NOTES ON ALTITUDE DELAY SETTINGS

JOHN R. WILLIAMS
GEORGE A. REAMS
THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION

FEBRUARY 1952
Reproduced From
Best Available Copy

WRIGHT AIR DEVELOPMENT CENTER

79 10 25 266
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The information furnished herewith is made available for study upon the understanding that the Government's proprietary interests in and relating thereto shall not be impaired. It is desired that the Judge Advocate (WCJ), Wright Air Development Center, Wright-Patterson Air Force Base, Ohio, be promptly notified of any apparent conflict between the Government's proprietary interests and those of others.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
NOTES ON ALTITUDE DELAY SETTINGS

John R. Williams
George A. Reams

The Ohio State University Research Foundation

February 1952

Photo Reconnaissance Laboratory
Contract No. AF 18(600)90
RDO 683-44
RDO 683-58

Wright Air Development Center
Air Research and Development Command
United States Air Force
Wright-Patterson Air Force Base, Ohio
FOREWORD

This report was prepared by the Mapping and Charting Research Laboratory of the Ohio State University Research Foundation, under USAF Contract No. AF 18(600)90. The contract was administered under the direction of the Mapping and Charting Branch, Photographic Reconnaissance Laboratory, Air Research and Development Command, Wright-Patterson Air Force Base, Dayton, Ohio with Mr. D. L. Radcliffe, Chief of the Mapping and Charting Branch, as Project Engineer.

This report is identified by the Ohio State Research Foundation as OSURF Technical Paper 157, Project 485.
ABSTRACT

In many of the current radar sets, ground-range presentation is not available. However, partial compensation for the slant-range distortion can be obtained by changing all of the ranges by a constant amount, known as the "altitude delay." A basis for selecting the magnitude of this delay is described in this paper and a graph is provided for its determination.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDING GENERAL:

GORDON A. BLAKE
Brigadier General, USAF
Chief, Weapons Components Division
TABLE OF CONTENTS

I. STATEMENT OF THE PROBLEM 1
II. DETERMINATION OF DELAY 2
III. INCREASE IN USABLE RANGE 8
IV. CONCLUSION 11
NOTES ON ALTITUDE DELAY SETTINGS

I. Statement of the Problem

1.1 Various methods for compensating for the effect of the slant range presentation of the customary radar set have been proposed. The most satisfactory method, at least in theory, is the inclusion in the radar set of circuits which automatically compute and present the correct ground range.

1.2 In many of the current radar sets, however, partial compensation for this effect is obtained by changing all the ranges by a constant amount, known as the "altitude delay." Considerable arbitrariness exists in the choice of the value to be used for this delay.

1.3 If the slant ranges are changed by an amount equal to the altitude of the aircraft, the "altitude hole" is eliminated. The resulting presentation is neither "ground range" nor "slant range." When the altitude delay is selected arbitrarily, this last statement usually holds.

1.4 Now, we know that for many combinations of scope setting and altitude the difference between slant and ground ranges is so small, over certain portions of the scope face, that it is incapable of detection. Thus, over these portions of the scope, we may assume that we have a ground range presentation. These considerations suggest the following criterion for selecting the altitude delay.

1.5 For a particular combination of altitude and range setting on the scope, the altitude delay is to be chosen so as to maximize the area on the scope in which the assumption of ground range presentation is valid.

1.6 That this criterion completely determines the altitude delay as a function of aircraft altitude and range setting may be seen in the following section.
II. Determination of the Delay

2.1 Due to the difficulties inherent in the processes of identification and measurement on a radar scope photograph, it seems safe to assume that we cannot determine the position of a "point" on a photograph with a precision exceeding 0.01 inch. Thus, since the radius of the scope face is about 2.5 inches, we cannot determine the range at a "point" on a photograph with a precision better than \(\frac{0.01}{2.5} R_m \), where \(R_m \) is the range setting of the scope.

2.2 Let \(h \) be the aircraft altitude, \(d \) the altitude delay, and let \(R \) and \(r \) denote the slant and ground ranges, respectively, to a point \(P \) on the scope photograph. Then the condition that the assumption of ground range presentation be valid at \(P \) is

\[
| R - d - r | \leq \frac{R}{250}
\]

and the condition that this assumption be valid on an interval \(R_1 \leq R \leq R_2 \) is

\[
| R - d - r | \leq \frac{R}{250} \quad \text{for} \quad R_1 \leq R \leq R_2
\]

2.3 Since our conditions do not involve the azimuth, it follows that the problem of maximizing the area on the scope in which the assumption of ground range presentation is valid is equivalent to maximizing the length of the interval \(R_1 \leq R \leq R_2 \); i.e., it is equivalent to maximizing the difference \(R_2 - R_1 \).

2.4 Now,

\[
R - r = R - \sqrt{R^2 - h^2}
\]

is a decreasing function of \(R \). Hence, \(R_1, R_2 \), and \(d \) satisfy the inequalities

\[
\begin{align*}
R_1 - \sqrt{R_1^2 - h^2} - d &= k R_m \\
R_2 + \sqrt{R_2^2 - h^2} &= k R_m \\
h &= R_1 \cdot R_2 = R_m
\end{align*}
\]

where \(k = \frac{1}{250} \).
2.5 Eliminating \(d \) from the first two inequalities,
\[
R_1 - \sqrt{R_1^2 - h^2} \leq R_2 - \sqrt{R_2^2 - h^2} + 2kR_m.
\] (2)

Hence, if
\[
h \leq R_m (1 + 2k) - \sqrt{R_m^2 - h^2},
\] (3)
then
\[
R_1 - \sqrt{R_1^2 - h^2} \leq h \leq R_m (1 + 2k) - \sqrt{R_m^2 - h^2} \leq R_2 - \sqrt{R_2^2 - h^2} + 2kR_m.
\] (4)

and the inequality (2) is satisfied by all values of \(R_1 \) and \(R_2 \) lying between \(h \) and \(R_m \). In this case, the difference \(R_2 - R_1 \) is maximized if we take \(R_1 = h \) and \(R_2 = R_m \). The value of \(d \) is not uniquely determined. Any value of \(d \) satisfying
\[
h - kR_m \leq d \leq R_m (1 + k) - \sqrt{R_m^2 - h^2}
\] (5)
will satisfy the inequalities (1). In order to have a single value for \(d \), we choose the smaller of the two extreme values; i.e.,
\[
d = \begin{cases}
 h - kR_m, & kR_m < h < R_m (1 + 2k) - \sqrt{R_m^2 - h^2} \\
 0, & h \leq kR_m
\end{cases}
\] (6)

2.7 Now, suppose
\[
h = R_m (1 + 2k) - \sqrt{R_m^2 - h^2}
\] (7)

Then there are values of \(R_1 \) and \(R_2 \) for which the sign of equality holds in (2). The inequality (2) may be transformed into the inequality
\[
R_2 - R_1 \leq \frac{\sqrt{R_2^2 - h^2} - kR_m}{1 + \frac{R_2 - \sqrt{R_2^2 - h^2}}{2kR_m}}
\] (8)
The numerator of this fraction increases with \(R_2 \), while the denominator decreases as \(R_2 \) increases. Hence, the fraction increases as \(R_2 \) increases and the maximum value of \(R_2 - R_1 \) is obtained for \(R_2 = R_m \):
\[
\max (R_2 - R_1) = \frac{\sqrt{R_m^2 - h^2} - kR_m}{1 + \frac{R_m - \sqrt{R_m^2 - h^2}}{2kR_m}} = R_m - R_1
\] (9)
2.8 Let \(h_0 = R_m(1 + 2k) - \sqrt{R_m^2 - h^2} \).

Then
\[
R_1 = \frac{R_m(1 + 2k + 2h^2) - R_m(1 + 2k) \sqrt{R_m^2 - h^2}}{R_m(1 + 2k) - \sqrt{R_m^2 - h^2}}
\]
\[
= \frac{h^2 + k^2}{2h_0}
\]
\[
= h,
\]
with the equality sign holding if, and only if, \(h = h_0 \). Thus, the solution given by (9) is valid for \(h = h_0 \), but does not hold when \(h < h_0 \) (since then \(R_1 = h \)).

2.9 When \(h = h_0 \),
\[
R_1 - \sqrt{R_1^2 - h^2} = \frac{h^2 + k^2}{2h_0} - \sqrt{\frac{h^2 + k^2}{2h_0} - h^2} = h_0,
\]
so that, from (1), \(d \) must satisfy
\[
h_0 - kR_m \leq d \leq h_0 - kR_m,
\]
whence
\[
d = h_0 - kR_m = R_m(1 + k) - \sqrt{R_m^2 - h^2}
\]

2.10 Recapitulating, we have
\[
R_1 = R_m,
\]
\[
R_1 = \begin{cases}
 h, & \text{when } h \leq h_0 = R_m(1 + 2k) - \sqrt{R_m^2 - h^2}; \\
 h^2 + k^2, & \text{when } h = h_0 \\
 0, & \text{when } h \leq kR_m \\
 h - kR_m, & \text{when } kR_m < h < h_0 \\
 h_0 - kR_m, & \text{when } h_0 \leq h
\end{cases}
\]

2.11 The curves contained in Figures 1 and 2, pages 5 and 6, illustrate these functions. To facilitate the computations of these curves, the following parameters were introduced:
\[
\sin \theta = \frac{h}{R_m}
\]
\[
p = 1 + \frac{1}{k} \sin^2 \theta
\]
Range Setting

\[d = \text{DELAY} \]

\[h = \text{ALTITUDE} \]

All dimensions in nautical miles

Figure 2
In terms of these parameters, equations (14), (15), and (16) become

\[
\frac{E_m - E_1}{E_m} = \begin{cases}
1 - \sin \theta, & \text{when } \sin \theta \leq 2kp \\
\frac{1+k}{p} - 2k, & \text{when } \sin \theta > 2kp.
\end{cases}
\]

(19)

\[
\frac{d}{E_m} = \begin{cases}
0, & \text{when } \sin \theta \leq k \\
\sin \theta - k, & \text{when } k < \sin \theta \leq 2kp \\
k(2p-1), & \text{when } \sin \theta > 2kp.
\end{cases}
\]

(20)

where \(k = \frac{1}{250} \).

2.12 The critical value of \(\theta, \theta_0 \), for which

\[
h = E_m(1+2k) - \sqrt{E_m^2 - k^2}
\]

may be obtained as follows: Dividing through by \(E_m \),

\[
\sin \theta_0 = 1 + 2k - \cos \theta_0
\]

or

\[
\sin (\theta_0 + 45^\circ) = \frac{1+2k}{\sqrt{2}}
\]

(23)

whence,

\[
\theta_0 = \left(\sin^{-1} \frac{1+2k}{\sqrt{2}}\right) - 45^\circ
\]

(24)

and

\[
\sin \theta_0 = \frac{1+2k-\sqrt{1-4k-4k^2}}{2}
\]

(25)

\[
\cos \theta_0 = \frac{1+2k+\sqrt{1-4k-4k^2}}{2}
\]

(26)

2.13 The following values illustrate the reading of the respective figures.

In Figure 1, when \(h = 15.0 \) and \(E_m = 50.0 \), \(d = 2.5 \) and \(E_m - E_1 = 7.0 \).

In Figure 2, when \(h = 3.0 \) and \(E_m = 30.0 \); \(d = 0.27 \).
III. The Increase in Usable Range

3.1 Figure 3; page 10, illustrates the increase in usable range given by the delays determined from Figure 2 when compared to zero delay (slant range presentation). When no altitude delay is used all ranges satisfying the inequalities

\[
R - \sqrt{R^2 - h^2} \leq kR_m,
\]
\[
h \leq R \leq R_m
\]

may be assumed to be ground ranges. If \(h \leq kR_m \), then

\[
R - \sqrt{R^2 - h^2} \leq h \leq kR_m,
\]

and all ranges from \(h \) to \(R_m \) are usable as ground ranges. When \(h = kR_m \), all ranges satisfying

\[
R_o \leq R \leq R_m,
\]

where \(R_o = \sqrt{R^2 - h^2} = kR_m \),

may be assumed to be ground ranges. We find

\[
R_o = \frac{h^2}{2kR_m} + \frac{kR_m}{2}.
\]

3.2 Thus,

\[
R_o = \begin{cases}
 h & \text{if } h \leq kR_m, \\
 \frac{h^2}{2kR_m} + \frac{kR_m}{2} & \text{if } h > kR_m.
\end{cases}
\]

3.3 The requirement \(R_o \leq R_m \) has yet to be satisfied. We find

\[
h^2 \leq R_m^2 (2k - k^2),
\]

or \(h \leq R_m \sqrt{2k - k^2} \).

3.4 Thus, for the usable portion of the scope range, we have

\[
R_m - R_o = \begin{cases}
 R_m - h & \text{if } h \leq kR_m, \\
 R_m(1 - \frac{k}{2}) - \frac{h^2}{2kR_m} & \text{if } kR_m \leq h \leq R_m \sqrt{2k - k^2}, \\
 0 & \text{if } h \geq R_m \sqrt{2k - k^2}.
\end{cases}
\]
or in terms of θ,

\[
\frac{R_m - R_o}{R_m} = \begin{cases}
1 - \sin \theta & \text{for } \sin \theta \leq k \\
1 - \frac{k - \sin^2 \theta}{2k} & \text{for } k \leq \sin \theta \leq \sqrt{2k - k^2} \\
0 & \text{for } \sin \theta > \sqrt{2k - k^2}
\end{cases} \quad (35)
\]

3.5 The improvement in usable range, measured by $R_0 - R_1$, is then given by

\[
\frac{R_o - R_1}{R_m} = \begin{cases}
\theta & \text{for } 0 \leq \sin \theta \leq k \\
\frac{k + \sin^2 \theta}{2k} - \sin \theta & \text{for } k \leq \sin \theta \leq \sin \theta_0 \\
\frac{1 + k - \sin \theta}{p - 2k} & \text{for } \sin \theta_0 \leq \sin \theta \leq \sqrt{2k - k^2} \\
\frac{1 + k}{p} - 2k & \text{for } \sqrt{2k - k^2} \leq \sin \theta \leq 1 .
\end{cases} \quad (36)
\]

3.6 The maximum value of $\left(\frac{R_o - R_1}{R_m} \right)$ occurs for $\sin \theta = \sqrt{2k - k^2}$. We find

\[
\max \left(\frac{R_o - R_1}{R_m} \right) = \frac{2}{3} (1 - 2k) . \quad (37)
\]

3.7 Equations (36) and (37) were used to compute the curves appearing in Fig. 3.

3.8 The following values illustrate the reading of Figure 3:
when $h = 2.37$ and $R_m = 50.0$, $(R_o - R_1) = 15.0$.

WADC TR 52-96 9
IV. Conclusion

When the more desirable ground-range presentation is not available and the radar set does permit the use of a constant delay, the magnitude of the delay to be used has an optimum value predicated upon the problem stated in Section I. This optimum value may be obtained directly from Figure 2 with sufficient accuracy.
<table>
<thead>
<tr>
<th>Cye</th>
<th>Activities at W-P AFB</th>
<th>Cye</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>DSC-SA</td>
<td>1</td>
<td>Director of Intelligence</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Headquarters, USAF</td>
</tr>
<tr>
<td>1</td>
<td>AFOIN - ATISDIB</td>
<td>1</td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>WCFRN</td>
<td>1</td>
<td>Director of Plans</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Headquarters, USAF</td>
</tr>
<tr>
<td>1</td>
<td>WCER</td>
<td>1</td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>WCEK</td>
<td>1</td>
<td>Director of Operations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Headquarters, USAF</td>
</tr>
<tr>
<td>2</td>
<td>WCS</td>
<td>1</td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>WCEG</td>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Air Training Command</td>
</tr>
<tr>
<td>1</td>
<td>WCREH</td>
<td></td>
<td>Scott Air Force Base, Illinois</td>
</tr>
<tr>
<td>1</td>
<td>MCLAKB</td>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Air Defense Command</td>
</tr>
<tr>
<td>3</td>
<td>WCEOT-1</td>
<td></td>
<td>Ent Air Force Base, Colorado Springs, Colorado</td>
</tr>
</tbody>
</table>

Dept. of Defense Agencies Other Than Those at W-P AFB

1 Joint Intelligence Group
ATTN: Photo Survey Section
Pentagon Bldg.
Washington 25, D.C.

1 Commandant
Armed Forces Staff College
Norfolk 11, Virginia

1 Research and Development Board
ATTN: Committee on Geophysics and Geography
Pentagon Bldg.
Washington 25, D.C.

Air Force

2 Director of Research and Development
Headquarters, USAF
Washington 25, D.C.

1 Director of Training
Headquarters, USAF
Washington 25, D.C.

1 Director of Requirements
Headquarters, USAF
Washington 25, D.C.

Commanding General
Strategic Air Command
Offutt Air Force Base, Nebraska

Commanding General
Tactical Air Command
Langley Air Force Base, Virginia

Commanding General
Technical Training Air Force
Gulfport, Mississippi

Commanding General
Air Force Missile Test Center
Patrick Air Force Base
Cocoa, Florida

Commanding General
Air Proving Ground Command
Eglin Air Force Base, Florida
ATTN: Class. Tech. Data Br, D/OI

Commanding General
Air Research and Dev. Command
P.O. Box 1395
Baltimore 1, Maryland

ATTN: RDR
ATTN: RDK
ATTN: RDT
ATTN: RDO
<table>
<thead>
<tr>
<th>Cws</th>
<th>Activities</th>
</tr>
</thead>
</table>
| 5 | Commanding General
 Second Air Force
 Barksdale Air Force Base, La. |
| 2 | Commanding Officer
 USAF Aeronautical Chart and Information Service Plant
 710 North 12th Street
 St. Louis, Missouri |
| 1 | Commanding General
 3415 Technical Training Wing
 Lowry Air Force Base
 Denver, Colorado |
| 1 | Director
 Air University Library
 ATTN: Req. CR-3998
 Maxwell Air Force Base, Alabama |
| 5 | Commanding General
 Eighth Air Force
 Carswell Air Force Base
 Fort Worth, Texas |
| 1 | Air Force Eng. Field Representative
 Naval Air Missile Test Center
 Point Mugu, California |
| 1 | Commanding General
 Special Weapons Command
 Kirtland Air Force Base, New Mexico |
| 1 | Commanding Officer
 Holloman AF Base
 ATTN: 6540th Missile Test Wing
 New Mexico |
| 1 | Washington AF Eng. Field Office
 Room 4949, Main Navy Bldg.
 Dept. of the Navy
 Washington 25, D.C. |

<table>
<thead>
<tr>
<th>Cws</th>
<th>Activities</th>
</tr>
</thead>
</table>
| 1 | Commanding General
 Air Force Cambridge Res. Center
 230 Albany Street
 Cambridge 39, Massachusetts |
| 5 | Commanding General
 Fifteenth Air Force
 March Air Force Base
 California |
| 3 | Commanding General
 5th Air Division
 APO 118, C/O Postmaster
 New York, New York |
| 3 | Commanding General
 7th Air Division
 APO 125, C/O Postmaster
 New York, New York |

Army

<table>
<thead>
<tr>
<th>Cws</th>
<th>Activities</th>
</tr>
</thead>
</table>
| 1 | Chief of Army Field Forces
 Fort Monroe, Virginia |
| 1 | Commanding Officer
 White Sands Proving Ground
 Oro Grande, New Mexico |
| 1 | Commandant
 Army War College
 Fort Leavenworth, Kansas |
| 1 | Chief of Engineers
 ATTN: Res. and Dev. Division
 Building 2-7, Gravelly Point
 Washington 25, D.C. |
| 1 | Commanding Officer
 Engineer Res. and Dev. Labs.
 The Engineer Center
 Fort Belvoir, Virginia |
| 1 | Commanding Officer
 Army Map Service Library
 Corps of Engineers
 6500 Brooks Lane
 Washington 16, D.C. |
| 1 | Commandant
 National War College
 Washington 25, D.C. |
<table>
<thead>
<tr>
<th>Cyg Activities</th>
<th>Cyg Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navy</td>
<td></td>
</tr>
<tr>
<td>1 Director</td>
<td>1 U.S. Geological Survey</td>
</tr>
<tr>
<td>Special Devices Center</td>
<td>1033 Interior Bldg., N.</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td>ATTN: Visual Design Branch 940</td>
<td>Others</td>
</tr>
<tr>
<td>Sands Point</td>
<td></td>
</tr>
<tr>
<td>Port Washington, L.I., N.Y.</td>
<td></td>
</tr>
<tr>
<td>1 Hydrographer</td>
<td></td>
</tr>
<tr>
<td>U.S. Navy Hydrographic Office</td>
<td>10 Ohio State University Research Found.</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td>Mapping and Charting Research Lab.</td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td>2593 West Hardin Road</td>
</tr>
<tr>
<td>1 Officer in Charge</td>
<td>Columbus 10, Ohio</td>
</tr>
<tr>
<td>U.S. Naval Photographic</td>
<td></td>
</tr>
<tr>
<td>Interpretation Center</td>
<td>1 North American Aviation, Inc.</td>
</tr>
<tr>
<td>Naval Receiving Station</td>
<td>ATTN: Aerophysics Library</td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td>12214 Lakewood Blvd.</td>
</tr>
<tr>
<td></td>
<td>Downey, California</td>
</tr>
<tr>
<td>Other U.S. Government Agencies</td>
<td>1 Northrop Aircraft, Inc.</td>
</tr>
<tr>
<td>1 Central Intelligence Agency</td>
<td>ATTN: Mr. John Northrop</td>
</tr>
<tr>
<td>ATTN: Office of Collector of</td>
<td>Hawthorne, California</td>
</tr>
<tr>
<td>Documentation, Control</td>
<td></td>
</tr>
<tr>
<td>No. CD-A-18831</td>
<td>1 RAND Corporation</td>
</tr>
<tr>
<td>2430 E Street, N.W.</td>
<td>1500 4th Street</td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td>Santa Monica, California</td>
</tr>
<tr>
<td>1 Director</td>
<td></td>
</tr>
<tr>
<td>U.S. Coast and Geodetic Survey</td>
<td></td>
</tr>
<tr>
<td>Commerce Department</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
</tbody>
</table>