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AN TMPROVED MODEL AND COMPUTER
PROGRAM FOR BAYESIAN M~-GROUP REGRESSION

Ivo W. Molenaar and Charles Lewis*
FSW, Rijksuniversiteit Groningen (Neth.)

l. Summary

When multiple regression equations are to be estimated for m
groups wh;ch are supposed to be comparable though ﬁot identical,
both the pooled estimates and m separate least squares estimates
per group may be suboptimal. Lindley, Novick, Jackson and qthers
have advocated a Bayesian estimation procedure in which the estimates
would be weighted averages of the separate estimates per group on
one hand and some pooled estimate on the other hand, with weights
determined essentialiy by the data. This extension of the kelley
formula for regression to the mean has proven its value in several
crogs-~validation studies (Novick, Jackson, Thayer & Cole, 1972;
Lissitz and Schoenfeldt, 1974; Shigemasu, 1976; Jansen, 1977). The
modal posterior values for intercepts, slopes and residual v#riances,
however, are not easy to obtain; The procedure outlined by Novick
et al. (1972) and Jones and Novick (1972$ still poses some numerical
and methodological problems. The present paper presents a modified

algorithm removing most of the deficiencies. It remains true,

*Supported in part under ONR Contract #N00014~77-C-0428, Melvin R.
Novick, principal investigator. Opinions stated herein are those
of the authors and not those of the supporting agency.




however, that m-group regression is an example Qf a Bayesian model
in which it is somewhat difficult to specify a vague prior that
would let the data and the collateral information speak for them-
selves.

The major features of the new approach are:

(1) the use of parameters with constant values for slopes
across groups whenever the prior or the data indicate that this is
desirable,

{2) the use of residual variance constant across groups,

(3) independent priors for regression parameters,

(4) scaling of the predictors at the grand mean rather than
at the so-called "ideal scaling points" mentioned in Novick gi al.
(1972),

(5) transformation of all variables, including the criterion,
to mean zero and variance one at the start of the calculations,
with return to the raw scaling only for display of tesult; to the
user or for questions to the user. .

Section 2 of this report gives a description of the old model
(used by Novick et al. 1972) and a schematic comparison with the -
new model. Section 3 describes the old iterative algorithm for
obtaining modal posteriot estimates and its subsections 3a, 3b,
and 3c deal with the deficiencies of that algorithm. Section 4

with 1its luiscctionc 4a through 4e discusses the revisions on

which the new model is based. Section 5 then ocutlines the new




model and derives the corresponding equations. Section 6, which is

as far as possible independent of the preceding material, contains

some information for uscers of the m~-group regression program, and

a final section 7 discusses possible future extensioms.

2, 01d model specification

In{the model used by Jones and Novick (1972) and by Novick et
al. (1972) for simultaneous regression in m groups, 3 first stage
describes how the criterion is distributed given the regression
parameters and given the predictor values. Considering the groups
as exchangeable, the next stage treats the regression parameters
(including intercept and residual variance) as a random sample from
some discribution, characterized by unknown hyperparameters. A third
stage sﬁecifies some,rather vague,information on these hyperparameters
(c.f. Lindley and Snitﬂ, 1972).

The stages are described in Novick et al. (1972) and summarized

" below side by side with the new model which will be discussed in
sections 4 and 5. In both models the data for the j-tﬁ individual
out of the ni.individuals in the i-th group (1 =1, 2, ...., m)
consist of a criterion score yij and scores on £ predictors xkij

(k=1,2, ..., 25 § =1, 2, ..., ni). In each (£ + 1) x n, matrix

i
xi of predigtor scores we include a row of ones for the intercept.
For the new model the index set (0, 1, ..., £) is partitioned into

twvo disjoint subsets F (parameters common to all groups) and G

(parameters different across groups).




TABLE 1

OLD MODEL

First stage:
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Second stage:
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log ¢ A uniform (~w, =);

Third scage:
g ,v and iog 02(_l uniform (-=,w); us.{_!. uniform (-«,«);
RA Wishart (v',E, & + 1); wsj_\. x'2 (v',v'tg).
L disgonal matrix,

User should supply (s2e belsw):

v' (sma’> v' (small)

diagonal elements of I ' 18

This schematic presentation is restricted to the essentials.
Independence assumptions, conditionings and ranges of indices are
described more fully in Novick et al. (1972) for the old model and in

sections 4 and S for the new one. For the old model, Lindley (1970)

.




details how integration over the hyperparameters leads to a posterior

density for the regression parameters given the data. Up to an
additive constant, its logarithm is (Lindley, 1970, formula 11):
log p ((Bki}.{¢i})'

2
-i (15ni + 1) log ¢; - ' ;; (yij - ﬁ Bhixhij) /¢1 )

BT+ m - 1) log | Vo, TE By -8 ) By - )]
~4(m + 1) log log {n(8™ 1 +x)}.

Here 6 and n denote the harmonic and geometric mean of the set {¢i},

respectively, Bh. denotes the mean across i of Bhi and Iéhkl' say,

k : denotes the determinant of an (£ + 1) x (2 + 1) matrix A with elements

a The constant ¢ is introduced to insure convergence (Lindley,

1970, page 3). For R predictors and m groups, (1) is a function of

(2 + 2) m parameters. Its maximization leads to the desired posterior

modal estimates, but it poses some problems.

3. Problems of the old model

The computer programs made availabie by Novick et al. seek the
maximum of (1) by the following iterative procedure.‘ An initial set
of estiﬁates should be computed first; one might take the least
squares estimates per group, the léast squares estimates for the pooled
sample or theé so-called model II estimates, see below. Equaﬁing the
derivatives of (1) with tespect‘to Bhi to ze;o. for fixed 1, leads to
a set of equations which are linear in Bhi if one temporarily considers

¢ Bh. th=0,1, ... ¢), $4 and the determinant as fixed. They are




successively solved for each i; after updating means and determinant

this is repeated twice. Next the updated values for all Bhi are used

to obtain new ¢i by equating the derivative of (1) with respect to

¢i to zero; such equations are linear in 1/¢i provided that n, 6 and

all Bhi are temporarily considered as fixed. This whole procgss is

called one iteration cycle, and such cycles should be repeated until

the increase per cycle of the function (1) has become negligible.
This algorithm has been used in several applications mentioned

in section 1, but not without problems:

(a) very slow convergence;

(b) non-robustness against choice of prior values for v' and Ovh’

(c) non-robustness against initial choice of estimates; .

(d) suboptimal determination of the mean value Bh for regression

parameters for which almost total regression takes place.

3a. Slow convergence

The type of very slow convergence encountered mﬁst frequently
consists of a few drastic changes in the first cycles followed by a
slow, decelerating and monotoné movement of eacﬁ Bhi value to its
limit. As explained in detail in Molenaar (1978), insertion after
every 4th, 5th,or 6th 1ter§tion of leaps (extrapolating from the past
three valﬁes in a geometric series model for each parameter separately)
typically reduces‘che total required computer time by a factor of 2
to 4; 1in exceptional éases a trial run of some 10 to 20 cycles

including leaps could be examined, after which a change of the default




values of the leap process produces a fully satisfactory convergence.

The computer~time involved in the bookkeeping of the pre-leap values
is more than gained back because one efficient leap step may produce
more improvement of the goal function (1) than ten or even fifty
ordinary iteratioms.

Since publication of Molenaar (1978) the leap process underwent
two simplifications. First of all residual variance estimates were
nearly always very stable across iterations, and thereforelno leaps
are programmed for them. Secondly, after the first few iterations,
both the variances of the regression parameters (across groups) and
the z-scores obtained by standardization across groups of the individ-
ual parameters in each group, were also very stable across iterations.
The revised algorithm, therefore, calculates leaps only for the means
across groups of the regression parameters. This means that the
individual values at each iteration cycle{ or their differences
between two cycles, need no longer be stored for calculating the
geometric series ratio underlying the leap. It suffices to extra-
polate at each leap the past three mean values (across groups) of each‘
slope and the intercept (taken at the grand mean). For each of those
means a value is extrapolated from the geometric series model, and
the after~leap value of each individual estimate is simply obtained
by translation to the new mean value. The provisions replacing an unsatis-
factory geometric series leap remain as in Molenaar (1978), with the

exception that the default values now are:




-~ first leap after 5 cycles;

-- each leap after 4 more cycles;

-=- no leap if mean stable in 3 leading digits in last cycle;

-- leap = 20% last difference if difference changed sign or is
almost zero;

-~ leap = 20* last difference if last difference larger or hardly
smaller than preceding difference;

~--stop if log posterior density stable in 5 leading digits.

The previous version also stopped iteration when all parameters
were stable in a user-specified number of digits. This provision is
now deleted, because it was almost never fulfilled and led to much
bookkeeping and time loss.

A FORTRAN program called BR is available in which all parameters
just mentioned can bé manipulated, as well as a few others. For
regular use in the CADA Monitor, however, it is doubtful whether a user
would have the skill to gain from successfu; manipulation of the
parameters as compared to running some extra iterations. The BASIC
version of the program, called BR1,BR2 therefore fixes all parameters
at the just-mentioned default values. For the exceptional case that
manipulation is desired, it could be obtained by eifher_changing the

BASIC source deck or using the FORTRAN version.
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3b. Prior values robustness problem

In the log posterior density given by formula (1), the quantities
%hk and v' should be prov%ded by the user, as a description'of a
plausible covariance matrix for the regression parameters and an
indication of the uncertainty associated with that description (smaller
v' implying greater uncertainty). In Novick et al. (1972), it.was
advised to take v' = 1 unless specific prior knowledge is available.
It was also advised to take the off-diagonal elements.chk, h # k,
equal to zero, with the proviso of scaling the predictors at the "ideal
scaling points" described in Novick et al., 1972, p. 37. This is
because the intercepts can only be considered independent of tﬁe slopes
when the predictors are suitably scaled. The problem of prior specifi-
cation is now reduced to a choice of values for the diagonal elements
%hh’ If the user could provide prior estimates, say T for the variances
of Bhi’ it was advised to identify these with the prior marginal modes
of these variances, namely v' ahh/(v' + 2). For v' = 1, this leads
to the specification Suh =3 e (This point is diséussed in section 4c.)
As a practical matter, even providing (% values could be difficult
for a user without specific prio; knowledge. Therefore, Novick et al.

(1972) advised setting 1, equal to the corresponding unbiased sampling

h
theory estimates, based on the current data, for the variances of the
regression parameters. The development of these model 1II ANOVA estimates

is given by Jackson (1972). As noted by Jackson, Novick and Thayer

(1971), there are two difficulties with this advice. The first is the

bae = r gt
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theoretical point that prior quantities should not be derived from ]
the data being analyzed. When ' = 1, however, it was hoped that

the precise choice of LY would matter little for the posterior
distribution of the regression parameters. In this light, the use

of model II estimates may be seen as merely a convenient shortcut.
The second difficulty is a practical one: the model II estimates'may

sometimes be negative. In this case, it was advised to select a

"small" positive value for T, As with the first point, it was hoped

that the precise choice would not be too important.
The robustness of the final estimates to variations in the choice

of T}, vas, in fact, illustrated for a simple case (10 groups, 1 predictor)

by Jackson et al. (1971, p. 140). We shall now consider an {1lustration
chosen to show that this robustness is not always so apparent. From

the 25 percent sample of the 1968 AéT datg analyzed by‘Novick et al (1972),
12 of the 22 groups were selected (called the "12HOMO" dataset in
Molenaar, 1978). Table 2 gives the modal estimates obtained for these

data when different 1, values are used. For easier comparison, the

h
estimﬁtes for the 12 groups have been replaced by the mean and standard
deviation of those 12 values for each of the regression parameters.

As before, ' = 1 and uh "~ 31h were used for all estimates in the table.

Moreover, the iteration process described in section 2 alﬁuys used the

least squares values as initial estimates for the regreésion parameters.

| The problem of choice of ihitial estimates is considered in detail in

section 3c.
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In the first four lines of the table, the only variation is in 2

the small positive constant replacing the ANOVA estimates of T,

and % which were negative. Note that multiplication of those prior

variances by a factor of 10 leads to.posterior modal estimates in

which the standard deviations are about 10 times as large; there is

little effect on the means of 32 and 64 or on the other parameters.
In the next 3 lines of the table we have used some priors that some-

body vaguely familiar with regression equations for ACT scores might

have specified. Note that the data do no longer show the almost total
regression of the 82 and 86 values previously imposed by the very small

prior 1, and 1,.

2 4 .
In the eighth line we have purposively made Y and Ty smaller
than T, and 14= the standard deviations of the modal estimates faith-

fully reflect this prior pseudo-information, although Ehe-model II
ANOVA estimates were supposed to tell us that the data suggest total
regression for the slopes pertaining to the second and fourth predictor,
not the first and third. The ninth line shows that large prior variances
produce a solution very close to the LS values."The final three lines
give the characteristics of the LS estimates, the model II estimates and
the regression coefficients when data fromlall groups are pooled into
one sample.

Finally, note that Table. 2 contains a line marked "II but twice tl”’
in which the only change compared to the top line is doublinﬁ the value

of Ty The fact that the a prior{ most probable value of just one of the

slope variances now is twice as large, i.e., the standard deviation
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is multiplied by 1.414, makes the standard deviation of 811 1.464

times as large, but at the same time decreases the standard deviation

of 104831 from 23 to 18. Looking at the modal estimates of the regression
parameters themselves, the prediction for the third group changes most:

it was: -.431 + .018 Xl + .017 x2 + .015 X3 + .017 XA;

- P!

it becomes: -,401 + .013 X, + .017 X, + .016 X, + 017 X, .
What conclusions can be drawn from this detailed presentation?

As long as the amount of variability among regression coefficients is

smali, the variability of the Bayesian posterior modal estimates is

strongly influenced by the prior specification; it was already noted

by Novick et al. (1972) that the small positive constant replacing

negative model 11 ANOVA estimates th should be chosen with some care.

The means across groups, on the other hand, are rather stablé in Table 2,

and it should be kept in mind that a standard deviation of .026 or of

2.5 around a mean of 176 leads to almost the same prediction equations.

The quality of multiple regression equations in cross-validations is

remarkably staﬁle against changes in regression weights (Dawes, 1978,

Wainer, 1976), so the differenceg in Table 2 may after all not be

disastrous. On the other hand, in many c:oss-validation studies Bayesian

estimates are superior only by a few percent to least squares per group;

so a careful prior specification remains important. We shall resume

this discussion in section 6, where the revised model will be similarly

examined.
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3c.  Almost total regression: a threat to the model

It is well known that complete equality of parameters across
groups leads to problems in Bayesian simultaneous estimation (Novick,
Jackson & Thayer, 1971; Lindley, 1971; Novick et al., 1972; Novick,
Lewis & Jackson, 1973). By the introduction of informative priors,
Lindley, Novick and others have tried to avoid the degeneracy problems.
This was satisfactory in the case of the residual variances in m-group
regression, discussed in section 4a. For the slopes and the 1ntercept,'
however, it does not help enough. This will be illustrated first by
examining the log posterior density, and then by a numerical example.
The main feature of our new model, then introduced in section 4b, was
mbcivaced by the desire to get rid of the degeneracy problem. -

Let us now examine the effect of almost total regressioﬁ for a
parameter on the log posterior density (1) which was given on page 5.
It is obvious that the first line of (1) would be maximized by the
least squares (LS) values. The second line is maximized by bringing the
determinant as close to zero as possible.  When the~use£ has supplied
some small values for V'°hh this is achieved by linear dependence
among'the m-vectors Bh (h=0, 1, ... £). Now as soon as the estimated
values of Bhi for some h lie very close together (almost total regressidn),
a change in thgir deviations from the mean Bh. has almost no further
influence on the residual sum of squares in the first line of (1),

and thus it is used to make the determinant decrease. In other words,

it pays to let the (L + 1)- variate normal distribution of the Bh
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degenerate into a lower-dimensional one. Although the positive value
of v'ohh prevents complete degeneration, the algorithm based on the
old model is deficient: because of the group-by-group calculation of |
new (Bhi} a change in Ghi-ah. has far more cffect on the log posterior
density than avchange in the mean Bh.’ and the optimal value for Bh. is
never found for indices h with small variance across groups.

Table 3a shows that such undesirable behavior was indeed found
. for the "12HOMO" dataset used before. In each block of lines of this
table, the same prior specification was combined with various initial
values, described in Table 3b. Note that especially in block 1 suboptimal
convergence occurs for LS, LSM or MD2 initial values; the log posterior
density remains at what seemé to be a local maximum, and the maximizing g
values of Bhi thus obtained differ markedly from those fouhd with PLD
initial values. Although Table 3b shows that LSM and MD2 are quite
different, they léad to virtually the same modal solution in both blocks
of Table Ja; the solution from LS initial values is worse, and from

' PLD it is better. Similar results were found for other datasets than

"12HOMO" .
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Table 3a. Comparision of log posterior density and modal Bayesian
estimates at the end of the iteration process for four sets of initial
estimates described in Table 3b ("12HOMO" dataset). Within each block

the same prior specification is used and thus the final 1og post. d.

and estimates should be identical, apart from rounding errors. The
algorithm was programmed to stop when the criterion remained constant

in five significant digits. Instead of all 12 parameter estimates

per group, their mean and standard deviation are given. The intercept

as given here pertains to "ideal scaling", see Novick et al. (1972, p. 37).

Block 1: v' = 1 and prior model II with t, and 1, (negative) replaced by 10-7

2 4
initial log post.d. 10330 10“3, 10“32 10“33 10'8, 107
M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

LS 280.76 - 91(202) 310( 68) 174(.017) 189( 23) 173(.026) 399(4.3)
LSM 281,21 -103(201) 322( 69) 163(.017) 203( 23) 150(.026) 399(3.9)
PLD 282.02 - 62(201) 309( 69) 157(.017) 181( 24) 201(.025) 399(3.5)
MD2 281.08 -103(201) 321¢ 69) 163(.017) 203( 23) 150(.026) 399(4.0)
Block 2: v' = | and prior model It with T, and s (negative) repléced by 10-4
initial log post.d. 10380 10‘.81 10"32 ' 101.33 10.‘&. 103¢

] M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)
LS 199,27 -85(192) 307( 68) 170(17) 190(26) 179(24) 395(4.2)
LSM 199.85 -83(192) 307( 68) 168(17) 191(26) 180(24) 395(3.8)
PLD 200.57 -89(192) 307( 68) 171 (17) 192(26) 175(24) 396(3.4)

MD2 199.72 -85(192) 306( 68) 169(17) 191(26) 179(24) 395(3.9)

Table 3b. Four sets of initial estimates for the "12HOMO" dataset.

initial estimates 10%8, 10°8; 10'8, 108, 108,  10%
M (SD) M (SD) M (SD) - M (SD) M (SD) M (SD)
L8 -123(263) 247(349) 163( 160) 304(301) 150( 200) 442(129)
LsH -123( 0) 247( 0) 163¢  0) 304( 0) 150( 0) 442( O0)
PLD - 70( 0) 300( 0) 157( 0) 141( O) 201( . 0) 497( 0)
D2 - 95(270) 251( 91)  163(.036) 284( 67) 150(.037) 441( 59)

Explanation: LS are the least squares estimates, LSM is their mean
across groups, PLD the pooled estimates taking all individuals from
all groups together, MD2 are the Model II ANOVA estimates.
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In a trial and error procedure not reported in Table 3, we have

modified the PLD set of initial values with regard to 621 and 841,

the two sets of parameters which are almost totally regressed in Block 1.
The final means across groups for the two sets of estimates are
essentially identical with the initial values thus modified. Onme

such modification even gives a slightly larger log posterior density
than that based on PLD.

.Several other trials have convinced us that the sensitivity to
initial values specification is not something very exceptional, and that
it seems to be most pronounced when some prior variances are specified
to be very small., The initial values for such a parameter then have
a mean which remains almost unchanged during the iterations, even
though a change could produce a‘higher value of the log posterior
density. This is because the algorithm adapts one Bhi‘at a time:
moving it away from.the slope values in the other groups is immediately
punished by a decrease due to the determinant in (1). Our proposal
in the next section to take 3h1 equal across groups for certain values
of h is expected to bypass this undesirable property of the present

algorithm,

4. Revised model assumptions

‘ The problems and deficiencies described above have led the authors
to provide 2 revised model, which was schematically described in Table 1.
As the algorithm based on the new model is intended for the CADA Monitor

and will be regularly used on medium size computers, it was decided to
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introduce a few more simplifications. The subsections 4a through 4e
comment on those changes; the model itself and its consequences will

be described in section 5.

4a. Constant residual variance

In a theory of Bavesian m-group regression, the groups are
considered to be exchangeable, but to have varying intercepts, slopes

and residual variances. A strictly common value for the latter is

explicitly forbidden because it would lead to divergence problems.

A small constant gk is introduced in the formulae involving the geometric
and harmonic mean for just this reason. When the value of x w;; varied
between .01 and .0001 times the harmonic mean, this had some influence

on the across groups variability of the estimated residual variances;

the modal estimates of slopes and intercepts, however, remained very

stable.

We have no reason to believe fhat homoscedasticity across groups
is a more, or less, realistic assumption than homoscedasticity within
groups, Moreover, in all examples of Bayesian m-group regression that
we have seen the coefficient of.variation of the final Bayesian
estimates of 01 did not excged lor2 pef cent. Finally, it is found
both in the algebraic formulae and in the empirical results that the
Bayesian estimates. of Bt (which are the main goal) are hardly
affected at ali when small or moderate differences bet;een ’1 across
groups are ignored.

In the model outlined in section 5, we shall thus assume that.
each observation has the same residual variance ¢, which has itself

a noninformative prior proportionnl to 0-1. The latter assumption




could be replaced by an inverse chi square specifying prior knowledge

on ¢. The data provide us, however, with so much information on ¢

that such prior information will not be important.

In remark 6 of section 6 of Molenaar (1978) a warning was given

for a perfect or almost perfect fit in at least one group. Division

by an estimated residual variance of zero, or very close to zero,

could of course create problems. Now that a common value across groups

is used, the risk of too small values for this residual variance has

become negligible, and the previous use of a lower bound PHIMIN for

residual variances has not been continued.

4b. Common values in case of low variance

It has been documented in section 3c that the algorithm does not

perform well'as soon as some regiession coefficient shows very little

- variance across groups. The lack of variance may be obtained because

its prior estimate is very small (the actual model 11 estimate might

be negative, in which case Jones and Novick suggest replacement by
-7

10

). It may also happen that the values for some parameter get

very close together during the iteration process, although both the

prior variance estimate and the initial vﬁlues do not indicate this

behavior.

In both cases,a variance of less than a user-specified bound

TAUMIN is a reason for replacing all values Bt (1=1,2, ..., m)

by their mean Bh ;it will no longer be assumed that such a parameter

is distributed across groups as a component of the multivariate normsl
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(v, H-l) distribution mentioned in section 2, but that it has a
common value Bh which has a uniform prior distribution. Because
slopes and intercepts can be very different according to the scales
being used, the bound TAUMIN is applied after standardization of
all vari;bles, see subsection 4e.

In the model as described below, it is assumed that the index
set {0, 1,2, ., 2} denoting the intercept and the % pfedictors is
subdivided into a set F (mnemonic for fixed) for which this total
regression has taken place, and its complement G (mnemonic for
general) for which the values across the groups are different. The
predicted value for the j-th element of the i-th group can thus be

written as
Yi5 = efr B¢ %1y * glc Pat *ats

The (2 + 1)- dimensional multinormal distribution of Bhi
th=0,1, ..., L) for which some components have a variance very
close to zero will thus be replaced by a vector of which some components
are common to all groups, whereas the other components have a normal
distribytion of lower dimensionality. The actual effect on prediction
of this replacement is negligible if the variance bound TAUMIN for
admission to the index set F is kept low enough.

One full cycle of the iteration process now consists of.fout

parts, (see also section 5):

(a) solution of (B, | £ ¢ F) by LS regression of

on {x

yij - gEG 8

}, treating {881} as known;

g1%g1] £1)




{b) solution of {Bgilgcc} by solving a system of linear equations

which results from equating the derivatives of the log

2

)"}

posterior density to zero, treating {Bf} and{iél(sgi-sg.

as known;
(c) solution of ¢ treating all Bf and Bgi as known;
(d) check whether any index should pass from G to F.
The split of all indices into the subsets F and G essentially
means that the revised model is really used as a class of models, or

n
rather a lattice consisting of 2"+1 models because that is the number

of partitions of {0, 1, ..., 2}. An example is given in Figure 1.

BO, 81’ BZ free
F-n’cn{o, 1’ z}

Bo.constant; By, By free g, constant; Bg, By Lree B, constant; By, B; free
F={0}),c=(1, 2} F= {1}, ¢ = {0, 2} F= {2}, 6 = {0, 1}

B0, B constant; B, free By, Bz constant; B; free By, B constant; Bg free

F= {0, 1}, ¢ = {2} F= {0, 2}, G = {1} F=1{1, 2},G6=1{0 /3

; : ‘\\\“\\\\ Bos Bis B constant r,,z"”/r
| | F"(O,l,2}.c=o

Figure 1. Lattice of 8 models for
the case of L = 2 predictors.

The constant parameters at the beginning of the iterations are
those with prior variance estimates less than TAUMIN, which is set at

1.0"6 in the current version. The user may force this by supplying

zero entries in subjective prior estimates,or the data may force it if-

model II prior variance estimates are used and these come out less than
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TAUMIN or even negative. During the iteration process, more indices

may pass into F. The bottom model in Figure 1 with an empty G auto-

The model used by Shigemasu

matically produces the pooled estimates.

(1976) is the special case with G = {0}: frec intercept and constant

slopes were postulated by Shigemasu, but are just one of the many

possible models here.

H f 4c. Independent priors for regression coefficients

The original model outlined in section 1 containg a multivariate
normal (u, H-l) distribution for Bhi’ and for H a Wishart (v', I, 2+ 1)

distribution. Earlier publications recommend to take v' = 1, Ohk = 0

S5 = R ol S o LS v i AT 000 Gy g T T e et e et et Grarn e+ hen s

for h # k and %n three times a suitable prior estimate of the variance

of Bhi (including the intercept a, as Boi)'

\

As was explained above, the revised model allows that some Bhi have

a common'value‘Bh, for which a uniform prior is assuméd. For the remaining

parameters, say Bgi’ it was decided to replace the assumption ahk = (

: o
o M e sy L

by the slightly stronger assumpticn that H.l itself has zero off-diagonal

values. Our new model then becomes:

Be A uniform (-=, =); '
all Bf and Bgi independent given us and wg

Byg AL H (s V)3

if =, ®);
W uniform (-=, =); all Mg and ws independent given v' and "

g8
-2 ' '
ws__ X (', v rg)




The modification:leads to a substantial simplification of the

algorithm. Although prior knowledge on covariances between parameters ]
is conceivable, it will rarcly be substantial, and the revised model
of course permits such covariances in the posterior distribution.

We are not advocating the use of a factor 3 in multiplying a most b
plausible value for the variance to find the prior value for g It | ;
was used in the old model because the mode of any X-Z(V', V'Uz) distri-

bution is v'oZ/(v' + 2), which means for v' = 1 equating the mode to

02/3, and taking three times the mode for 02. This argument fails to
take into account that the natural way to think about a variance (now
called wh) of a regreésion parameter Bh is in the logarithmic scale

(that is why the uniform distributibn for log wh would be usgd as an
ignorance prior). But if wﬁﬂ.x_z(v',v'rﬁ) then the density of w = log Y
can be derived to be proportional to exp{-lsv' (w + the.w)} and this

has its mode at w = log T,. An extra advantage is that the mode of

h
the log standard deviation is now the corresponding log -rh;s = g logrh.

When the user is asked for a "most probable value" of the standard

deviation of the true regression coefficients across groups, we prefer

3 .

to use this value as a specification of Tt

4d. Leaps for the mean only

This change has already been motivated and discussed in subsection 3a.

4e. Standardization of variables

Standardizing all predictors and ;he criterion to zero mean and unit

variance in the pooled sample means that tﬁe predictors get the common
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and absolute scale of beta weights and that the intercepts are prevented
from assuming very large absolute values. This is better for the
: numerical accuracy, and it makes it possible to use a fixed quantity

> (currently 10-6) for the minimum variance TARNN below which an index

is passed to the set F and the corresponding parameter is assumed
constant across .groups. It is obvious that this would be undesirable
for raw slopes, of which one could range'from .0004 to .0008 and another
from 4000 to 8000, say. At the end, just before the modal estimates

are printed, a reconversion to the raw scales is made; but the intercept
{ - at the grand mean is printed as an extra column because it might be
more meaningful than the intercept for all prediétors zero. The
desirability of the standardization was pointed out eariier in remark

6 of section 6 of Molenaar (1978).

In earlier publications by Novick et al. it was advocated to scale

predictors at so called "ideal scaling points" for which the least
squares estimates for the intercept and that predictor were uncorrelated
across groups. Calculation of these ideal scaling points was one of
thebtasks of the preparatory program "BPREP" by Thayer. Our reasons

for preferring theAgrahd means, also mentioned by Novick et al. as an .
alternative to ideal scaling points, are the following: (a) they are
easier to obtain; (b) the intercept at ché grand mean is more meaningful
{ to the user than the iqtercept at some "ideal point" that he never met
before; (c) uncorrélatedness of the LS estimates is not the same as

the (intended) uncorrelatedness of the true parameter values; and
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(d) empirical evidence both from Novick and from us strongly suggests

that the choice has a negligible influence on the final results.

5. The new model

The three stages of the new model have been described in Table 1,
and the modified assumptions underlying it were discussed in section 4.
The joint posterior density of all parameters given the data is for

the new model

p({Bgi’ vaug’ lbg}n¢lth1j; yij})'-‘ -

¥y 1 _ _ 2
¢ exp( 2 i g (yij §B£xfij gegixgij) I* (2)

=k (mtv '+2) 1 e 217,

g ws exp[-~ 33; {v'r8 + §(Bgi ug) 1

here n = ini denotes total sample size, and it is understood that in
all summations i1 ranges from 1 to m, and j across the n, individuals
of the i-th group; moreover ftF and ge€G, the index sets of the constant

and free parameters respectively, and all values x are identically

041j
1 as dummies for the intercept.

Noting that
2 12 2
3 - - - -
{(Bgymug)” = [(Byy -8, )" + m@B, -u), (3)
one integrates (2) with respect to each ug,'and the ;ast line of (2)

becomes

=l (m+v'+1) 1 .
g wg exp[- TR {viz

' 2
g + i (Bgi-Bg‘) )] | ’(b)
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Next, integration with respect to wg turns this product into

2}'%(”\)"‘1) .

2 {v 1g4-£ (Bgi- Bg.) (5)

The logarithm of the posterior density is thus, up to an additive

constant, and omitting the dependence on the data in the left hand

side?

log p ({881’ Bf)y $) = -=ls(n + 2) log ¢ +

1 2
- T - - +
29 { §(yij § Bf xfij é Bgi xgij)
2,
-} + ' - ' + - . 6
- l(m + v 1) é log {v Tg i (Bgi Bg.) } (6)

It is instructive to compare (6) to (1). The first term is simplified

because of ¢1 = ¢3 moreover there 1s no final term involving geometric

and harmonic means of ¢i. Denoting.the middle term as - 1 Q (8),

2¢
it is clear that the modal estimate for ¢ is ; = Q(B)/(n + 2), and
log p ({8, B, $) = < +2) log @ (B) +
+%Mm+2) log (n+2) - %(n +2) +

- 3i(m + v - 1) é 108 {V TS + i (881 - 83') }. (7)

This makes clear the compromise character of the modal estimates
for B. The first term of (7) would be maximized byAminimizing Q (B),
that is by using the least squares estimates. The last term is
maximized when Bgi = 88- for each i, but when the variance is less
than the bound TAUMIN, the index passes 19:0 the set F, and we would
end using the pooled estimates. The point is further elaborated
below. | |

Differentiation of (6) with respect to one fixed Bg (scF) yields

: f Y15 Xe13 " : * Byt ;' *g1g a1y " ¢ B § T Xe1y ety T O (8)

It
1]

e a1 ot s o e tad R
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If the index set F contains n; elements and {Bgi|gecl are treated as
known, (8) consists of ne linear equations (seF) in ne unknowns
(BflfeF).

Differentiation of (6) with respect to one free parameter Bc“ (teG,

uefl, 2, ..., m}) yields

-1

¢ (T vy, x -IB, Lx x -IB Ix x .} +
j uj “tuj £ f j fuj “tuj g gu j guj “tuj
*(m+v' - 1) (B, -8, ){v't, +I (B, -8, V=0 9)
. i .

Treating ¢,{8f|feF}, Bt. and the expression in the denominator as known,
this is a set of £ + 1 - ng linear equations, indexed by t, in (2 + 1
- nF) unknown Bgu (for gcG, u fixed).

The solution for ¢ given all @f} and {681] has already beep
mentioned just before (7). As announced in section 4b, each cycle
of the iteration now consists of such a successive solution of all
(8¢} from (8), all {8,,} from (9) and of ¢ from ¢ = Q(B)/(n + 2).
It is followed by a check, for each index g €G, whether i'(sgi-sg.)zl(m-l)
< TAUMIN; 1if this is so the-index passes from G to F. This check .
18 not made after the first cycie, because the Qalues obtained there
could still be too far from the true values to justify the fixing of
the parameters. Before the iterations begin, however, it is checked
whethef some of the prior variances (model II or user-specified) are
below TAUMIN, and if so the corresponding parameters are taken constant

. 8Cross groups.
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6. Users guide to the simultaneous regression program

This section is mainly written for the benefit of the user of the
interactive m-group regression program which was a result of the research
project described in this report. Oﬁe may wonder why so many improved
models and computer programs were produced since the publication of
the basic research between 1969 and 1972. Let us try to give an
indication why Bayesian simultaneous regression estimation in m-groups
is a complicated matter, even compared to similar m-group models for
means or proportions.

The Bayesian estimates can always be viewed as a compromise between
least squares values and pooled values. Unless one of these extremes
i§ compatible with both the data and the prior information, however, the
simultaneous presence of an intercept and £ predictors poses an extra

problem. Kelley could write T, = ox1 + (1 -p) X., and the reliability

i
determines' the extent to which regression to the mean occurs. In our
regression model, however, ghis extent will typically differ from para-
meter to parameter. "Not only do we have £ + 1 different extents of
regression, but also each extent, and the best value to regress to,

ar; influenced by the decisions on the other extents (cf. Jackson, 1972,
P.224). And finally, when the extent was a.reiiability it could be

estimated by one of the standard psychometric methods, but slopes and

intercepts are not observable quantities, and this is an extra obstacle

in trying to split their variance into true variance and error variance.




The program now used for Bayesian m-group regression has some

predecessors. In 1972, the FORTRAN computer programs BPREP and

BAYREG were written by Thayer and others and described in Jones and
Novick (1972). A modified program MBREG, replacing BAYREG, is

described in Molenaar (1978); the preparatory program MPREP proposed

in that reference was never written. In the fall of 1978 MBREG was
succeeded by BR, again by Molenaar, which incorporates nearly all

the changes hen:ioned in the present report. The major exception is

that BR has no rescaling of predictors and'criterion.- BR asks for some
preprocessing of data, which could be done in the BASIC program described
below, or in BPREP; independent use after different preprocessing is
feasible. An input description of BR is added as Appendix A.

Lewis then turned the batch programs BPREP and BR into conversa-
tional programs in BASIC, called BR1 and BR2 respectively, and
added several new features. David Chuang made some final additions,
giving extra flexibility to the programs. This version will give a

description of the program in that stage, reached in March 1979.

The program starts with an option of explanatory text, describing
that it leads to joint modal estimates for regression coefficients in
m similar (exchangeable) gtoups in cases of minimal prior knowledge.

It specifies the rent;1CCions (curfentlyc at most 50 groups, at most &
predictors, at least 6 obsefvations per group) and announces the types

of sufficient statistics per group that can be used for data én:ry. h

Data entry may be completely via the keyboard, in a well documented

but lengthy sequence of questions and answers. The standard option, ;
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however, is data entry from a previously prepared file. Such a file
goes in the current version under the local name "SOMDATA.” It may
now have been prepared in an earlier keyboard entry session, but
after updating of the CADA Data Management capabilities it will be
possible to crecate the complete input file there. At the gnd of data
entry, either file or keyboard, facilities for input revision are
offered.

The program next displays the least squares (LS) estimates per
group for the intercept at zero, intercept at the pooled mean of
the predictors, slopes and residual standard deviation. It is ad-
visable to study these in some detail: it could be wise to delete
a group or gplit the analysis into clusters of groups if the LS
values indicate a strong violation of exchangeability or of h&mo-
scedasticity between groups. It should be kept in mind, however, that
for small sample sizes the LS values behave rather wildly, and that
the estimated residual standard deviations may differ by a factor of
say 3 without making the model of equal s.d. seriously misleading.

As an extra line below the L§ values of the last group, the pooled
values (PLD) are displayed, which would be obtained by pooling the
observations from ail groups and calculating one least squares regres-
sion equation for the joint data. The quésian estimates that the
program seeks to obtain can always be viewed as a compromise between
the extreme situations of LS (groups have nothing to do with each

other) and PLD (groups are samples from the same population).

e
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As the next step the program calculates model II ANOVA estimates
.for the variance across groups of the regression parameters, and the
corresponding standard deviations. The calculation, described in q
Jackson (1972, p. 223-224) amounts to subtracting from the "observed"

varlance of the LS estimates the "error" vartance that can be ascribed

to sampling error. 1t is well known that such estimates can be negative,
in which case the program replaces them bv zero.

For the intercept this part of the program assumes all predictors
at the grand mean, which is shown on the same display. It is obvious
that the intercept with all the predictors at zero co&ld exhibit much
more variability. Criterion values for the predictors at the grand
mean shouid be more meaningful for the user, and their variability 1is
to a large extent independent of variability in the slopes.

At this stage the user has an important option: he may deiete'
some predictor (which may avoid multicollinearity problems) or some
group (which may avoid violations of exchangeability and/or homo=-
scedasticity). |

When a satisfactory set of predictors and groups has been selected,
the program proceeds to specification of prior information. This re-
quires first prior estimates of fhe standard deviations across groups
of the regression parameters.. The user may choose either the model II -
estimates or provide his own prior information. 1In the absence of
such information the model II values are certainly useful, although
they have the properties of (a) making the prior data dependent and
(b) ascribing all variance to sampling error whenever the estimate
comes out negative, thus forcing the corresponding slope or intercept

to be constant across groups. Our personal feeling is that there are

Ao i, O
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situations in which the user has no idea about true between group
variability (then use model II) and also situations in which previous
cxperience with similar regression problems enables the user to guess,
at least accurately up to a factor of three, say, the prior standard
deviation between groups.

When the user is doubtful as to whether these prior standard de-
viations are not just pure guesswork, we have two cpnsolations for him.
First, the model does not use this prior value as such, but it assumes
that the true prior variance has an inverse chi square diéttibution
with low degrees of freedom around the square of the supplied value
as a typical ome, so all kinds of smaller and larger variances remain
possible. These degrees of freedom are the next question asked by the
program: the recommended range is 1 through 10, with many groups a
little higher than with few groups. For most.cases df=5 will be a
reasonable choice. Secondly, the user may rerun his analysis with
different prior s.d. or df and find out for himself whether his results
are very sensitive to his subjective decisions (our experience is that
they typically are not essentially influenéeﬁ unlesé‘rather little
amounts of data are used.) Note that the final values of log pésteriot
density are not comparable between runs with different prior s.d. or df.

A last choiée that the user may make is whether he wants the
iterations to start from LS or PLD 1nit1a1‘estimatés. It is advised
to uae-PnD, and LS only in cases where large datasets make it plausible
that the ;nd results will be close to LS. This option is useful when
the existence of bimodality is feared: 1if convergence from both ex-
treme initial situations leads to the same log posterior density (up
to 4 significant digits) and the same slopes and intercepts at the grand

mean (up to 2 significant digits) the risks of obtaining a local maximum

PR S e il o 25




are highly reduced. If the user reruns the program, after obtaining

Bayesian estimates, with different prior s.d. or df, it is also pos-

sible to use the earlier Bayesian estimates as initial values. This

option usuﬁily leads to faster convergence than PLD or LS initial

estimates.

A £, < T ST SO LR v 117t e TRAT 1C RO Y,

Now--at last--the program has enough information to start the

iterative process. In each cycle several systems of linear equations

have to be solved and the corresponding sets of parameters are updated.

As this may be time-consuming on a medium-sized or small computer, the

value of the log posterior density at the end of each cycle is printed

so that the user may follow the search for its maximum. After the

fifth cycle and then after each fourth next cycle there may be more

increase of the log posterior density because an extrapolation or leap

is made. The iteration stops.when the log posterior density is stable

in five significant digits. If this takes more than 10 cycles, the

user may exit the iteration process after each set of 10 cycles. This

facility could be useful when a restart with other initial estimates or

prior values is desired. The use of the estimates obtained before ;

stabilization of the log posteriof density shoﬁld not be encouraged:

it 1s a very flat surface as a function of its many parameters, and

small changes in the log posterior density may correpsond to substantial

changes in the slopes and intercepts.

The next display shows the modal posterior values of intercept at E

zero, slopes, and intercept at grand mean. This is done for all groups,

or for 10 groups at a time if there are more the 10. At the bottom

the modal estimate of the residual variance and the corresponding stan-

dard deviation are given (homoscedasticity is assumed both within and

between groups).




It is obvious that the user will want to keep the final modal

estimates. In many cases he will be also interested to keep the

prior s.d.'s and df and the LS and PLD estimates. The program there- ) }f

fore opens a local file DATB, in which these quantities are entered
in fixed format for later use. See Appendix B for a full description.
This file should be printed or copied before the next run of the

program, because that run would overwrite it.

7. Conclusion, possible extensions

The new feature of this program allowing constant parameters
across groups upon suggestion of either the user or the data seems
to be a satisfactory solution to the problems of almost-degenerécy
encountered before. Together with the extrapolation of'icefacions
by leaps, it permits a fast and stable iterative estimation of the
many parameters involved in simultaneous multiple regréssion. The
results rgmain somevhat sensitive, howéver, to different prior spec~-
ifications. Research on prior elicitation now going on in both
Pittsburgh and Iowa City, may qssist future users on this point.

The revised program and model are now ready for application,
but the authors cannot resist the temptation to mention a few poss-
ible improvements. |

Pr;or knowledge on means. The assumptions of uniform distri-
butions for the parameters Bf common to all groups and for the means

u_ of parameters 581 different per group could be relaxed to allow

8
the use of prior information.

G.ad
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Angles for slopes. Normal distributions for slopes are not a

very realistic model unless the coefficient of variation is small.
Slopes for the groups that are normally distributed with e.g. a
mean of 3 and a standard deviation of .2 are acceptable, but not
slopes with a mean of 3 and a standard deviation of 2: the slope
change from 1 to 3 is certainly more drastic than from 3 to S, and
even more when we compare a change from -1 to 3 to a change from 3
to 7. Neither uniform priors for mean slopes nor a prior for the
variance of a slope independent of the mean seem to reflect our
belief about slopes. Parameterization in terms of angles rather than
. slopes does away with most of these problems and will be examined in
future research. It is not a serious drawback that it leads to non-
conjugate diécributions. As Bayesian modal estimates thus far have
typically shown small s£andard deviations, the practical impact of

using angles for slopes will not be dramatic.

LS estimates in restricted model. The model II estimates are
obtained by subtracting sampling variance from the "observed variance"
of the LS estimates. Once some of them are negative and the corre-
sponding parameters are fixed, one could recalculate LS gstimates
under that restriction: common values for'some parameters, free
values for the others. Such a set of restricted LS estimates are
useful for two purposes: they would be a’better set of initial

estimates for the iteration, and the model II variance estimate for

the still free parameters among them i{s a better value for the prior
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variance, because the restriction of some parameters certainly affects

the mean, the raw variance, and the sampling error of the others.
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Appendix A
The data deck for the FORTRAN program BR consists of the following :

cards: ;
1. Identification Card (10A8)

Col. 1-80 Identification for data
2. Parameter Card (314, E8.2, F5.0, 8I2, 4F5.1)

M and NV must be read in, other parameters get default values

~ if blank

col. name format

1-4 M - 14 number of groups(< 25)

5-8 NV 14 number of ptedictors (< 4)

9-12 NCMX I4 maximum number of cycles (defaﬁlt = 30
is used when 0; numbers exceeding 100 are
replaced by 100)

13-19  TAUMIN ‘E 8.2 if prior variance, or calculated variance

| beyond cyc}e 2, is less than TAUMIN, a common j

value across groups is qsed. Default = 10-6 5
is used 1f number read is less than 10 1°.

20-25 PHIMIN F 5;0', minimum for residual variance (default ' j
= 1073 1f number read is less than 10~’)
not used in this version. ]

26-27  INIST 12 O* = LS initial values

1* = pooled initial values
2* = model II initial values

3 = read initial values, a at ideal point

®* not yet available

P
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col. name format

4 = read initial values, a at scaling point

5 = read initial values, a at origin.

i 28-29 IWR‘ I2 0* = no details on iteration
1 = dctails are printed

30-31  INTAU 12 0* = model II prior variances

Lo
[
L}

read prior variances

b
i
#
&

PTG S

32-33 IPUN I2 0 = no punched output
modal estimates are punched

(8X, 6E 12.6)

e s R b b
(=]
[

34-35 NDH 12 Iteration stops when log posterior density
constant in NDH leading digits (default = 5).

36-37 NDB 12 No leaps are taken for a mean constant

in NDB leading digits (default = 4),
38-39 NCI 12 Number.of cycles precéding first leap
(defaulf = S5, but 4 is used if number
% read < 4).
40-41 NCF 1 2 Number of cycles between leaps (default
= 4, 1s used if number read < 4). o
42-46 SCH F 5.1 Leap = SCH* last difference if difference
has just changed sign or old difference
almost 0 (default -.20.0).
47-51 DCN F 5.1 Leap -.DCN* last difference if this difference t

is not substantially closer to 0 than previous 3

difference (default = 20.0).

*Not yet available.
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col. name format
52-56 VGT F 5.1 Not used in this version.
57-61 PNU F 5.1 Degrees of freedom for prior variances

(default = 1 is used when number read is

less than 10-7).

3. Prior Variance Estimates Card (6E12.6)
Col. 1-12 1, =variance estimate for intercept (ideal scaling)
13-24 T, =variance estimate for coefficient of first predictor
ces (;imilarly for other predictors)
The remaining cards are read from a local file "DATA", not from

INPUT, as they will remain the same for varjious analyses of the same dataset.

4, Predictor Card (4A8)
Col. 1-8 Name of lst predictor
9-16 Name of 2nd predictor

S. Scaling‘Card for Original Scaling (5r8.0)
Points .

Col. 1-8 ' Value to which criterion has been scaled

9-16 Value to which predictor 1 has been scaled

17_24 ” ” " " z ” " L1]

e

N
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6. Scaling Card for l1deal Points (5E13.6)

Col, 1-13 Value to which criterion has been scaled 9
14-26 Ideal scaling point for predictor 1
27-39 " " " " ‘ " 2
7. Format Card for SCP Matrix (A8)

The cross products must be read in floating point form.
8., SCP Matrix Cards
For each group, there must be an upper triangular cross-product

matrix punched according to the format specified by card 6. The

cross-product matrices have the following form for the case of

two predictors:

— —
Row 1 n, txilj txiZj Zyij
2 .
Row 2 IxX
;13 IX114%124 Ex113714
Row 3 Ix s
;25 %1247 13
Row 4| & '
ow ‘L yij ]

These cross products are scaled to the values given by card S.

9. Initial Values Cards (6E12.6)

For each group there must be a set of initial values, either

produced by BPREP or obtained separately. For the 1th group,

we have
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Col. 1-12 initial value for 301
13-24 initial value for Bli

initial value for ¢ (must appear as

the last entry on each card).

As mentioned in the text, one possible source of the information
required in 1tem$ 3 (frior Variance Estimates), 6 (Ideal Scaling
Points), and 9 (Initial Values), is the FORTRAN program BPREP.
The information reqﬁired to run that program is given by Jones
. and Novick (1972, p. 24).

The program BR makes use of the IMSL library routine LEQT 1F
for linear equations. This routine, or a similar one, should thus

be available during execution, as should be the local file "DATA"

containing items 4 through 9 listed above.
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Appendix B

Description of the 1oc§1 file "DATB" on which the program writes
results important to the user:
There are at least three blocks of iﬁformation. Each block consists
of at least one title line, followed by m iines of numbers. These
are group number, intercept at zero, intercept at pooled mean, and
slopes for each of the predictors. The FORTRAN format for each of
these lines is (13, 3X, K (F10.4)5, where K is the number of predictors ;
plus two. Blocks are separated by a blank line.

The titles for the blocks are

.1. PER GROUP LEAST SQUARES REGRESSION WEIGHTS
GROUP INT(0) INT(PM) (predictor names).
2., POOLED LEAST SQUARES REGRESSION WEIGHTS.
3. BAYESIAN MODAL REGRESSION WEIGHTS
PRIOR PRIOR SD
DF INT(PM) (predictor names)

(value of v') (values of Ts)

4., Same as 3, for each additional Bayesian analysis after the first.
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