TPR 52-149 74



SECTION V

APPLICATIONS OF INTRINSIC GEODESY

5.1 Generalized Theory of Eotvos's Torsion Balance (See reference 53)

We consider at a given point P of space, referred to the local

astronomical unit vectors (Or), a beam of unit length symbolized by the

unit vector 9:

amsin V cos a i1 + sin y sin a 2 + cosv i3  (V-l)

(V = zenith distance, a - azimuth of the beam). The beam may be sus-

pended at P at its baricenter; the acting couple will therefore be

given by the moment vector U - (WK) X K, W57 being the (vector)

difference between the gravity at the ends of the beam. We easily get

W2 2 ) sin 24sin a+W*(sin2 V sin' a-cos 2v )+

+ I ( W sin2v sin 2 a - W.2 sin 2vj cos a) ix +

+ i(11 - W33) sin 2 v cos a + W13(cos 2 V- sinsi, cos 2 a) +

+ L (W12 sin 2v sin a- W 2s sin2V sin 2 a) I + (V-2)

2 13
+ f'2 (W22. - W Z) sin 2,Vs in 2 a + W sin2V eOa 2 a +

1 .
+ 2 sin 2V(W 2 3 cos -L W13 sin a)J1 322 1n tex

where W stands for x W and the ,r are measured along the
rs axr ax

axes ir
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We thus see that any instrument based on the measure of moments,

like torsion balances, would not separate the second derivatives of W

with equal indices; these derivatives may only be determined separately,

remembering, in addition to the results of the balance measurements,

Laplace's equation

21 + W22 + W3 -2W (V-3)

The theory of all types of balance may easily be derived from

the foregoing formulae by particularizing the direction of the beam and

the direction along which the scalar moment is measured. We thus get:

ELitvbs balance of the first kind (horizontal beam, vertical

swinging axis) ,

(WI))A i. 1 3 (W,2 - iw ) sin 2a + WlS cos 2 a * (-4)

Eotvos balance of the second kind (oblique beam, vertical

swinging axis)

X)X . 13 2 2 (W22 - W11) sinaV sin 2a +

(V-5)

+ W, sin2 v cos 2a + 1 sin 2 V (wU cos a - W sin a)2

Berroth's balance (oblique beam, horizontal swinging axis

perpendicular to the vertical plane containing the beam):

( 1) X I-(- sin a i 1 + cos IT 2 ) s- sin 2 V[( W3i - Ws) cos2 a +

(v-6)
+ (W2 2 .- W3 3 ) sin2 a+W 3i sin 2a] + cos 2V (W23 cos a + W sin a )
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5.2 Legendre's Developmentsin Space (See reference ) 8 , 49)

We already have generalized in 4.2 on an arbitrary surface

Legendre's developments for computation of geographical 6oordinates

and azimuth. We are now able to further generalize the same develop-

ments in space, and compute both the geographic coordinates and the

dynamical height, assuming that the path is a straight line of which

the azimuth, the zenith distance, and the length are given.

We immediately have, remembering the differential equation of

a straight line (3.8), and using the same procedure as in 4.2,

2 ri j s3 (r

yr = f' + Xr -J + ( - b) j k +-
0 0 2Vij 3! bi jk

r -iXr s: .... v
_g r -sf xixi + 2!(2,~ +~r .

and the relationshipebetween )r and the azimuth and zenith distance

of the path are given by the formulae:

D"i D' D" alg g lo
X' - - sin x cos a + D cos # sin Z sin a + O)C(D',s Z

(IV-8)
-L = sin Z cos a - cos 0 sin L n a +- (D'I - D '2 19)cos z

A ~AA

X3 - g cos z

tg M 1 DIX'+D "X
2 + X3

cosCs

g g
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In classical Geodesy, length was mually measured along

geodesics on a surface; in modern Geodesy *here is a tendency to

measure length along geodesics in space (straight lines) by means of

electronic or interferometric devices (Shoran, Hiran, Geodimeter, ... );

the foregoing expansions solve, therefore, the first problem of Geodesy

in this case.

5.3 Computation of Gravity at a Point of Given Intrinsic Coordinates

Let us have two points in space Po(yr) and p(yr), a put

A yr -r -yr (A yr are not the components of a vector!); let us

call, moreover, r and ro the graviV vectors at P and P0  respectively;

ve then will have:

0 y 1. .y y (v-9)

" o0

Multiplying the foregoing equation by the fundamental vectors

Vr in Po, we get the covariant components gr of R in Po ; we

furthermore remember that

Zyi r (-r ) gri = gilt " - -,

2. h 3 h

y i )y3 Vr gr/ii 7 3  rbh i jrib r

and therefore

~ ~ ni f Ayi~i..(v-n)

By using this formula we may compare the gravity vectors at two

different points of space, the intrinsic coordinates of which are given.

If only the value g of the intensity of gravity is required,,

we simply would have
I I ayi i + J +A. . . (V-12)
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5.4 Computation of Gravity at a Point of Given Polar Coordinates.

We imagine now that the two given points Po and P are

connected by a line P = P(s) of length a; we have in this case

+ 5,Cal a a d +V-.13)

We got

d,2 ayi ayi ayi /

etc.

where obviously Xi gives us the components of the tangent unit vectoi

Sto our line at Po., and Xi/i depends upon the nature of the line.

If this line be a geodesic (a straight line), then Xi - 0

and, therefore, we have for a straight line•- sr _- / "1 XO
dsI - I~"X' rhlrij Ih /ri)

In a perfectly similar way we get for the intensity of gravity

k Dyi/o. 2., tV• at)O,%

In all of the above formulae the Xi, s are related to the

azimuth and the zenith distance of our path by the same formulae as

in 5.2.

5.5 The Local Cartesian Equation of the Geoid

We have for arW two points Po and P

? MP 1++i I a2 ) yiA yj 7(V-16)
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We remember that

and, therefore

1V -.yi .(r. r)fiAyJ + • (V-18)

By multiplying the foregoing formula by the local astronomic

unit vectors (I.) in Po we get

(P-P) h ~ ~ )iyi ,V9
Y' - (;F Yi •iý • , 19

where the scalar expressions of v.- i s may be found in 4.5; we thus

have the cartesian coordinates referred to a local system at PO for

a point of given intrinsic coordinates. If we take A y_- 0, we get

the cartesian parametric equation of the level surface through Po.

The inverse problem of getting the intrinsic coordinates from

the cartesian has been already solved by the generalized developments

of Legendre given in 5.2; we only need to compute previously the polar

coordinates, which is immediate.

5.6 Application to Somigliana's Field (See reference 45, 46, 50)

It is well known from Stoke's theorem that a gravitational

field is fully determined in the empty space if one equipotential

surface of the field and the total acting mass (or also the value of

gravity in one point of the surface) are given.

Pizzetti and Somigliana have fully solved the problem of de-

termining the gravity field (gravitation + centrifugal forces) if one

of the equipotential surfaces is an ellipsoid of revolution. Somigliana,

in particular, has furnished a formula giving the value of gravity along

the ellipsoid itself.

WADC TR 52-149 80



The formulae of Somigliana's field are following (on the ellipsoid):

= a~l- e2 ) N- a

(l - e2 sin) 3 2in2)

a ge c~s2f +b sin2  2 a 2 - b2

=- I ,(e 2  2  (V-20)

V7a2 cos2b + b2 sin2 a

b 5 btu2 (1 + - e 2 + 47 e 4  )

gp - ge + b2 35 180

(Pizzetti' s function)

As we see, only the knowledge of the major axis a, the minor

axis b, the velocity of rotation W, and the gravity ge at the equator

(equivalent to the knowledge of the total mass) are required.

The formula giving the value of g has been expanded into a

trigonometrical series of the latitude. The first terms of the series

have been determined by Cassinis and Silva, and give the international

formula for gravity accepted by the International Association of Geodesy

at the Stockholm meeting in 1930.

The acceptance of an ellipsoidal field as a standard field for

gravity, as proposed by Somigliana himself, by Dr. W. D. Lambert, and

Professor G. Cassinis has eliminated the discrepancy which existed up

to 1930 between geometrical and dynamical Geodesy.

The international fomula, based on the International Ellipsoid,

is the following

g - 978,0h9 (1 + 0.005,288,h sin2 @ - 0.000,005,9 sin2 2&)

The knowledge of gravity along the ellipsoid of reference

allows, as we are going to see, the easy computation of all elements

needed at any other point of the space.
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We have on the basic ellipsoid:

gg 0
g.13 13 9 e

gal * , g92 2 aN cos=* 2 g92 3 a (V-21)

g at ' g 3 2 -O • + *-931  g 3 33 ' jW & S

Moreover, the integrability conditions we have found give us

immediately

1P-J-- 1 * tN _t

(V-22)
- (N-p) tg ,

and Laplace's equation gives, furthermore,

t 2= 1 1+ 1 D lg )2
1lg 9 a- +w -l (7 + 1 1g)

"--g- g P pg (V-23)

We therefore get immediately for the Cbftstoffel symbols of the

second kind:

-a al
WAD TRg N 8 of2 g0

(tg t lg9
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The quantities denoted by h, k9 H, and H. have the following

values:
N- Nc s #9 lR i- 0

g •

(V-25)

g a lg K 0

The covariant components of the gravimetric gradient are given by

g- -PjL 9 g/2 , g/3 -g 3 (V26)

and the fundamental and reciprocal vectors are

p= -2 p ,Va - N c os , a 73-- 1( lg g

(V-27)

P a NcosO ' "

The foregoing formulae give ur the most natural generalization

of a two-dimensional geometry on the ellipsoid, as usually adopted in

Geodesy, to a three dimensional scheme,
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