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FOREWORD

This report was prepared by the Mapping and Charting Kesearch
Laboratory of the Ohio State University Research Foundation under
USAF Contract No. AF 18(600)-90. The contract is administered by
the Mapping and Charting Branch of the Photographic Reconnaissance
Laboratory, Weapons Components Division, Wright Air Development
Center, Wright~Patterson Air Force Base, Ohio. ir. A.S. Rosing is

Project Engineer on the project applicable to the subject of this
report.

Research and Development Order Nos. R-683-L);, "Research in
Photogrammetry and Geodesy for Aeronautical Charting," and R-683-58,
"Aeronautical Charting Systems," are applicable to this report.

This report was originally initiated at the Ohio State University
Research Foundation as OSURF Technical Paper No. 159.
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ABSTRACT

In the present Technical Paper are given the outlines of Intrinsic
Geodesy, a theory by which the gravity field of the Karth may be analyzed
by using only the results of actual measurements, and without any ad-
ditional assumption on the structure of the field itself, Any geometrical
or mechanical element that would not have a physical reality is therefore
excluded,

After having specified the aims of the nroblem and the means by
which it may be solved (Introduction and Section I), short summaries on
the elements of vector and tensor calculus are given (Section II and
111),

By the help of this calculus, the study of the gravity field of
the Earth is performed, using coordinates innate in the field itself
(Section IV), and several anplications to practical problems are shown,

Somigliana's field is finally suggested as the most appropriate
for generalizing the usual ellipsoidal Geodesy in a three dimensional
scheme (Section V),

PUBLICATION REVIEW

The publication of this report does not constitute approval by
the Air Force of the findings or conclusions contained therein, It
is published only for the exchange and stimulation of ideas,

¥CR THE COMMANDING GENERAL:
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Colonel, USAF

Chief, Photo Reconnaissance Lab
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WADC TR 5z-149 113




TABLE OF CONTENTS

SECTION PAGE
INTRODUCTION _ _ _ _ _ _ o o o o o o o o e e 1

1 PRELIMINARY _ _ _ _ _ _ _ o o o e i 5
II  VECTOR CALCULUS (ELEMENTS AND NOTATIONS) _ _ _ _ _ _ _ _ 12
111 TENSOR CALCULUS (ELEMENTS AND NOTATIONS) _ _ _ _ _ _ _ _ 27
IV INTRINSIC GEODESY _ _ _ _ _ _ 0 o e 52
v APPLICATION OF INTRINSIC GEODESY _ _ _ _ _ _ . _ _ 75
REFERENCES 8l

WADC TR 52-149

—_ o — — — — — — — o - —— —— = e e = e o—— ——

iv




i INTRINSIC GEODESY

IRTRODUC TION

As for any other Science, the development of Geodesy has been
greatly influenced by the historical process; in our Science it led
us from the primitive idea of a flat EBarth to the actual concept on

the shape and size of our planet, and its internal structure.

In early times it was discovered that the Earth could be approxi-
mated by a sphere, and alrsady ths Greeks and the Arabs tried to deter-
mine its radius. Only much later the theoretical works of Galileo,
Newton, Huygens, and Clairauit led to the ellipsoidal conception of the
shape of the Earth that was definitely proved .hy the celebrated ex-
peditions of the Academy of France in Lapland and in Peru as eerly as

the second quarter of the 18th cemtury.

As geodetical work progreased and methods and instruments were
greatly improved, it was soon discovered that even the ellipsoid could
only be regarded as a further approximation for the shape of the Earth;
and the idea of the Geoid (Listing, 1873) became essential.

Notwithstandings and since the times of the expeditions of the
Academy of France, the ellipsoid was still the dominating feature in
Geodesy; not only it was and is still universally used in practical

Geodesy and surveying; but it also affects most of theoretical research,

It may be pointed out at once that the function of the ellipsoid
in Geodesy may be regarded as two-fold. Sometimes it is accepted as a
good approximation to the Geoid, and therefore confused with it. That
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happens mostly in problems of practical Geodesy, such as triangulatio:. f
Sometimes it is simply regarded as a standard surface of reference, with
respect to which the "anomalies" or the "deflections" of the Geoid are
referred. But several times its use is promiscuous, and it is not easy
to discern what in the results is due to the actual structure of the

Earth's gravity field, and what is affected by the ellipsoidal assumption. |
It seems, therefore, of some interest to establish a theory leading .

to the study of geodetical and geophysical problems, abstracting from

any hypothesis on the shape of any level surface in the gravity field

of the Earth, and leaning, therefore, only on the data of actual measure- {
ments, E

Moreover, since the time Geodesy did no longer confine to the study
of geometrical problems on the shape and the size of one particular level
gurface, and started studying the dynamical problems of gravity, its

concern became more ample, and its aim more precise. Geodesy is the Science

devoted to the study of Earth's gravity field. The study of the geoid

became a particular problem in this general definition.

Our study must, therefore, not be confined to one particular level

surfaces but must extend to the third dimension in such a way as to

link in an overall picture both the geometrical and the dynamical aspects

of geodetic problems.

The difficulty to overcome at first lies in the fact that Operative

Geodesy must always refer to coordinates suitable for carrying out actual
measuremsnts; if independence from any exterior, arbitrary system of

reference {like the ellipsoid, or cartesian baricentric axes, etc.) is /
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claimed;, then the coordinates to be used must be innate in the field
itself. #e will therefore call such coordinates intrinsic, and our

study Intrinsic Geodesy.

Also, in such study we will only consider entities having a
physical reality and quantities susceptible to undergo actual direct or
indirect msasurements which Operative Geodesy is already able to perfarm,
or would be sble to perform if appropriate thecretically conceivable
instruments should be available, 4 standard surface of reference {like
the ellipsoid) or a standard field of reference {like Somigliana's
field) should be somztimes used for testing the actual gravitational
field of the karth; but the particular assumption of such standards

would never affect the general results.

We already remarked that the ellipsoid may be correctly regarded
as a standard reference surface in two-dimensional Geodesy for referring
the discrepancies between it and the Geoid, The most natural extension
of such concept in three dimensions is given by Pizzetti-Somigliana's
field of gravity, which was accepted in 1930 by the Stockholm meeting
of the International Association of Geodesy on the suggestion of
Dr. Lambert, Prof. Cassinis, and Prof, Somigliana himself, Somigliana's
field is fully determined, on account of the celebrated Stoke's theorem,
by giving the ellipscid as one of its level surfaces (usually
Hayford's International Ellipsoid), by the well-known angular speed of
rotation of the Earth, and by the equatorial value of gravity on the
ellipsoid itself (usually gg = 978.0L9 gal). On Somigliana's field is
based the international formula for normal gravity, the coefficients

of which have been determined by Prof., Silva and Cassinis.
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The principles of Intrinsic Geodesy may be very easily particularized
for Somigliana's field, and the results used as a standard of reference

or as a good first approximation in whatever geodetic problem the third
dimension is involved; and that, in a perfectly similar way to that in
which the ellipsoid is used in two-dimensional Geodesy.

Modern techniques tend indeed each day more to extend geodetic ex-
ploration in space, as is shown,e.g.,by the impressive fact that in
classical Geodesy only measurements along geodesics and lines on a
surface (Geoid or Ellipsoid) were considered, and that at present times
optical and electronic devices allow,instead,the measurement of distances

along lines in space, which may be very closely confused with geodesics
in space, i.e.,straight lines,
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INTRINSIC GEODESY

SECTION I

PRELIMINARY

1.1 Ubjsct of Geodeay

¥e will first point out the object of Gsodesy, as it is referred

tc in the pressnt lecturses: it is the study of the graviiy field of the

Earth,

As it is very well known, the field of gravity ( = gravitation +
centrifugal forces}, in the same way as all conservative (non-dissipative)
fields, may be thoroughly described by means of a single space function,
the potsntial function as introduced first by laplace, in all points
exterior to the volume cccupied by attracting messes., The object of
Geodesy msy be alsc formulated, therefore, as the study of ths potentisl
function, or alsc of the shape and size of its level surfaces (equipotentisl

surfaces), and of their orthogonal itrajectories (lines of force).

It is also very well known that the study of a potential field
involves geometrical and mechanical ;spectag for instance, the problem
of determining the size and shape of each of two near eguipotential
surfaces is of geometrical nature, but that of specifying the valus of
the corresponding potential difference {ths work to be done by trans-
ferring the unit mass frcm the one surface to the other} iz a mechanical
one, which involves the concept of nforce" (gravity).

We may add that in this scheme the aim of Topography (Surveying)
is merely the study of the shape of the actual physical surface of the
Earth, referred to the above gravity field, or in a more simple way, to

a particular level surface of the same,
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1.2 Two Aspects of the Gravity Field of the Earth

The study of a potential field may be considered from two
completely different points of view, The first (also historically) is
based on Newton's law of gravitation and on elementary laws of centrifugal
forces; i.e., it is based’on the consideration of the "cause" of gravity
itself. It admits, therefore, an interaction between attracting masses
and is called, therefore, by Hermann Weyl i/ the "Fernwirkungsgesetz"
(principle of action in distance). Its fundamental equations are, as

it is easily seen,

w-f/&-ﬁ‘-’.ﬂ’zﬂa;g-gradw-vw (1-1)
) r 2
where W is the potential of gravity in a point P of the space, due to
the attracting masses of density « distributed in the volume (V), and
to a rotation of angular velocityw; f is Newton's constant of gravita-
tion, r the distance between P and any point whatever of (V), R the
distance of P from the axis of rotation. Moreover ¥ is the vector of
gravity (the gradient of the potential W). (Here and in the following,
overlined letters like g will stand for vectors.)

We magy also refer to the above principle as an integral
principle, owing to the fact that the knowledge of the whole distribution
of attracting masses is required for computing the integral in (I-1)

It is the principle followed in the classical works of Clairaut,
Helmert, Bruns; etc, |

The second principle may be referred to, on thc.other hand, as a
differential principle, no longer involving the knowledge of the distri-

bution of attracting masses, Weyl refers to this principle as to the

i/ Hermann Weyl, Raum, Zeits Materie - Vorlesungen iiber allgemeine.
Relativitdtsthsorie, (Berlin, 1921)., (Also in French.)
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®Nahewirkungsgesets" (principle of action in proximity). This denomina-
tion is due to the fact that only the knowledge of the field's structure
in the immediate neighborhood of a given point is wanted.

In other words, the gravity field may be studied here as an "effect”,
independently from its "cause" (the distribution of masses); and it is
well known that the gravity vector g must satisfy the following two

fundamental (differential) equations:
rotE=vxg=0; divg=veg=2w?-4rfu . (I-2)

The first equation affirms that the field is conservative, and
the second that a rotation is superposed, and that in general in the
point P where g is considered, masses of density x« are present (the
last term disappears in vacuo, and to the greatest approximation in
free air).

The differential principle has been followed by Stokes primarily,
and his theorems are of utmost importance in Geodesy; and later on by
Pizzetti, Somigliana, and many other prominent geodesists and physicists.

The outstanding importance of the second principle lies in the
fact that it is completely independent of the distribution of attracting
masses, and it may therefore be applied with great advantage in Ge-
odesy, where the distribution of density in the interior of the Earth

is unknown,

1.3 Geodetic Position of the Problem

We have so far outlined the problem of gravity from the stand-
point of mathematical physics, Our task is now to examine it from the
point of view of Geodesy, i.e., of experimental science, and to specify
suitable methods for the practical exploration and numerical definition

of the field itself,
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On account of its independence of the knowledge of the Earth's
interior, in the following we will confine ourselves to considering
only the second principle stated above,

Our problem may be simply formulated as the problem of studying,
in a given domain, the vector ¥ of gravity, and other vectors connected
with it in a very simple way. JSuch vectors are, for instance, the unit
vector i1 of § (€ = -g M), where g ( a scalar) is the intensity of
gravity, or "gravity"; the derivatives

- LS .
S 432 ’ 5 4s ? gs*°?

of the same vectors in given directions, the vector
G =grad g (1-3)

(the gradient of gravity), etc. and the only difficulty is to find a
way of defining numerically the above absolute (not connected with a
particular reference sSystem) entities.

A vector itself is not a measurable entity. Only its components
(or projections) with respect to a given system of three cartesian
axes are numerically definable and therefors apt to be measured by
means of suitable instruments and methods, and to be used in numerical
{or algebraic) camputations. W%e are therefore forced to choose, in
Geodesy, reference systems of three axes (orthogonal or not, unit or
not, but not coplanar) in respect to which to consider the components
(or the projections) of our vectors, and it is a question of fundamental
importance for the practical use in Geodesy to have in mind that::

(1) the axes of reference must have an immediate physical reality;

(2) no additional hypothesis must be made in connection with the
gravity field itself;
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(3) the components (or projections) of all vectors to be
considered may be easily measuredw

The three conditions above exclude therefore, for instance, an
absolute cartesian system of reference for the whole Earth, which would
not have a physical reality and would make it therefore impossible to
measure coordinates and componentss

So far as the possibility of having a single system of reference
for the whole Earth, satisfying the above conditions, is obviously to
be excluded, we are obliged to choose suitable local reference systems,
one for each point of the field in the region to be considered.

As a first solution; rsference systems of this kind would be
given by orthogonal unit systems of axes in any point, one axis being
directed towards the Zenith, a second towards the North, and a third
towards the Easts Such systems are often used in local geodetic surveys
of limited extension, and we will refer to them as local astronomical
systemsy Rack system satisfies obviously the three fundamental condi-
tions stated above and has, therefore,an intrinsic definition.

But we must always have in mind that the extension to a wider
domain, as is often considered in Geodesy, rgquires the different systems
of reference to be connected sach to the other in such a way as to make
it possible and easy to transfer all mathematical properties from one
system to the next, or also to caupare the components (or projections)
of the same entity referred to different points in space.

We will see that the local astronomical systems are not convenient
for such purposes, in spite of their very simple definition, and this
is due to the fact that it is not easy to connect them each to another.
We will see, on the contrary, that another systam is much more suitable
for the same purpose, though its definition is a little more complicated
than the foregoings

WADC TR 52-149 9




1.4 Object of Intrinsic Geodesy

The task of our study, Intrinsic Geodesy, may be: we must
define in any point of our gravity field a system of three non-coplanar
axes, wach satisfying the conditions stated in 1.3,. and give a rule
as simple as possible for connecting each system to the next one.

If we are able to do this, we will also be able to develop every
geodetic research on an actual basis without referring to any arbitrary
hypothesis (like that of the spheroid or the ellipsoid), nor to any
system of reference not accessible to our measurementse

An easy way to reach this result, as we will see in more detail,
is to establish in the whole gravity field an intrinsic system of
curvilinear coordinates, i.e.,coordinates whose dafinition is implicit
in the field itself and do not need therefore any addjitional assumption,
We will see that the most suitable coordinates to be used f;r this
purpose are those defined by the foilowing coordinate surfaces:

(1) the family of equipotential surfaces themselves; we at-
tribute to each surface as parametric coordinate the corresponding
value of the potential;

(2) the family of the surfaces connecting all points in space
having the same astronomical latitude $; ¢ is at the same time the
parametric coordinate connected with this family;

(3) the family of the surfaces conmnecting all points in space
having the same astronomical longitude A; A is at the same time the
parametric coordinate connected with this family.

The coordinate lines are therefore:

(1) the isozenithal lines (intersection of ¢ and A surfaces),

connecting in space all points having the same Zenith (same ¢ and \);
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(2) the geodetic meridians (intersection of W and A\ surfaces);

(3) the geodetic parallels (intersection of W and ¢ surfaces),

All entities so defined have a physical reality; the equipotential
surfaces can be materialized by a level; astronomical latitudes and
longitudes may be also easily measured; the difference of potential W
is, with abstraction of an insignificant numerical factor, the dynamic
difference of height.

Attention is recalled to the fact that geodetic meridians and
parallels should not be confounded with North and East Lines, i.e,, the
lines whose tangents are directed in each point towards the North or
East, and also that geodetic parallels -and meridians do not cut in
general at right angles,

As it may be easily seen, the system of coordinates so defined
is intrinsic; in fact, we did not use any additional hypothesis, or
any exterior element other than the axis of the World to which astro-
nomical latitudes and longitudes are referred, Moreover, the direction
in space of the axis has a physical reality and may be used for ex-
perimental measures,

The coordinate lines so defined give us now the possibility of
fixing the position of any point in space by means of its three para-
metric coordinates &, A, and W. And moreover, the coordinate lines
defined above enable us to draw at each point a system of three funda-
mental vectors tangent to the lines themselves. Furthermore, as we will
see in more detail afterwards, the same coordinate lines will allow us
to connect the systems of fundamental vectors in neighboring points anmd

enable us, therefore, to compare vector entities at points far apart.
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SECTION II

VECTOR CALCULUS (ELEMENTS AND NOTATIONS)

2.1 Preliminary
In the following we shall consider absolute entities, like

points, vectors, and homographies, which all are independent from any
system of reference; and,on the other hand, relative entities, like
coordinates, components, and projections, which all depend not only
upon the absolute entity they represent, but also upon a reference
system of coordinates,

The absolute entities are studied by the Vector Calculus, and
the relative ones by Cartesian Geometry in the elementary case of
rectilinear reference systems of coordinates, and by Tensor Calculus
in the case of general curvilinear coordinates, (See reference L, 5,
6, 11.)

The difference of two points P, - P, = ¥ defines a vector; we
may write,therefore,also P, = P, + &, From this point of view, 3
may be also regarded as an operator leading from P, to P,.

A vector is completely defined by a direction (of the straight
line joining P, and F,), a sense on it (from P, to Pz), and a magnitude,

or modulus, or length (of the segment Ple). A vector may be represented

by an arrow, 4ll vectors specified by the same, three qualities stated

above are said to be equipollent. The point from which the vector starts

is immaterial,

We will always use an overlined letter for indicating vectors.

The same not overlined letter will represent the modulus (1length) of

the vector (a scalar).

D o 3
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A unit vector is sometimes called a versor; so, for the
instance, U = %- is a unit vector; we have thersfore T = a . 4
vector may also be defined by its modulus and its unit vector.

Let us have two infinitesimally near points P and P', and put
P' - P = dP; dP is therefore an infinitesimal vector, and we may say
that the differential of a point is a vector. If ds be the length
PP', then [ « %E is a unit vector. If P and P' are two infinitesi-
mally near points of a curve, then ¥ is the tangent unit vectoer to
the curve in P,

We assume that the operations of sum and subtraction, and
multiplication by a scalar of vectors are well known,

Scalar product of two vectore ¥ and B 18 indicated by
a.b (Italian notation, @ x B) (read ¥ dot b, or also ¥ scalar B)
and gives a scalar (a pure number), If © be the angle between the

(positive directions of the) two vectors, then we have
a.b=abcos 6

Scalar or dot product is distributive and commutative,

Condition for orthogonality of two vectors: a.b =0

Vector or cross product of two vectors is indicated by
a x b (Italian notation, a A D) (read & cross B, or also a vector B).
For full definition of vectar product a preliminary orientation of space
is necessary, If we are given tnree (non-coplanar) vectors vy, ¥;, V,,
(in the given order), such orientation is fixed by the rule that an
observer situated along one of the three vectors would see the other
two (considered in cyclic order), the one at his left, the second at

his right, following one of the two schemes:
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vy Vg Vo
N e N 2T
I. scheme v, Vv, v, ¥y v, V.

v. \7 v
I1., scheme ;:'l;;z f;’g‘i‘a ‘i‘r‘:j}'

In the first case we will say that the orientation of our
space is dextrorsum, or clockwise, whereas in the second case it is
sinistrorsum, or anticlockwise, We will assume for our space clock-
wise orientation,

Vector or cross product of two vectors ¥ and b is a new
vector € the direction of which is perpendicular to both the
directions of @ and b. Its sense is such that (§,5,¢) be a posi-
tive trihedron (dextrorsum in our case), and its modulus ab sin 6.

Vector product is distributive, but not commutative:

axb=-bxa
Condition of parallelism of two vectors: a x b = O.
Triple product, or mixed product, or box product of three

vectors a, b, ¢ is the scalar

Ve [2b5C] = axb,.C=¢x3,b=bxc.,3=

We give here some useful elementary formulae:
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(3xB)xET=8.865-5.¢7,
¥x(6x¢T =¥,.T5-8.6¢C,

(xD)xT+(BxT) x T+ (Tx
(ExB).(txJ) = [a.c a.d

b.

of
o'l
=9]

w.c (11-2)

a[bcd) ~-b[cdaj+cfdabl-dfabe]=0,
E’[dbc]a+[-a-di]b+[a53]c (355 4 0).
[abe)

Condition of coplanarity of three vectors: [; b ;] = 0,

Rules for differentiation of products are the same as for ordinary

products:
4(3.B) =a.db + b, da,
d(axb)=axdb+daxb, (11-3)

d[85¢] =da xb.c+axdb.c+axb.de.

2.2 Cartesian Components:; Differential Formulae

If we are given a positive system of three orthogonal unit
vectors (1,, 1, 1;), We may always write
. 7= a1, + azi, + 853, (11-L)
a,, a;, a, are the components (and also, in this case, the projections)

of a on the three axes: ar-z.ir.
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We have:

o o1a 1

a.b= ab +abd +ab, ; axbs= a a aj,
b, b, b,

(11-5)

4 3 &

{abc]= by by by,
c3 €2 Cj3

Positional vector of a point P referred to am origin O and the
system (i;, i,, i4):
P-0=xi +xi +xi, (11-6)
(x,, x;, X;) are the cartesian coordinates of P,

A function W(x,, x,, x,;) = W(P) is a function of position,
¥e call gradient of W and write grad W or also v¥

(read nabla W) the following vector:
I - w - W -

grad W = vw»-ax1 11’ax,i=’3'£;13' (11=7)

®grad® is an operator between scalars and vectors.
It is immediately seen that grad W, dP = d¥; it follows that
grad W is always perpendicular to the surfaces W(P) =const.

If we are given a vector U = W(P) function of position (the
components of which are functions of P), we shall call curl or

rotation of W and write rot U or also V X ¥ the following vector

_ ~ 934 -+ 9®W - 9%
rot u = VKﬁ'ilxa—i;¢'izXa~x—2-+iaxsi—a--

_Il("“a ’%)*-(’% aua)‘.a(% du,

) Bl o) L2 -5)
Lo, i,
2 2 3
- 52 Ix, ax3
Uy Uz U3 .
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"pot" is an operator between vectors and vectors.

It follows immediately that

rot grad W= VxV W= (1I-9)

A field of vectors W (P) such that rot W = 0 identically
is called irrotational or conservative., In such case, a scalar
function W(P) exists, such that u(P)=grad W(P). W(P) is called
scalar potential, or potential of the field.

If we are given a field of vectors TU(P), we shall call

divergence of T ard write div U or also v . U the following scalar:

u, 3112 au3
- + + . "10
TPl (11-10)

divai= VvV,
, Ix

2 3 7

ndiv" is an operator between vectors and scalars,

We have identically div rot ¥V = O; and, conversely, if
div @ = 0, it follows § = rot ¥, '

A field such that div ¥ = O identically is called solenoidal;
it follows that every solenoidal field is the rotation of a new field

of vectors {vector potential).
Combining the two operators div and grad we put
div grad W = A, = V. VW =V 3%, (11-11)
the new operator A, (between scalars and scalars) is called the
Laplacian operator,
A given field U(P) may always be written as the sum of an
irrotational and a solerioidal field. We have
U = grad W + rot v, (11-12)
and also it may be written as
U=grad W+ mgrad n , (11~-13)

where W, m, n, and ¥ are suitable scalar or vestor functions of P,
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It is very important to point out at once that although the
foregoing differential operators (grad, div, rot) have been defined
for the sake of simplicity by the help of cartesian coordinates, they
are absolute operators, as we can see from the following vector
formulae which may define as well the operators themselves:
grad W , dP = dW ,
rot u, dPx §P=di . SP~-6u. dP, (11-1L)
(div G)dP x P . 3P = 6Px 3P . dU+ @3P x dP . 8U + dPx §P . W,
where d, 8, 9 are differentials in three non parallel nor coplanar
directions.
Following formulae may be derived immediately from the foregoing:

grad(V + W) = grad V + grad W, rot (U+V) = rot T+ rot v,

grad wf = m grad W + W grad m ,

rot m¥ = mrot @+ grad m x U, (11-15)
divm¥ = mdivu+gradm, §,

divux Ve W, 70t G- u.rotv.

2.3 Homographies

A linear operator (transformation) a between vectors and vectors,

such that
as =1,
a(E+Db) =aa +ab, (distributive property) (II-16)
a(mT) = maE , {commutative property)

will be called a homography.
Each homography transforms parallel vectors into parallel
vectors, and vectors parallel to a plane into vectors parallel to a

plane.
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Moreover, each homography may be fully determined by the corre-
sponding vectors of three (independent-non parallel to a plane)
given vectors.

Proper homography is a homography transforming vectors non
parallel to a plane into vectors non parallel to a plane,

Singular or degenerative homography is a homography transforming
a group whatever of independent vectors into other vectors parallel
to a plane, or even parallel to a direction,

Some special homographies are:
(1) homothety (proper homography)

@ = m (real number), aX =mX (X arbitrary). (11~-17)

(2) axial homography (singular homography transfomming a group

whatever of independent vectors into a group of vectors parallel
to a plane)

Q= ux , X = u x X (11-18)

(3) dyad (of Gibbs) (singular homography transforming each vector
into a vector parallel to a direction)

«=H(u,v), ax = (u.X) ¥ (11-19)

(L4) dilatation (proper homography)
Homography satisfying to the conditicn

X.ay=¥.ax . (11~20)

A homography may be indicated also by the following notation,
which defines it fully:

uveow
Q= _ _ i.e.,
a c

R
wy
'
£1

(11+21)

ol
f
o]
"
<1

fa
ol
]
|

WADC TR 52-149 19




In the case of a dilatation, there may always be found three

unit vectors (principal directions) Iv i,, :-t-3 such that

(11-22)

'n-i-;l n-fz'mia
a-’(

Ix iz is ¢

The three invariants of an homography are I1,4d, ILa, Iaa.
(first, second and third invariant) and are defined by the

following formulae:

Le . UXxV, W= VXN, QU + W XU,V +U XV, QW ,

I, . uxV,. %= (a7) x (aW).u+ (aW) x (aUW).V+ (aU)x(a¥).¥,

I,e . Gx7.%= (a0) x (a¥). (a¥) . (11~23)

The vector ¥a of a homography a is defined by

vt — -—

2a,UuxV=V.aW ~0.eV (u, v, w arbitrary vectors). (II-2,)

The dilatation Da of a is defined by

Du=a-Vax , (11-25)
The conjugate Ka of a is defined by

Ka = Da - Vax, (11-26)
The cyclic Ca of & is defined by

Ca=la~a ., (11-27)
Theorem 1: Da is always a dilatation.
Theorem 2: A homography may always be written uniquely as

the sum of a dilatation and an axial homography, as follows:

a=Da + Vax , Kas=Da -~ Vax ., (11-28)
#e have
Va=0 ,
a is a dilatation if
Kg = a ;
DO; = 0 9
a is axial if
Ka = = ,
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Some important formulae:

Li(a+p) = Lo+ Lips Iima = ml, @ ,
V(as+p) =VaeVp , Vma = mVa
II-29
D(a+p) =Da+Dp , Dma = mDa , ¢ )
K(a+p) =KasKp , Kkna = mka
C(a+p) =mCa+Cp , Cme =mCa ,
Im =3m Ia -3, Inm -n®,
Vm =0 s Den =n , Ka =m , (mescalar)
I,(T x9) =0 , L(ux¥V )= T , I,(uxV)=0 , } axials (I1-30)
V(uxv) =1 , D(ixV) =0 , K(WxV)=a=u,
;IH(E,? =%V ,  LHGLV) =0 , LHELV)=0 | } iyads
VH(LV) =ux ¥V, 2DH(T,¥) = H(T,¥) + H(F,T s
KH(w,v) = Hv,u).
Commutation theorem of Jacobi:
X.ay = y.Kax (11-31)
(¢, X, and ¥ arbitrary homography and vectors).
Il (P“) . Ilq' IJ.P’ Iza + IaP - Iz(a ’P) ’
(11-32)

I, (pa) = I Lp.

2.i Spatial Derivatives of Vectors

s will define the operator :—; and call it spatial deri-

vative of the vector U = u(P), as the homography which applied to a
displacement 6P , gives us the corresponding increment $¥ undergone
by U:

du ‘
T $P = 5% . (11-33)
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du

If we apply the operator P

to a given unit vector 3,

-:—-:i gives us the derivative of U in the direction @, For this

du
reason EP'; may be called the spatial derivative of U.

We have the following absolute expressions for rot u and

div u:
- du = au
rot U = 2V-'-dp , div U = IldP . (11-34)

Furthermore, the following important formulae may be noticed:

- - du — dv -
grad u,v = K‘&'% v+ KEI: u ., (I1-35)

If i,, I,, I, be a constant orthogonal system of vectors,

and - - - -
U= ui; o+ ui; tusl; ,
then
- 3 -
rot u = ri' grad W, x i,
(11-36)
divi= 2 grad ur.ir .
Some theorems follow:
Theorem 1: If everywhere in a given field u.Trot U = O, then
three scalar functions of position m, n, and p exist, such that
U=mgrad n,
rot(p 1) =0, (11-37)
(p = 1/1!1) .

Theorem 2; If everywhere in a given field div u = 0, then

two scalars m and n exist such that

U=grad m x grad n (11-38)
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Theorem 3: For an arbitrary vector field ¥, scalars m and
n exist such that

rot U = grad m x grad n . (11-39)

2.5 Cartesian Components of Homographies

We may consider the cartesian components of a homography,
If (E;) are the orthogonal unit vectors of our reference system and .

a the homography considered, we may put

ai; = a,53 1) + 83, i + 845 1, ,

-}

(1I-40)

[2]
b
|
)
ot}
+
[
NP‘!
+
[
H{

)
o

(%

.-l
(S )

»
+
']
[¥ 3
+
o
]
L ]

The matrix (| a,g |l gives us the components of a homography
and defines it completely. In fact, if we put
-— 3 -
us= 3 i we will have
r=1 Ur o
@ = vy oI + uaT, + uyel, =
= (ga,, +ua,, +ua,)i,
- (1I-41)
+(yga;, T3, 4 ubazz)ia +

+(u1a13-+uaaza + ubasa)ia ¢

We havey therefore:

a - “i . { . (II“)JZ)
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We have, furthermore:

Ka =

2Va =

Vax &

aAxs

H(4,¥)
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Yha &y 4y,
fa &4 &y,
O
22 A Ay,
fa 83 3,
a a a

13 23 33

P
1/2(a,; + a2)
1/2(a,; + a,,)

(‘23 - 333011 +

0
1/2(a,, - a,;)
Y(a,, - a,3)

0 +a,
-3, 0
*a, -2
W, o owv,
LY %y,
B2 B[y,

1/2(a,, + a )

aaz

1/2(ay, + a,,)

1/2(313 - 331)

0

1/2(a,; - a,,)

|,

%Y
Q%]

u.v

2L

(‘31 - gla)Ia +

1/2(a13 +a,)
],/2(;33 +a,,)

33

(2,5 - a1,

1/2(313 - a31)
1/2(a,, - a,)

’

(11-43)




232 43,

I,a =
232 %53

831 %2

-
1@ a;; 833

a

831 32

¢ = >3
r,s

Furthermore;

A, W= div grad W =

WADC TR 52-149

"8y YA ta

a

33

a

33 83,

+
41 34,
13
23 = szc
33

a

11 %2

21 22

du;  du,
T X3
au
%5 2y oy,
e =
I$ aul du,
2N 3%,
fZ LT Lz
edlg ™ + x, -yl
ox, 3ax3
- 80U - -~ o _
X% 1 v x.3 1,
- aP{ - o1
i, X Xa +13x'55c;
; 2 - om
+12.axz +13.5-x—3'.
d grad W _ W . W
dap axf a;f
25

= I Ka

au3
'Wi{

duj

Bua
33X

a H(I;,I;) (decomposition of a homograrhy into dyads) .
rs

(II-4L)



b & 3 wlz '13

d (grad W W
I, ap - Wy, W, s 'rg * ax’axs (Hessian)
':n wiﬁ '33
om 3 =)
gradnxgradn.gradp-S""x,_ 3'% 3%
du_ du ou dacobian
ax1 3;; 3;; ( )
3. 3p ap
) 9x 9x
X 2 3
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SECTION III
TENSOR CALCULUS ( ELEMENTS AND NOTATIONS)

3.1  General Rectilinear Reference Systems

We have studied so far, absolute entities like vectors and

homographies, and also absolute operators like grad, rot, div,

a‘}, , etc., either without using any reference system of axes or coordi-
nates, or only using cartesian orthogonal unit systems.

As we will see; it is imstead often very important to refer the
game absclute entities and operators to general cartesian systems
(i.e., not unit, and not orthogonal systems), as happens in the
infinitely small domain around a point using general curvilinear coordi-
nates. (See reference 3, L 6, 7, 8, 9, 10, 11, 12.)

As a first step, we shall confine owr study to rectilinear
carteslan coordinates, meither orthogonal nor isometric, as they may
be specified by a point O (the origin) and three (not coplanar and not

unit) vectors v,, ¥,

If we are given an arbitrary vector @ and we want to define

73, our fundamental (or base)vectors.

U by means of our reference system, we always may express it as a
linear combination of the fundamental vectors, as follows:
U= d'V, ¢ 'Y, ¢ 0’ - 2 u’v‘

(lower case Roman indices have here and in the following the range from
1 to 3); or also we may define it by means of the three scalar products
u, = 9. ; uzaﬁ.fz;usnﬁ.?a. (111-2)
Both gystems of numbers uf = (u', v?, u3), or also
u. = (9, uz, u,) allows us, with the help of our reference system

of vectors, to reconstruct U3 ul or also u, are therefore called the

components of U in our systeam.
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More precisely, uT are called the contravariant components
of u, u,. the cavariant components, Contravariant and covariant
components are in general different. They coincide only in the
elementary case of cartesian orthogonal unit reference systems.

The reasan for the denominations covariant and contravariant
given to the two kinds of components is due to the fact that, by
transforming the original fundamental vectors ;r into other new
fundamental vectors ;'r by means of a linear transformation

- Al v g, ¢+ 4T, - Ta, (m1-4)
the two kinds of components of the same vector do not transform by the
same rule, as we will see at once,

(Summation Convention)., We will use in the following the con-
vention to dispense with the sign £, all times an index is repeated
in a monome twice, once as a superscript, and once as a subscript.
Thus, for instance, we will write the following formulae:

T = uSF; ; V) - oSV, . (111-5)

The letter used for the summation index (dummy index) is '
immaterial (like s in the foregoing formulae), and any letter may
be substituted at will for it. An index which is n‘ot. repeated
(like r in the foregoing), is called a free index.

Let us now have, in the first system of reference

bt - e - — ==t .
u = uv, u, =¥.¥V., and U= uwTy, , U =7T.V, in the second;

r r
then

CERS AR R L g 8 (I11-6)

and therefore

w o= u' al (law of contravariance) , (111~7)
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and furthermore

CVIETS O AR i A cf,us (law of covariance), (III-8)

As we see, u;. transforms like the fundamental vectors
'v's themselves (they are therefore cogradient tc the same, and the law
of transformation is covariant); the u¥ transform conversely by a
different, contragradient law with respect to the fundamental vectors,
i.e. they are contravariant to the same vectors.

In a quite similar way we may consider the components of a
homography @, and put

’, - aV,. Vs (covariant components) . (111-5)

It may easily be seen that these components transform by the
following generalized law of covariance:

U q
a -apasa

rs r (111~10)

pq 3

3.2 Reciprocal Vectors
We will define a set of reciprocal vectors ¥® with respect to

our fundamental system V,. by putting
.53, (111-11)

where si (Kronecker's symbol) has the following meaning:

s’ {' 0 i1f s+ r
I1I-12
T (=1 if s=r (1x )
Thus for instance y- is perpendicular to both v, and V.
-8
It may be easily seen that the general expression of v is
given by _ _
v, .. X V¥
- 8+1 S+2
- (111-13)

(va Vo Va)
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(we identify the indices differing by multiples of 3); and reciprocally

vr-o-.l % __v_r+2

v = (IIT-14)
r [#¥FP)
Moreover
- 1
[ 7 ) = ———— (111-15)
[va vz V3]
By the help of the reciprocal vectors we also may write
= r _ _r
u = urvr U =0,V (I11-16)
In a similar way we may put
ars - q?,‘r . '{is (contravariant components of «)
T, L = p
L A {111~-17)
(mixed components of «) .,
S - =S
a =au .,V
r. r
By a transformation of the fundamental vectors Vr , the
reciprocal vectors transform contravariantly.
We may put
—y S S
v (111-18)
p
and have
- 8 8 t,8_. _p t 8 .p t s
VI .V =8 =a A R =QA § =aA ~1
. T A VT Ay Sy sk s (111~-19)
and finally
t s s
apA = . ~20
Ay Sr (I11~20)
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s
This formula shows that || A || is the inverse of the

matrix llat [!. Qur formulae read now:
s

- S_ = r_'
= Y =
LA arvs ’ s Asvr
(covariance) ,
1 S = Ar'
o T %% o0 Y sUr (II1-21)
o S S
v = Ar ’ Vs = avr
s
T (contravariance) .
wT = ATS , B = ST
s
3.3 Tensors; the Fundamental Metric Tensor
r
3.3.1 All systems (single, double,...) of members like u, u,
a , ars’ ar',... having the meaning specified above, connected

rs .S
to the fundamental system of vectors (or its reciprocal), and

transforming accordingly to the above rules of covariance or

contravariance, are called tensors (of order one, of order two, etc.).
If we are given two vectors

-y S

i. = WV = W Tf Py (III"’22)
r 8

—_ -1’ S—
i=uvV =uv_ ,
r S

we may form their scalar product in several forms:

—— rs r s S ¢TI r r ] T
NLW=uwg =uwg =uw S  auw =uw & =uw s
rs rs Tr 8 r S r r
having put
—_— rs .r -—S sr
g =V.W =g ,g =V. =g . (I11-23)

It may easily be seen that grs and grs are, respectively, a

covariant and a contravariant double tensor., We call them the funda-

mental metric tensor in covariant and in contravariant form.
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We also have

S — s _xr

'ﬁ-n?r-u.v vr-usv v Vr-g vy (111-24)
r ol s I sr
and therefore
s
u =g u ., (111-25)
r sr
In a similar way we may find

3 r rs Pq
u = u u = u a = a XX III"26
SR S R ( )

The fundamental metric tensor allows us to compute the scalar
product of two vectors, and therefore to establish a linear and angular
metric; moreover, it allows us to "change the variance® of the
components of a given tensor, i.e., to deduce the covariant components
from the contravariant ones, and conversely.

We also have the formulae:

(111-27)
rr r?

s rs
i.e., gr', Sr s, € , are respectively the covariant, mixed, and con-
travariant components of the fundamental system of vectors and ita

reciprocal,

3.4  Operations on Tensors, Invariants

Addition of tensors. The addition of the corresponding components

of two tensors of the same kind and order gives another tensor of that
order and kind; thus for instance:

a +b =c¢c
r

r r? et st st
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Product of tensors. The product of the components of (two)

tensors of any kind or order gives another tensor the order of which
is the sum of the orders of the two given tensecrs; thus for instance:

s s pq n pqn
b =c¢ ab =¢ a " p =c¢
ar s rs ’ r r ’ rst ' m rstm

Contraction of tensors. If we make an index of contravariance
and an index of covariance the same in a given mixed tensor, so that
it becomes a dummy index, and we must sum for it from 1 to 3, the
result is a new tensor, the order of which is reduced by two; thus:

rst. st rst ¢t TSt ¢
a =¢ ,a =d , a =e , ete,

Invariants, If we contract completely a tensor of even order
with as many indices of covariance and contravariance, the result would
be an invariant (a scalar function of position, the value of which

does not depend upon the fundamental system of axes); thus:

Contracted multiplication. W#e may multiply two tensors of any order

and contract at the same time with respect to a couple (or more than a

couple) of indices. The result is a tensor, or an invariant, thus:

ab’ m=c (= ;.S; scalar product of a and b; invariant),
r

r 2 - I3
aa = (a)* (square of the length of a; invariant),

S S I‘..
ar.b = ¢ (homography « of mixed components a S applied to vector
.8 .

- r— - S..
b=bv = vector T = ¢ V)
r s’ ?

P br c etc
%rspt st )
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Quotient law of tensors., If the result of the contracted
multiplication of an arbitrary tensor by a given system gives us a
tensor or an invariamts then the given system is a tensor.

Thus, for instance, if we are given a system of the third order

A(r,s,t) and we take an arbitrary tensor b° , and we know that
r

t

s
A(r,s,t)br =c ,
where ct is a tensor, then A(r,s,t) is also a tensor and must therefore

be written as
A(r,s,t) = a:t
The foregoing rule allows us to recognize the tensor character

of a given system, It is very important to stress that the tensor

used as factor (in our instance b:) must be completely arbitrary.

A particular case is to use as test tensor the product of tensors

of the first order; thus, for instance, if

s

A(r,s,t)x?y zt = ¢ (an invariant)
A(r,s,t) is a tensor and must be written as a:s . We may also say
that the coefficients of a multilinear invariant formm in the

s
variables xr, Y, zt are the components of a tensor,

We may also observe that the contraction of a tensor of the
first order and the fundamental (or reciprocal) vectors give us a

i
vector, i.e., an absolute entity; thus uv, = 1.,
i

3.5 General Curvilinear Coordinates

In the foregoing we have merely used cartesian rectilinear

coordinates, i.,e., the same system of reference for the whole space

considered. Thus, for instance, if we were given a vector a the
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components of which would be a.r (or ar) at a given point P of space,
and we transport by equipollence the vector a to another point Q, the
components of ¥ would remain unaltered., The same may be stated for
tensors of any order and kind.

In many instances it is, however, not possible or convenient to
use cartesian rectilinear coordinates. Let us confine our attention for
the sake of simplicity to a plane; it is always possible to use on it
cartesian rectilinear systems of reference, and the foregoing theories
may be very easily applied with some slight modifications (summation
from 1 to 2 instead of from 1 to 3, obvious modification as to the
reciprocal vectors). But this would no longer be possible if we
consider a curved surface (not developablq)on which no cartesian
system of coordinates is possible,

But even in three dimensional space it may happen that we were
led to use curvilinear coordinates (for instance, spherical coordinates,
cylindrical coordinates, ellipsoidal coordinates, etc.), as may be
suggested by the particular problem we are dealing with., In more
advanced geometrical theories we may even consider curved three
dimensional spaces in which no cartesian system of reference would be
possible,

In such cases the foregoing simple theories cannot be applied
and we must establish other rules for the definition of the components
of our absolute entities, like vectors, homographies, etc. in any
point of space, and for operation on them,

Let us consider, for the sake of simplicity, the ordinary space
and imagine to have established a system of general curvilinear coordi-~

nates yl, yz, ya, such that we have a one-to-one correspondence between
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the sets yr = (y*, v°, yv3) and the points P of space, It is well

known that the equations yr = constant give us the three families of
coordinate surfaces; each surface will be specified by one and only one
value of the parameter yr. The intersection of the surfaces of the
three families give us the "congruence" of lines; the coordinate

r 1
lines, each of which is specified by a pair of coordinates (y ,yr*

).
. . . r+2
Along each coordinate line only the third coordinate y may vary.
Let us consider, furthermore, a point P(yy,¥2,73) = P(yl), and

at this point the three vectors

- 2P -~ 2P = _ 2P
v, * V2= 3 v, =3 III-28
1 ayt > 2 a}'g 2 T3 ayg ( )

These vectors have obviously the directions of the coordinate
lines through the point, in the order. Thus, for instance, v, is
directed along the intersection of the surfaces y° = yz and y3 = yg .
The direction of them is that of the increasing y's, and the length
is given by the ratio é?% of an infinitesimal displacement along the
line and the increment of the corresponding parameter,

Thus if a general system of curvilinear coordinates is given in
space, we are able to define in a very simple and natural way a funda-
mental system of vectors, one for each point. It is obvious that the
systems so established are different each from the other not only as
their orientation is concerned, but also in their interior structure.

By this way, we are now able to define in each point the components
of our absolute entities, i.e,, tensors, by simply applying the theories
stated above for rectilinear coordinates, The only difference is that
the same entity (a vector, for instance,) will not have the same
components at different points of space, as was the case in rectilinear

coordinates,
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The further question is to see how it is possible to connect
the different fundamental systems of vectors we have established at
each point, each to another, 80 as to make it possible to compare the
same absolute entity at different points, although its components are
different from point to point.

Before meeting this problem we may observe that we may obviously

write
- aP aP 2 °? 3 . ’aP i - B -
dp g;idyl s 5;%dy AW =iy, (I11-29)

and thus dyi are the contravariant components of the elementary dis-
placement dP. (In the case of rectilinear coordinates yl would be
the contravariant components of the positional vector P-0; this is
no longer true in general coordinates, and is replaced by the foregoing
differential relation.)
Also we have
dP.dP = ds® = ¥} .Vydyidyd = g dyiayd (I11-30)

having written 8ij for v{.¥5 . Bij is therefore our fundamental
metric tensor, It defines completely the internal structure of the
fundamental system of vectors (?i) at each point. As we can see, it
depends upon the position of the point considered (in the case of

cartesian rectilinear coordinates it was constant for the whole spacp).

3.6 Connection Coefficients

Let us consider a point P(y') of space, to which the fundamental

system of vectors (;}) = 2B is related, ard an infinitely near point

T
P'(yT + dy¥) = P + dP (dP = V3 dyJ) to which the fundamental system of
1) = 2F |
vectors (vr) r— may be related. we may put
vl = v o+ dvy (I11-31)

and we want to evaluate d?i.
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| As a first step, and as far as dvy is a vector attached to F,
we may write
— K -
vy =w, V., (111-32)

k
W, Dbeing thus the contravariant components of de
i

k
Moreover, w  depends upon the displacement dP, i.e., upon its
i

at P.

(contravariant) components dyJ; and so far as we may confine ourselves
to a first approximation (we neglect infinitesimals of higher order)

k
we may always write a& as & linear combination of dyJ :

k k J
W = -
s /'.lj dy (I11-33)
and therefore
k - s
dv = y, dyJ _

The /;; are systems of the third order, called connection
coefficients. Their knowledge gives us, in fact, the means of connect~
ing our fundamental system of vectors to the neighboring.

The connection coefficients are not tensors, as may be easily
understood considering that a tensor is essentially an entity attached
to one point of space only, whereas the /73 are attached to the point

and to the neighboring.

We may find an algebraic expression for the connection coefficients

if we only consider that

IV
- L (111-35)
and thus
AV,
- I ? ¥, - (I1I-36)
i1V




.

X
If we multiply this equation by v Wwe get

IV, K hSk- k g
éﬁn [;j ) [ (I11-37)

-

iJ

which gives us the requested formula,

- k
Let us remember now that vi.'v'k = Si and differentiate

partially with respect to y‘):

we may therefore write the following expressions for the Fa:

k 9 -k oK — Oy _k o _
[;j--—-j.v -—ay .Vi’ﬁ.v-—ﬁ.vj-
2 (111-38)

The ['s are also called, if expressed algebraically,
Christoffel symbols of the second kind. The Christoffel symbols of
the first kind are expressed by the following relations

k .. oy _ E -
(i3,h) = Bk /—ij = (ji,h) = ‘a"};jovh = Byi'vh (111-39)

Both the symbols of Christoffel of the first and of the second

kind may easily be expressed in terms of the fundamental tensor g
i

and its first partial derivatives. But we are not interested in

developing these formulae, that are to be faund in each book dealing

with tensor calculus,
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We may only give a formﬁla that will be useful in the following
and which establishes a simple relation between the Christoffel symbols
of the second kind and the value D = lgijl of the determinant of the
fundarental tensor,

We have

- - J
ayk = 'ayk ‘VjoTyR+Vi-a—yE'=(ik,j)+(dk’i),

and moreover, by contracted multiplication by giJ:

981_ i .j= -~
o [ Tyl

L

We now observe that glJ %;%g- might te written as follows:

15 098i9 1 _ij 9815
ij = gld S21)
g ?')y D o

ij . NP j
G J being, by definition of giJ,‘the algebraic complement of
. ¢l - p o1 .
ij 9813 ) .
But G 3 vk is nothing else than the sum of three determinants
obtained from €13 by substituting one of the rows with the derivatives
of the corresponding elements, and therefore, as it is well known,

this development gives us the derivative of D:

@
(-

T~ 3yk "D oK

.

<
"

And finally we get the requested formula:

r_1 981gD_231zWwW _
T2 S5 (131-k0)
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In a three dimensional space the number of Cnristoffel symbols

of each kind is 27 ( = 3?), but only 18 are distinct, owing to the fact
that the symbols are symmstrical with respect to the two lower indices.

We will still dsarve that by multiplying dP = ¥_ dy by ¥, we get
- 8
;s.dP = vro vsdy-r' srdyr = dys R

and therefore, by the definition of the gradient, w#e may write
7 = grad y° , (III-41)
i.e., the reciprocal vectors of each fundamental system are given by

the gradients of the parametric coordinates at that point.

3.7 Absolute Differentiation

Let us have a field of vectors u(P) = u??r , each vector being
attached to the corresponding point P; we may compare u(P) to the
neighboring vector u(P+dP) = W(P) + du. As a particular case, we
may have identically du = O, i.e., the field of vectors would be
formed by equipollent vectors.

From U = urVr we have by differentiation (interchanging some
“indices)

qg = du, ¥ +u d?r-(;a‘i‘ﬁ"»rua‘?r h
Yy r 'oyh rﬁ)d&" |
. -r u N (111-L2)
-(—a%?k‘rur%.—kvk)dyh- ﬁ-% h:)v ayr ,
and not du = %E% ?k¢yh as would be in the case of cartesian
rectilinear coordinates.

The presence of the term -u,r h: is due to the fact thai in

in passing from P to P + dP not only U has varied, but also the

reference system of vectors.,

WADC TR 52-149 1




We put
duy f’r
R~ % bk = %/h (I11~L3)

{read “k derived h) and call uk/h the covariant derivative of
w 5 we also may call ) .

du_- (3-;3;- w [ )k (ITT-Lk)
the absolute differential of wu, .

In a quite similar way we may obtain for contravariant components
and for double tensors the following formulae

k, EEE r ~k
U/ " vk *u/—rh ?

o 3 3
& hk/ --5§ -‘hj/;l- i /_hl’ atc.

Going back to our first differential formula, it is very worthy

(I11-k5)

to be noted that it may be written as follows:

-k
di=u ,Vv dyh

/h s (I11-L6)

and that this formula is derived from the expression U = uk?k by

the ordinary rule of differentiation in cartesian rectilinear coordi-
nates, only substitutingathe covariant derivative uk/ in place of
the partial derivative 5;% . We may also 3ay, therefore, that the

fundamental vectors behave as constants with respect to the covariant

(tensor) differentiation.

This is a way of expressing the fundamental theorem of Ricci,
¥e may now consider the particular case where dii = O identieally,

i.e., the case of a parallel (equipollent) field of vectors, In this

case we have

u = O identica
i/h °ally,

and therefore

r
=1 /" e (I1I-47)

r

. U
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3.8 Equation of Straight Lines

If we are given an arbitrary curve (7) in perametric form
yi - yi(s), 8 Dbeing the arc msasursd on the curve, we may put for the
sake of simplicity gi = AL, Thus, if we call T the tangent unit
vector to our curve at P, we have
-, 1
ts= ﬁ-f =- %?— - 1171 ; (I11-48)
the Xi'l are therefors the contravariant components of the tangent
unit vector to a curve.

As it is well known, Frenet's formula gives us

- -
3 KA = Kvivi ’ (ITI-49)

K being the first curvature (or flexion) of (1), and
K= yivi the unit vector of its principal normal. The same formula

nay be written in tensor form as follows:

i |r i at 2%t T
l/r)‘ = Ky~ (because r7 i %T as ). (111-50)

If X = 0 identically, our curve is a straight line, and there-

fore 3 r
A/ A =0 (111-51)

may be regarded as the tensor differential equation of a straight
line in space referred to general curvilinear coordinates, We may
also write more explicitly
ST
(_-+x/'kr)xr-o;.
Byr

i i r 2 1
and moreover, remembering that A 3T = 2. & 4T

AT ¥r ds  as®
eyt ok 1
;s-";’L + A )‘r/;r = 0. (1I1-52)

This is ths final form of the differential equation of a straight

line which we will use in the followings
WADC TR 52-149 b3




3.9 Some Complements

The great help we are able to find in tensor calculus is
essentially due to the fact that formulae may be written in a very
caompact and transparent form even though they contain a great number
of terms, and moreover on the fact that the following rules hold:

(1) A zero tensor (the components of which are zero) in a given
system of coordinates, is identically zero in each other
system of coordinates (in fact, the transformation between
different systems is linear and homogemeous),

(2) Two tensors (of the same kind and order) identical in one
system of reference are identical in any other system,

(3) The properties of symmetry and of skew-symmetry of a tensor
are irvariant for any transformation of the base vectors and
indicate therefore an intrinsic property of the entity
represented.

Therefore a tensor equation presents an absolute character,
whatever may be the system of coordinates used for writing it.

We will at once show some consequences of the above rules,

First of all, we may very easily recognize by another way that
the Christoffel symbols are not tensorsj in fact, they are all zero
in cartesian coordinates, and this is no longer true in whatever
other system of coordinates,

Secondly, let us consider a vector u = u'v. and the homography
\ i
!
%g . In cartesian coordinates we may write, as we have already seen,

o gu
e a m
du gut  u®  oud
P - e BE oxP (111-53)
at o
x> X P
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and

‘32 ta agd (I11-54)
If we wish to preserve the tensor character of the formulae

written, we must replace the ordinary partial derivatives by the covariant

or tensor derivatives, and we will therefore have in any system of
coordinates

- i
dv T = wy, . (1I11-55)
Also remembering the expression for ui/ j we have

i aui r i
vy, St /:i ’
and using the formula recalled &a 3,6:

i r D d
div'{i-ui/ au %—- 2T %.(\/_ 0u13;§.).
S (1I1-56)
Dy
VB ey

3.10 Curves in Space

Let us have a curve in space defined by its parametric equation
P = P(s), s being the arc of the curve. We immediately have that

t =
_ds

is the tangent unit vector to the curve.

(111-57)

Considering that t.t = 1, we have ?,.Sll = O, and therefore
dt _ d*p
t and 3o - ag? are orthogonal, We put

&t 4% ®
ds ds* P

(111-58)
n being the unit vector of the principal normal to the given curve,

and P being the radius of first curvature (or flexion) of the curve.
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Let us next call b the unit vector normal to both n and

t, and such that the system (T,n,5) may be positive. We have from
5.5 = 1 and b.t = O:

5 - b - n db -
Qﬂ.b.o, 29.\‘.4-5‘3-0, and therefore also ——.t = 0.
ds ds P ds

That means that %2— is perpendicular to both b and t and is

directed therefore along n. We put

db _n

ds T
and call v the radius of second curvature (or torsion) of the curve,

From n.h = 1, n,% = 0, n.b = O we get after this by

differentiation, taking into account the foresgoing formulae,

di = dn - 1 dini — 1
= .n=0, 2 |} = = . b=
ds > ds P’ ds T
and therefore
i __t _ b
ds P T °
The set of formulae which we summarize
ds p ’ ads P T d T

are known as Frenet's or Serret's formulae,

(I11-59)

The plane of © and T is called tangent plane to the curve;

the plane of t and b is called the rectifying plane; and the plane

of T and b 4s called the normal plane,

3.1 Curves on a Surface

Let us now consider a curve (') on a surface X; we will
indicate by N the normal unit vector to £, and by n the principal

normal to (%). ¥ being always the tangent unit vector to (™)
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(perpendicular to both T and N), we may also consider the positive
trihedron (surface trihedron) (%,N,B) of normal unit vectors, and put
Non=cos ®, B.b = cos 0,
nB=sin®, Nb=ewsineg,

@ being the angle of obliquity of (7') on Z,

Therefore:
fi= Ncoso+3Bsing,
b=~-Nsine+Bcos o, (I11-60)
N= ncos 8~bsing,

=nsin®+5cosO.

wi

By substituting these formulae in Frenet's formulae we easily

get
& ¥ 3
s fa f&
gN._B _%
is T Pn ’ (II1-61)
B.%_E
s T fg

which are called the generalized Frenet's formulae for the surface
trihedron; and where we have put

1l cos ©

(normal curvature) |,

PP

1 8in 8 . s

73- = ? (tangential or geodesic curvature) , (I11-62)
g

%é - %— + -g% (geodesic torsion) .

For geodesic curves on the surface we have identically n = ﬁ,

and therefore 6 = % = 0; thus for geodesic curves:

1 1
..,-}n-, £-0, %5'75- . (I11-63)

L7




3,12 Surfaces
Let us consider a surface Z and its normal N, and take an arbitrary
displacement dP on 2, If we give the point P the displacement dP,
¥ would become N + dN; and from N.N = 1 we have that N.dN = O, i.e.,
df is a tangential vector.
The homography (of Burali-Forti)

aN
4 P (II1-6L)

such that ¢dP = dN gives us the law of variation of N in any direction
and defines therefore the shape of Z in space,

If we consider the parametric form of I,

P = P(y*, ¥°),

y:l and yja being two parameters, we have
3 - -
dpP = 5}!;- ay* + %}; dy* =T, Ayt + Vo y® = T &y® - gagv“ dy®, ( I1I1-65)

and therefore

2 2
ds® = dP,dP = Bdy* + 2Fdy* dy® + Gdy® = gep dy* dayb,
(first fundamental form of Z)

having put

gn = E = ;1. Vl 3 glz = gzl = F = VI. 72 = _V-an vl, gzz = G = Vz. Vz.(III-éé)

The 8. (a, B = 1,2) are the components of the metric (first)fundamental

tensor of Z in our coordinates ya.

#e may observe that F'=VBG cos 0 s, Where 6 1is the angle of

the considered coordinates lines on Z; and therefore

cose-__F.:_ s sin6=v—-—§}:—- . (111—67)
VEG
Considering now g, we may put
© V. Vg==bg, (III-68)
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and call bgp the second fundamental tensor of 2. We have

"'Va'%&“bap W, dﬁ--bapi*‘ dy? (I11-69)
and moreover
dN.dP = - bap dy® dyP (second fundamental form of Z). (I11-70)

Finally we have
A = bgp 7 orF L by Tt = % by, by 0 &P = opy v @ (TIET)
(third fundamental form of X)

and cyy = g% bap Ppg 1S called the third fundamental tensor of Z.

We may observe that -dN,dP = N,d*P because d(N.dP) =
=dN.dP + N.d®P = 0, and also that from
EodP = ﬁo-v-a d}'a

we get by partial differentiation and interchanging the indices «

and f
ON_ - o = o°P
— + N, = 0
oy o dy W dy s
(111-72)
L. IS S
A v R
and therefore
N _ N
‘a—y'p"va = - baﬁ = 5;& .vp - - baB . (111-73)

The second fundamental tensor is therefore symmetric and is

usually indicated as byg = (D,D',D'' ), Also, it follows that the
homography 6 is a dilatation, owing to the fact tnat the property of

symnetry of tensors is invariant with respect to any transformation.
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We remamber now that

—— -—bap VP

and differentiate this formula covariantly with respect to y?¥
Remembering also that the fundamental base vectors (and their
reciprocals) may be regarded as constants with respect to covariant

differentiation, we get

o _ N _oF /"3 b wP
/s WP oyt ap P
Interchanging @ and J , the central part of the equation
written remains unaltered (on account of the symmetry of the second
partial derivatives, and of the Christoffel symbols of the second kind

with respect to the lower indices); and therefore

®ap/p = Pagfp * (111-7k)
This expresses in tensor form the Mainardi~Codazzi equations,

which give the integrability conditions which the second fundamental

tensor of a surface must satisfy,

Moreover, if we take a displacement» dP in the direction of the

unit vector T on I, from

CaP _ - _ di Bt
" ft===-= -7 IiI-
ds ng Pn ’ ( 75)
we immediately have that
Ct.t =~ -;';; (normal curvature of X in the direction t )
(111-76)

-= 1
Ft.B = - '-U— (geodesic torsion of £ in the direction T).
g




The united directions ¢3 and ¢, ©of X, such that

axm

5 - C2 :
T8 =5 > % "72‘ (111-77)

(which always exist since # is a dilatation) give us the principal
directions of @; p; and P. are the principal radii of curvature
of Z. Along these dirasctions the geodesic torsion is zero,

Also 1,0 gives us the mean curvature 2;'+ o » and 1.6

1
Pr P2’
of Z.

the total curvature P
P
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SECTION IV

INTRINSIC GEODESY
(See reference L, 51, 52, 53)

L.1 intrinsic Geographic Coordinates on a Surface (See reference 26, 27)

If we take a constant anticlockwise (sinistrorsum) trihedron of
orthogonal unit vectors (a,, a, 33) and a variable clockwise (dextrorsum)

trihedron of orthogonal unit vectors (-i-l, ‘i-z, -{3), ¥e may always write

i, =-sin®cos A.@, ~sin@®sin A, 3T, + cos 9.3

2 3

i, = - sin A, a, + cos A, a,

+

13 cos ®cos A, @ +cos $sin A, &, +sin #.3, ,

(1v-1)
a4, =-sin®cos A. I, - sin A, I, + cos & cos AL i,
E2

=-sin¢sin A, I +cos A.I, +cos & sin A. T

b 3

* . i
T, = cos ¢.1, +sin¢.i, ,

where € and A are the Jatitude and longitude (respectively) of .1-3 with
reference to a3 as an axis (world's axis directed towards the North)
and the plane (3; , 3;) as fundamental meridian; and we understand
that -1.1 must always be in the plane (5.-3 s 33), i.e., directed towards
the North,

By differentiation we get immediately

d'i-ls —3'-2 Siné.d)\".{ao d’,
di, = I, sin &. A\ -1, .cos &.d\, (1V-2)
di, = 1,. d¢ +1, cos &.d\,

and therefore

d?[s . dfa = (dia)2 = d¢® + cosZ@d\? . (IV-3)




Let us now take a surface X, and its normal N at a point P
and establish a correspondence (Gauss's spherical correspondence) such
that ¥ = 1. Under a certain hypothesis of convexity for the surface
which we will assume, the correspondence will be one-to-one; and we also
may therefore attribute to P the coordinates & amd A of I,. We will
call them the intrinsic geographical coordinates of Pon X. In the
case in which X is the geoid, the intrinsic geographical coordinates
coincide with the astronomical coordinates,

We then have

6dP = dN = I, d¢ + I_ cos & d) ;

i, and i, give us the North and East directions on Z,

1f we now consider the fundamental vectors on Z connected

with the intrinsic geographic coordinates, v, = -%%-, Va - %I;T

(the directions along which the longitude, and latitude
do not vary, i.e. the geodetic meridians and parallels on X), we

immediately have from the foregoing formulae for our second fundamental

tensor:
N _ — o _ - -
bll-D --ﬁ.vl.-Il.vl 3 bzl-D' -_ﬂa—iovl-—iz. vl coﬂ”

* o : o (e
b1z’D""%%';.g”il'va » bga.’D"""%{";z"iz°'2°°5”

and therefore

- - - Dt
- i, D -1
1 2 cos &
- - - pn (1v-5 )

cos ¢
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If we multiply these relations and remember that g;3 = E =¥ . ¥,
eees We immediately get

Dr?
gll-E -D2¢ s

cos®@
D
12 - 331 =F= D'(D + 00.3‘ ) » (IV-é)
e
a(= Dla + —P—.—-— .
8aa cos3@

Although in general the first and the second fundamental forms
are not related by equations in finite terms, in this case (of geographic
intrinsic coordinates) they are, owing to the particular spatial meaning
of the coordinates themselves.

As may be seen, the total curvature of I is given by

1 cos?®
K= = . V-
PiP2 DD* - Dt ( 7

Two vectors a and b such that
ob=0 (1v-8)
and said to be conjugate with respect to o~ ; it follows from the fact
that 0 = Ko (because o is a dilatation), that
a.0b=b,0a ,
and therefore the property of being conjugate is reciprocal.
We have from the foregoing that
dl =1, d¢ + I, cos #dA = cdP = oV, d& + oV, dr ,
and therefore
o¥ =1, 0, =V oI (1v-9)

3.-{1 i, I osﬁ-va.a'il-o,
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i.e., the directions of ¥, and ¥, are conjugate respectively to the
directions of I, and I,. This leads to the theorem first formulated
by Pizzetti: the direction of the meridian (parallel) on .a given
surface is conjugate to the East (North) direction with respect to the
homography of Burali-Forti (or also with respect to the indicatrix of
Dupin). (See reference 31, 32)

We al=o may observe that
2
Dcos &
(1v-10)

o D
Vpei; = VE cosp = =D, cos )1--\/'_-3-"—, tgp=-

- = D= Dw
L, =VE sinw = - —— -
Va-1a ve cos @ te D' cos &

give us the aximuths p and # of the meridian and of the parallel,

respectively, and that

),cose-%(n+

V1.7, = VEG cos 8 = D'(D + ) (Iv-11)

cos3¢ cos &

give us the angle © between the meridian and the parallel,

L.2 Curves on a Surface Referred to Geographic Coordinates

If we remember the generalized formulae of Frenet and put

t=1, cosA+":i'2 sin A (A = azimuth of T)
(Iv-12)

. T TR df,
-5;--ilsmA-;+iacosAE;+-a;-cosA+;-.3linA ,

we immediately get the important formulae valid for an arbitrary curve

on X :
f—--aini%*% ,
4 (Iv-13)
--l-'cot-:is:m}lg'}”»coaAg2 .
Pn ds ds
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For a geodesic we have therefore

1 dA . daa
— W 0 —— —— . v—
o s sin & ™ (Iv-14)

Moreover, we may write

- G e3P _aP 4@°
b= AV, =) 5T 558 as

’ (1Iv-15)

and therefore \% = ad-f: are the contravariant components of the
tangent wnit vector t to a curve P = P(s) on X . If this curve
would be a geodesic, the y%'s would satisfy to an equation similar to
that we found in 3.8, i.e.,

d—zlf. B X . Iv-16
ds? -XX/-pY ( )

This formula may be differentiated successively; remembering

that, for instance,

o ozt
a8 ge*

’ (Iv-17)

These developments allow us to generalize for a geodesic line
drawn on a surface, Legendre's series for the computation of geographic

coordinates from polar geodesic coordinates, (see reference L7) i.e,,

3 c 3 23, &
a ™ & + S l‘ & —s—. (Q-L) + -s-— (g—x—) + o o o -
Yy Yo (o] 21 ds /o 3t dsz o . (Iv 18)

For the azimuth we get in a similar way the following expansion:

G o aa, g{®T) , 82 [a® -
)’-)'o*s(ds)o*Z!(dlzo““. (1¥-15)
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The contravariant components 2% are easily expressed in temms
of the aximuth A as follows:

=A% ; 2.0, =cos A=Ay L )373. i, -
= - DA* - DA? |
D'A + DrA?

-'-cc-i = 8in A = -
2 cos @ ’

amd therefore

xlsi— (- D" cos A + D' cos @ sin A) ,
A2 --i-— (B* cos A - D cos # sin A) , (Iv-20)

o =DD" - D2,
Formulae perfectly similar to these may also be established
for a curve on X , provided the geodesic curvature be known as a

function of the arc s,

L.3 Intrinsic Geodesy in Space; Absolute Formulae., (See references
16, Lk)
Let us consider now the vector g of gravity in space and put
E=-gn; (Iv-21)

as it is very well knomn, n is the normal unit vector to each equipo-
tential surfaee of gravity, and g is the intensity of gravity. We

take ¥ and N in opposite directions.
If we differentiate the foregoing formula with respect to P,

we obtain a homography (E®tvBs's homography)

E.d
W= ap dP grad W, (1v-22)
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# baing obviously the potential of gravity; ws also will write

dri
T - == s
aP (1v-23)
and call o the generalized homography of Burali-Forti (generaliszed,
because Mere o is no longer related to a single surface, but tc a
family of surfaces, the equipotential surfaces),

We immediatsly get

wa.. g2 -ﬁ%f,'-sf-'ﬁ%f; (Tv-2L)

where the meaning of % is given by the formula:

Qﬂdp- .
dP e

The opsrator %g is therefore identical to the operator grad g,

an hyperhomography operating between vectors and scalars,
4 rad IV
= : -25
1 g g ;5 ( )

grad g 1is called the gradient of the intensity of gravity
(gredisnt of gravity).

Qur formula may now be written, remembering the dyads, as

follows:
WS = -go - H(grad g, W) , (1Iv-26)
and therefore also
T = -i" ("21!'-# H(grad g, H)J . (1v-27)

The relations between T and o now established give us in
the simplest way the relation between the mechanical (zJs) and the
geometrical ( o ) structure of the gravity field if we confine our

attention to its characteristics of the sacond order,

WADC TE 52-149 58




The gravimetric gradieni may immediately be expresced by
means of %'; we ohservs, thersefore, that for any two vectors X and
7 we have, reusshering Jaccbi's theorem (II-31) and (11=339),

grad(X.7) 6P = d(X.y) = y.d% + X.dy = ?'gz dp + i-g dP =
dp ap (IV-28)

x gz)odp

= gz o g-. = + K
KdPy dP+KddeP (X 3p¥ ap

(x % is the conjugate of % ). Ifx and ¥ are the gradients of

two scalar functions, then

g Y- -
—— IR e - IV-2
KdeP’Kdep’ (1v-29)
and we have in this cass

grad(x.y) = %y + gi . (1v-30)

Thus
grad(g.g) = grad g* = 2g grad g = 2 g g-2Wg,
and therefore

gradg-i—UI--Uﬁ'. (Iv-31)
We also have in consequence
o = - %{U - H(‘Uﬁ,x‘x)} . (1v-32)

We may observe that the homography  is a dilatation if
considered on a surface (as already seen), but it is no longer a

dilatation in space, We have in fact

1
Ko =~ -g—-{'ZJ+ H(H, grad 8)} o, (Iv-33)
because K1 = W'; and, therefore,
Kon=0, (1v-34)

and T is the null direction of K& (but not of o ) o
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The vector grad g is always perpendicular to the surfaces
g = constant, which are called isogravitational surfaces,
Since § is a gradient, we have furthermore

rot g=0=-rot gfi=-grotn+nx grad g;
‘ (1Iv-35)

rot n = n x grad g.

03 |+

We may, moreover, observe that

o= - —]'-{UE + H(grad g,'ﬁ)}
& (IV-36)

1 - - 1
= -é- {grad g - (grad g.n) n}- -g grady g,

grad, g being the component vector of grad g tangent to the
equipotential surface 3 (also called the surface gradient of g, or the

horizontal gradient of gravity).

Owing to the fact that ix n = O, we may therefore also write
= 1 = -
rotn-z- nxgrad, g =HAxon, (Iv-37)

The vector o-g = d__r_l'n gives us obviously the derivative of
dp
the normal unit vector N along the line of force; its modulus is
therefore %— = P (curvature of the line of force) and its direction is

that of the principal normal N' to the line of force itself, If we

call furthermore B! the binormal to the line of force, we will have

-

_— - - B|
nx on=rotn=-—

R

(1v-38)
= . L rad Nt
R g g b g . .
Considering now the divergence of 11 , we would have
diN f = - div & - - div § - § . grads

& B & (1V-39)

.é— (Urwf& - 2w2 - grad g . 0 )

(f = constant of gravitation, & = density of matter).
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The divergence of n has a precise meaning; let us consider
the homography
0y =o-H(H, 07) =0l - HTn,M) ;- (IV-40)
we have

opA=0 ; at= ot (t = tangential vector); (Iv-41)

i.e., 07 operates on tangential vectors like ¢ and gives a null vector
if operating on normal vectors to §; ., We call therefore ¢ a surface
homography; we immediately see that it coincides with the homography
of Burali-Forti for £ which we had already considered.
We also have
L= Lo-1, HF of) = [e-F.o0=Lo (1v-L2)

since n and o- n are orthogonal vectors. I; 0; equals now the mean

curvature H = A ) s btherefore
b3 /02
Hedivie S(bvfs- 20" - gradg . §) (TV-L3)

This is the celebrated formula of Bruns, which may also be
written as follows

gradg.'ﬁ-H—%(zwz"h”ffé\)- (IV-Lk)

The first member is often called (improperly) the vertical

gradient of gravity.

L.k Local Astronomical Reference Systems

Let us consider at a point P the local system of orthogonal
unit vectors (—1-1’-:1.2:-{3), at which as usual _13 is directed (like n)

towards the zenith of the equipotential surface % at P, i, towards

the North, and i, towards the East. Along the axes (i—:u 3.-2, '1-3) we

. imagine to measure the cartesian isometrical coordinates xl, xz, x3,
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We will furthermore put

oW 22w _ _3% 3% _ 4 .y (1V-L5)
o Mo amass T 3 T
and also we will write
- W
W = . . (IV-46)

We immediately have that g = - W, , and
g=grad W= - g i,

wl 1 wl 2 w1 3

w-Msgﬁ: '21 W w

Wa‘.l w32 w33

(IV-L7)
W = Wi i =Wig.1,
Ull = '1111 + leiz + w:laia

i =W _ji +«+W i +W
wlz 2173 22" 2 23" 3 ’

Uia - wslil * waﬂiz + '3313 ¢

The formulae written justify the name of EGtvos homography
given to WJ , as Eotvos was the first geodesist who considered systematically
the second derivatives of the potential,
Furthermore
. -— o 2
LW=divg =W, + WV, + ¥, 6 =2w"=Lx £§,

— -—

grad g = ~Wiy = - Wi, -W_ i -W i

2 333
'11 P 0
g = aa a2 O > (Iv-L8)
Ya a2 0
and therefore we get
H= 110' = Wiy + Woo s K = Jaz0 = '11'23 - "212 (IV—h9)

WAZC TR 52-149 62-




L.5 General Intrinsic Coordinates

The directions forming the local astronomical trihedron
(i;, i, 33) have already an intrinsic character and may therefore be
materialized by actual physical measurements proper to Astronomy and
Geodesy; but this does not imply that the same trihedrons are the
principal trihedrons of a triple congruence of coordinate lines. In
fact, we would not be able to find three congruences of curves inter-
secting in a point and having at this point the given directions of
(i, iy 1,).

We will overlook the proof of this general proposition and
will confine ourselves to observing that if we consider any equipotential
surface and draw on it in a point the North and East directions, the
normal 33 along these directions would not cut in general the infinitely
near surface along North and East directions.

The astronomical local systems of vectors are therefore not
suitable for defining a general system of coordinates in space.

We will instead chose as general coordinates in space the
following:

(1) the intrinsic (astronomical) latitude on each equipotential
surface, & or y* ;

(2) the intrinsic (astronomical) longitude on each equipotential
surface, A or y- ;

(3) the potential W or y3.

The three families of coordinate surfaces are therefore
(1) the surfaces of equal latitude ,
(2) the surfaces of equal longitude ,

(3) the equipotential surfaces,
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We may observe that the parameter W (the potential) is
measured, with the exception of an inessential additive quantity and
a factor, by the dynamic height.

The three congruences of coordinate curves are

1. the geoidal meridians (along which only & is varying) ,

2. the geoidal parallels (along which only A is varying) ,

3., the isozenithal (or isovertical) lines (along wanich only

W is varying) .

The three fundamental vectors are therefore

P
. 2P 9P - _3P 3P o _BF 90 (IV-50;
it5s A’ 2l ox ey’ s oaw oy '

The direction of ;3 is the null direction of ¢ ; in fact,
odP = dfi, and therefore, since ¥, is the isozenithal direction,
cr;s =0 .

If we would attempt to express the fundamental vectors (;} )

in terms of the local astronomical unit vectors (Ir) s We only want to

remember that o¥, =1, ov, = i3 cos ¢, e';a = 0, and moreover, that

3F - 2P L _ .7 .7.=1
grad Weor = 8 ° 3y i,-7, s

because

If we, therefore, put

Vi ® 3,41, *tanl,

v, = :51.21-'3:1 +a,,i, (Iv-51)

Va = 8yl +a i +a i,
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and remember that

O iy =w,i; v med,
T iy =Wuly ¥ Wa2ly (IV-52)
Oly = Wyly +Waly
we will have
ov, =1, = (a3, *+ 35, 21)1 + (a,,%, *+ a23"3)ia
oV, =icos¢ = (agaw,, + a22w21)1 + (a W, 822W22)12 R (1IV-53)
v, = + W, + + + i
oV, = 0= (anw, +a,, + a,," 31)l (3,32 ¥ 35, *+ 353 32)12 ’
and, therefore, immediately
+ ez D a,, = L. -— 2
= —— TR = » - e— -
an K 5 12 K cos ¢ ?
W,z COS @ w,, cos & - Do
8y = - == DAz Tt — - , (TV-5L)
21 K K cos &
2 cos” @ 2
1] S,
K = wy1W et T, ; A=DD D*e

and, moreover,

8.31W11 + a_.w + a w = Q

3221 3331 ’
831%32 7 a32w22 *+ 333W32 =0, (IV‘SS)
a8 =1,
and thus
W%z ~ Wa3Waz
a’31 = gD == Hl ’
W W.. - W W
2311 1312
- a. = 2D 2 - H2 . (IV—56)
* a B - .1;-
a3 g
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We thus have finally:

7 =-DI --2— 1
1 1 cosd 2

m —
¥, = - D'i, - i -
2 1T R (Iv-57)
- ry T 1l -
v, - - L - BT - T

The meaning of H1 and H2 may be seen by observing that

cr'va-Oa----H1 11- 20’12-

g 3 ?
and that
ol =ons. L orad
3 n g g T g .
Therefore
- - 1
Hoi, + Hyoi, = grady "

_ - PI
and multiplying by v, and v, , remembering that grad; 5~ g *Vy Tyl
and, furthermore, that o°'i,-v, = I, .0¥, = 1,01,.v, =01 . ¥, =0,
ov,. 1, = cos &,

w t
e ge 1 . ;h}:
- 5 -
5 3¢ ’ Hg cos & 2\ s (Iv-58)
and, therefors,
- - LI
it oDy T cos @ 2
-— Dll b
va T DM, - cos @ Yoo (1v-59)
1 1
v -.2%7 __1 2F¥7 _171,,
3 o® 2 cos® A2 g 3
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snd also

- D Dt
11 B - — vl. + r v: Y
D! cos @ — D cos & -
2 = A vl - A 2 > (IV-60)
- _ghcos®- gkcos¢_ -
i, A vy y 28V,
having put for simplicity
po L w A 1 1
h= __Ei‘ - D'H = 22 . (D éi.__ - Dt jl.jL),
cos & 2 gcos é cos & ¢ ¢ A\ g
w,, A 5 1 (1V-61)
D'H, 23 1 3 1
k = DH,6 - = = Dy — - D = = .
2 cosd gcos cosé( 2\ ¢ 603)

4.6 Reciprocal Vectors; Components

We will now consider the reciprocal vectors W , given by the

_ r
relations Vr.v, = 8" ; we get by easy computation
s

- D — D! cos ¢ — g hcos & —
vl-gradé-—ril*—z——-—-ia+—————A 13 ,
- D S @ — k -
V3 = grad W = _g-i‘s ,
and also
3z
- . —
- -0¥  -p¥ -Ev
1
; - -D _ D =2 _ 1 2‘5_73 »
- 2 cos ¢ cos ¢ cos & A ’ (1IVv-63)
3 1l .
- {1 = = .
3 g

R
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The contravariant components dyT = (d$, d\, dW) of a dis-
placement dP = E;dxl + _j_-zdx2 + 1,dx® are related to the local

cartesian coordinates dxI by the formulae
J
d@’d‘y’l=-%2dx'“+D———-—c;°s'dx2+g——————hzos'dx3

Dt D cos &

L2 —ddt - ax® + Bk cos $ ax®
d\ = dy A A A ’
dw = dy* = - gdx® ’
(IV-6L)
33
dx13 -D dyl Dldyz _&dys ,
2¢
ax? D! d Dn dv? 1 aé 3
"7 cos ¢ " cos @ cos & X,dy ’
1
3’ - dy3 L]
dx g
The metric fundamental tensor is given therefore by
D!? D D' Hp
D* D'(D + —or
* cos?$ (D + cos“® ) Dy =+ cos ¢
; D'(D + D¢ D'z Dnz —_— P_"_}.iz. (IV 65)
‘grs cos®¢ ) Y cos®@ 1 cos @ ||
1
DH +Ll2 DE, + 2Ha B o+ B e
cos ¢ 2 cos & 1 2 g
L.7 Mainardi-Codazzi Equations; Christoffel Symbols

It is now very easy to compute Christoffel's symbols of the

second kind, only remembering their definition as given in (3.6):

/—h 3 _b Oy b ot gv"
ij  oyd ay? ayl™ Vs " Toyi i
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Before doing this, we must, however, assure that the second
derivatives of the point P be reversible, i.e. ,

oF; 2V, 2*p P
373 "o TayTayd Taydant)

This leads us to a particular form of the so-called Mainardi-
Codazzi equations (integrability conditions) for the coordinate
surfaces,

We will confine purselves to the computationm of only one pair of

derivatives; we hava tims, for instance,

- = i
% “oys - % * D ML, (5T - Dsin g cos ) Ty e Pa
IV Vv D - op iz -
— o R L - - " Dty
3¢ Y Toe nT( Gyt NI T M
and, therefore,
am-??.'.+Dsin§cosi+D"tg0-O. (IV-66)

¢ I
Operating in a similar way on the other fundamental vectors,
we easily get the required integrability conditions:
for the & surfaces

]
_3H1_3D +H 8in#® =0
2 A IV 2

JH, D¢ 1
I A OW cos &

- Hlsin0+—§-cosé-0 ’

for the A surfaces

_a_.lil_—_a_n_. _Lso

+

o oW €

aH, ap 1 =0
Y OW «cos ¢

(Iv-67)

»
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for the W surfaces

9D _ 23D ,pig gm0

ER T ’
apn an! .
— - +Dsind®cosd¢+D" tgé=0 ,

a¢ 2
The Mainardi-Codazzi equations, or integrability conditions,
simplify in tne following if we remember the meaning of H, and Hz H

'
aé%-g%.+n'tgé-o ,

5_;._._3_{_+Dsinécosé+D"tg@-0 s

o0 1 .3 1

T e
2D 21,9 1

ow "R E ‘seme

o0 1 s FIpY = .

aw.g cos“@ sin@cosi?a’g "‘%!g

The last three equations yield us the rate of variation with
the dynamic height of the second fundamental tensor of the equipotential
surface, and allow us, therefore, to extend in the third dimension
the properties of our equipotential surface..

It should be noted at once that the same rate of variation for
the intensity of gravity is yielded by Poisson-Brun's formula, as will

be seen.

WADC TR 52-149 7€




Moreover, for the Christoffel symbols of the second kind

we get:

T 1 2D _ |22.'.+D'22+D hcosi)
/—11 A(D"aé 2D30 ax &

1 _/_1 ...].:.(DuQD_-D'Q-g:-+D' ghcosé),
12

[ . A 2 2%

/-122,%_ -D“%+2D aaI;-D'aa—gil-rn"ghcosé)-sinécosé,
/—113:/.131.—(13"5;-])'%2':-),

Fafes RS
Pt (e o B s i ovees).

[—zn _%_ (_ D.g.P_ + maan; - DS'P{ + D gk cos 9) , (IV-69)
/_.213,/-2 _%(Dg_;-nlaa—g—«rn'gk cos§)+tg¢> 3

N

D aD
— ______ 1 S—— ——
- ( 36 2Da Dax+D"gkcos¢),

N
N

o2 ‘_l ?_Dl-Dl@.g—)’
/_ Daow aw

o2 .41 aD" - D oD
/_ oW )’
32 E

H 3 1
__z_ %_#C°S¢'D'a—%-g£i§ -kcosé),

N

»
W

[V

~ 5

W
W
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" - . = » - 3 3 . - .
[311 g D’ /-312 Fal & D" /— a2 ng ’
3 = = = - . - i =

/— 13 [3 31 /" 23 /—J 32 0’ /- 333 oW ee

cos ¢ Yaz
€ — (B,h + H k cos ®) + T

2-
=g 2% (Dn* + 2D* hk + D" K*) + B2 |
A g

Also, by expanding the values of h and k,

1 w9 - D _ '
/'1 -I[E(D D%)E 2D tg 9] ,

1
-D'—a%)P—-*DD'sichoaQ]
g

g

’

1 1

» — D"
/' 5 L&l
P a g2 oD & )X (DD 4 D?) sin 2 ¢4+ 2 D® g @]
[z A o A g 2 ’

.]-'- - a-]-‘- " o _ l
/“:.A[(Dn_a?.- D'%)ﬁg*(n tgq%)g],

/':3-%‘.[(D"-%-D! m)_%.lz+(Dntgé-%.--15msin2¢£),é.
D' cos’§
‘T_] s
27 23
[y -egg) -0 B -edhe)lgy
/—:-%[g(D%"D'%)%+2DD'tg0] , (1Iv-70)

1 D! 1 .
/-2 _X[g(D%-D'%)? -_é-Dzsn.nZ'P] ,
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r ,%[S(D.é-a-):-D'S-a;)%"?-DD'sinZQ-ZD'D" tg#],
2 1 _____ i 2 1, 2 _ 1
[Z -3 103 D' %) o0 g TP EST -0 LI,

1 2 .pd 21
VAN S TR T

1 A 2 4,1
(-EDSMZQa’#D'th X)'g'

ss ax "2
fif‘” VR T ML L
--glA (D*cozi,) .
k.8 Components of Some Vectors and Homographies

It is now easy to give the components of some important vectors
and homographies in our fundamental system of intrinsic coordinates; we
get, for instance,

for the vector E of gravity, g = V' =grad W

covariant components: g4 = E.Vi ] v’.vi -8: = (0,0,1) R

contravariant components: gi - 'é.'vi -7 g’i = (g’l, g33’ g33) =

R‘h cos ¢ gzk cos & a, .,
'("—'T_’- A ’g)’

for the gravimetric gradient grad g

covariant compoments: g/ 1" a'%f{ H
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d d w
for the homography TJ= eemes 2

dpP
covariant components: 5 s
V.5 =85 = (5% _gr/—z" ) '-[ij - Wy .V = U.G -
ij
gb gDt 0

= gDt gdbv O 5 (Iv-71)

for the homography # = H(grad g, )

0 O

: (1Iv-72)

13

, 1
for the generalized Surali-Forti's homography 6"=%%= - —é’-—'w’ + ?75

. (Iv-73)

oW g A g°a

and it yields us the rate of variation of the intensity of gravity with

respect to the dynamic height,
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SECTION V

APPLICATIONS OF INTRINSIC GEODESY

5.1 Generalized Theory of Eotvos's Torsion Balance (See reference 53)

We consider at a given point P of space, referred to the local
astronomical unit vectors (i,), a beam of unit length symbolized by the

unit vector ¥:

a=sinVcosai +sinysinai, +cosv i, (V-1)

(¥ = zenith distance, « = azimuth of the beam). The beam may be sus-
pended at P at its baricenter; the acting couple will therefore be
given by the moment vector ¥ = (W'3) X T, &W3T being the (vector)
difference between the gravity at the ends of the beam., We easiiy get

Wz)xa = {L W - W,) sin 2¥ sin a + Wgg(sin®y sin® a-cos® )+

sinz-u sin2a~VW

12

sin 2Y cos a)}{l +

+ {%(wn - W,,) sin 2V cos a + Wls(coszv - sin®y cos® a) +
+ -]2“- (le sin 2¥ sin®a - L P9 sin®¥ sin 2 a) } Iz + (v-2)
+ {—12— (W, - '11) sin®v sin 2 a + Wn sin®V coa 2 a +

+ 1 sin 2V (W, cos G = Wl3 sin a)}‘{a ,

2
where W stands for —}-)f—!—— and the xT are measured alo the
rs ox¥ 0x8 °’ ne

axes iT .
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We thus see that any instrument based on the measure of moments,
like torsion balances, would not separate the second derivatives of W
with equal indices; these derivatives may only be determmined separately,
remembering, in addition to the results of the balance measurements,
Laplace's equation

Wt Wy v W, = 2w? (v=3)

The theory of all types of balance may easily be derived from
the foregoing formulae by particularizing the direction of the beam and
the direction along which the scalar moment is measured. We thus get:

EBtvls balance of the first kind (horizontal beam, vertical

swinging axis) ,

(Wa)x 3. - }é' (W,p - W ,) sin 2¢ + W, cos 2 a; (v-h)

Eotvos balance of the second kind (oblique beam, vertical

swinging axis) ,

- 1 . 3 R
(Wa)xx. i,=% (W, - Wll) 8in®v sin 2a +

(v-5)
1

2 sin®v cos 2a@ + =— sin 2¥ (W _cos a - W
2 23

+ W
1 i3

Berroth's balance (oblique beam, horizontal swinging axis

perpendicular to the vertical plane containing the beam):

- - 1
(W3z) X To(- sina i, +cosai) =& sin 2V [( W, - '33) cos® a +
(v-6)

2

+ (wzz.-waa) sin® a+W , sin 2a] + cos 2V (W, cos a + W, sina ) .
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5.2 Legendre's Developments in Space (See reference 48, 49)

We already have generalized in 4.2 on an arbitrary surface
Legendre's developments for computation of geographical éoordinates
and azimuth, We are now able to further generalize the same develop-
ments in space, and compute both the geographic coordinates and the
dynamical height, assuming that the path is a straight line of which
the azimuth, the zenith distance, and the length are given, |

We immediately have, remembering the differential equation of

a straight line (3.8), and using the same procedure as in 4.2,

)'r+sxr —zi 13)11»1*—(2/— /:jk " )1‘213')#&4»5 ,
.xr [)xix3+_<[ /;k #)13& Ko e oo v

and the relationships between AT and the azimuth and zenith distance

(v-?)

of the path are given by the fomulae:

2l
Xl-—]—zisinzcosc+%'-cos¢sinzsina+%(D'—§lg—g-D" gg)COSI,

YN °¢

(Iv-8)

a2 ginzceosa-2 cos & sin £z sin a + = (D -a—l-g-g-D—y:E_ﬂ)cosz
A ) 4 .Y -3\

3
A = - gcosz ,

g 1
1 D'ATeDm® + 23 3
tg a = 1

cos ¢ . :)
i 2 3 <
DAY + DIA" 4+ 3¢

(]

1 13
8 = - e .
cos g
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In classical Geodesy, length was wsually measured along
geodesics on a surface; in modern Geodesy #here is a tendency to
measure length along geodesics in space (straight lines) by means of
electronic or interferometric devices (Shoran, Hiran, Geodimeter, ...);

the foregoing expansions solve, therefore, the first problem of Geodesy

in this case.

5.3 Computation of Gravity at a Point of Given Intrinsic Coordinates

Let us have two points in space Po(yg) and P(yT), and put
Ayr =yF - yg (& y¥ are not the components of a vector!); let us

call, moreover, ¥ and g, the gravity vectors at P and P, respectively;

wa then will have:

_ oY s 1 (P& i :

Multiplying the foregoing equation by the fundamental vectors
v, in P, we get the covariant components g, of § in P,; we

furthermore remember that

3 _ L 3
-'a—f;..vr.wvi"'r'gr/i'gi/r"/_ri ’

and therefore

. .
g 53._(/‘?)U1__1__<9_/__r_1- 3/”‘_ /" /’h)”iwj,...
r-“r ri 2! QI rh/1j ih /rj .
c yJ 0 (V-ll)
By using this formula we may compare the gravity vectors at two

different points of space, the intrinsic coordinates of which are given.

If only the value g of the intehsity of gravity is required,
we simply would have ’

. ? i 01 al i j
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5.4 Computation of Gravity at a Point of Given Polar Coordinates.

We imagine now that the two given points P, and P are
cormected by a line P = P(s) of length s; we have in this case

[ 2 22—
g’-'§°+s(§)+%-(?‘;§)¢. o ., (v-13)
o

0
We geat
. g gl | 9 1
ot e T

. g . P E 9, 3F 4
as® " Bylogd T oyl /3

etc,
where obviously Al gives us the components of the tangent unit vecto.
1T to our line at P,, and Al /3 depends upon the nature of the line.
If this line be a geodesic (a straight line), then ).i/J =0,
and, therefore, we have for a straight line
3 3\ 2 a/—3 3 ,rh 3 hlix.‘l'»...(V-lh)
gr'sr"s(/:i)o)%'%;(—a—y‘?'/;h/;j [:-lh /:‘J>°° ° .

In a perfectly similar way we get for the intensity of gravity

? 2 (¥ :

In all of the above formulae the Al 1s are related to the

azimuth and the zenith distance of our path by the same formulae as

in 5.2,

5.5 The Local Cartesian Equation of the Geoid

We have for any two points P, and P

2)\,.1.1 [P i .
P =P *( )Ay + o= (—T?)A Y A yj + c . v.16
° 3yx° 21 \oy2 9 A ( )
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We remember that

sp o , %P %W ¥ T V-
b SRR A - RS

and, therefore

-y, i 1 T\l -
P = PO +(vi)0Ay1 - '2—1'(/-—].-j vr)oAy AYJ + o o o . (V 18)

By multiplying the foregoing formula by the local astronomic
unit vectors (ig) in P, we get

- - T i l [ = AT N . o o

where the scalar expressions of 'Vi"ig may be found in L.5; we thus
have the cartesian coordinates referred to a local system at P, for
a point of given intrinsic coordinates. If we take A y>= O, we get
the cartesian parametric equation of the level surface through Po.

The inverse problem of getting the intrinsic coordinates from
the cartesian has been already solved by the generalized developments
of Legendre given in 5.2; we only need to compute previously the polar

coordinates, which is immediate.

5.6 Application to Somigliana's Field (See reference L5, L6, 50)

It is well known from Stoke's theorem that a gravitational
field is fully determined in the empty space if one equipotential
surface of the field and the total acting mass (or also the value of
gravity in one point of the surface) are given.

Pizzetti and Somigliana have fully solved the problem of de-
termining the gravity field (gravitation + centrifugal forces) if one
of the equipotential surfaces is an ellipsoid of revolution, Somigliana,
in particular, has furnished a formula giving the value of gravity along
the ellipsoid itself.
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The formulae of Somigliana's field are following (on the ellipsoid):

p - a(l - ¢) s N= 2 ’
(1-e? sjnzti)B/é (1-¢e? sinzqa)l/2

2 . 2 2 _ 3
_a ge COS ®+ Db g, Sin ¢ 2___12.), (V-20)

2
’ (ef = 2
Jaz cos®® + b* sin®@

a

o

5 R 9 2, M oea,. ..
gp =28 * 3 PW (L+gzet s et ) .

(Pizzetti's function)

As we see, only the knowledge of the major axis a, the minor
axis b, the velocity of rotation w, and the gravity e at the equator
(equivalent to the knowledge of the total mass) are required.

The formula giving the value of g has been expanded into a
trigonometrical series of the latitude, The first terms of the series
have been determined by Cassinis and 3ilva, and give the international
formula for gravity accepted by the International Association of Geodesy

at the Stockholm meeting in 1930.

The acceptance of an ellipsoidal field as a standard field for
gravity, as proposed by Somigliana himself, by Dr. W. D. Lambert, and
Professor G. Cassinis has eliminated the discrepancy which existed up
to 1930 between geametrical and dynamical Geodesy,

The international fomula, based on the International Ellipsoid,
is the following

g = 978,049 (1 + 0.005,288,4 sin®¢ - 0.000,005,9 sin® 2§) .

The knowledge of gravity along the ellipsoid of reference

allows, as we are going to see, the easy computation of all elements

needed at any other point of the space.
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We have on the basic ellipsoid:

- - L2k
gll Pa 3 gla Y g13 g a' 4
g, "0 , 8,, = N* cos®¢ | 8 0 , (v-21)
8 " Tog ’? B ™0 €as " g% ‘{1 + ) }

Moreover, the integrability conditions we have found give us
immediately

2Pt -2 1 OF |1 2 1
oW g 2% g ' o g *» g °
(V-22)
oN
3% " W-p e,
and Laplace's equation gives, furthermore,
21gg, 20°, 1 (1 .1, 1 21gg,?
oW g g (P "W )+/>g ( 28 ) - (v-23)

We therefore get immediately for the Cheistoffel symbols of the

gecond kind:

fli..?_lgﬂ , /_ _ N cos (tg""aa'l'fg)

) g 22 /.) ’
1 dlgp [r-LZ1e el e, (v-2L)
[ia= 2w * /s gp o ow * w2 N
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The quantities denoted by h, k, H, and H, have the following

values:
2
h_NcosQ 1z g , k=0,
g 2¢
(v-25)
[ l ——E—sal H = 0
fa g 2¢ * s
The covariant components of the gravimetric gradient are given by
g/ -%--.ﬂ& » g .0 8/ g 3 (v-26)
’ - - ’
1 R /2 3 33
and the fundamental and reciprocal vectors are
T i l,91 ry T
Vot pli, VpmNeos, , v =2 _.553511-13) ,
(v-27)

P o= %? d, - 2RRET), V- 1a , PaogT .

The foregoing formulae give us the most natural generalization
of a two-dimensional geometry on the ellipsoid, as usually adopted in
Geodesy, to a three dimensional scheme, '
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