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1 INTRODUCTION

Previous reports prepared by the University of Colorado on the topic

of adaptive array processing [1-5] have described the application of well-

known adaptive methods to over-the-horizon (OTH) radar data. Two specific

implementations have been studied: 1P-vector adaptation and Frost's linearly

constrained structure. This work has shown that both method- provide increased

output SNR compared with a conventionally weighted beamformer. In addition,

significant differences between the two methods were noted, particularly

with respect to convergence rate, the effect of MTI preprocessing, and final

SNR improvement.

The purpose of the present report is to provide a description of an

overall optimal beamformer structure designed to operate in a specific

radar format. It is assumed that the processor must operate during a dwell

time of T seconds (typically, T=1 sec or 64 transmit sweeps) and that the

radar is switched to a new frequency and/or azimuth at the beginning of the

dweli. In this environment, the adaptive beamformer cannot use data immed-

iately prior to the dwell of interest to allow initial conditions to decay.

Rather, these initial transients must take place during the current dwell

as data are being collected for range/doppler processing at the beamformed

output. It is therefore imperative that the deleterious effects of adapt-

ation transients at the output be minimized.

We present below a summary of a study designed to determine the para-

meters of an adaptive beamformer designed to minimize these effects. Three

interrelated characteristics of the processor are considered in detail:

i) time constant of convergence

ii) the effect of gain variations in the array elements

iii) the effect of initial choice of the weight vector.



Our appro,.ch is to examine the response of a given array configurations

to each characteristic and to select that having the best overall performance,

as determined at the beamformed output.

The results presented below are based on the use of a new formulation

for adaptive arrays [6-7]. This formulation allows direct comparison of

P-vector and linearly constrained adaptation by showing thaz these beam-

formers are both members of a general class termed here Generalized Sidelobe

Cancelling Arrays. In addition, a large number of alternative configurations,

not previously identified, which also fall into this class are discussed.

The new formulation is used to present a theoreticnl discussion of the

adaptive array response to each of the three characteristics listed above.

We also describe the results of beamforming experiments which utilize

experimental WARF* data. These latter results are shown to be consistent

with the generalized model.

*WARF: Wide Aperture Research Facility. WARF is an HF radar research facility
operated by SRI International under primary sponsorship of the Electronic
Systems Division of the Air Force Systems Command and the Office of Naval
Research.
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II THE GENERALIZED SIDELOBE CANCELLING ARRAY MODEL

Preliminaries

As in previous studies, we assume an array consisting of K elements

which has been time-delay steered to a desired look direction. With x i(k)

used to denote the kth sample of the demodulated output of array element

i, the vector of received samples x(k) is given by

x(k) = s(k) + n(k). (1)

The vector s(k) is due to the presence of a desired "target" signal and n(k)

represents the cumulative effects of all noise and interference terms.

Ideally, with perfect presteering, the desired sig ial component is identi-

cal at all outputs and

s(k) = d(k)l (2)

with: d(k) = scalar desired waveform

T1T = [1,1...., 1]

In order to model the more realistic case of uncorrected gain variations,

we modify Eq. (2) as follows:

s(k) = d(k)v (3)

The gain vector v consists of K channel gains v. which represent the individ--- 1

ual array element gain values.

In adaptive array processing, a beamformed output yo(k) is formed as

the sum of delayed and weighted values of the vector of received signals.

The weighting coefficients ,.re time-varying in a manner determined by the

particular algorithm in use. Thus,

L- T
Yo(k) = w _(k)x(k-i) (4)

=0

i '"



where wk(k) is the set of K coefficients which weight the received signals

after a delay of k samples. Equation (4) may also be expressed in a more

compact form as

YO(k) = wT(k)X(k) (4a)

WT(k) = T T T( = [4(k), w,(k), ... I LI(k)] (4b)

The adaptive algorithm used to update the adaptive coefficients w (k)

may be expressed in general terms as

±p(k+l) = wz(k) + AR(k) (5)

The update term A (k) depends upon the specific algorithm employed. For

P-vector adaptation,

P!(k) = 1[rd()! - yo(k) x(k-k)] (6)

where rd(k) = E[d(k)d(k-k)] is the assumed correlation function for the

desired signal and p is a scalar constant which determines convergence pro-

perties of the algorithm.

When Frost's algorithm for linearly-constrained adaptation is used,

the appropriate expression for !5(k) is given by

AF(k) = v yo(k)x(k-k) + e f(k)

-.[I1 Tk +, vy,(k)iTx(k-t 1] (7)

The scalar term f(k) is determined by the constraint equations,

Lwk(k) = f(Z) (8)

and ensures that the frequency response of the array processor in the desired

look direction is that of a tapped-delay-line filter with coefficients

4



f(0), f(1, .... f(L-1). In previous WAR1F studies, values f(.)=0 except for

f(L/2)=l have been employed, thus ensuring a flat response.

Generalized Sidelobe Cancelling

Equations (1) through (8) above summarize the adaptive array configur-

ations previously studied--i.e., P-vector adaptation and linearly constrained

adaptation. Either of these procedures can be represented by the general-

ized adaptive beamformer shown in Fig. 1. We now proceed to introduce a

general form for an adaptive beamformer and then show that this generalized

structure contains both P-vector and linearly constrained methods as special

cases.

Figure 2 shows the basic form of the proposed generalized sidelobe

cancelling adaptive array structure. The upper, or conventional array,

path consists of a set of fixed amplitude taper coefficients w which are--C

used to produce a conventionally beamformed output y c (k),

T
Yc(k) = w x(k) (9)

For convenience of later notation, we assume that the coefficients in w--c

have a sum square of unity--i.e., -., = 1. The signal y (k) corresponds

to the best non-adaptive beamformer and, in previous WARF studies, was formed

using Dolph-taper values. The conventional output is filtered by an

L-coefficient adaptive tapped-delay-line filter to produce y'(k),

L-1
yc(k) = Z aj(k)yc(k-k) (10)

Z=0

Since this is a scalar input/output filter, y'(k) is a temporally filtered
c

version of y (k). The scalar coefficients aj(k) are updated using an

algorithm A, to be specified later.

The lower path in Fig. 2 is the sidelobe cancelling path. It consists

of a preprocessor W followed by a multi-channel adaptive combiner denoted

S
5
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by y(k). This combiner consists of a set of tapped-delay-lines, each

containing L adaptive coefficients. The scalar output yA(k) is the sum of

all delayed and weighted terms. The purpose of the lower path is to subtract

interference from the modified conventional output y'(k). This is accom-
c

plished by first ensuring that W blocks all desired signals from the lower

path and secondly by adapting wj(k) to minimize the power in the difference

signal y0 (k). Minimum power is readily obtained using the LMS algorithm [8].

wj(k+l) = wi(k) + pyo(k)x'(k-Z) (11)

where xl(k) is the vector of signals observed at t7,e preprocessor output,

X (k) = s (k) (12)

Recall that W is required to block the desired signal d(k). For the

ideally presteered case in Eq.(2), this is accomplished by ensuring that the

rows of W are orthogonal to the unit vector 1. Thus, if b. is the ith

=S -1

row of WSP we require

bT1 = 0 , for all i. (13)--

Since W has K columns (corresponding to the number of array elements),

Eq. (13) implies that S can have at most K-1 independent rows. Equivalently,

xI(k) has at most K'=K-1 elements.

The overall structure shown in Fig. 2 represents the general form of

the sidelobe cancelling array structure. Specific forms are obtained by

defining the spatial preprocessor W matrix and the scalar upper path

adaptive algorithm A. As shown below, "both P-vector and linearly constrained

adaptive processors can be implemented in this manner. The advantages of

this configuration are twofold:

8



i) In addition to the two specific forms mentioned above, the

sidelobe canceller can implement a wide variety of adaptive

array structures which exhibit useful practical properties.

ii) The configuration in Fig. 2 separates out, in a natural manner,

both a conventional beamformer and the set of linear constraints.

As a result, array adaptation is reduced to its simplest possible

form: the unconstrained LMS algorithm.

P-Vector and Linear Constraint Beamforming

We denote a set of adaptive coefficients used in a P-vector adaptive

beamformer by

wP(k) , Z = 0,1,..., L-1. (14)

From Eqs. (5) and (6), the P-vector algorithm is

w (k+l) = w(k) + p[rd( )l - yo(k)x(k-k)]. (15)

where
L-1 T P

yo(k) = x (k-i)w,(k). (16)
Z=0

The method used to transform Eqs. (14)-(16) to a sidelobe canceller form

involves the use of a KxK orthogonal tranformation matrix T. The rows of

this matrix are orthogonal and normalized to unit length. Thus, if eT

represents the ith row,

Te. e. = 0 , i # j
=I i=j

and T- I  TT Any matrix of this form can be used to rewrite Eq. (16) as

L-1
yo(k) Z x(k-L) Tw P(k)] (17)Z=0 :

9



The appropriate update algorithm for Twz(k) is then

TwP (k+1) = TwP (k) + p[rd(M)Tl - y0 (k)Tx(k-t)] (18)

We now restrict our attention to T matrices having their first, row

consist of equal values l/rg . The matrix is then partitioned as

1 T

= .(19)

L - =w s

and, from the discussion above, the rows of W are all orthogonal to the unit

vector as well as to each other. The reason for the negative sign is that

by substituting Eq. (19) in (17) and (18), the processor is directly con-

verted to the sidelobe cancelling form in Fig. 2. The appropriate conven-

tional weights are given by

wc =1 (20)

The algorithm in Eq. (18) may be written as two algorithms, the first

corresponding to scalar weights a,(k) corresponding to multiplication by

the first row of T and a second algorithm for the remaining K-I weights

w (k)--i.e.,

aj(k) = 1 TwP (k) (21)

wICk) = Vw P

=z-k(k) (22)

and the appropriate algorithms are:

at(k+l) = aI(k) + 1[K-/ 2 rd () - Y0 (k)y (k-_)] (23)
d c

10



wj(k+l) = wj(k) - Jiy0(k)x' (k-i) (24)

Equations (23) and (24) are derived by direct substitution of Eqs. (9),

(12), (21), and (22) into Eq. (18). The first of these (23) is the algorithm

A depicted in Fig. 2 and (24) is the unconstrained LMS algorithm. In sum-

mary, the P-vector algorithm used in previous WARF data proce-:sing is

equivalent to the sidelobe canceller in Fig. 2 with a uniform taper con-
1

ventional beam (wc =1), algorithm A given by (23), and rows of W

which are mutually orthogonal (as well as orthogonal to 1). One interesting

example of a W preprocessor with this property occurs when K is a power

of 2. The rows of W can then be implemented as Walsh functions [9]

which consist only of +1 or -1 elements.

Frost's linearly constrained algorithm for a set of adaptive coefficients

denoted by wF(k) is given by (see Eqs. (5) and (7))

F F

w {k+l) = F (k) + py0(k)x(k-k) + K-

T [iT F(k) + py0 (k)iTx(k-Ri)], (25)
K0

where y0 (k) is computed as in (16) with P replaced by F. Proceeding

as above, an orthogonal matrix T is inserted into the expression for

YO(k) which results in an equation analogous to (17). The update algorithm

for Tw
=_()is

TwF(~) F f (9) T
....(k) + y(k)x(k-) x-0=- K

1 jiT TT(k) + p l T .x(k-iTi (26)

With T as in (19), this reduces to two subalgorithms: one in a scalar a,(k)

defined by Eq. (21) and a second in the K-i dimensional weight vector

II



wj(k) def i.d by (22). These algoritnms are:

aj(k+l) = f(Z)/rK "  (27)

wj(k+l) = wl(k) - pyo(k)x' (k-k) (28)

And, as was the case for P-vector adaptation, Frost's algorithm reduces to

1
the sidelobe canceller form with w = I _1 and h containing K-1 orthogonal-c K- =

rows. Note, however, that the algorithm A in this case sets the single-

channel tapped-delay-line coefficients equal to fixed, non-adaptive values

f(Z)--i.e.,the constraint values in Eq. (8). In effect, algorithm A is

not active and the upper filter is a fixed element in the system. In

previous WARF studies, values f(k)=O except for f(L/2)=l were used and this

filter reduced to a simple delay element of L/2 samples. This step is equi-

valent to y'(k) = Yc(-L/2) in Fig. 2.

Extensions to Other Beamforming Processors

In the discussion presented above, it was shown that both P-vector and

linearly constrained adaptive array processors can be implemented as general-

ized sidelobe cancelling (GSC) arrays. The method used to demonstrate this

fact involved inserting an orthogonal matrix I , with the particular struc-

ture given by Eq. (19), into the original adaptive algorithms. Rows 2 through

K of T in this case must sum to zero, be mutually orthogonal, and orthogonal

to the first row.

In this section, we examine generalizations of T which preserve the

sidelobe cancelling structure by ensuring that rows 2 through K sum to zero,

but we relax the orthogonality constraint. For convenience of notation, we

also require that the rows have unit length. Specifically, the form of

is given by

12



T T
w-=C

T

T - (29)

T

where

T
e 1 0 , i =2, 3,..., K (30)
T T

e 1 w 1 1 31)
-C-

T
e. e. =1, i =2, 3,..., K (32)

T
and the rows of T ' ei , may or may not be mutually orthogonal.

In general, I matrices constructed in this manner will not be orthogonal,

T
i.e., T 1 . Since the equivalence of the sidelobe cancelling structure

was based on orthogonality of T , the results obtained can therefore no longer

be guaranteed to reproduce the original algorithms, and additional analysis

must be carried out to determine the properties of the modified processor.

T
The first row of T , w , contains the conventional beamforming weights.

-c

For an orthogonal T , this beamformer must have uniform coefficients, as

T
shown by the following. Since T is orthogonal, its rows e. form a basis

which can be used to expand the unit vector 1

k
8. e. (33)

i= I

where

T
8. = .1 (34)

But, rows 2 through K sum to zero (Eq (30)) and thus 8. = 0 for

13



-....-.

i = 2, 3, Using this result; equation (33) may be rewritten as

1L !(35)

and a uniform taper conventional beamformer is mandatory for GSC structures

based on an orthogonal transformation.

We now consider the case where w is any normalized set of coefficients--c

and the rows of A-s obey Eqs. (30) to (32). In this case, it can be shown

that the steady-state adapted weight vectors for both the GSC P-vector algor-

ithm [Eqs. (23) and (24)] and the GSC Frost algorithm (Eqs. (27) and (28)]

are equal to the steady-state solutions achieved by the algorithms used in

previous studies [Eqs. (5), (6), and (7)]. Thus, one would expect no change

in the converged output signal-to-noise ratio or other performance measures

based on steady-state performance when a generalized sidelobe cancelling

approach to adaptive beamforming. It should be noted, however, that these con-

clusions require that the K-1 outputs of the spatial preprocessor W are

linearly independent. Equivalently, the matrix W must be full rank with

linearly independent rows e i 2, 3,..., K in Eqs. (29)-(32).

The equality of the steady-state processors is independent of the type of

conventional beamformer w which is employed. Any differences which occur
-C

as the result of the changes in amplitude shading are compensated for in the

lower path of the GSC structure. The method used to demonstrate this independence

is identical to that used to derive the equality of the steady-state GSC and

M
previous beamformers. A steady-state weight vector L is defined as that

M

which causes the next iterated vector t_(k+l) to equal M when the expected

value of the update algorithm (5) is employed -- i.e.,

tk+l) M + E[ (k)] (36)

14



In this expression, A M(k) denotes the fact that w1 (k) has been replaced

by M in the update term. Thus, the steady-state weight vector _

satisfies

E[A M(k)] = 0 , Z = 0, 1,..., L-1 (37)

and can be determined directly from (6), (7), (18) or (25). It is a simple

matter to verify that (6) and (18) lead to the same solution and that (7)

and (19) also produce identical results.

In comparing the dynamics of adaptation from an initial starting point

w (0) to the steady-state solutions, however, significant differences arise

between the GSC methods and previous techniques. It is well known [8,10] that

the dynamical behavior of the algorithm is determined by the covariance matrix

of the set of signals observed at the individual processor weights. In previous

studies, this vector was the vector of array element signals X(k) as shown

by (4). The appropriate covariance matrix is then R given by

XX= E[X(k)XT (k)] (38a)

E[x(k)T (k)] ... E[x(k)x T(k-L-1)]

E[x(k-1)x (k)]

(38b)

E[x(k-L-1)xW(k)_ ... E~x(k-L-l)xT(k-L-l)]

which may be partitioned into submatrices xx(£) defined by

4,x(k) = Efx(k ) xT(k-X)] (39)

The eigenvalues of RXX in (38) directly determine the rate of convergence

and other dynamical behavior of the appropriate algorithm.

15 j



In GSC processing, the vector x(k-4) is premultiplied by the matrix

T prior to adaptation. The appropriate covariance matrix is then similar

in structure to (38) except that the submatrices become

_xk R()i (40)

The eigenvalues of the resulting covariance matrix will be identical to those

of (38) if and only if T is an orthogonal matrix. Thus, in general, we can

expect the convergence characteristics of the GSC adaptive beamformer to be

identical to that for the previous adaptive processors only if the rows of

W are mutually orthogonal and if a uniform taper conventional beamformer is

used. This latter requirement may be dropped for the case of the GSC Frost

algorithm, however, due to the fact that the upper path is non-adaptive and

that the conventional beamforming system affects only upper path signals.

Further discussion of this fact is presented in Reference [11].

A relevant question which arises in this context is whether or not the

GSC processor can provide faster convergence times through appropriate choice

of W and w . Clearly, these beamformers represent a larger class of pro-
--c

cessors in that the previous methods may be created as a subset from the class.

It is therefore reasonable to assume that faster convergence may well be

achieved using the GSC approach. This is indeed the case as shown by the

following discussion. The adaptive time constant is directly proportional to

the eigenvalue spread in the covariance matrix [10], with long time constants

resulting from large eigenvalue disparity. For those processors in which T

is not orthogonal, the GSC covariance matrix R analogous to (38) is

B~xx= Laxx

where

16



S= g(42)

The minimum convergence time achievable is that which results when T" is

chosen to produce an identity matrix for RXX . Since RXX is a positive

definite matrix, this requires

T = R12(43)

Unless R has particularly simple structure -- e.g., that resulting,=xx
from array signals which are spectrally white -- the matrix T which satisfies

(43) will not have the block diagonal structure shown in (42). Thus, in most

cases, a GSC processor having a diagonal in cannot be found. There will

exist a transformation ' , however, such that RXX has a smaller eigenvalue

spread than does Rx " Unfortunately, this transformation cannot be found

without first knowing the value of R , or equivalently, without having a

complete specification of the array noise and interference environment.

Summary

In this section we have presented a mathematical formulation for a new

beamforming structure, termed a generalized sidelobe cancelling beamformer.

It has been shown that this beamformer is a generalization of those used in

previous adaptive array studies which allows a much wider class of adaptive

arrays to be implemented. The GSC separates out, in a natural manner, both

the conventional beamformer and a set of linear constraints. In addition, it

illustrates, in a simple manner, the differences between P-vector and Frost-

algorithm processing. In the section following, we illustrate how this struc-

ture can be further applied to study convergence rates, gain variation effects,

17



and the effect of initial weight vector choice on the overall performance of

an adaptive array. These studies are based on the use of digitized experi-

mental data.

18



Ill. EXPERIMENTAL RESULTS

In this section we present experimental results relating to the

three adaptive processor characteristics of interest in this report:

i) convergence time constant studies

ii) the effect of array element gain variations

iii) optimium choice of initial weight vector.

These topics are addressed using the generalized sidelobe cancelling processor

described in the previous section. In all cases, a uniform taper conventional

beamformer was used in the upper path of the processor. Figure 3 shows the

resulting spatial pattern for the conventional array. The spatial angle 6

shown on this figure has been normalized to the grating lobe spacing of the

array and the effects of the subarray beampattern have not been included.

Two types of spatial preprocessor WS were studied: 1) an orthogonal

structure in which the rows of Ws were chosen as Walsh functions and

2) a non-orthogonal structure consisting of rows containing +0.5 and -0.5

in adjacent locations and zeros elsewhere. The latter case corresponds to

taking all possible differences of adjacent subarray outputs, a technique

which has been used in monopulse arrays. Figure 4 shows the set of 7 pre-

filter array beampatterns which result when the Walsh method (W) is used on

eight subarray outputs. Note that all patterns are constrained to have a

null at the 0 = 0* position. In the difference preprocessor (D), every

subarray pattern has the response shown in Fig. S.

The data selected for the experimental studies were recorded at WARF on

July 10, 1975. Eastward-looking transmissions at a center frequency of

12.13 MHz were employed and the digitized data were recorded on tape

RML 0030, file 64. Two transponders were active during the test, located in
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Albuquerque, New Mexico and Los Lunas, New Mexico. The Albuquerque repeater

was operated at -20 dB signal level and introduced a 23-Hz doppler

frequency prior to retransmission. It was used to simulate a desired target

signal. The interfering signal, produced at Los Lunas contained a 20-Hz

doppler and was operated at -30 dB signal level. An azimutial bearing

difference of 2.40 is subtended between these transmitters when viewed

from the receiving array in Los Banos, California.

A representative range-doppler map, as observed using a 1-sec dwell at

the conventional bezaiformer output, is shown in Fig 6. The corresponding

doppler spectrum is depicted in Fie.. 7. A one-pulse MTI filter was employed

at each subarray output, prior to beamforiting. The upper tace and low er trace

are the peak and RMS responses, respectively, over the 15 range gates.

Several displays of this type were examined during the course of the

experimental study. Investigation revealed that the fourth subarray in the

data set was producing an incorrectly beamformed output. It was later

verified that this was due to a system hardware failure. For this reason,

the results reported below for both convergence time constant studies and

the optimum choice of initial weight vector were based on calculations in

which the output from subarray number four was set to zero. In the element

gain variation study, however, this failure proved to be useful in demonstrating

the reduced sensitivity of an adaptive array to hardware failures. Details

are presented in the sections following.

i) Convergence Time Constant Studies

In order to minimize the effects of adaptation start-up transients on

the range/doppler map, it is desirable to have a time constant which is small
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compared with the radar dwell time. Two methods for reducing the adaptive

time constant were investigated during the course of this study. The first

involved the use of large adaptive step sizes and the second employed a

modified adaptive algorithm based on the conjugate gradient method of

Hestenes [12].

a) Increased Adaptive Step Size

The generalized sidelobe cancelIling array structures introduced

previously use the LMS algorithm to minimize the array output power. Thus,

for both P-vector and linearly constrained beamforming, the weight update

algorithm can be expressed (see Eqs. (23), (24), and (28)) as:

w(k+ 1) = w(k) + 11A(k) (44)

where A(k) is the product of the array output signal y0 (k) and the signal

observed at weight w(k) at the kth adaptation. As shown by Widrow [8],

the convergence rate of this algorithm is proportional to the step size

parameter p with faster rates being achieved with larger p values. Using

a normalized step size given by

2 a (45)

ar KL
x

where 2 = E[x 2(k)], it can be shown that the time constant of adaptation
x

Ta is given approximately as

S~L (46)
a a

adaptations. Thus, an eight-element beamformer with four adaptive weights

per delay line requires 32/a iterations to converge within 1/e of the

steady-state value. (It should be noted, however, that these results are

valid only for a in the range 0 < a < 1.)

25



IMP.....

To achieve rapid convergence, the above discussion suggests that

a I should be used. Unfortunately, values of a near unity are impractical

due to the resulting unacceptably large increase in output noise which is

produced by the weight iteration. Widrow has termed this noise ,:1sadjustmcnt

and has shown that the fractional increase in output noise i; given by a .

Thus, rapid adaptation is always accompanied by an increase in output noise

and this noise level must be considered by the system designer when selecting

the appropriate operating value for a . Typical values which have been

found to provide satisfactory performance using ei:cit-olement WARF- data are in

the range 0.01 < a < 0.1

One additional property of adaptive arrays which incorporate large step

sizes has also been observed. As discussed above, the system weights are

updated by an amount proportional to the product of the array output signal

and the signal present at the weight which is being updated. When the array

signals contain large amplitude sinusoids at several frequencies, this product

results in sum and difference frequency terms. Because the weights, in turn,

multiply the data signals, a modulation of the incoming data may occur.

Modulation at sum and difference frequencies has been observed in the

processing of WARF data using values of a which exceed 0.1

Figure 8 shows the result of processing the RML 0030, file 64 data using

a = 0.16 and four taps on each delay line. Linearly constrained beamforming

was used with a difference (D) preprocessor. Comparison of Figs. 7 and 8

shows that adaptive processing has eliminated the interfering Los Lunas

repeated at ± 20 Hz doppler, but numerous modulation products are evident

in the display. These results indicate that the selection of optimal a

must be sufficiently small so as to eliminate the possibility of producing

false targets in this manner. It should be noted that modulation products

26
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are not observed at a = 0.16 when either clutter is present or when the

input spectrum contains a multiplicity of waveforms and interference. Values

of a < 0.1 have not been observed to produce these products in field-recorded

data.

b) Conjugate Gradient Adaptation

An alternative approach to decreasing the time constant of an adaptive

sidelobe cancelling array involves using a second-order weight update algorithm.

(The LMS algorithm in (44) is first order in the weights in that w(k+ 1) depends

only on w(k) and not on w(k- 1), w(- 2), etc.) One approach to higher-order

adaptation is the conjugate gradient technique [9,12] which may be expressed

as

w(k+ 1) = (1 +8 w(k) - Bw(k-l) + pA(k) (47)

where 0 < B < 1. It has been shown that this method produces faster convergence

than does the first-order algorithm in (44) for the case of deterministic

surface searching, provided that is selected correctly. The optimum value

for B is data dependent and is not a simple function of the data.

In order to examine this algorithm, the data shown in Figs. 7 and 8 were

processed using several values for 3 , with a fixed at 0.16 . The

processor parameters were identical to those used to compute the result shown

in Fig. 7. In each case, a doppler spectrum was computed and four parameters

were measured using this spectrum. The parameters were as follows:

SIL = Signal-to-interference ratio (dB) for signal at -23 Hz and

interference at -20 Hz.

SPL = Katio of desired signal at -23 Hz doppler to spurious

modulation component at -17 Hz.
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SIR Signal-to-interference ratio for desired signal at 23 Hz and

interference at 20 Hz.

SPR = Signal to spurious ratio for desired signal at 23 Hz and

modulation component at 17 Hz.

Table I summarizes the measured value of these parameters over the range of

8 values studied.

Table I

Signal, interference, and spurious parameters

for conjugate gradient algorithm

(a = 0.16, 4 taps/element, WS = D)

8 SIL SPL SIR SPR

0 16.1 8.1 14.9 13.3

0.1 16.3 8.2 14.4 13.1

0.3 16.8 8.4 13.3 12.6

0.5 18.1 8.8 12.0 11.6

0.7 15.9 9.6 10.8 9.5

0.9 8.3 8.0 12.1 1.4

Based on these results, a best value of a = 0.5 was selected. The

doppler spectrum for this case is shown in Fig. 9. Note that 8 = 0 corres-

ponds to the first-order or LMS algorithm which produced the results given in

Fig. 8. Comparison of these spectra shows that the second-order approach

provides slightly greater rejection of the interferer at -20 Hz but at the

cost of generally higher levels of modulation components. These products are

also more numerous than in the first-order case.
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The effect of start-up time on algorithm performance was also investi-

gated. A pre-dwell time increment of 0.125 sec was used to attempt to

adapt out any initialization transients. This period was then followed by

continuous adaptation during a 1-sec dwll. Figures 10 and 11 iilustrate

the doppler spectra obtained using the first- and second-or-Vr- algoritias,

respectively, in this manner. Comparison with Figs. S and 9 shows that the

initialization adaptation offers no measurable advantage.

It is very important, however to maintain adaptation through the dwell

interval. Evidence of this fact is presented in Figs. 12 and 13 which were

obtained by adapting only during the 0.125 sec pre-dwell time period.

The system weights were then fixed during the ensuing 1-sec dwell interval.

Although no spurious signals can be seen (due to the fact that constant weight

values were employed), interference rejection is approximately comparable

with the conventionally processed spectrum presented in Fig. 7. Table i1

summarizes the parameter values measured from the spectra in Figs. 7-13.
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Table II

Signal, interference, and spurious parameters

for doppler spectra shown in Figs. 7-13

PROCESSING S1L SPL SIR SPR

Conventional (Fig. 7) 6.6 0 4.8

1st order during pre-dwell
fixed during dwell (Fig. 12) 8.3 0 7.5

2nd order during pre-dwell,
fixed during dwell (Fig. 13) 7.1 O 6.4

1st order, no pre-dwell
(Fig. 8) 16.1 8.1 14.9 13.3

2nd order, no pre-dwell
(Fig. 9) 18.1 8.8 12.0 11.6

Ist order, with pre-dwell
(Fig. 10) 16.3 8.4 14.8 13.6

2nd order, with pre-dwell
(Fig. 11) 17.2 9.1 11.8 12.0

ii) Array Element Gain Variation Studies

The undesirable effects of array element gain variation on the performance

of an adaptive array is readily apparent in the sidelobe cancelling decomposi-

tion shown in Fig. 2. The spatial preprocessor WS  is designed to block the

desired signal from the lower, or noise cancelling, path. As discussed

previously, this design is based on the fact that the desired signal is

modelled as being in phase and having identical amplitudes at the array element

outputs--see Eq (2). If this is not the case, a desired signal component will

appear at the WS outputs and after filtering by the tapped-delay-lines,
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this component will be subtracted from the desired signal component which is

present in the upper conventional path. The net result is generally a combin-

ation of signal amplitude reduction and distortion.

Widrow, et al. [13] have termed this problem "signal leakthrough" and

have presented a discussion of its effects on adaptive noise cancelling.

Since cancellation is based on a reduction of total output power, signal

leakthrough becomes significant only if the desired signal power in the tapped-

delay-lines shown in Fig. 2 becomes comparable with the levels of noise and

interference in those lines. In effect, the degrees of freedom represented

by the tap weights are used to cancel interference rather than desired signal

if the latter is of sufficiently low amplitude. As a specific example, it

has been shown [13] that if the SNR out of WS  is -10 dB, then the signal

distortion at the cancelled output will be less than 5%. In the HF applica-

tions of interest in this report, the element SNR's are generally -10 dB or

less and the spatial nulling beams in the prefilters shown in Figs. 4 and 5

should provide at least 10 dB of additional desired signal rejection.

Thus, it is not anticipated that signal leakthrough will present a

significant problem in HF adaptive arrays under normal operating conditions.

One potential area of concern, however, is that of element component failure.

For example, if the amplifier on one of the array elements fails, and a

difference preprocessor is used, no signal rejection will be applied to the

two WS outputs which are derived from that element. Another similar

failure mechanism would be that of misdirecting the subarray steering due to

hardware failure. This would have the effect of producing a significant gain

and phase error at that subarray output.
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Either of the above failure mechanisms could produce significant signal

leakthrough problems at high element SNR--e.g., 0 dB --such as those found in

the data recorded on July 10, 1975 at WARF. As discussed previously, subarray

element number four did contain a beamforming error during this time period.

The effect of this failure, as well as simulated failures Ln other subarrays

was studied to determine the sensitivity of both conventional and adaptive

beamforming methods. Both the difference (D) and Walsh (W) preprocessor

structures were investigated, and both P-vectors and linearly constrained

algorithms were employed.

The results obtained using the difference processor on the dwell which

produced the doppler spectrum shown in Fig. 7 are summarized in Fig. 14.

This plot illustrates the signal-to-interference level at -23 Hz and

-20 Hz (SIL) obtained for conventional (C), P-vector difference adaptive (PD),

and linearly-constrained difference adaptive (CD) processing. The abscissa

indicates the subarray channels which were set to zero prior to processing

in order to simulate the effect of subarray failures. Thus, the extreme

left-hand points represent processing the data as originally recorded, the

point labelled 4 indicates that the output from subarray 4 was set to zero

prior to processing, and 4,5,6 shows that three of the eight outputs were

zeroed.

Note that eliminating element four improves performance for all three

processors. This is due to the beamforming error known to be present in the

data from subarray four. The results indicate that conventional processing

is considerably more affected by element failure than is adaptive processing,

particularly when subarray 1 is dropped. In general, the constrained

processor appears to offer a slight advantage over the P-vector processor
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Fig. 14. Signal-to-interference ratios observed as a function

of array geometry using difference preprocessor.
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for this particular dwell. The range-doppler spectra for the 1,3,4 failure

case are particularly interesting and are presented in Fig. 15.

Similar results were obtained when the Walsh preprocessor was used on

the same data. Figure 16 shows the SIL values for the same dwell and

element failures illustrated in Fig. 14. The only significant difference

between Figs. 14 and 16 is that the Walsh preprocessor results in 1-2 dB

poorer adaptively processed SILs than does the difference preprocessor.

iii) Optimum Choice of Initial Weight Vector

The final topic addressed in this report is that of choosing the best

set of tapped-delay-line coefficients to be used at the beginning of each

dwell. Clearly, the transient effects of adaptation are minimized when this

initial set is close to the final steady-state adapted coefficients. To

assess these effects, three different methods of choosing the initial weights

were investigated:

a) An adaptive "start-up" period was employed by adapting on

data immediately prior to the dwell of interest.

b) The coefficients were set to zero at the beginning of each

dwell.

c) The coefficients were set to values equal to those obtained

at the end of the last radar dwell having the same steering direction

and operating frequency as the current dwell.

A variety of radar data was processed and the doppler spectra obtained

with these three methods were compared. It was found that the first two

produced virtually identical results and that method c) was inferior by less
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than 1 dB on some dwells. This minor difference is attributed to the

inherent time-varying nature of HF data, as illustrated in Figs. 7-11

above. Since method b) is the easiest to implement, it is the recommended

approach.
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IV DISCUSSION AND CONCLUSIONS

This report has introduced a new formulation for adaptive arrays,

termed generalized sidelobe cancelling. It was shown that this formulation

is both an alternative method of implementing previous adaptive structures

as well as a method which can be used to formulate a new, wider class of

adaptive beamformers. The GSC approach also provides an implementation

advantage, in that the conventional beamformer is separated out as a distinct

element in the overall processor. In addition, the linear constraints which

ensure no distortion in the main lobe can be implemented as simple analog

hardware elements. This is in contrast to previous approaches in which the

constraints have been incorporated into the adaptive algorithm. A fourth

advantage of the GSC formulation is that it clearly delineates the similarities

and differences between P-vector and linearly constrained adaptive beamforming.

The GSC beamformer was used to study field-recorded WARF data in

order to further assesss the performance characteristics of adaptive processing

of HF radar data. As a result of these studies, we conclude the following.

1. Effective interference rejection can be achieved by adapting

within the radar dwell with initial weight values set to zero. Preadapting,

or warm-up periods, are not required. This is equivalent to initializing

the overall processor to a conventional beamformer.

2. Second-order accelerated-convergence algorithms have not been

shown to provide significantly improved radar performance. These

algorithms require the specification of an additional adaptive parameter

and the difficulties of choosing the best value for this parameter offset

any advantages offered by the algorithms.
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3. The simple difference preprocessor WS  is at least as effective

as the orthogonal Walsh preprocessor and was shown to be 2 to 3 dB better

in some cases. This is somewhat surprising in that it has been shown

that the two methods have exactly the same steady-state performance in a

stationary environment. Any differences are therefore attributable to

the time-varying nature of the HF data.

4. Adaptive array beamforming is less affected by major failures

of array elements than is conventional beamforming. Loss of three of

the eight subarrays was shown to induce a loss in performance of 10 dB

for conventional processing and less than 4 dB for adaptive beamforming.

Because these conclusions are based on observation of an extremely

limited data set, they may not be representative of those obtained as a result

of extensive analysis. It is, however, significant that the existing form of

the adaptive beamformer has been shown to be extremely robust over the range

of data studied thus far. Changes in performance of a few dB have been

noted, but interference rejection of the adaptive beamformer has consistently

been significantly better than that provided by conventional beamforming.

Future work with the GSC processor should involve examination of

larger data bases as well as additional theoretical studies. Possibilities

in the latter case involve including both gain and phase filtering in the WS

preprocessor, studying alternative upper-loop algorithms in the P-vector

formulation, investigating the use of the lattice-adaptive filter [14] in

the GSC processor, and a study of the effects of quantization on overall

performance of the adaptive beamformer.
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