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EXECUTIVE SUMMARY

This report describes the results of Phase I of a program currently
being carried out by Arthur D. Little, Inc. for the US Army Medical
Research and Development Command. The purpose of this progrem is to
prepare a handbook which will contain details and recommendations on the
available methods to estimate, for organic chemicals, selectel physico-
chemical properties related to the environmental fate and transport of
these chewicals.

The Phase 1 program was, essentially, a problem definition study to
develop a ranked list of properties or parameters to be included in the
handbook. The ranked list of properties was developed following an
analysis of the physicochemical properties required in environmental
transport and fate models, legally mandated lists of chemicals and prop-
erties, hazard and ranking schemes, and other pertinent material
(including expert opinior’). The rank of each property was based upon a
consideration of its general importance and frequency of occurrence in
the models, ranking schemes, and regulations, etc.

The Phase I program idcntified over 40 properties or parameters
(associated with environmental concerns of organic chemicals) for which
estimation techniques are cesirable. However, estimation techniques
having some degree of general applicability appear to be available for
only one half of these properties at present. These are listed as
numbers 1-25 in Table 1. Also listed in Table 1 (nos. 26 and 27) are
two additional properties, rates of hiodegradation and rate of aqueous
photolysis, waich will be qualitatively discussed in the handbook to be
prepared even though reliable (or generally applicable) estimation
methods are not currently available for these properties. These two
properties are considered to have a ranking equal to the estimable
properties at the top of the list in Table 1. Their addition to the
list* of properties to be considered in Phase II reflects not only this
high ranking, but also the specific interests and needs of other federal
agencies who will be contributing to the support of the Phase 1I work.

Table 1 also lists two properties, flash point (no. 16) and solu-
bility in other solvents (no. 17), that were not in the original list of
estimable properties submitted in the Phase I draft report. Discussions
held subsequent to the completion of the Phase I work led to the conclu-
sion that these properties were also estimable.

This Phase I report, in addition to documenting the identification
and ranking of the properties of interest, also provides an overview of
the available estimation techniques, a general description of recent
work in the area of environmental fate modeling, and a bibliography of
articles, reports and books that were collected for review.

* Tae addition was made subsequent to the completion of the Phase I work.
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TABLE 1

PROPERTIES TO BE STUDIED IN PHASE II

1. Solubility

2. Vapor Pressure

3. Oct./Water Partit. Coef.
4. Adsorption Coef.
5. Bioconcentration Factors

» 6. Rate of Volatilization
] (Water)

7. Rate of Hydrolysis

8. Dissociation Constant

9. Activity Coef.

; 10. Rate of Volatilization
(Soils)

: 11. Diffusion Coef. (air)

12. Diffusion Coef. (water)

13, Density

14. Boiling Point

15. Heat of Vaporization

16. Flash Point

17. Solubility in Other Solvents

18. Surface Tension

i e el

; 19. Interfacial Tension with Water
é: 20, Viscosity

: 21. Heat Capacity

;; 22. Thermal Conductivity

‘ 23. Atmospheric Residence Time

24. Dipole Moment

25. Pefractive Index

26. Rate of Biodegradation

27. Rate of Aqueous Photolysis

Arthur D Little Inc
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I. SUMMARY

——

A. Introduction

Tl 's report describes the results of Phase I of a program currently
being carried out by Arthur D. Little, Inc. for the U.S. Army Medical
Research and Development Command, Fort Detrick, Frederick, Maryland.
The purpose of this program is to prepare a handbook which will contain
details and recommendations on the available methods to estimate, for :
organic chemicals, selected physicochemical properties related to the :
environmental fate and transport of these chemicals. The handbook is
to be published in book form, and the methods described incorporated -
to the extent possible - in an interactive computer program.

It is expected that this handbook (to be prepared in Phase II) will
prove to be a valuable tool to both scientists and managers, in both
industry and government, who must consider the probable impact of poten-
tially harmful organic chemicals in our environment. Environmental assess-
ments do not, in general, require data with a high degree of accuracy.
When laboratory data are not available, it thus appears that estimated
values of certain propertics may be entirely adequate for use in environ-
mental fate modeling studies, in hazard assessments, in filling data
gaps of large chemical data bases, and in several other endeavors., A

laboratory measurement could subsequently be made for any property where
the error probable in the estimate resulted in a significant uncertainty
in the model results or environmental assessment.

Phase I of this program was, essentially, a problem definition study
to develop a ranked list of properties or parameters to be included in
the handbook. The ranked 1ist of properties was developed following an
analvsis of the physicochemical properties required in environmental
transport and fate modele, legally mandated lists of chemicals and pro-
perties, hazard ranking schemes, and other pertinent material (including
expert opinion). An initial review of the availability of estimation
methods for these properties was also undertaken. Properties for which
no reliable estimation methods are currently available will not be
included in the handbook. We expect, however, to be able to propose how
additional research might be directed to obtain estimation methods for
the more important properties im this last category.

B. Properties Proposed for Inclusion in the Handbook

The Phase 1 program identified over 40 properties or parameters
(associated with environmental concerns of organic chemicals) for which
estimation tuchniques are desirable. However, estimation techniques
appear to be available for only one half of these properties at present.
The properties for which estimation methods a: available include many

Arthur D Little Inc
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cf tae more important parameters (solubility, vapor pressure, adsorption
coefficients, bioconcentration factors, etc.). In some cases, however,
the methods will only be applicable to selected classes of organic chemi-
cals. Also, while metheod errors may be relatively large for some pro-
perties, it is felt tb t these errors (which will be documented) will be

well within the acceptub.e error range associated with the probable uses
of such estimates.

The complete list of 23 properties which was initially proposed for
study in Phase II is shown in Table 2. (Subsequent discussions led to
the addition of the following properties for study in Phase II:

(1) flash point; (2) solubility in other solvents; (3) rate of biodegra-
dation; and (4) rate of aqueous photolysis.)* The properties in Table 1
have been listed in rough order of priority (highest first); they have
also been separated into three groups for Phase II cost proposal purposes.
The priority of a property or parameter was derived from considerations
of its frequency of use and relative importance in environmental fate
models, hazard ranking schemes, federal regulations (e.g., TSCA require-
ments), as well as from axpert opinion.

For each property or parameter listed in Table 2, we have identified
one or more estimation techniques that will be evaluated** and, if appro-
priate, included in the handbook. In a few cases (nos. 1, 2, 5 and 6 of
Table 2) we have identificd some additional (secondary) properties or
parameters, which are related to the principal property, for which
estimation methods would also be evaluated. For example, the critical
pressure and temperature are listed under vapor pressure. These two
properties are required in several of the more important vapor pressure
estimation methods; since data on a chemical's critical properties are
seldom available, these properties aust also be estimated.

C. Properties for Which Estimation Methods Are Not Available

The Phase I program identified a number of properties or parameters
for which estimation methods would be desirable (Tatle 3). The investi-
gations undertaken in Phase I did not identify any available estimation
techniques for these parameters. The properties in Table 3 are listed
in rough order of priority (highest first). The priority, as for the
listing in Table 2, was derived from considerations of the frequency of
use and relative importance in environmental fate models, hazard ranking
schemes, federal regulations, and expert opinion.

A number of the properties listed in Table 3, especially 1, 2 and 3,
are extremely important for an adequate understanding of the fate of
organic chemicals in the environment. In some cases a rough estimate of

* The reasons for these changes are given in the executive summary.

%% A brie’ overview of these estimation techniques is given in Section III.

10
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9.
10.
11.
12.
13.
14,
15.

16.
17,
18.
19.
20.
21.
22,
23.

TABLE 2

ENVIRONMENTALLY TMPORTANT PROPERTIES WHICH CAN
BE ESTIMATED FOR MANY ORGANIC COMPOUNDS

GROUP I

Solubility in water

~ Solubility in salt water
Vapor pressure

- Critical temperature and pressure
Octanol/water partition coefficient

Adsorption coefficient (at equilibrium) for soils and sediments.

Bioconcentration factors for aquatic life

- Biosorption factors for aquatic microorganisms
Rate of volatilization from surface waters

- Henry's Law constait

- Gas- and Liquid-Phase mass transfer coefficients
Rate of hydrolysis in water
Dissociation constant in water.

GROUP II

Activity coefficient (w/relationships to 1,3,6)
Rate of Volatilization from soils

Diffusion coefficient in air

Diffusion coefficient in watecr

Density

Boiling point

Heat of vaporization

GROUP III

Surfa:e tension

Interfacial tension with water
Viscosity

Heat capacity

Thermal conductivity
Atmospheric residence time*
Nipole moment

Refractive index

*Available correlation derived principally from data on imorganic
chemicals.

11
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TABLE 3

EJVIRONMENTALLY IMPORTANT PROPERTIES FOR WHICH
ESTIMATION METHBODS ARE NOT AVAILABLE

b i e e, - ST

1. Rate of blodegradation (in water, soils or sewage trazatment plants).

ST

; 2. Rate of photolysis (in air and water; direct and catalyzed).

- absorption spectra (especially UV) !
é - quantum yields i

) 3. Rate of reaction with hydroxyl radical (in air). f
' 4. Rate of adsorption and desorption with soils and sediments.
E 5. Adsorption coefficient (at equilibrium) when hysteresis is apparent. .

6. Coefficient n in Freundlich equation for 1/
goil or sediment adsorption isotherms (X = KC™'™),

7. Rate of uptake by aquatic life.

8. Rate of clearance by aquatic life.
Apparent diffusion coefficient in unsaturated soils.
10. Rate of oxidation in water (e.g., by RO. or RO,.radicals).
11. Biochemical oxygen demand, and chemical oxygen demand.
12. Rﬁte of metabolism by aquatic life.

i3. Rate constants for transfer from atmosphere to lithosphere/hydrosphere
(wet and dry fallout).

14. Extent of adsorption (absorption) on (in) atmospheric particulates.

15. Mean lifetime, or overall "decay" rate, for a chemical in any major
environmental compartment. (May be possible for atmosphere; see
no. 21 in Table 1.).

16. Melting point.

it Bt ! e o S T Il 5 A e T o d o, Kt S s

; 17. Solubility in various solvents (other than water).

; 18. Reactivity (general; or with specific compounds or materials; when
exposed to light, heat, shock, etc.);

19. Flammability limits (in air).

20. Flash point.

21. Heat of solution.

22. Dielectric breakdown voltage.

23. Particle size (a property of the bulk formulation).

24. Schmidt nuwber (= Viscosity/[Density x Diffusion Coefficient]).

25. "Conductivity Parameter" for .a chemical in a soil.

12
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the possible range of a pzoperty in this list may se made, and shouid
this be considered sufficiently valuable, it may be possihle to include
that property in the handbovk. For example, 1f cough estimztes of the
'V absorption of a chemicsl and the quantun efficiency of the photo-
degradation reaction could be obtained, then it would be possible to use
this information to estimate the rate of photolysis under natural condi-
tions in the environment. Concerning biodegradation and hydroxyl radical
4 reactivity (properties 1 and 3 in Table 3), there ig, at present, both

a lack of sufficient understanding about the mechanisms invoived and a
lack of a sufficiently large, self-consistent data base from which
adequate estimation methods can be obtained.

Some of the "properties" listed in Table 3 may depend more on environ-
mental and/or metabolic conditions than on the properties of the specific
chemical. It has been suggested, for example, that for most neutral
organics, the rate of uptake in fish (no. 7 in Table 3) is mostly depen-
dent on the metabolic activity of the fish and - to a first approxima-

1 tion - independent of the chemical. [209]* Other "properties" which
may not vary from chemical to chemical, under similar environmental

‘ conditions, are those listed as nos. 6 and 13. Other properties {(e.g.,:
) no. 9) are associated with complex systems; no self-consistent data base
of any size exists.

Some of the properties in Table 3 can probably be estimated following
a minimal amount of research. For example, the solubility of a chemical
in other solvents may be estimable through the use of solubility para-
meters or through correlations with water solubility and/or octanol/
, water partition coefficients.** In the latter case, one might make use
1 of extisting correlations between octanol/water parti:ion coefficients
i and other solvent/water partition coefficients to derive the solubility
in the other solvent. This might give reasonable estimates if the sol-
vent had a very low solubility in water.

Finally, it may be preferable in many cases to measure some of the
properties in Table 3 rather than to estimate them. Properties which may
be easily and quickly measured include the melting point, flash point,

d dielectric breakdowm voltege, and the absorption spectra.

! D. Report Overview

Section IT of this -mponrt descripes the details of the work undecr~
taken in Phase I and provides specific infcrmation on the environmencal

* All citations used in this report (except for Section III-C) are
listed in the bibliography in Section VI-B.

** As noted In the kxecutive Summary, this property was subsequently
congsidered to be adequately estimabls and will thus be included in
the propcsed handbook.
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fate models, regulations, hazard ranking schemes, personal contacts, etc.,
that were used to derive the ranked 1list of physicochemiral properties.

Section III focuses on the 23 properties proposed for fnclusion in
the handbook. It summarizes the basis for their selection, their impor-
tance and the nature of the available estimation techniques. Some addi-
tional information is also given for those properties which cannot be
included in the har.dbook.

Section IV provides an overview of environmental fate modeling, dis-
cussing - in particular - the state-of-the~art of chemical fate models,
soll/groundwater models, chemical spill models, and others.

Section V includes the details of our proposed scope and approach
for Phase II. This information was also included in our Technical Pro-
posal for Phase II submitted on April 16, 1979.

Section VI contains a bibliography of articles, reports and books
that resulted from our literature search efforts. An initial list covers
other bibliographies that were used in our work while the main list,
given in alphabetical order (by author name), contains the buik of the
material. All reference numbers used in the text of this report (except
for Section III-C) refer to the material in this main 1list (Section VI-B).

14
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II. BASIC FINDINGS

A. Sources Used

A number of different sources were used to obtain the information
desired for this program. They included:

(1) Previously compiled bi.liographies of literature covering the
environmental field;

(2) Machine searches of the recent literature by both Arttus D.
Little, Inc. and the Defense Documentation Center; and

(3) Contacts and visits with several experts in the field of
environmental chemistry, including Drs. R. Reid and G. Fred
Lee who consulted with us on this program.

The bibliographies used are listed in Section VI-A., Of principal
interest are those compiled over a number of years by Oak Ridge National
Laboratories (ORNL) with funding from the National Science Foundation.*
A detailed subject index is provided by ORNL for most of this material.

Machine searches by Arthur D. Little, Inc. (ADL) of the current
literature (approximately lv70-present) were conducted using the Natiomal
Technical Information Service (NTIS) and Cliemical Abstracts (CA) files.

In addition, we requested the Defense Documentation Center (Alexandria,

VA) to conduct a machire search of the reports in their files. The search
strategy used by ADL focussed on those properties most frequently associated
with the fate of organic chemicals in the environment (hydrolysis, photo-
lysis, biodegradation, adsorption, volatilization, etc.) using combinations
of key words that included not only the property of interest, but also

key words relating to testing, estimation, correlation, data sets, and
modeling. Special key words were used to search for material on environ-

mental fate models. The search strategy used by the Defense Documentation
Center focussed on three levels of search terms: ’

First Level Second Leval Third Level
Approximately 125 Adsorption Atomic structures
organic chemicals Bioaccumulation Chemical reactions
or spe:ific chemi-~ Biodegradation Chemical structures
cal ciasses (e.g., Diffusion Correlations
phenols). General Diffusion coefficients Equations
tarms for organic Hydrolysis Models
chemicals also used Ionic monility Molecular structures
(e.g., organic com~ Mathematical models Theory
pounds). Photolysis

Reaction kinetics
Solubilitcy

Transport properties
Volatilization

Water vapor

* Numbers 3-6, 1C aad 11 in Section VI-A.
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(ne machiine search for publications by a particular author (J.M. Piausnitz)
was nade because of his important contributions in several areas of prop- i
eity estimation (vapor pressure, activity coefficients, and others).

These machine searches yielded several hundred citations which, after
review, provided about one hundred considered potentially important to
this program. Additional machine searches in Phase II will focus more
¢n the specific properties selected for inclusion in the handbook and
the individuals who appear to be prominent in the measurement and esti-
mation of these properties.

Our contacte and visits with various experts brought us in touch
with about 40 individuals. A list of the visits and contacts made is
given in Table 4. These contacts provided up-to-date and userul infor-
mation about the importance of various physicochemical properties, the
methods in which they are measured and (for some) estimated, recent !
environmental fate modeling efforts, and an overview of current work f
by other U.S. researchers in these areas. f

S

B. Properties Used in Environmental Fate Models

We considered five basic types of environmental fate models that
F : have been developed in recent years:
3

e Atmospheric models - principally dispersion models or models
of the chemical reactions related to smog formation.

e Chenmical fate models that focus on the fate and transport, 4
principally in the surface water-sediment compartment. ]

e Soil/groundwater models, less complex than those above, which
focus principally on transport and dispersion in soill systems.

® Runoff/river models, which tend to focus (in the first case) on 4
the runoff of pollutanis from land to streams and (in the latter
or combined case) on the general impacts of water quality of

i these pollutants.

e Chemical spill models, which are used to predict the fate of a
chemical spilled onto water. These models consider such processes
as dispersion in water (and vapor dispersion where vapors are
formed), sinking, spreading, etc., but do not consider degrada-
tion.

Current atmospheric modeling efforts for organic molecules are, as
mentioned above, either dispersion models (which take no account of the
nature of the pollutant being modeled) or models of complex chemical
react.on sequences thought to be important in smog formation. These
3 models seldom require any physicochemical properties of interest to this
3 program. It is expected, however, that futur: models may also include
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TABLE 4
LIST OF VISITS AND CONTACTS MADE

A. VISITS (Nos. 1 and 2 by Drs., W. Lyman and J. Harris)

1. U.S. Environmental Protection Agency, Environmental Research Labora-
tory, Athens, Ga. (Nov. 14, 1978).

2. Dow Chemical Co., Midland, Mich. (Nov. 27-28, 1978).
3. Dr. G. Fred Lee (consultant) at A.D. Little, Inc. (Nov. 11, 1978).
4, Robert Reid (consultant) at A.D. Little, Inc. (various dates).

B. INDIVIDUALS CONTACTED (including those from trips)

Name Affiliation

James W. Falco EPA/Athens

George Baughman "

David Brown

Samuel Karickhoff "

”"

W.C. Steén

Doris Paris "

Richard Zepp "

! Lavwrence Burns

N. Lee Wolfe "

D A S et anik e AR SR - i & daco Bl Attt e e

! Raymond Lassiter "

Asa Leifer EPA, Office of Toxic Substances

Bruno Vasta "

;i Arthur Stern

|

E, Rizwanul Haque EPA, Office of Research and Development

|

| Gunter Zwelg EPA, Office of Pesticide Programs

ﬁ Carter Schuth NSF, Integrated Basic Research

! ,
| 17 ;
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TABLE 4 {cont'd)

LIST OF VISITS AND CONTACTS MADE

Name Affiliation i
Farley Fisher NSF, Research Applications
Jack Hahn National Institutes of Health

William Milne

Bt i AMPAbHon” A M AR e s o

Donald Mackay U. of Toronto, Canada ]
Martin Alexander Corneil U., Ithaca, NY %
Richard Park Rensselaer Polytechnic Institute, Troy, NY é
Robert Carlson U. of Minnesota, Duluth, MN }
Cary T. Chiou Oregon State U., Corvallis, OR

Robert L. Metcalf U. of Illinois, Urbana, ILL.

Anthony Hopfinger Case Western Reserve U., Cleveland, OH

D.D. Huff Oak Ridge National Lab., Oak Ridge, IN 1

" 3

Stephen Herbes
Alan Eschenrceder Arthur D. Lirtle, Inc., Cambridge, MA

Conrad Miller Dow Chemical Co., Midland, MI

Dean Branson "

L e s

i W. Brock Neely

Wendell Dilling

Gary Blau

"

; Gary Agin

Alan Syverud

! Dennis Laskowski

Phillip Mcall n

18
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TABLE 4 (cont'd)

LiST OF VISITS AND CONTACTS MADE

Name

Robert Swan
Eugene Kenaga
Robert Bailey

Evan Buck

e I AR Koo b o s e (AT - S oM

AR T A

e e s

- —

Affiliztion

Dow Chemicali Co., Midland, MI

Union Carbide, Charleston, W.VA
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consideration of such processes as adsorption on atmospheric particu-
lates, wet and dry fallout, and reaction with the OH radical. Vhile
fluid mechanical processes may play a large part in the rate of fallout
(or transfer to the stratosphere), the degree of adsorption on particu-
lates will depend on such properties as water solubility and vapor
pressure. The three degradation processes considered most important for
organic chemicals are attack by hydroxyl radical, atteck Ly ozone and
direct nhkitolysis. The svailable data, which are quite limited for all
three processes, indicate that attack by OH radical may be the most im-
portant of the three.

Chemical fate models*, the type currently being considered for use
in risk assessments of chemicals in the environment, do require a
number of chemical~spenific properties and parameters. A summgry list
of these properties, ranked in rough order of importance (highest first),
is given in Table 5.%* An indented listing is somewhat less important
than -~ but related to - the unindented property under which it is listed.
The availability of one or more appropriate estimation methods for each
property is indicated by the lack of an asterisk (*).

The chemical fate, river/runoff and chemical spills models we in-~
vestigated in this program (excluding soil/groundwater and atmospheric
models) arc¢ listed in Table 6. Those that fall into the general class
of chemical fate models are numbers 1-11l, and 13-18 in this Table.

This Table also provides basic information about the environmental com-
partments considered, the chemicals considered, and the fete and trans-
port processes considered. Additional discussion of chemical fate
models is given in a following section (Section 1IV),

A relatively large number of soil/groundwater models have been
proposed although they do not differ much in their basic approach. The
basic goal of these models is to predict the movement of chemicals or
other pollutants, often starting with an assumed application near the
soil surface, through the various unsaturated and sarrated layers of a
soil or surface layer of the lithosphere. In genera., the only processes
considered that invclve chemical-specific parameters are adsorption and
diffusion. Thus, as indicated in Table 7, the principal properties
desired are adsorption and diffusion coefficients. In some cases an
overall rate of ''decay', taken to represent all possible degradation
processes (hydrolysis, bilodegradation, etc.) is used in the model.
Additional information on the soil/groundwater models reviewed is given
in Section IV.

* The term 'chemical fate model" 1s used here to mean any model that
focuses on tha transport and degradaticn pathways of a particular

organic chemical. Uptake by aquatic life is generally considered
28 well.

% Parameters used in runoff/river models were also considered ir the
preparation of this Table.
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TABLE 5

EROFSRTIES IMPORTANT FOR CHEMICAL FATE AND RUNCFF/RIVER
MODELING OF ORGANIC CHEFICALS

Adsorption cocfficient, K or Koc (at equilibrium) for soils and sediments

Cctanol/water partition coefficient
Rate of adsorption*

Rate of desorption*

e Timin e

Desorption coefficient (at equilibrium) when hysteresis is apparent® 5

Bioconceniration factor (at equilibrium) for aquatic life (especially fish)

Rate of uptake*
Rate of clearance® ]
Octanol/water partition coefficient

Adsorption coefficient for adsorption on microbial populations(*?)

Rate of volatilization from surface waters and scils

VSR ST

Henry's Law constant (H)

rmon s

Solubility in water (fresh water and salt water)
Vapor pressure and/or partial pressure

Gas and liquid phase mass transfer coefficients(*?)

b if iak

Diffusion coefficients in air and water
Apparent diffusion coefficient in unsaturated soils cr other systems®

Molar refractivity radius

Rates of various chemical reacticns

¥ Hydrolysis (in water)

E: Photolysis (in water and, less importantly, in air)*
: Oxidation, e.g., with RO* (in water)*

Reaction with hydroxyl radical (in air)* ]

Rate of biodegradation (in water, soil and treatment plants)*

Biochemical oxygen demand (or rates of related reactions)*

Rate of metabolism by aquatic life*

| 21
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TABLE 5 (cont'd) j

PROPERTIES IMPORTANT FOR CHEMICAL FATE AND RUNOFF/RIVER
MODELING OF ORGANIC CHEMICALS

Dissociation constant

aek e Gl e s

Rate constant for transfer from air to water or land*
Rate constant for transfer from troposphere cto stratosphere¥

"Conductivity parameter" for chemical in soil*

D T L
ot i et AR et e ke o e

Mean lifetime of chemical in any major compartment or overall rate
constant for "decay" in the compartmentt

TR TTY
o

*Properties for which: (1) estimation methods appear to be of either .
limited applicability or uncertain reliability at present; and/or (2) i
no information on any estimation method 1is currently available. ;

. +An estimation method to dei..rmine the mean atmospheric residence time
{ has bcen proposed, but its utility hss not yet been assessed.
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TABLE 7

PARAMETERS USED IN SOIL/GROUNDWATER MODELS OF THE FATE
AND TRANSPORT OF ORGANIC CHEMICALS

Adsorption coefficients: K, n* from Fraundlich equar.ion+

Desorption coefficients: K'*, n'* from Freundlich equatio-t
Diffusion coefficient in air

Diffusion coefficient in water

Apparent diffusion coefficient (in moist, porous soils)*

Rate constant for 'decay" (i.e., for any first order degradation or loss
being considered)*

+The Freundlich equation, which is taken to vepresent equilibrium condi-
tious, is expressed as

X = Kcl/n

where X is the amount adsorbed per unit weight of adscrbent, and C is
the concentration in solution. The parameter n 1s often assumed equal
to 1.0.

*Properties for which: (1) estimation methods appear to be of either
limited applicability or uncertain reliability at present, and/or
(2) no information on any estimation method 1s currently available.

2¢
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A number of runoff/river models were investigated. Examples are
given by numbers 12, and 19-25 in Table 6. An important process these
models generally do consider is soil (or sediment) adsorption; a
single adsorption coefficient is required. The second most common
feature 18 the use of an overall "decay" rate to represent all forms
of degradation of the chemical species being considered (e.g., hydroly-
sis, photolysis, biodegradation). Finally, these models generally
consider tbhe effect of orgsnic discharges, in combination, on the dis-
solved oxygen content of the stream. However, in this case the inter-
actions require only a knowledge »f the bicchemical oxygen demand (BOD)
of the combined organic discharge, rather than the BOD of an individual
chemical. In rare cases specific degradation processes may be ccusidered
(e.g., hydrolysis in no. 12, Table 6); volatilization from soils may also
be considered in some cases (no. 19, Table 6). The use of various
3 physicochemical parameters in runoff/river models was considered iIn the
‘ preparation of Table 5.

A number of chemical spill models, prepared for the J.S. Coast
Guard's Chemical Hazards Response Information System (CHRiS)*, were
reviewed to determine the physicochemical parameters required. Table 8
provides a summary list of these parameters, ranked in order of priority
(highest first) based on general importance in determining not only the
initial action of a spill (dissolves vs. floats or sinks or vaporizes)
but also the modeling of s“bsequent processes such as dispersion,

: spreading, etc. Because of the variety of processes considered, and

; because must of them act on the bulk phase of the chemical (rather than
a very dilut¢ solution as in chemical fate modeling), the list of para-
meters shown in Table 8 is quite diverse. Some additional information
on the CHRIS is given in Section IV,

C. Properties Associated with Federal Regulations and Hazard Ranking
Schemes

A number of federally-mandated lists of chemicals and chemical
regulatory acts require input information concerning the physical and
chemical properties of particular substances or categories of substances.
] The physical and chemical property data requirements may be implicit,

E; as in cases where a specified list of chemical pollutants 1s regulated,
]
3

,i or explicit, as in cases where test data must be submitted to obtain
o certification or reglstration of a product. In this section, the in-
formation requirements associated with the following have been reviewed.
e Toxic Substances Control Act (TSCA)
e Federal Insecticide, Fungicide and Rodenticide Act (FIFRA)

e Resource Conservation and Recovery Act (RCRA)

* See Section IV-F for a description of CHRIS.
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TABLE 8

PROPERTIES USED IN MODELING CHEMICAL SPILLS IN WATER

Solubility
Vapor pressure
Density

i Boiling point
] Viscosity
Surface tension %
Interfacial tension with water
Heat of vaporization

Diffusion coefficient in water

Heat capacity

Thermal conductivity
; Freezing point*
Schmidt number{*?)+

Critical temperature

limited applicability or uncertain reliability at present, and/or
(2) no information on any estimation metho” is currently available.

, +Since the Schmidt number :is related to the viscosity, density and
i diffusion coefficient (all of which may be estimated in certain cases)
: some estimation may be possible.

i
|
{ *Properties for which: (1) estimation methods appear to be of either
i
|
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e Federal Water Pollution Control Act (FWPCA, - Hazardous
Substances Designation

o Federal Hazardous Substances Act and the Poison Prevention
Packaging Act

e EPA: Systems for Rapid Ranking of Environmental Pollutants

e Regulation of Toxic Substances in the Federal Republic of
Germany

A summary of the properties required is presented in Table 9. The
properties have bteen listed in rough order of importance (highest first).

The data requirements of these reports and regulations are designed
to allow an assessment of the potential hazard of a chemical to man and
the environment. (We have not listed here the toxicological data require-
ments.) In some cases, a ranking scheme is given (e.g., EPA: '"Systems
for Rapid Ranking...")* and in others rules are given for selecting chem-
icals to be designated '"hazardous" or '"non-hazardous"; but the majority of
the reports and regulations reviewed do not spell out a specific hazard
ranking scheme. Such schemes may be developed in the near future and
may involve environmental fate modeling.

1. Toxic Substances Control Act (15. U.S.C. 2604)

40 CFR Part 720
Federal Register 44 (7), pp. 2242-2348, January 10, 1979

"Toxlic Substances Control: Premanufacture Notification Require-
ments and Review Procedures."

This Act requires that a premanufacture notice be submitted to EPA
90 days before a person intends to manufacture or import any new chemi-
cal substances. New subgtances are those not included in the inventory
of chemicals publisked by EPA under Section 8 of the Act.

The Act does not establish a certification or regulation program

for new chemical substances. It does require submission of data that are
"known to" or "reasonably ascertainable by" the submitter, relevant to

* the health and environmental effects. The data are to be submitted on

! for s developed by EPA. EPA may decide to regulate manufacture oi the
new substance if it determines that there is a reasonable basis for con-
cluding that its manufacture, distribution and/or use will present an
unreasonable risk to health or the environment.

Section 8, the premanufacture notification requirements, does not
explicitly require any testing. However, the section allows the Agency
to prohibit manufacture if it finds that insufficient test data are sub-
mitted.

* Discussed in item 7 below.
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TABLE 9

PROPERTIES REQUIRED BY F¥EDERAL REGULATIONS OR

BY HAZARD ASSESSMENT SCHEMES

ENVIRONMENTAL PROPERTIES

Solubility in water
Solubility in other solvents*

Soil adsorption coefficient (K or Koc)

Rate of adsorption*

Rate of desorption*
Leachability(*?)

Octanol/water partition coefficient
Rate of volatilization

Bioconcentration factor (aquatic life)
Rate of uptake¥*
Rate of release*

Rate of biodegradation* (in water,
soils, sludge)
Biochemical oxygen demand*

Chemical oxygen demand¥

Reactivity with various species
Rate of hydrolysis (aqueous)

Rate of photolysis (aqueous and
atmospheric) (*?)

Rate of oxidation znd reduction
(aqueous)*

Rate of degradation (atmospheric)
by all processes¥*

Atmospheric reactivity (various rxmns.) *

Dissociation constant in water

pH of water solution

Vapor phase sorption properties (*?)

BULK PROPERTIES

Melting point*
Boiling point
Vapor pressure

Stability and/or reactivity¥*

Rxn. with water, acids,
bases, metal ifons, etc.

Rxn. with metals (corrosion)

Sensitivity to heat, flame,
light, etc.

Dernsity

Spectral properties (UV, Vis.,
IR, etc.)*

Flammability limits*
Flash point*
Viscosity

Particle size*

Index of refraction

Dielectric breakdown voltage*

Mean lifetime in the environment *(air(*?))

*Properties for which: (1) estimation methods appear to be of either limited
applicability or uncertain reliability at present, and/or (2) no information

on any estimation method is currently available.
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Several specific chemical and physical properties of new cubstances
are called out in the reporting requirements. Table 10 lists the prop-
erties and chemical reactivity data (excluding toxicity effects test
results) that are itemized in the Premanufacture Notification Form
(Fed. Reg. 44 (7), pp. 2291-3, January 10, 1979). There is also space
on the form to enter known or readily ascertainable "other environmental
effects", such as stratospheric ozone depletion. The text of the
Proposed Rules also calls for reporting any results of:

Tropospheric degradation and transformation studies

Stratospheric degradation studies

Atmospheric transport studies

Octanol/water partition coefficlent (measurements and calculations)
Yapor pregsure sorbent studies

Olfactory threshold studias

Combustion and pyrolysis studies and theoretical analyses

Measurements of the permeability of the chemical through gloves
used by workers or consumers

Any environmental fate studies in natural waters.

2.

—
—————

P eymry

TR DRTyP o TOPOER

Initial Report of the TSCA Interagency Testing Committee to
the Administrator, Environmental Protection Agency

January 1978: EPA 560- 10-78/001, pp. 1-48 {(also published in
Federal Register 42 (197), pp. 55026-55080, October 12, 1977)* °

The mandate of the Interagency Testing Group is the selection cf
substances or categories of substances as high priority for testing
under TSCA. A preliminary list of 330 substances/categories was developed
based on potential for human exposure and environmental release. The
list was narrowed to 80 substances/categories after considering avail-
able information and/or lack of information related to potential for
carcinogenic, mutagenic, teratogenic and chronic toxic effects, ability
to bioaccumulate and ability to cause deleterious environmental effects.
The scoring system used to narrow the list to 80 substances/categories

explicitly considered the physical and chemical properties listed in
Table 11.

et S it L0 Sl TS Sl Mot B 2025 L

, 3. Federal Insecticide, Fungicide and Rodenticide Act (7 U.S.C.

136 et seq.)

40 CFR Parts 162,163,181
Federal Regis%er 43 (132), pp. 29696-29741, July 10, 1978

"Proposad Guidelines for Registering Pesticides in the United States
The Act authorizes the Administrator to specify '"the kinds of in-

| formation which will be required to support the registration of a pesti-
‘ cide." The 1978 Guidelines are the result of consideration of public

; * See refevence no. 12 in Section VI-B for full citation.
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TABLE 10

PHYSICAL AND CHEMICAL PROPERTIES INCLUDED ON

PROPOSED TSCA PREMANUFACTURE NOTIFICATION FORM 1

(Federal Register 44 (7), 2291-3, January 10, 1979)

PROPERTIES

Spectra (UV, Vis., IR)
Density

Solubility in Water
Melting Point

Boiling Point
Sublimation Point
Vapor Pressure
Dissociation Constant

Particle Size Distribution

X

Other (specify)

X

pH

o

£

ioconcentration

34

CHEMICAL REACTIVITY

Photochemical Degradation
Hydrolysis

Chemical Oxidation 1
Chemical Reduction
Chemical Incompatibility
Flammability

Explodability

L i ok - o i ] e A T

Other
Biodegradation

Adsorption/Desorption
Characteristics

Formation c¢f Persistent
Transformation Products

A bt 2ot M Vel L it s Ak 1A
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TABLE 11 :

PHYSICAL AND CHEMICAL PROPERTIES USED IN SCORING SYSTEM
OF THE TSCA INTERAGENCY TESTING GROUP

(Federal Register 42 (197), pp. 55026-5508u, October 12, 1977)

PROPERTY FACTOR ACTUALLY SCORED |
Volatility General population exposure; '

exposure intensity and pene-
trability into body

i ki

Water Solubility Biocaccumulation i
i
Octanol/Water Partition Coefficient Bioaccumulation !
Chemical Reactivity Quantity releesed to environ- }
ment; lifetine years, days i
or hours i
Reaction with Stratospheric Ozone Ecological effects; ozone ]
depletion. !
| i
s i
h
i
]
3
; ,
]
|
! i
{
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comments on 1975 Proposed Guidelines.** Testing requirements for pesti-
cides are both extensive and intensive, since the end use formulations

are deliberately introduced into the environment. The proposed Guidelines
specify reporting requirements for: (1) Chemistry, (a) Product Chemistry
and (b) Environmental Chemistry and (2) for Hazard Evaluation, (a) Avian
and Mammalian Testing and (b) Aquatic Organism Testing.

The physical and chemical properties required by Parts 163.61,
Product Chemistry, and 163.62 Environmental Chemistry, are presented
in Tables 12 and 13, respectively.

4. Resource Conservation and Recovery Act of 1976, PL94-580
(42 USC 6901)

40 CFR Part 250
Federal Register 43 (243), pp. 58946-59028, December 18, 1978

This Act requires promulgation of several regulations providing
"comprehensive control of hazardous waste from its generation to its
final disposal.”" Under Section 3001 of the Act, two mechanisms are
provided for determining whether a waste is hazardous. A waste must be
managed according to the RCRA regulations if it exhibits the specified
characteristics of a hazardous waste (40 CFR Part 250.13), or 1if it is
included in the list of hazardous wastes (40 CFR Part 250.14).

Characteristics of a waste that qualify it as hazardous, according
to Part 250.13, are of four types: 1iynitability, corrosivity, reactivity
and toxicity. The physical and chewmical properties that are required to
determine characteristics of hazardrus waste are listed in Table 14.
Toxic wastes are defined in terms f extractable levels of eight speci-
fied metal and six specified pesticide contaminants.

Criteria for listing a waste as hazardous in Part 250.14 included:
having the characteristics described above; containing infectious agents
or radioactive substances; containing mutagenic, carcinogenic or terato-
genic substances; containing toxic organic substances; and containing
substances that bioaccumulate. The specific definition of bioaccumula-
tion potential is an octanol-water partition coefficient >103, as measured
by a High Performance Liquid Chromatography (HPLC) method applied to a
methylene chloride extract of the waste. (Appendix XI of 40 CFR 250,
Subpart A).

3. _Federal Water Pollution Control Act (33 USC 1251 et. seq.)

40 CFR (proposed), Part 116, Sec-ion 311b ;
Federal Register 39 (164), pp. 30466-30471, August 22, 1974, )
also 43 (49), pp. 10479-10506, March 23, 1978 B

"Hazardous Substances: Designation of and Determination of
Removability."

** Federal Register, 40, p. 26802.
36
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TABLE 12

PHYSICAL AND CHEMICAL DATA REQUIREMENTS
RELATED TO PRODUCT CHEMISTRY
(40 CFR Part 163.61)

PO PPy S

Test Substance

Technical Manufacturing Formulated
Property Chemical Use Product Product

ek

] Color

Odor

Melting Point
Solubility

> M X XK

] Stability (to acids, bases,
moisture, light,

etc.) X

Octanol/Water Partition ;
Coefficient

o

Physical State

Density or Spec. Gravity
Boiling Point

-
WPV

Vapor Pressure

1 PH

Storage Stability

1 Flammability

- Oxidizing or Reducing Action

RO M K K K

Explosiveness
Miscibility
Viscosity

L - A B ]

Corrosion Characteristics

D D pe bd D M p P4 D M M M X

Dielectric Breakdown Voltage

37
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TABLE 13

J PHYSICAL AND CHEMICAL DATA REQUIREMENTS
; RELATED TO ENVIRONMENTAL CHEMISTRY
3 (40 CFR, Part 163.62)

TN

Hydrolysis Rate Acidic, hasic, neutral pH
Two conceuntrations, two temperatures.
Photodegradation Water, soil, vapor phase
A Leachability Four soils
g Volatility Vzvor pressure above soil at O,
1 12 hre., 1, 2 ....30 days
Adsorption/Desorption Minimum of one soil, four concen-~
trations

Fish Accumulation/Depuration

e
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TABLE 14

PHYSICAL AND CHEMICAL PROPERTIES %
RELATED TO HAZARDOUS WASTE CHARACTERISTICS
(40 CFR Part 250.13. Fed. Reg. 43 (243), Dec. 18, 1978).

PROPERTY COMMENT

Flash Point If < 60°C, liquid waste 1is defined
as ignitable.

pH If < 3 or 2 12, aqueous waste is

defined as corrosive.

Reaction with water If violent, or if toxic gases are
generated, waste is defined as
reactive., If flammable species
formed, waste is defined as
ignitable.

Ny 39
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- flashpoint as determined by the Tagliabue Open Cup Tester.

The approach proposed in this citation is to designate hazardous
substances by list, rather than by specifying properties or values of

properties per se. Criteria EPA used in determining whether to list a
substance included:

a. LCsg and LD5g limits for several routes of exposure tn aquatic

organisms or animals.

Potential for being discharged - production quantities, modes
of transport, etc.

c. Removability -~ solubility, density, physical state, dispersion

characteristics, potential for leaving a residue and detectabl-
lity in the water body.

6. Federal Hazardous Substances Act (15 U.S.C., 1261-1274),
Hazardous Substances Standards (16 CFR Part 1500), and
Poison Prevention Packaging Act (15 U.S.C., 1471-1476)

Both acts authorize the Administrator of the Consumer Product Safety
Commission to specify tihe labelling and packaging requirements for
substances defined to be hazardous or toxic. A partial definition of a
hazardous substance includes "ary substance or mixture of substances
which (1) is toxie, (ii) is corrosive, {iii) 1s an irritant, (iv) is a
strong sensitizer, (v) is flammable or combustible, or (vi) generates
pressure through decomposgsition, heat or other means ‘'such that substantial
injury or illness may result from reasonable handling and :se, or inges-
tion by a child. In this definition, "corrosive" refers to the destruc-

tion of 1living tissue brought about by the chemical action of the sub-
stance in coniacc with the skin.

The flammability and combustibility of a substance is definod by its

The terms
"extremely flammable," '"flammable," and "combustiblz" are divided as
follows:

_ ixr:;;@mgly flammable -~ flash point &-20°F

—sawmable — 20°F < flash point < 80°F

[ ] "!,

e combustible ~ 80°F < flash point < 150°F

Extremely flammable solids are those which ignite and burn at 80°F or

less, when the substance is subjected to friction, percussion, or an
electrical spark.

A substance which generates pressure through decomposition heat cor

other means is identified when positive results occur from the following
te3ts:

% @ explosion as a result of an electrical spark, percussion, or
five-second exposure to a candle flame.

40
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e explosior of the container closure, or rupture of the container
when the substaice 1s held at or below 130°F for two days or

less.

!
|
4
e o b S it iAo JJ

¢ eruption from the opened container after storage at 130°F or less
for two days in the closed container.

) -
[R RO SRS

‘ One criterion by which a product is judged tc be exempt from special
3 labelling requirements is viscosity. Substances with 3 high viscosity,
' such as a floor wax, do not require a labelled "danger" statement as a

preventative measure against swallowing.

T A s A e kit s

3 1 packaging requires a scientific evaluation of the inter-
actio:pggiihepsubsganie aﬁd the package to determine that the chemical
and physical characteristics of the substance do not inhibit or interfere
with the proper functioning of the package. The exact properties to
consider are not stated.

] 7. Systems for Rapid Ranking of Environmental Pollutants

e e oy 200 o s g s

i,

EPA~600/5-78-012, June 1978 (NTYS PB 258168)*

The EPA Office of Hezlth v’ Ecclogical Effects (OHEE) in the Office
; of Research and Development (. J) is producing a series of Scientific

and Technical Assessment Reports (STARs), each of which will summar ize
available knowledge about a particular pollutant. The STARs are intended
as 1nput to the regulatory process.

Technical personnel from EPA and SRI International investigated

4 systems for ranking candidate polluzants for STAR reporte. The two most
promising approaches were felt to be those based either on expert judg- ]
ment by a committee ("expert system") or on a mathemat.ical model ("objec~
tive subsystem"). Table 15 lists the physical and chemical properties
that were considered to be important for ranking.

T T a———r

8. _Information Required for the Regulation of Toxic Substances
/ (in_the Federal Republic of Germany)

Report prepared by the MITRE Corporation, June 1978%% {

In a program undertaken for the Federal Republic of Germany, MITRE
compared the toxic chemical regulatory legislation of several countries
including Canada, Japan, the United States and European Common Market
members., The focus was to define information needs and appropriate
analysis methodologies for the German government to use in implementing
the proposed German Eavironmental Chemical Law. Physical and chemical
property data that were identified as required for regulation are pre-
sented in Tabie 16.

e

|

*See reference no. 26 in Section VI-B for full citation.
**See reference no. 136 in Section VI-B for full citatiom.
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TABLE 15

PHYSICAL AND CHEMICAL PROPERTIES USED IN
RANKING POLLUTANTS FOR EPA ORD/CHEE

STARs REPORTS (EPA-600/5-78-012)

Required For

"Expert "Objective

Property System" _Subsystem"
Melting Point *

Boilirg Point *

Vapor Pressure * *
Decomposition Point *

Combustion Products *

Flash Point *

Density *

Flammebility Limits *

Explosive Limits *

Solubility in Water *

Solubility in Non-Polar *

Solvents
Water /Octanol Partition * *
Coeff.

Biological Oxygen Demand * *
Chemical Oxygen Demand *

Rate of Oxidation in Alr, *

Water

Hydrolysis Rate *

Uptake/Release Rates

- Environmental Media * *
- Organisme *

Bloconcentration Factors *

Volatilization from Water *
Half-Life in the Environment *

42
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TABLE 16

FHYSICAL AND CHEMICAL PROPERTIES IDENTIFIED AS
REQUIBED IN MITRE STUDY FOR THE FEDERAL REPUBLIC CF GERMANY

. Phvsical Properties Chemical Properties
State/Color/Texture pH :
Density Reactivities with water, acid E
bases; Redox; photoreactivity; ]
i Index of Refraction nucleophilicity; eiectrophilicity; ]
4 thermal : !
, !

Dissociation constants
Transition Temperatures:

melting, boiling,‘freezing
flash point

Vapor pressure

[ P S O FIONI IR X R

Vapor density

e e e L

Solubility

water, organics
water/octanol partition
coefficient

b i

e

gore; o AN

Spectral properties

uv, vis, IR, MMR, Mass
spectrum, X-ray diffraction,
Fluorescence, Optical Rotation

Persistence

i; Atmosphere, Hydrosphere,
P Lithcsphere
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D. Properties Suggested for Studies of Environmental Transport and
Fate of Organic Chemicals

In addition to seeking relevant properties from environmental !
fate models and regulations, we also sought to obtain a list from
what might be considered "expert opinion". This was accomplished,
as detailed in Section II-A above, (1) by reviewing numerous publications
which discussed the general problems assocliated with understanding the
fate and transport of organic chemicals in the environment, and (2)
through discussions with persons knowledgeable in this field.

A very large number of the publications included in our
bibliography might be considered pertinent to this task. The short list
cited below, however, is considered to contain some of the better
descriptions of the relationships of various physicochemical properties
to fate and transport:

Reference Number* Publication

44 "Estimating the Hazard of Chemical Substances
to Aquatic Life," ASTM (1978). This pub-
lication contains at least eight papers relevant
to the subject.

9 "Assessing Potential Ocean Pollutants,"
NAS (1975).
16 "Principles for Evaluating Chemicals in the

Environment," NAS (1975).

83 "Chemodynamics: Transport and Behavior of
Chemicals in the Environment - A Problem in
Environmental Health," Freed et al. (1976).

132 "Determining the Fate of Chemicals," Howard
et al. (1978).

' 112 "Environmental Dynamics of Pesticides,” Haque
and Freed (Eds.) (1975).

95 "Organic Chemicals in the Soil Environment,"
: Goring and Hamaker (Eds.) (1972).

! 151 "Pesticides in Aquatic Environments,"
i Khan (Ed.) (1977).

LT e e

*See Section VI for full citation.
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Of particular interast to this program is the work currently being [
conducted by the American Society for Testing and Materials (ASTM) sub- ;
committee E~35.21.01 on Environmental Chemistry Fate Modeling which is i
being led by Dr. G, Fred Lee (Colorado State University, Ft. Collins). i
This committee 18 currently focusing its attention on, and developing test 3
methods for the following seven properties: solubility; water + air
transfers of a chemical (Henry's Law constant); adsorption and desorp-
tion from sediments; photolysis in water; octanol/water partition coeffi-
cient; hydrolysis in water; and biological transformations (i.e., de-
gradation). (Bioaccumulation is not being considered by the E-35.21.01
subcommittee since it has already been considered and included under a
different subcommittee.) This list of properties was selected from a
fairly large list of properties that were considered to be potentially
important to an understanding of a chemical's transport and fate in the
environment. The need for such parameters in environmental fate modeling
was one of the more important factors in the final selection of the
seven properties for which test methods will be evaluated and recommended.
Numerous representatives from both industry and government had a voice !

in the selection of the final property list, and, thus, it deserves
special attention.

e et S o S
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In Table 17, we have summarized the properties considered important
by the sources and "experts" used. They have been separated into three
groups: properties, partition coefficients and rate constants. Within

each group the properties are iisted in rough order of priority (highest
first).

s b i 2

The list of properties in Table 17 is, not gsurprisingly, quite simi-

3 lar to the lists given in Sections II~B and C above with one exception.

] This 1is the activity coefficient. The activity coefficient of a sub-

: stance, A, in solution (y,) is equal to a,/X,, where a, is the activity

i of the substance and X, 1is its mole fraction in the solution. Activity i
coeficients are particularly useful for describing the behavior of non- '

ide. solutions.* (For an ideal solution: y =1 and a = X.) In

particular, they may be used to obtain a more accurate estimate of

Henry's Law constant (used in estimating rates of volatilization from

surface waters). For organics with low aqueous solubilities they may also

be used to estimate the solubility limit. In addition, if the activities

\ in the mutually saturated phases of a two-phase octanol/water system

- can be estimated, then an octanol/water partition coefficient may be

calculated. Other solvent/water partition coefficients might be esti-
mated in a similar fashion. Obtaining activity/coefficients, until
recently, re- ‘ired the use of the equilibrium vapor/liquid data which
1 ave ;.- :ilabh. or only a small number of common, high~volume industrial
3 ci.aicals. Recent group contribution methods have, however, made it
possible to estimate these coefficients from the structure alone. (See
8 Section III for additional discussion.)
H

i o it e ekt it s

ok

*In an ideal ition, the intermolecular forces between all species are
the same, ¢ _he solution obeys Raoult's Law: p/p° = X, where p is
the partial pressure of a solute above a solution, p° is the vapor
pressure of the pure solute and X is the mole fraction of the solute.
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TABLE 17

PROPERTIES CITED AS BEING IMPORTANT FOR AN
UNDERSTANDING OF THE FATE AND TRANSPORT OF
ORGANIC CHEMICALS IN THE ENVIRONMENT

PROPERTIES PARTITION COEFFICIENTS

Water soluhility Octanol/water

Vapor pressure Air/water (Henry's Law .onstant)

Adsorption spectra (UV, visible)* Sediment or soil/water

Dissociation constant (in water) Biota/water

Latent heat of solution* Atmosphere/Atmospheric particulate¥®
Heat of vaporization
Dipole moment

Activity coefficient

RATE CONSTAN .s

Adsorption on soils and sediments*
Desorption from soils and sediments*
Uptake by (aquatic) organisms*
Release by (aquatic) organisms*

Volatilization

Chemical degradation (especially
hydrolysis)

Biodegradation*
Photolysis (UV, vis.) (*?)

: *?
Overall "decay" rate (or t1/2)* (air( '))

*Properties for which:
limited applicability
(2) no information on

(1) estimation methods appear to be of either
or uncertain reliability at present, and/or
any estimation method is currently available.
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II1. SELECTION AND DESCRIPTION OF PROPERTIES

i ek

A. Selection and Ranking of Properties ;

The selection and ranking of physicochemical properties of interest
to this program followed these basic steps:

1. Identification of properties used in environmental fate models,
hazard ranking schemes and federal regulations, or considered

important by experts. Detalls of this step were given in
Section 1I.

2. A rough assessment of the relative importance of the pro-
perties was made for ea:h of the lists prepared in step 1.
The ranking considered frequency of use and the importarce
of the property. The summary tables in Section IT listed
the properties ranked in order of this priority.

3. A determination was made as to whether or not one or more
methods existed by which each property could be estimated for
a reasonable number of organic chemicals. The summary tables
in Section II identified those properties for which: (a) esti-
mation methods appear to he of either limited applicability or f
uncertain reliability at preseat, and/or (b) no informavion on &
any estimation is currently available. The determination of |
estimability for each property was made following a review of !

i
t
I

" the literature and discussions with our consultants and experts
(see Section II-A).

4. All properties were separated into two groups, estimable and :
non-estimable, and a ranked list of each group prepared that ;

correlated, to the extent possible, with the rank in the origi-
nal listings.

Tables 18and 19 summarize the final ranking and original sources,
for the estimable and non-estimable properties, respectively®. Three
general points should be made with regard to these tables. First, the

i final rank order presented is based, in part, on subjective considera- ;}
: tions. Thus, no particular significance should be given to the ranking s
: of any parameter relative to other parameters immediately above and |

below it. Second, some liberty was taken in combining "properties" A

. from the initial lists (in Section II) to a common property in Tables =
| 18and 19. For example, the "rate of volatilization from water" (no. 6
’ in Table 18) was considered equivalent to “"air/water partition coeffi-
cient", "Henry's lLaw constint pius gas and liquid phase mass transfer
coefficients," and (more liberally) “atmospheric transport studies."

Third, there do appear to be some natural breakpoints in the relative

*
The executive summary contains a siightly revised 1list as a resulc of
discussions subsejuent to the Phase I work.
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TABLE 18
SOURCES FOR LIST OF ESTIMABLE PROPERTIES
Environmental || Regulations
Fate and Hazard || Expert
Models Assessuent || Opinion
2 oslElie | L«
L VIR ol B I~ TN gil o
AEEREI EEEIR L IEELE
EERE Sl PR
I EEI R
Parameter (from Table 1) © O Ee
1. Solubility * * * * * *
2. Vapor pressure * * * * *
3. Oct./Water partition coefficient * * * *
4. Adsorption coefficient *| % * * * *
5. Bioconcentration factor * * * (*)1 *
6. Rate of volatilization (water) * * * * *
7. Rate of hydrolysis * * * * *
8. Dissociation coastant * * *
9. Activity coefficient *
10. Rate of volatilization (goils) ol B * *
11. Diffusion coefficient (air) k| %
12. Diffusion coefficient (water) L I
13. Density * * *
14. Boiling point * * *
15. Heat of wvaporization * *
16. Surface tension *
17. 1Interfacial tension *
18. Viscosity * *
19. Heat capacity *
20. Thermal conductivity *
21. Atmospheric residence time * * *
22. Dipole moment *
23. Refractive index *
l'Being covered by another ASTM subcommittee.
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TABLE 19
r SQURCES FOR LIST OF NON-ESTIMABLE PROPERTIES
Environmental || Regulations
Fate and Hazard (| Expert
3 Models Assessment (| Opinion :
k 9 ﬂ ,
: S 5|dllsg
» P o lalla E . ) N 5
4 2 |S3 |-lan S g < ;
o . :
' Slog |ofjumoln g Bl t
§ IR o | P I Q ol 'K
AL EEEIEH REIE e
£ O |8levn o 3 | 1
{ Parameter (from Table 2) © Offsd & ) 1
- 1. Rate of biodegradation * * * * 3
2. Rate of photolysis (spectra) * * * * %1
3. Rate of reaction with OH radical * (%) %i
4, Rate of soil adsorption, desorption * * * * * f%
5. Adsorption coeff. with hysteresis * (*) i
6. Coeff. n in Freundlich equation * (*)
7. Rate of uptake by aquatic life * * * [*]* | *
8. Rate of clearance by aquatic life * * * [*] *
9. Apparent diffusion coeff. in soils *
10. Rate of oxidation in water * * * ;
[ 11. BOD, COD *
12. Rate of metabolism by aquatic life *
13. Rate of wet and dry fallout * (*) !
E]
14. Adsorp. coeff./atmospheric particles (*) * :
15. Mean lifexime in air/water/soils etc. |*| * (*) * * i
16. Melting point * * * ﬁ
k
’ 17. Solubility in various solvents * ;
}
‘ 18. Reactivity * * g
19. Flammability limits in air * * :
20. Flash point * * :
21. Heat of solution * i
1
22, Dielectric breikdown voltage * k
} 23. Particle size * i
‘ 24. Schmidt number *
25. "Conductivity" parameter *
i * A
; ( ) implies property is only indirectly referred to; [ ] implies being
, considered by another ASTM subcommittee.
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ranking of properties in Tables 18 and 19. For example, in Table 18

the first seven properties were cited in four to six sources (average =
4 sources); the second seven properties (with the exception of the
activity coefficient) were cited in two to four (average = 2.7) sources;
and the last eight properties are only cited in one to three sources
(average = 1.3).

The properties with the greatest importance for the fate and trans-
port of trace concentrations of organic chemicals in the environment
would include numbers 1-12 in Table 18 and 1-15 in Table19 . Most of
1 the properties generally associated with bulk quantities of the pure
3 compound, with the notable exceptions of solubility and vapor pressure,
are found in the lower ranks uf these tables.

Ty

In two cases the final ranking of a property was adjusted to reflect
some consideration other than just the frequency of use or general im-
portance in the sources used. 1In the first case activity coefficients
were given a iLigher ranking than would have normally resulted because:
(1) they can piavide a more accurate estimate of Henry's Law constant
' (and, thus rates of volatilization from water); (2) they can provide an
: addicional route for the estimation of water solubilities (ranked no. 1
in Table 18); (3) they may allow an additional route for the calculation
of octanol/water partition coefficients (ranked no. 3 in Tablel8; and
; by (4) recent research has resulted in group contribution methods for the
0 ’ \ egstimation of activity coefficients.

) ottt ik el e (R ol M it
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In the second case, atmospheric residence time (no.21 in Table 18 i ]
was given a lower ranking than would have normally resulted because :
3 (1) the information required in the identified estimation method, the
standard deviation of the measured atmospheric concentration, is un-
likely to be available except for a very few compounds, and (2) the data
base from which the estimation method was derived was principally for
inorganic chemicals with relatively long residence times; its applica-
bility to organic chemicals is tnus in question.

T P

T T

B. Description of Estimable Properties

The identity and importance of each property identified in this
program will be clear to most readers., We have, however, included below
a brief description of each of the 23 estimable properties to make it
clear just what will be covered in the handbook.

: 1. Solubility refers to the solubility limit of an organic chemi-

: cal in water (or salt water). While some chemicals (e.g., acetone) may
E be miscible with water in all proportions, others may have solubility

e limits down in the parts per billion range. The solubility of a chamical

1 is an important indicator of its mobility in any part of the environment ]
: where liquid water 1s present.

Arthur D Little Inc
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2. Vapor pressure is the pressure exerted by the vapors of a
chemical at some stated temperature, which will usually be ambient tem-
peratures (0-30°C). The vapor pressure is an important indicator of a
chemical's tendency to change from the liquid (or solid) state to a
vapor, and thus relates to the probable importance ot atmospheric trans- ;
port in the dispersion of the chemical. The critical temperature and
pressure (used in the estimation of vapor pressure) relate to the crit-
ical point of a substance. Above a substance's critical temperature,
only one fluid phase can exist no matter how great the pressure appiied
to the system. The pressure that would just suffice to liquefy a sub- :
stance held at its critical temperature is called the critical pressure. !

3. Octanol/water partition coefficient is defined as the ratio of ;
the concentration of a substance in octanol to the concentration in 1
water when equilibrium (of the substance) exists between the two-phase
octanol/water system. This coefficient has found much use in describirg
the hydrophobic/hydrophylic character of chemicals. Hydrophobic chemicals
(which will have a large octanol/water coefficient) will preferentislly
associate with organic materials (e.g., body fat, soil organic matter,
ete.) while hydrophilic chemicals will preferentially associate with
water.

4. Adsorption coefficient is a measure of the degree of adsorption ~
in asediment/water or goil,water environment, Most of the adsorption in ?“
soils and sediments is thought to take place in the organic fraction of
the material. The adsorption coefficient usually estimated, K , 1s
def{.c. as K/(o.c.), where K is the adsorption coefficient (unaé%'equi-
librium conditions) in the Freundlich equation and o.c. is the organic
carbon content of the soil or sediment,

-

5. Bioconcentration factor is the ratio of the concentration of a
chemical in some species of aquatic life (usually a fish) to the concen-
tration in the surrounding water. Different factors may result from
different test conditions (e.g., static vs flow-through tests) and if
different parts of the organism (skin, flesh, internal organs, etc.) are
considered rather than the whole organism. This factor then describes
the extent to which aquatic life accumulates various chemicals from
water, and stores them in its body. A large fraction of the data which

, have been used in correlations with this property derive from two species
' of fish, mosquito fish and trout.

T e et ok e P

6. Rate of volatilization refers to the rate at which a chemical i
will move from a well-mixed surface water body (where it is present in
dissolved form and in generally low concentrations) into the air space
above the water. An overall first-order "reaction" is usually assumed. o
This parameter is thus a measure of how fast a chemical may be lost from j
a river, pond or lake into the atmosphere. Henry's Law constant (H) is
the constant of proportionality between the concentration of a gas in a
liquid (X) and its partial pressure (P) in the gas phase (valid at low {
partial pressures).* The liquid and gas phase mass transfer coefficients ;
are used, in conjunction with a concentration gradient driving force, to

*Thus P = HX
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derive a mass flux assoclated with the tr=nsfer of 4!.e chemical across
a critical boundary within the respective phase, The rate of volatili-
zation will depend on the air and water s.2ed as well as other factors.

7. Rate of hydrolysis is the rate at which a chemical is degraded
(initial reaction) by aqueous hydrolysis, The nature of the reaction
may vary depending on the pH of the solution, i.e., the initial reaction
may be with OH™, H.0 or H,0% and may involve species of the compound
being hyvdrnlyzed t%at dif%er from each other in the degree of protonation.
Hydrolysis is considered to be an important degradation pathway for many
organic chemicals although for others it may, because of its slowness,
play no practical role in the eventual Jestruction of the chemical.

¢, Dissociation constant is defined as the racio of the concentra-
tions of the dissociated species of a molecule (e,g., [H'] and [CH,C00~]
in acetis acid) multiplied together, to the concentration of the undisso-
ciated chemical (e.g., [CH3COOH] for acetic acid) in water. The degree
of dissociation may be strongly affected by pH. A highly dissociated
chemical may have markedly different solubility, adsorption, bioconcen-
tration and toxic characteristics than the corresponding neutral chemical.

9. Activity coefficient (in aqueous solution) is defined as the
ratio of the chemical's activity (a) to its mole fraction (X) in solution,
The activity of a substance may, in turn, be related to its fugacity or
chemical potential, and provides a measure of how "active" the material
is relative to some standard state. As described elsewhere in this
report, the activity coefficient may be used in obtaining Henry's Law
constant (H), in estimating solubilities for some chemicals of low
solubility, and in estimating ocatnol/water partition coefficilents.

10.  Rate of volatilization from soils refers to the rate at which
a chemical will be lost from the surface or bulk surface liyer of a soil
into the air space above this soil. This parameter is especially impor-
tant in assessing the importance of atmospheric transport in the loss of

pesticides that have been applied to agricultural lands or other pest
control areas.

11. Diffusion coefficient in air 1s the constant of proportionality
between a concentration gradient of a substance over some distance in alr
and the diffusive flux of the substance across this distance. Movement
is due to pure diffusion alone 2nd 1s rot due to air turbulence, etc.

12, Diffusion coefficient in water is the constant of propocrtionality
between a concentration gradient of a substance over some distance in
water and the diffusive flux of the substanca across this distance. As
above, movement is due to pure diffusion alone. Air and water diffusion
coefficients are useful in assessing the importance of pure diffusion in
various transport phenomena where bulk transport and turbulent dispersion

may play only a minor role {e.g., in the air spaces and soil moisture of
a soil).
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13. Deneity is the mass of a pure substance divided by its volume.
This property is importamnt, for example, in determining the initial fate
(i.e., floats vs sinks) of a chemical spilled into water.

14. Boiling point is the temperature at which the vapor pressure
of a material is equal to the ambient pressure (76 cm Hg for th~ normal
boiling point). The boiling point is thus just one special point on
the vapor pressure-temperature curve (which may be obtained under #2

above); but it also serves as a general indicator of volatility and
standard state.

15. Heat of vaporization is the amount of heat required to vaporize
a given quantity of a substance at a specified temperature (often the
boiling point). This parameter will give some indication of how readily
a pure substance will volatilize under a given set of environmental
conditions.

16. Surface tension is a measure of the intermolecular forces of a
liquid material which tend to reduce the surface area of the liquid in
contact with air. This property will influence the rate of spreading of
a spill on any surface.

17. Interfaclal tension with water refers to the intermolecular
forces which will tend to keep the organic/aqueous phases separate and
the surface energies minimized. This property is important in the rate
of spreading of a liquid spilled on water.

18. Viscosity is a measure of a fluid's resistance to change in
form when moving, a sort cof internal friction. It is important in con-
sidering, for example, the ease with which a chemical may be pumped.

19. Heat capacity is the quantity of heat required to increase the
temperature of the pure substance one degree of teamperature, The property
would be important in some chemical spill situations where the spill was
exposed to heat.

20. Thermal conductivity is the time rate of transfer of heat by
conduction, through the pure substance of unit thickness, cross-section
area and temperature differential. This property would also Le important
in some chemical spill situations where the spill was exposed to heat.

21. Atmospheric residence time is the mean lifetime of a chemical
in the (lower) atmosphere considering all degradation and loss mechanisms.
This is an important indicator of thu likelihood that a chemical may be
a serious atmospheric pollutant.

22, Dipole moment for moliecules 1s associated with the transfer of
charge within the molecule and the distance separating the charge differ-
ential.
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23. Refractive index of a substance is the ratio of the velocity ‘
of light in a vacuum to its velocity in the substance. It will vary :
v with the wavelength of the light used. The property is sometimes used
5 as an indicator, in analytical work, of the purity of a substance.

PANPO

*
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§< C. _Overview of Available Estimation Methods

A diversity of types of estimation methods exists for the proper-
ties listed in Table 2 ; and, in most cases, more than one estimation
method is available for each property. 1In general, estimates may be
‘ based on theory, on correlations of experimental values, or on a combina-
§ tion of the two. In many cases it 1s possible to estimate some property
= from a knowledge of the chemical structure alone, although such methods

are frequently limited to chemicals of relative simplicity with regard
to Loth atomic composition and structural bonding.

it LRI ARSI ittt vt S

Figure 1 shows schematically a number of pathways for property
estimation. Structure, through group contribution methods, is seen to
be involved in a number of pathways. In some cascs these pathways
involve equations based on the form of a theory, with empirical correla-
tions (with structural fragments or other properties) of the constants
which the incomplete theory does not provide. In other cases, structure
may be used (again via fragment constants) in a straightforward correla-
tion with the desired property. A good example of this latter case is
the use of fragment constants for the estimation of octanol/water parti-
tion coefficients. In this particular case, fragment constants for =
relatively large fragments (several containing five or six atoms) are “
available; this allows more accurate (and rapid) estimates to be made

than in other cases where, for example, only atomic "fragment" constants
might be available,

A A

i vt

The importance of two-parameter correlations, and the central role
of the octanol/water partition coefficient is also clear from the lower
portion of Figure 1. One of the more important correlations, for example,
is that between the water golubility (S) and the octanol/water partition
coefficient (Ko/w) with equations of the form

[ =
log (1/8) a log Ko/w +b

where a and b are constants which are obtaired by fitting a straight line
to 4 plot of log (1/S) vs. log K using data for a number of chemlcals., j
Different values of a and b may 8éwderived for different classes of !
chemicals which will generally lower the probable error in the estimactes
obtained. Because of their sinplicity, completely empirical correlatio.is
such as this are tempting to use outside of the range of chemical classes
and values on which they are based, but such uses may involva substantial
errors in the resulting estimates and are to be avoided.

Input data requirements for the available estimation methods vary
widely. 1In the simplest of cases the structure or one other property
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Air/Water
Partition
Coefficient*

Activity
Coefficient in
Water

Other
Solvent/Water

Partition
Coefficients

>~ Adsorption
ey Partition }-—-—. cn Soils and
v Coefficient ‘.j Sediments

Properiias, e.g.
Bailing Point
Critical Constants
Heat Capacity
Vapor Pressure

Ht, ot Vaporization
Viscosity®
Liquid Density
Surface Tension

Rate of Hydrolysis*®
Dissociatian

/ ~

, Octanol/Water

——

»

Snlubility - == )
in Fresh , N Blf:cncentr?tlon
Water S " in /‘\quatuc
Biota

Solubility
in Sait
* Water

*Other Information also Required

emam m» Up-ertain Patiiways nr Pathways Limited to Certain

.
Classes of Chemicals

FIGURE 1 SOME POSSIBLE PATHWAYS FOR PROPERT v eSTIMATION
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value may be required. In some of the worst cases, three, four or more
input parameters may be required; and if data are not available, these
parameters will, in turn, have to be estimated as well, In such cases,
the prohlem of error propagaticn in the overall estimai:ion method servues
quite complex and it may be difficult to obtain a reascnable astimate

of the probable error in the estimate derived.* Table 20 rrovides 2
summary of the chemical-specific input data requirements fov a number c¢f
property estimation methods. No attempt was made to lir: the inpu:
requirements of all available methods, but just enough to provide #n
indication of the variety involved.

The remaining part of this section provides more specifi: informa-
tion on some of the available estimation methods for the 2% properties
listed in Table 2. The references cited in this suvisecc.lon are given at
the end of the subsection in order to save tims fcr the reader wishing
to see the references cited. Most of the refevrecaccs cited are also
included in the bibliography given in Section V7T -3.

1. Solubility in Water

Some of the more interesting f{and recent} estimation methnds for water
solubility are based upon ccuirelstions 4ith such parameters as the octanol/
water partition coefficient (K , ), with bioconcentration factor (BCF),
and soil adsorption coefflciangéwa P). A set of nine correlztions with
Ko/ for nine differenc sliemfcal clésses was prepared some yesrs agy

by Hansch et al. (19687 [1]. anutlier correlatisu with this parameter
has been repc:ted by Chiou et al. (1977) [2]. The correlations with

BCF and Ko are more likely tr be used to estimate those parareters wher
the water golubility is xnown; such correlations are referenced in the
subsections on those parameters. Kenags and Coring (1978) {3] have re-
viewed (and expanded on) many of the reported coirelations between watexr
solubility, Ko/w’ BCF and th.

The solubility of pulynuclear aromatic hydrocarbons (PAH) uhas been shown

to be estimable from the molecules' effective molar volume (Leinopen et al.,
1971) [4] or their carbon aumSer (Mackay and Shiu, 1977) [5]. 1In the latter
study, the relaticuship to the infinite dilutior activity coefficient wag
also demonstrated. Tor regular hydrocarbons up to Cin, McAuliffe (1969) [6]
has also shown a good correlation between water solubiiity and carbon
number. McAuiiffe (1966) [7] has alsc shown that correlations with hydro-
carbon molar volumes may be used if various classes (e.g., saturated pa-
raffins, oiefins, diolefins, aromatics, etc.) are considered separately.

The parachoi, which 1c a measure of molar volume, has alsc been correlated
with water solubility for organics (McGowan, 1954) [8]. Stefanve (1977) [9]
has correlated the solubilities of substituted benzenes with a modified
sigma substituent constant (a linear free~energy relationship parameter).

*Additional discussinn of error propagation in estimation methods is
given 1in S«<ction ITI-D.

References for this section are given on ~age 69.
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TABLE 20

{
s
1
i
H
H
s

EXAHPLES OF CHEMICAL-SPECTFIC INPUT DATA REQUIREMENTS FOR

SOME CF THE MORE COMMON PROPI.RTY .oTTMATION METHODS

(Different methods identif{ed by a, U, ¢ ... etc.)

] 1. Solubility in water

d. QDctanoi/water partition rzoefficient

b. Bioconcen.retion factor

PO

. Loll or sediment adeor:~ion coefiicient (Ko o )

d. Molar volume oxr tarachor :

e. Carbon number (for polynuclear sromatic hydrocarbons)
Activity roefiilcient (for chemicals of low solubility)

g. Modified sigma constant (a linear free-energy relationship
parameter)

TR T
"
.
x

h. Helting point and heat of fusion (for solids in liquids)
i. Fenrv's Law Coastant and ¢ugacity (for gases in liquids)

R s A k]

T

2. Vapor pressuyve

a. Boiling point, critical temperature and critical pressure
13 methods)

>, Three parametere .in (a) plus heat of vaporization

c. Coefficients A, B, C for Antoine equation*

T ST N ST 8 T T
55

d. Cuefficients A, B, C, D {or b, C plus critical temperature and
pressure) for Frost-Kalkwarf.Thndos equation¥

3. Octanol/water partiticn coefficient

L a. Fragment constan:s (v values in some cases)

b. Fragment constants plus value of Ko/w for structurally related
chemical

c. 3olv~nt/water partition coefficlent for some other solvent
d. Water solubility

e. Soil or sediment adsorption coefficlent (l(o c )

f. Bioconcontratica factor

- s i o,

*These coefficients are tabuleied for a limited number of chemicals..
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TABLE 20 -(cont.) i

4. Adsorption coefficient for soils and sediments (Ko c )

a. Octanol/water partition coefficient
b. Water solubility

¢. Bioconcentration factors

d. Fragment constants or parachor

i T T

5. Bioconcentration factors for aquatic life

a. Octanol/water partition coefficient
b. Water solubility

c. Adsorption coefficient for soil or sediment

x
JT

d. Molecular weight (for polycyclic aromatic hydrocarbons)

6. Rate of volatilization from water

} Henry's Law constant, gas and liquid phase mass transfer
. coefficients (or an overall mass transfer coefficient)

7. Rate of hydrolysis in water

a. Group or substituent values (for use in a linear freevenergy
relationship) and the rate of hydrolysis for a structurally
2 related compound (various methods available)

ki al L

b. pK_  of product plus correlation between pKa and rate of
hyarolysis for structurally related compounds

8. Dissociation constant

s

Group or substituent values (for use in a linear free-energy
relationship) and the dissociation constant for a structurally ;
related compound (various methods available) | A

9. Activity coefficients

| a. Group contribution factors (2 methods available)
i b. Vapor-liquid equilibrium data

é: c. Solubility parameters and molar liquid volumes i

{

1

:l 10. Rate of volatilization from soils !

b Vapor pressure and diffusion coefficient in air (plus diffusion i‘
! coefficient in water in wet or saturated soils) 3
; 58 .
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TABLE 20 (cont.)

11. Diffusion coefficient in air

a. Molecular weight, collision integral, characteristic length.
(Collision integral may be obtained from dipole moment, molar
volume, boiling point and a characteristic energy parameter.)

b. Molecular weight and atomic structural diffusion-volume incre-
ments

12. Diffusion coefficient in water

«
s AR rete e tin e e

Viscosity and molar olume

TR

13. Density (for iic ids)

i3

1
a. Pitzer acentric factor (derived from the vapor pressure at a ?
! reduced temperature of 0.7), a scaling parameter (obtainable
1 from the acentric factor and the critical temperature and

pressure), and the critical temperature. (For saturated-liguid
volumes only)

Ly

b. Critical temperatire, pressure and compressibility factor
¢. Above in (b) plus acentric factor

14. Boiling point

a. Group contribution factors (several available)

b. - Molar refraction, parachor and a constant that.depends on the ;
chemical class of the chemical (alcohol, amine, ether, etc.) .

3 15. Heat of vaporization

a, Critical temperature and acentric factor

st bt

b. Critical temperature and pressure, boiling point, and ccmpres~
i sibility factor

. c. Vapor pressure-temperature data (laboratory or estimuted) plus ;
compressibility factor i

16. Surface tension

a. Parachor, vapor density and liquid density §
b. Critical temperature and pressure, and boiling point

Molar refraction and refractive index

e s £ and IRL R
0
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17.

k-

18.

T Y

19.

20.

21.

22.

TABLE 20 (cont.)

Interfacial tension with water

Surface tension of pure components, molar volume, and a con-
stant which depends on the size and type of organic molecule
Viscosity

a. Density of liquid at boiling point (for liquids at boiling
point)

b. Thermal conductivity (for liquids at boiling point)

¢, Liquid density, critical temperature and a constant derived
from group contribution factors (for liquids)

d. Critical volume and temperature (for gases)

Heat capacity (liquids)

a. Group contribution factore (several available)

b. Critical temperature, acentric factor (for polar fluids), the
polar factor, and the heat capacity at constant pressure

Thermal conductivity

a. Heat capacity at constant volume and pressure, viscosity and
molecular weight (for gases)

b. Molecular weight, critical temperature and pressure, and the
heat capacity at constant volume (for gases)

c. Boilling point and molecular weight (for liquids)

d. Liquid density, heat capacity at constant pressure, critical
temperature, boiling roint, heat of vaporization, and two
constants (which are tabulated for a limited number of
chemical classes) which depend on the chemical class and the
liquid density (for liquids)

Atmospheric residence time

Mean and standard deviation of the concentration in the atmosphere
Dipele moment
Vector group-contribution factors

Refractive index (liquids)

a., Liquid density and a constant

b. Molar refraction, molecular weight, liquid density
60
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More basic approaches to solubility, considered separately for gases, 1i-
quids and solids, have been raviewed in several texts (Reid et al., 1977;
Hildebrand and Scott, 1950; and Shinoda, 1978) [10,11,12]. One can, for

example, estimate the solubility of a solid in a liquid (e.g., in water)
if the melting point and heat of fusion (or entropy of fusion) are known.
These approaches are, in comparison with the simple correlations men-
tioned previously, somewhat more complicated and, in addition, require
data that are less likely to be available.

The influence of salinity on the solubility of organic compounds has

been considered by several researchers. The work cf Eganhcuse and

g Calder (1976) [13] indicates one method, involving the use of an empirical
3 salting parameter (Ks), which can be used to estimate solubilities in

3 brackish or salt waters. We are aware of other work in this area but

d have not yet had time to obtain and review the relevant publications.

2. Vapor Pressure

Reid et al., (1977) [10] have reviewed most of the methods for vapor
pressure estimation that we may want to consider. Most methods require
! that the boiling point, critical temperature and critical pressure be
known (or be estimated first). Other methods may also require the heat
of vaporization. The methods reviewed by Reid et al., (1977) [10] are
generally only considered to be accurate for vapor pressures > 10mm Hg,
1 although some researchers have indicated that several of the methods may
3 be adequate at much lower pressures,

Some work on the estimation of low vapor pressures (as would be the case
for many pesticides) has apparentiy been carried out by Dr. J. Prausnitz
at the U, of California. We have not yet had an opportunity to review
his work in this area.

1 3. Octanol/Water Partition Coefficients (Ko/w)

. This parameter, which has found such wide use in the estimation of other

] parameters, can be estimated in a number of ways. One basic approach is

& based upon fragment constants (7 values in some cases) which are derived

| for individual atoms or groups of atoms in a molecule. One of the best
reviews of the subject is given by Leo et al., (1971) [4]. Leo and his
co-workers at Pomona college have prepared a much expanded list of frag-
ment constants and bond factors, along with a data base of Ko values
for thousands of chemicals, Some of the revised fragment conégants have
been published (Leo, 1976; Hansch et al., 1973) [15,16], but much of this
work has yet to be published in final form. The accuracy of this method

: is much improved if the measured K value for a structurally related

| compound is available. Work on estifation techniques for Ko/w - gimilar

*References for this section are given on page 69.
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to that of Leo and Hansch - is currently being carried out by Hopfinger
and Potenzone at Case Western Reserve (see: Hopfinger and Battershell,
3976; Potenzoue et al., 1977) [17,18]. Some of their work has allowed
the whole estimation technique to be computerized.

Lec et al., (1971) [13] have also shown that K,/ values may be estimated,
via regression equations, from a chemical's partition coefficient between
some other snlvent and water. Constants (for a regrassion equation) for
about twenty different solvents have been given,

Finally, as mentioned in subsection 1 above, Ko/yy values may be estimated
frow the water solubility via a number of available ccrrelation equations.

4. Adsarpuion Coefficients for Soils and Sediments

The adsorption coefficient usually estimated, Koo, is defined as K/o.c,
where X is the adsorption coefficient in the Freundlich equation, and
5.c. 1s the organic carbon content of the soil. The parameter K,. has
been shown to correlate well with the octanol/water partition coefficient,
w (Rarickhoff et al., 1978; Briggs, 1973) [19,20], and also with water
so{ubility (Karickhoff et al., 1978) [19]. These relationships, and
others with bioconcentration factors, have been reviewed and expanded by
Kenaga and Goring (1973} [3]. The relationships assume (and it appears
to be quita valid) that the organic carbon conternt of the soil or sedi-
ment is the determining factor in the adsorption process, and that the
nature of this organic carbon material is relatively unimportant.

Some addi:ional approaches to the estimation of X (or K,.) have been re-
ported in the literature and, although they do not appear to have the
same degree c¢f usefulness and ease of use as those described above, they
will be evaluated in any case. Gf some interest, for example, are the
works of lambert (1967 and 1968) [21,22], Hance (1969) [23], Helmer,

et al., (1968) [24], and Bark and Graham (1966) [25].

5. Bioconcentration Factors for Aquatic Life

Bioconcentration factors (BCF) have been correlated principally wich
octanol/water partitien coefficients (Ky/y) and water solubilities (WS).
The better known correlations are those of Neely et al., (1974) [26] for
rainbow trout muscle, Lu and Metcalf (1975) [27]) and Metcalf gt al.,
(1973) [28] for mosquito fish, and Chiou et al., (1977) [2] for rainbow
trout; a significant amount of additional data does, however, exist.
Several of these correlations have been reviewed and expanded by Kenaga
and Goring (1979) .[3]. Unpublished reviews (which we have not yet been
able to obtain) of work in thils area have apparently been prepared by
Metcalf (U. of Illincis) and the EPA laboratory in Athens, Ga. In some
cases (e.g., with polycyclic aromatic hydrocarbons), it may be possible
to use a correlation of BCF with molecular weight (Herbes gt al., 1976;
Southworth gt al., 1978) [29,30].

*Reference for this section are given on page 69.
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Data exist for several other species of aquatic life (see for example,
Lu et al., 1978; Coats ef al., 1976; Clayton gt al., 1977; Southworth
et al., in press) (31,32,33,34] including snails, mosquito larvae, alga,
and zooplankter. The processes involving microorganisms may involve
more surface adsorption than internal bioconcentration, thus requiring
special correlation equations for these species. However, for those
species that allow a relatively easy interchange of a chemical between
the water and the internal parts of the organism (e.g., via gills), the
bioconcentration factors derived from fish studies may be adequate. It
will be necessary in our work to make a distinction between those studies
conducted under static conditions and those conducted under flow-through
conditions since different biloconcentration factors are obtained.

6. Rate of Volatilization from Water

The rate of volatilization from surface waters may be estimated if Henry's
law constant (H) and the gas and liquid mass transfer coefficients (kg,
kg) are known. H may be easily (if roughly) estimared from the pure
chemical's vapor pressure and water solubility, while k, and ky are some-
what more difficult to estimate. The early work on estimation methods
(Dilling, 1977; Neely, 1976; Mackay and Wolkoff, 1973; Mackay and Leinonen,
1975) [35,36,37,38)] generally considered evaporation from a well mixed
surface layer of water, buL did not explicitly consider the effect of air
and water velocities on the rates of evaporation. Some of the more recent
work has, however, considered these effects, including the effect of waves
(Cohen et al., 1978; Southworth, in press; Southworth, 1977) [39,40,41].
Additional work in this area 1s currently being undertaken by Dr. Mackay
(U. of Toronto) and Dr. J. Smith (SRI). It is not clear if any of this
current research is investigating the concentration build-up effect

that occurs in the air on the up-wind side of a water body; this tends

to reduce the rate of volatilization on down-wind portions of the water

body. Some work in this area has been conducted at A.D. Little for the
U.S. Coast Guard,

7. Rate of Hydrolysis in Water

Rates of hydrolysis can be estimated for many organic species by applica-
tion of appropriate linear free energy reltionships (LFER's). Methods

for estimation of hydrolytic reactivity are feasible primarily because
there is an extensive data base. Reaction rates have been determined for
a variety of organic species. Hydrolysis reaction mechanisms are also
generally understood in some detail, and fall into a fairly small number
of categories. Therefore, it is usually possible to select an appropriate

model system and corresponding LFER for estimation of unknown hydrolysis
rates.

*References for this section are given on page 69 .
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Solvolysis mechanisms (Streitwieser, 1962) [42] and LFER's (Leffler and
Grunwald, 1963; Wells, 1968) [43,44] have been reviewed. The types of
LFER'S that will be valuabie in estimating hydrolysis rates include the

following:

Hamett eqn. - Substituent effects on side chain reactioas
or aromatics.

Taft eqn., =~ Substituent (polar) effects on aliphatic com-
Pound reactions.

Swain-Scott Nucleophilic displacement reactions,

Brénsted - Correlations with leaving group pK_.
type a
Grunwald- - Effect of solvent changes. (Useful in conver-

Winstein ting data base values from aon-aqueous to
aqueous media).

The most difficult challenge in preparing this section of the handbook is
going to be writing unequivocal directions for choosing a model reaction
system and LFER. We can .aticipate that there will usually not be one -
and only one best-choice model for a given organic specles. The uncer-
tainty in selecting models implies that estimated values may frequently
be uncertain by 1-3 orders of magnitude. The estimated values of hvdrol-
ysis rate, therefore, may be most useful in establishing boundaries of
environmental concern. For example, if one estimates a hydrolytic half-
life of > 10% years, one generally will not need a finer estimate because
other environmental processes will dominate the hehavior of that organic
species, If the estimated half-life is on the order of days, however,

a measuyrement of the rate constant may be in order to define whether it
is 0.1 day or 10 days.

Dissociation Constant

¥ +he dissociation constant can be estimated for most organic acids and bases
ly application of an appropriate LFER. There is an abundant data base of
model compound dissociation constants. The dissociation reaction is re-
latively simple and well understood, so selection of appropriate model
systems is facilitated. The Hammet substituent constants for aromatics

and the Taft substituent constants for aliphatics will generally be apprc-
priate, (Leffler and Grunwald, 1963; Wells, 1968) [43,44].

9. Activity Coefficients

Although methods have been available for some time to estimate activity
coefficients from vapor-liquid equilibrium data (see Reid, et al.,

*References for this section are given on page 69,
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1977) [10], it 1is only recently that group-contribution methods have been
available. Such methods require only that the structure of the molecule
be known and that the group-contribution factors be availlable for the
various "groups" in the molecule. Two such methods, called ASOG ("Analy-
tical Solutions of Groups") and UNIFAC ("Universal Functional-group
Activity Coefficients”), currently exist (Palmer, 1975; Fredenslund et
al., 1975; Fredenslund et al., 1977) [45,46,47). While we have not yet
had an opportunity to study these two (somewhat complex) methods in de-
tail, it does appear that they Lave the capability to provide fairly
accurate estimates of activity coefficients for a somewhat limited selec-
tion of chemical classes.

10. Rate of Volatilization from Soils

Volatilization or evaporation from soils requires a consideration of
chemical location (e.g., on soil surface or mixed in soil), chemical
concentration, adsorption on soil, atmospheric relative humidity, and
soil temperature and moisture content. A number of researchers have in-
vestigeted this process and proposed estimation techniques (Hartley,
1969; Lloyd-Jones, 1971; Freed et al., 1972) [48,49,50], and it appears
that reasonable estimates can he obtained. ,
When evaporation from surfaces is being considered, a knowledge of the
vapor pressure and rate of diffusion (in air) of the chemical may be the
only chemical-specific inmiormation required. For evaporation from a
mixed soil, additional information may be required (e.g., the diffusion
coefficient in water or an apparent diffusion coefficient for the soil)
(Mayer et al., 1974) [51].

11. Diffusion Coefficient in Air

Available estimation methods have been reviewed by Reid et al., (1977) [10],
and these methods are expected to be appiopriate for chemicals of environ-
mental concern unless the molecules tend to agglomerate (in which case
diffusion is reduced). Polar and nonpolar molecules may have to be con-
sidered by different methods. A number of different input parameters are
required in these methods.*

12. Diffusion Coefficient in Water

Available estimation methods have been reviewed by Reid et ul., (1977) [10],
and these methods are expected to be quite applicable to chemicals of en-
vironmental concern. One of the more widely used methods (Wilke-Chang)
requires a knowledge of the chemicals viscosity and molar volume.*

s

*It may be necessary to include, in our handbook, methods to estimatie
or derive some of these input parameters from more basic informatiom.

x*Raeferences for this section are given on page 69.
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13. Density

Reid et al., (1977) [10] have reviewed the available methods for estimating
liquid densities. All are based on some form of the law of corresponding
states and are algebrailcally complex. Input parameters may involve molar
volumes, acentric factors, and critical-compressibility factors.* The
density of a gas may be derived from any appropriate equation of state

fo- gases. The densities of sclid. cannot be easily estimated.

14. Boiling Point

Although various methods for estimatin~ normal boiling points are availsgble,
they are not especially accurate (Reid et al., 1977) [10}. Most involve
group~contribution techniques, which are devised for homologous seriles

with rnio more than one functional group attached to a hydrocarbon frame-
work. The methods were reviewed in Reid and Sherwood's 2nd edition of

The Properties of Cases and Liquids (McGraw-Hill, 1966).

15. Heat of Vaporization

Reid et al., (1977) [10] have also evaluated various estimation methods
for the heat of vaporization. One apprecach requires finding dep/dT
either from a vapor-pressurc—temperature correlation or from actual
vapor-pressure data. In both cases, 1t is al.so necessary to know the
compreseibility factor of the chemical (gas and liquid states). A
second approach requires a knowledge of the critical temperature and
acentric factor. A third approach (for estimating values at the boiling
point) involves such input parameters as the critical temperature and
pressure, boiling point, and compressibility factor. This value can then
be corrected to other temperatures.

¥
}
{
!

16. Surface Tension

Available methods for estimating surface tension have been reviewed by
Reid et al., (1977) [10]. For pure liquids, methods based upon the law
of correspunding states and upon the parachor are considered the most
accurate. In many cases the parachor can be estimated via a fragment
(group) contribution approach. Input parameters (other than parachor)
for methods applicable to organic liquids include the liquid and vapor
densities in one method and - in a second method ~ the critical tempera-
ture and pressure, and the boiling point. Some difference in applica-
bility between methods is seen for hydrogen-bonded liquids and non-
hydrogen~bonded liquids.

*References for this section are given on page 569.
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17. Interfacial Tension With Water

According to Autonoff's rule, the interfacial tension,
the difference between the individual sur{~ce tensions

g,, 1s equal to
of
mutually saturated phases under a common vapor or gas:

the two

91 % %s T 92

If pure component surface tensions are used, the rule proves quite in-
accurate (Perry and Chilton, 1973) {52]. If, however, the saturated-
phase values are used, estimates within ~157% can usually be made. The
basic problem then is to estimate the saturated-phase values. Reid et al.
(1977) [10) have reviewed two methods to estimate such numbers for binary
organic-aqueous mixtures. One, primarily for organic chemicals of low
solubility, requires the use of a constant which has been tabulated for

a limited number of chemicals. The second method, more generally appli-
cable to organics of any solubility, requires molal volumes and a con-~

stant, g (a function of the type and size of the organic chemical), for
input parameters.

13. Viscosities

Viscosities of most liquids, at their normal boiling point, may be esti-
mated with reasonable accuracy from either the liquid density or--for
nonpolar liquids--the thermal conductivity. At temperatures other than
the boiling point, Thomas's equation may be used which requires not only
the density, but also a parameter derived from the reduced temperature,
and atomic and group coatributions [52].

19. Heat Capacity

Estimation methoda for the heat capacities of both liquids and gases
have been reviewed by Reid et al. (1977) [10]. For liquids, a number of
approaches are available including group contribution methods, correspon-
ding-states methods, and others. Input parameters for the non-group
methods include the critical temperature, acentric factor, and others.
Similarly, a number of approaches for estimating ideal gas heat capa-
cities are available, including one, fairly accurate, group contribution
method (Method o Benson).

20, Thermal Conductivity

Estimation methods for the thermal conductivity of gases and liquids have
been reviewed by Reid et al. (1977) [10]. A variety of input parameters
are required. In one quick method, to obtain approximate values for
liquids, only the boiling point and molecular weight are used. One rela-
tively simple method for gases requires the heat capacity at constant
volume, the heat capacity at constant pressure and the viscosity.

*References for this section are ziven on page 69.
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21. Atmospheric Resideace Time

Junge (1974) [53] has proposed that the atmospheric residence time of
trace gases (in the troposphere) can be correlated with the variability
of the measured concentration of the gas in the atmosphere. His corre-
lation derives from data on H,0, Rn, O3, CO, CHy, N0, Hy, CO2, and Oj.
The residence times covered by these species range from abou: five days
for radon (Rn) to almost 10,000 years for O,. In particular, Junge
found that when a plet of the log relative standard deviatfon (of the
atmospheric concentraticn) is plotted versus the log of the residencsz
time, a straight line (negative slope) is obtained.. That is, the resi-
dence time increases as the standard deviation decreases, The model
used by Junge contains a number of assumptions (e.g., no significant
time, seasonal, or locational varjations), and the estimated residence
times may thus have uncertainties of at least one order of magnitude.

: The input data for this correlation are adequate measurements of the
global atmospheric concentration of the chemical from which a mean and
standard deviaticn can be obtained.

1 22, Dipole Moment

Dipole moments of molecules have been tabulaced for a large number of
molecules (for references to data bases see Reid et sl. (1977) [10)).
When necessary, dipole mor2nts can be estimated by vector group~contri-
bution methods, although such methods apparently require considerable
efforc (Reid et al., 1977) [10].

Sat bt

23. Refractive Index

3 For most types of liquids, the viscosity may be estimated fairly accurately
from the empirical Eykman equation, which requires only the density and ;

1 one constant for input. A rougher approximation may be obtained for or-
ganic liquids with the Lorentz-Lorentz equation which relates the refrac-
tive index to the molar refractlon (values of which are obtained via

group contribution methods) and the molar volume (which may be obtained !
from the density and molecuar weight). |52]

s

: For hydrocarbons only, the effect of temperature on the refractive index

- can be estimated if data on the density at the two temperatures in ques~-
‘ tion are available [52].

*References for this section are given on page 69,
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D. Zrrors and Their Propagation in Estimation Methods

The development and evaluation of methods for estimating physico-
chemical praperties involves computing required numerical results £rom
given numerical data. The given data are input information, the required
results are the output irformation, and the method is known as the al-
gorithm. These esserntial ingredients of the methodology are summarized
in Figure (a).

] Input _ Output (a)

{ Information _— Algorithm ——=—*>| Information

:

E ]

‘

%
Input Algorithm Output (b)
Errors —— Errors —— Errors

Frequently, several algorithms are available for producing the re-
quired output information, and a choice must be made between them. There
are various reasons for preferring one algorithm over another, but two
, obvious criteria are speed and accuracy. The issue of accuracy leads us
3 inexorably to the question of errors and their propagation. Rarely will
A output information be exact, since it ordinarily comes from measurement
= devices of some sort or from other algorithms. And usually the computing
B algorithm introduces further errcr. The output information, therefore,

4 contains error from both these sources, as suggested in Figure (b).

! What is desired is not so much a method for completely eliminating
or compensating for the errors, as a technique for evaluating the un-
certainty in the output information. Depending on the nature of the in-
put information and the form of the algorithm, the techniques are myriad,
and are best exemplified by examples.

]

é‘ Linear Regression: One independent variable.

b This type of algorithm gives the relationship between an independent
3

E‘

| variable x and a dependent variable y, e.g.,
y=mx+b

where m is the slope of the line and b its intercept (value of y at x = 0). ;
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Often the statistics of the regression are given: the standard devia-
tion, S__, and the correlation coefficient, r. For a calculated value
of the Hzpendent variable y“, from & value of x in the applicable range
of the regression formula, the uncertainty in y“ is given by + S

(1.e., y=y“ + S ). However, there is only a 682 confidence 1&¥el
associated with tifs range. Other confidence levels are obtainable firom
the formulas given below.

Range Confidence Level
y- + Syx 68%
y' # (1-96)8yx 952
y  * (2.58)3yx 992

Unfortunately, use of these formulas imply that the value of x is
known with certainty; this is seldom the case. Associated with each
value of the independent variable may be an error S _, such that its

X
range of values is X + Sx. Thus,

y~mx +b i.me

where mS, is the uncertainty associated with the calculated value cf y,
resulting from uncertainty in x. The error propagation formulas for
random errors assoclated with two statistically independent variables
x and y for a number of common operations are given below.

Operation Error Propagation Formulas
Addition X+Y +Vs 2 + 5,7
Subtraction X-Y i\Jsz + 52
y
Multiplication XY i\lxzsy2 + Y25x2
.E_E
2
Division X/Y +4/7x . X2 g 2
y2 yh y
2 2 2
. f (x 2 of (x,¥)
f(x,y) f(x,y) + o s~ + 5y Sy
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Alternatively, in those cases where only the regression fcrmula,

or slgorithm is given, a measure of the overall uncertainty associated
with a caleclated value using the algorithm may be obtained by compari-
son of a series of cslculated values with their experimental counter-

parts. If a represcntative range of input variables is used, and the ‘
resulting range of output variables is wide enough, an acceptable !
measure of the resultant (dependent variable) error may be realized.
This type of analysis would al3o be apolicable for higher order regres- ‘
sions as well. An added measure of certainty assurance may be obtained
by regressing a series of calculated values against experimental values.
Such a procedure has the advantage of determining the regressicn sta-

tistics (i.e., standard deviation and correlation coefficient) as well.

Ofuvzntimes, insufficient input information may have been utilized in
deriving the correlation equation. In such cases, sample calculations
for a series of compounds can be tabulated, thus offering the researcher
the benefit of order-of-magnitude values for at least a few compounds,
one of which may be structurally and/or functlonally related to the com-
pound of interest.

E. Potential Cost Savinps Associated with the Use of Estimation Methods

In the original technrnical proposal for this program (submitted
A.gust 7, 1978) as well as the technical proposal for Phase II (submitted
February 6, 1979), we discussed the need for estimation methods and
pointed out several specific areas in which they might be used. 1In
particular, it was mentioncd that estimated values of physicochemical
properties would be very useful in:

e Models of the environmental fute and transport of chemical
pollutants;

e Setting rasearch priorities (e.g., for "new" chemicals registered
under the Toxic Substance Control Act);

o Checking the reliability of reported data;

e The design of laboratory and/or field experiments; and

e Ffilling data gap: in large chemical data bases used by various i
agencies,

While property estimation has been a routine matter for some indi-
viduals in the past (e.g., chemical engineers who had to design a new
process or plant), for most people the response to the need for a parti-
cular physicochemical property has been to: (1) conduct a literature
search for previously reported (measured) values; and/or (2) measure the
value themselves. If the literature contains no previously-reported
values then the second step has to be taken. This second step is
frequently taken even when other data are available.

76
Arthur D Little Inc.




s S A
T T S T " T

The cost of conducting a literature search for one property of one
chemical is difficult to estimate; it clearly depends upon several fac-
tors ‘ncluding: (1) the capabilities of the searcher; (2) the searcher's
proximity and access to a good scientific library; (3) the relative
obscurity of the chemical and the property; and (4) luck! Some chemi-
: cal data bases have recently been prepared which are searchable by com-
‘ puter, but computer searches (via remote terminals) of the published
literature will only yield citations and, in some cases, abstracts
(which may or may not contain the property value desired). Considering
< all of the steps required to conduct a literature search, a typical
3 cost range of $50-500 seems reasonable for the determination of a single
property of a single chemical. The higher end of this range would be
] associated more with obscure chemicals and properties (for which a man-
i ual search of up to 70 years of literature might be required), with
those situations where it was desired to obtain all reported values
rather than just any value, and where other difficulties (e.g., foreign
language articles, inaccessibility to a good library, etc.) were pre~
X sent. Cost savings (on a per chemical basis) are clearly possible when
! several properties are being searched for. For example, in a recent
(1978) contract issued by the U.S. Coast Guard, another federal labecra-
tory was required to fill in the data gaps for the physiochemical pro-

3 perties of a large number nf compounds; the literature search effort
4 cost, on average, $62 per data point.*

The costs of measuring various properties in the laboratory have been
estimated for many properties. Table 21 presents some estimates for
most of the estimable properties of interest to this program. The costs
given are (in most cases) assocliated with the costs (time charges,
chemical usage and laboratory overhead) to be expected at a laboratory
which conducted such tests on a routine basis. The wide range of cost
. estimates seen for some parameters 1s clcarly associated with the ab-
] solute value of the parameter and the type of chemical involved. For
example, it would cost significantly more to measure the solubility of
a chemical with very low solubility (e.g., DDT) where special care in

every step of the analysis is required, than for a chemical of much
i higher solubility (e.g., benzene).

o T

When the costs of literature search and laboratory measurement are

considered together, costs of $100-1000 per property per chemical will

not be unusual. To obtain, by licerature search and measurement, all

23 properties listed in Table 21 for a single compound would thus appear i
; to involve costs ranging from $9,000 to $40,000! If all values were
{ available in the literature, total costs might range from $1,000-$10,000.

' *
: Personal communication from M, Parnarouskis (USCG) to W. Lyman
v (A.D, Little), March, 1979.
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11.
12.
13.
14.

16.
17.
18.
19.

21.

TABLE 21

ESTIMATED COSTS FOR LABORATORY MEASUREMENT OF SELECTED PARAMETERS

Parameter
Solubility in water

Vapor pressure

Octanol/water partition coefficient

Adsorption coefficient for one soil or

sediment

Bioconcentration factor for fish
({1owthrough)

Rate of volatilization from water
-Henry's Law Constant

Rate of hydrolysis in water

Dissuciation constant n water
Activity coefficient
Rate of volatilization from soils

Diffusion coefficient in air
Diffusion coefficient in water
Density

Boiling point

Heat of vaporization

Surface tension

Interfacial tension with water
Viscosity (several points)
Heat capacity

Thermal conductivity
Atmospheric residence time
Dipole moment

Refractive index (sever .l points)

*Footnotes are given on the following page.
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Estimated Cost ($)

per Compound
400 - 4,000
150 - 2,000
150 - 1,000

200 - 2,000+

7,500

1,500 - 2,000
20,000

100
450 - 600
400 - 6,000
12,000
50 - 200
(500 - 5,000)
1,000
7,500
?
(1,000)
10 - 50
20 - 50
(500 ~ 2,000)
(50 ~ 100)
(100 - 200)
(100)
(1,000)

(1,000)
?

?

(100)

Footnote*

1
1
1,2
1,2

NN LW W

1,2

1,2

w
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The point of this discussion is that there should be, for many
chemicals and chemical properties, a significant cost (and time) savings
assoclated with the use of estimated properties., In most cases we
expect that the proposed handbook of estimation methods will allow a
trained person to obtain an estimated value of one property (for one
chemical) in 5 to 20 minutes if the input data required are readily
available. 1If one or more of the input data items are not readily
available and must, in turn, be estimated, up to one hour may be
required. Additional time and cost would be involved if the missing
input data had to be obtained from a literature search.

We are not suggesting here that estimated values can be substituted
for values from the literature or measured values in all applications,
A significant difference in the uncertainty of the value is clearly
involved in many (but not all) cases. We are suggesting that managers
and sclentists consider, whenever possible, the potential time and cost
savings involved with estimation techniques.

Footnotes to Table 21

1. Personal communication from D. Shooter (Arthur D. Little, Inc.).
Memorandum: "Estimation of Costs for Chemical Fate Testing" (12
September 1978). The cost estimates are by Arthur D. Little, Inc.;
the communication also provider cost estimatés, for some parameters,
from: (1) SRI International, %2?§"Experts", and (3) Commercial
Laboratories. t

2. See reference no. 136 in Bibliography. The cost estimates of this
reference appear to include only direct laboratory costs (i.e.,
excluding overhead) and may be too low.

3. Cost estimates associated with the registration of pesticides.
Fed. Reg., 43(173):39644 (6 Sept., 1.78).

4. Rough estimates by Arthur D. Little, Inc. No real bases for these
estimates were available and they are, thu;, quite uncertain.
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IV. ENVIRONMENTAL FATE MODELING - AN OVERVIEW

A. Introduction

v T ettt i
T 2

Wiiile Phase I of this program did not specifically include a
general review and assessment of the state-of-the-art of environmental
fate modeling, we did have wccasion to look at a large number of models
and to discuss general problems with a number of experts. Since it
is expected that property estimation methods may play a significant
: role in future environmental fate models, it is well worthwhile to
; include in this report an overview of environmental fate modeling.

‘ The extent of our literature search efforts and contacts in Phase 1
was limited and, thus, it cannot be stated with certainty that the
following material accurately reflects the state-of-the-art in detail.

2 ot B Al a2 a2 ot

[

This overview focuses on four basic types of models (for organic

pollutants) which, it appears, would benefit most from the expected
cutput of this program:

. Bulk transport and dispersion models ;¥
. Chemical fate models;

. Soil/zroundwater models; and

. Chemical s»ill models

LN

One other type of model which might also benefit includes those
focussing on biota in an ecosystem (as ‘'tressed by a particular toxic
chemical). We have not reviewed any wrodels in this category. The

chemical fate models de, however, usually consider the uptake and
clearance of a chemical from aquatic biota.

IS Pry

Bull. transport and dispersion models generally describe the
advection and mixing of a pollutant in the medium. The models for the
most part are independent of the physicochemicszl properties of the
compound in questioun, and rely instead upon bulk tv:-sport mechanisms.
Processes in atmospheric models which might requirz & knowledge of the
chamical characteristics of the compound include suog inrmation,

photolysis, particulate adscrption, and reactivity with atmospheric
' gases, such as ozone,

Sk 2.7 ki ulittal B b

S

et

Chemical fate mindels on tb2 other hard emphasize environmental
fate proccess.s which require chemical specific inputs. Degradatvior
pathways such as photolysis, hydrolysis, biodegradation, and dis-
sociation are most cften considered, as well as routes involving bio-~

concentration withiu the biota of che ecosystem., adsorption and
volatilization.

P TSP P LT

Environmental fate models may :.over wide ranges of space and time.
Rougnly, the models may be d2Zined according to the following scheme

i ittt Lan e A

*These may be easily modifie¢d in .i0s9t cases to include one or more
chemical-specific fate or trausport process,
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in which the numbers in parenthesis are the horizontal space scale,
the vertical space scale and the range of time, vrespectively.

e Global (0103 km; ~0-150 km, ~10 yrs.)

® Regional . (v10° km; 0-150 km, 1 yr.);

e Local (50 km; ~0-1 km; ~1 yr.);

e Large Point Source (v10 km, ~0-1 km; ~1-103 hrs.);

e Spill (10 kmj; 1 em; “%1-100 hrs); vertical scale may
vary widely.

Soil/groundwater models shoitld actually be considered a sub-
category of chemical fate models. However, due to the large
number of such models, a separate category was established. Soil
groundwater models are confined to one envircnmental compartment,
the lithosphere. Accordingly, the only compartmental parameters
which need be modeled are the soil, groundwater and the soil moisture.
The processes which are most often considered by soil/groundwater
models are particulate adsccption and desorption, molecular diffusion,
and vapor phase transport through the soil pores.

The last model type retcis to chemical spills, usually occurring
in a river system. The primary purpose of these models is to describe
the propagation and mixing of the pollutant within the river, during
the transport process. As with atmospheric dispersion models, bulk
transport processes play a major role in executing the model. However,
chemical properties such as density, vapor pressure and solubility are
often required inputs.

The models that may be emploved in some of these schemes can
range from simple graphs or arithmetic exercises to complex computer
simulations. There are many paths to the needed answers. Which of
the available methods is appropriate depends on the specific problem
and objectives. In many cases, short deadlines have forced the use of
extremely rudimentary methods; however, “he recognition of the social
costs of suggested controls has led to a deeper interest in scrutinizing
the results of more elaborate models. The difficult balance betweer
public health risks, severe socio-economic dislocation and large
{financial outlays suggests that casual calculations will be unacceptable.

B. Objectives of Models

At the heart of the problem of relating impacts on health and the
environment to control programs for toxic and hazardous chemicals is
a reliable method of prediction. This provides a rational basis
for drafting regulations designed to meet tlhie mandates of clean air,
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clean water, resource recovery, and trxi. 3. Luzardous substance
control.

Environmental fate models have been used to achieve a number of goals.

One of these goals is for the model to act as a "monitoring' instrument.
If information is available concerning the source inputs, environmental
pathways. and sensitlive envirommental targets of a certain compound, a
model can be used to monitor the effectiveness of chemical control
programs. Future pollutant concentrations in the environment resulting
from changing emrission conditions may be assessed, and used to evaluate
the effects over a large area resulting from an industry-wide abatement
of a particular compound. Modeling may also serve to predict the
environmental fate of yet unmarketed chemicals, based upon the physico-
chemical characteristics of the molecule. By evaluating the environ-
mental fate of a pollutant, levels of exposure to be expected for
humans and wildlife can be determined. The results of these risk
assessments can be used as a basis for legislation and regulations.
Lastly, modeling is a useful tool in examining the progress of a
pollutant involved in a real episode of a chemical spill. The mixing
and dispersion of the compound within the medium over distance and

time 1s iwportant information in terms of evaluating the size of the
population and area over which harmful concentrations of the pollutant
will result.

Currently, the use of models has been largely restricted to dis-
persion studies, such as atmospheric pollution and chemical spills.
However, federal agencies and contractors have become increasingly
aware of the numerous applications of environmental fate models in
the field of research. This is especially true for chemicals which
have not been monitored in the environment.

In determining how well a model meets its objectives, several
questions must be asked:

e Who will use the model? (Research scientist? Regulatory
agency? Spill response team?)

o What questions must it be able to answer?
¢ How well is it adapted to the intended applications?

e Has the model been thoroughly tested against an adequate
data base for its validation?

e Is it amenable to practical calculations and computer
implementation?

Because of the importance of the questions of model availability and
validation, they are discussed in more detail below.
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In general, environmental fate modeling is in a preliminary
developmental stage, and, while a number of models do exist, very few
(if any) have been verified, e.g., by comparing model results with
data from model ecosystems, field ecosystems, or ambient concentrations. :
In addition, if "availability" (of a model) is defined to mean that A
a model: (1) has been pubiished and reviewed ir the open literature;
(2) has available a detailed description of the system modeled,
processes included, assumptions made, data requirements, computer
program listing, etc.; (3) has available a computer tape or card deck !
containing the program; and (4) has data for one or more test cases ]
for use with the model; then, we know of very few such "available"

g models, They are principally standard air quality (atmospheric "diffusion) ;
1 models and surface water diffusion and transport models for rivers i
and lakes. Most of these models consider "toxic'" pollutants to be ]

conservative species; some may allow for the use of an arbitrarily
4 chosen decay constant, which assumes an overall first-order "decay"
rate for the chemical.

For the most part, environmental fate models have not been

! validated. The exceptions to the rule are atmospheric dispersion and
chemical spill models. Here validation may be carried out either with
cracer gases (for the atmospheric models) and soluble dyes (for the
water models) or by comparing the model output with the measured

1 ambient concentration of the chemical species in question. Through

‘ use and experience, it has been determined that these models can
closely predict monitoring data. Soil groundwater models have been

validated to some extent by simple laboratory experiments or with field !
lysimeter data. 3

In addition to the above-mentioned problems, there are some who ;
F feel that our basic understanding of chemical fate (i.e., degradation)
! and transport processes is not sufficiently good to allow them

! so simply modeled. They would thus call into question most chemical

! fate modeling results.

I spite of the problems identified above, there is a generally
optimistic feeling about the current modeling efforts. Their use- ;
‘ fulness in assessing air quality and stream quality (for conservative L
L pollutants) is well documented, and it seems reasonable to expect i
; that environmental fate models f -~ non-conservative species will soon
f be close to reaching the objective: <nught. ;

; C. Models Principally Considering Bulk Transport and Dispersion

There are, as implied above, a number cf models (of varying
"availability") which focus on the dispersion of a pollutant, usually
in a single medium, and in a well-defined portion of the environment.
Such models include air dispersion models, river and lake dispersion

s e A
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vor mixing) models, soil/groundwater dispersion modele,* and models of
chemical spills.* The primary focus of these models is usuvally the
bulk transport of a pollutant (with air or water) and the mixing
and/or dispersion of the pollutant during this transport process.**

There have, to our knowledge, been few attempts to formulate
general transport/dispersion models for the total environment,
i.e., one that would include components of the atmosphere, hydrosihere
and lithosphere as diagrammed in Figure 2. Such a model, to be sure,
would only be applicable when long-lived chemicals were involved and
large sectors of the global environment were of interest.

Most of these models are designed simply to estimate a pollutant
concentration in a given environmental compartment, often at a
particular time and location under dynamic equilibrium conditions but
sometimes undar some assumed equilibrium condition. It is then left
o the model user to assess the impact of the calculated concentra-
tions, and the sum of the impacts that a particular target system
or organism (e.g., man) might be exposed to. With regard to human
exposure, it is extremely rare to find a model that goes beyond
simple compartmental concentrations to astimate exposures via a
number of pathways (inhalation of air; ingestion of water and food;
contact with drugs, cosmetics, dirt, etc.; industrial exposure; etc.)
so that a clear picture of the total exposure of various segments
of the population can be .stimated. Some of the more detailed
modeling efforts of this nature have been for such pollutants as
lead and certain radionuclides (expected in fallout) and the models

would not be useful for other pollutants without extensive modifica-
tiens.

Atmospheric fate models have focused almost exclusively on the
major atmospheric poliutants,such as particulates, NO , SC , CO,
oxidants., and specific organic chemicals important idxsmogxformation.
In addition, a significant amount of work has focussed on the dis-
persion and fallout of radinmactive material following a nuclear
explosion. In the case of smog~forming chemicals it is not unusual
to model a long chain of reactions (over 230 in some cases) when
starting with a system containing initially only one organic chemical,
NO , air and light. However, the consideration of specific chemical
reactions is rare in those models that focuz on just the fate of a
geuneral environmental pollutant. Recent work has indicated that, for
many organic chemicals, one of the most important degradation pathways

starts with a reaction with hydroxyl radicals in the atmosphere. Thus,

this reaction - at a minimum - should be considered in any fate model

for organics in the atmosphere. Adsorption of pollutants on atmospheric

particulates is also seldom considered, perhaps because of our lack
of knowledge about the fractions of various pollutants that are

*Discussed in subsequent subsections.
**More detalled information on this type of model is given in
reference 217 (Section VI-B).
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i FIGURE 2 SCHEMATIC DIAGRAM OF INTERCOMPARTMENT FLOWS OF EMITTED CHEMICAL.
: {man and biosphere omitte 1)
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associated with the wide variety of particulate matter that exists.
Included, for example, are fugitive dusts, metal oxides, soot and
other forms of unburnt carbon, water droplets, sea salt, and photo-
chemically produced aerosols.

A final problem with most of the "available" atmospheric models
(primarily dispersion models which might be easily modified to
include reactions and adsorption) 1is the relatively short time-
scale and small space~scale they are applicable to. One can classify
such models by the time- and space-scales they focus on. Typical
categories are as follows: '

e A roadway impact model in the microscale (v0.1 km;
10 min. to 1 hr.)

e Large-point-source or indirect-source model (“10 km;
~v1 hr.)

e Urban regional scale model (v50 km; V1 hr.)

e Urban-rural regional scale model (v300 km; ~1 hr. to
1 week).

If a continental or global atmospheric model were required, then
processes such as rainout, dry deposition, reaction with ozone, and
photulysis might also need to be considered in addition to hydrolysis
(reaction with OH) and adsorption.

One example of a relatively simple global model where such pro-
cesses were not used is that utilized by Woodwell, Craig and Johnson [288]
to look at the probable levels of DDT in the troposphere and the
mixed (surface) layer of the oceans. No physicochemical data on DDT
were directly used in this model, which focussed on intercompartmental
transport between the principal reservoirs: 1land surface, troposphere,
mixed layer of the ocean, and oceanic abyss.

A second example of a relatively simple global model is the
materials balance study of Neely for trichlorofluoromethane and
carbon tetrachloride in the atmosphere [206]. This model did require
some basic physicochemical information (water solubility and vapor
pressure) in addition to the rates of flow between the principal
reservoirs: oceans, troposphere and stratosphere (see Figure 3).

A second major category of environmental fate models focusing
principally on bulk transport and dispersion includes those which
consider the dispersion in rivers of pollutants which may be input
from a variety of point and non-point sources. A specific example
of a non-point source considered important 1is agricultural runoff,
which may contain pesticides. Examples of such models are shown as
numbers 12 and 19 to 26 in Table 6 . Most of these models do, however,
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c D Ocean
A = northern troposphere
B = southern troposphere
C = oceans north of equator
D = oceans south of equator
E = stratosphere
k1 , k2 = rate constants for movement across the air/water interface
"3' k4 = rate constants for movement between the northern and southern

troposphere
k5 = rate constant for transfer to stratosphere
ko = rate of input
FIGURE 3 COMPARTMENTAL MODEL FOR THE DISTRIBUTION OF

A VOLATILE SOLVENT EMITTED INTO THE TROPOSPHERE

{DOW CHEMICAL CO.)
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consider one or two additional processes such as adsorption, degrada-

tion (method usually not specified) or volatilization. In some cases,

the major focus of the model is on the interaction of all organic

material (measured in terms of BOD) and nutrients on the concentration

of dissolved oxygen in the river under various conditions of river

flows and BOD loadings (e.g., QUAL-1l; no. 25 in Table 6). To such i
models it is relatively easy to append subroutines to calculate the :
concentration of conservative species that may also be in the river. i

D. Chemical Fate Models i

Chemical fate models go one step beyond transport/dispersion

i ' models by considering various processes that depend upon the specific

4 properties of the chemical. Processes often considered include:
adsorption (on soils and sediments); volatilization (from water to

air); bioaccumulation (in aquatic organisms); biomagnification

(in aquatic food webs); hydrolysis (in air and water;: photolysis

(in air and water); biodegradation (by soil and aquatic microorganisms);
3 dissociation (for ionizable species); true diffusion; and other

) reactions that may be important. Even if degradation is not specifically
considered, a variety of physicochemical parameters such as solubility,
vapor pressure, rates of volatilization, adsorption coefficients and
diffusion coefficients may be needed. Figure 4 diagrams a number of
pathways and processes that might be considered in such models.
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However, like the transport/dispersion models, the chemical
1 fate models are generally constructed to consider eicher the atmosphere,
: the hydrosphere, or the lithosphere, but not a combination of these.
A few "global" models (e.g., for DDT [56}) do exist which consider a
combination of such compartments, but their numbers are few. Again,
like the transport/dispersion models, the environmental fate models
generaliy have as their output the concentrations of the pollutant
expected in the compartments of the physical environment under study.
] Only in the case of models of the hydrosphere is it fairly common for
. uptake by (aquatic) biota to be modeled. But even here, it is rare
for the model to go beyond direct uptake from water to consider such
things as uptake from food (vs. uptake from water), food chain
; biomagnification, metabolism and excretion, and toxic effects.
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The number of transport and reaction pathways that must be
considered in models that do consider such processes can become quite
large (see, for example, Figure 5), and as a result many parameters
must be measured or estimated before the model can be used. In the
example described in Figure 5 - the modeling of vinyl chloride in an

’ aquatic ecosystem - a simplified (idealized) foocd web and chemical
by degradation system was eventually modeled by the researchers at EPA
i (Athens, GA) [128], and this model required a knowledge of the 15 para-
: meters listed in Table 22. In one model currently being developed
(again for an aquatic ecosystem) by Dr. R. Park at Rensselaer Polytechnic
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TABLE 22

PARAMETERS REQUIRED FOR MODELING VINYL CHLORIDE
IN _AQUATIC ECOSYSTEMS - WORST CASE MODEL PARAMETERS

Number of

Parameters
1 Rate of volatilization
2 Combined chemical/biological degradation rate
2 Transport across thermocline
2 Uptake by filter feedinz orgsnisms
1 Uptake by benthic organisms
1 Uptake by predator
1 Uptake by omnivore
1 Turnover rate of organisms
1 Water to sediment transport
1 Sedimert to water transport
1 Loss from compartment
1 Input to water
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Institute for the EPA/Athens group, about 70 parameters are required

to run the model; about 20 of these parameters are compound- speci-
fic [154, 221, 222].

Water/sediment fate models are the models most people think of
when they think of "chemical fate models." As indicated above, these
models may consider such processes as adsorption, hydrolysis, photo-
lysis, biodegradation, volatilization and bioaccumulation. These
models do not pretend, however, to describe the whole environment, nor
even the total hydrosphere. Most models are for specific freshwater
lakes and rivers; the oceans are not considered except as a permanent
sink. Likewise, the atmosphere 1s generally considered as a permament
sink; the models allow for volatilization from the water to the air,
but not for input from the air o the water. The variable degree to
which these models consider the bilotic compartment was described above.
And finally, these models generally ignore the deep soil/groundwater
compartment altogether. Good examples of such water/sediment fate
models are: (1) the EPA/Athens model for vinyl chloride [128] described
above; (2) the SRI model for certain energy-related pollutants and
pesticides developed for EPA/Athens [249]; (3) an in-house wodel at
EPA/Athens (EXAMS) that is similar to the SRI model; (4) the model
(described above) being developed by Dr. Park at RPI (Troy, NY); and
(5) a series of relatively simple fish-pond or lake models developed
and used by researchers at the Dow Chemical Company (Midland, MI)

[35, 205, 209, 210]. A schematic diagram of the processes considered
in one of Dow's fish-pond models {210) is shown in Figure 6.

Chemical fate models for the total environment are very rare. While
some work has focused on specific long-lived pollutants (e.g., DDT [56])
we know of only one attempt to create a general mass-balance/global
model with a wide applicability to various chemicals. This model was
prepared by Arthur D. Little, Inc. in order to assist EPA/OTS in screening
and selecting chemicals or chemical classes as candidates for in~depth
evaluation {273]. Of necessity, the model was designed to require a
minimum of information for the chemical to be modeled since it was
assumed that it would have to be used for 'new" chemicals about which
little was known. The number of environmental compartments considered
by the model, however, is fairly large; dry air, air moisture and particu-
lates; surface waters (lakes, streams and oceans); soil moisture (at
various depths); and soil and groundwater (both at various depths).

The model output 1is an estimate of the eventual equilibrium concentra-
tions to be expected in each of these compartments. The general route
of these calculations is shown schematically in Figure 7. The estimated
compartmental levels were then to be compared, by EPA/OTS personnel,
with "levels of concern”" for each compartment so that a hazard evalua-
tion and ranking could be made.

This model, as initially formulated, had two drawbacks with regard
to realism. First, degradation (in any compartment) was only considered
in a general way; there is no mechanism that allows input of data on
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rates of hydrolysis, photolysis,
data would be used tv choose the
model does require. Second, the
an equilibrium situation so that

bicdegradation, etec., although such
first-order decay constants the
model was designed to couasider only
the effect of changing emission rates
(from industry, etc.) could not be evaluated. The larter drawback

is currently being removed so that future versions of the model will
yleld time-dependent solutions.

E. So0il/Groundwater Models

|
i

1

]

i

]

k|

i

zi

:

%

E Soil/ groundwater models are concerned with the fate and transport §
' processes of a pollutant within the soil/ groundwater system (i.e., the 1

lithosphere). In the models we reviewed*, the type of chemical con- !
sidered is either organic (often a pesticide) or a plant nutrient. 3
The characteristics of most soil/ groundwater models seldom vary from :
one to znother. The principal environmental compartments presented in ]
these models are, as the title implies, the soil, soil moisture, and i
'j!

4

{

q

/

the groundwacer. Sometimes the atmosphere is treated as a sink for
volatile chemicals.

Bulk transport mechanisms, such as convection and dispersion, are
most often incorporated i: soil/groundwater models. Consequently,
needed input characteristics about the soil arise, such as the soil
porosity and/or permeability, moisture content, percent organic matter,
soii profile and groundwater flow rates, to name a few.

T T T ST

TN

With regard to the physicochemical properties of the pollutant,
three inputs are often required - the adsorption-desorption coefficients,
diffustfon coefficients, and a "decay" constant. The ldecay constant is

asgoclated with any degradation or loss mechanism (e.g., hydrolysis)
tnat the modeler may want to consider.

o e e o A o e b s
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The adsorption/deasrption terms occur in all the models referenced
above., 1Iu addition, most of the authors choose to use the Freundlich

isotherm equation as t'e beat fit for observed data. The Freundlich
adgorption isotherm is given as

TR T T I, T TR

]
s = k¢ /®

i Sk s A AT e ik

where S 18 the concentration of the adsorbed organic p2r unit uasse, ,
C 10 the concentration of the organic in solution and K and n are con~ ;
stants. When n is equal to 1.0, the adsorption isothcrm tecores linear, ;!
Often, n is assumed to equal unity, although the values of 1/n repnrteu ‘
for a number of agricultural chemicals range from 0.70-0.9%9 [167, 215).
Both K and n are found to be dependent on the nuture of the adsorbant,
adsorbate and tempereture within the soil-water environment. The

s et i

*References 27, 37, 58, 130, 131, 155, 160, 161, 167, 172, 174-177 and
215 in Section VI-B.

. YR LT

95
Arthur D Little Inc




oo 2 v e :—";u T NTEIN AT Y RITIF P T T N I Ty T S T I T S Ll 4Gk 0 b s
T kg .

F ‘eundlich isotherm !5 based on the assumption that adsorption is an
instantaneous, pointwise equilibrium process [174], which most authors
assume tO be ~rue at low gsoil-water flow rates.

The process of desorpiion sometimes involves a different set of K
and n parameters, due tc the effects of hysteresis [58, 130, 131].

- Hornsby and Davidson [i30] have noted that the desorption constant is
not a constant, but a fuuction of the maximum amount of chemical ad- 3
sorbed before desorption occurs. Hysteresis may also be dependent on b

3 the nature of the soils and the chemical nature of the adsorbate. In

! general, hysteresis i1s not significant for neutral organic molecules i

4 which do not contain any reactive sites or elemeats which would lead to !

) any form of irreversible adsorption process.

Some models concern themselves with the rate at which adsorption ;
equilibrium conditions are established. For these models, the kinetics 3
or rate of adsorption, is important. Examples of this type are found in
references 58, 130, 131, 157, 174, 177 and 215.

Another parameter inherent in the nature of the chemical is the
diffusion coefficient in air and/or water. This cozfficient is required
by models referenced as 27, 37, 58, 130 and 161, 167, 172, 174-176.

The coefficients are used to estimate movement or dilution in situations
; where bulk transport and dispersion are relatively slow. Diffusion

b through both the air spaces (of a porous scil) and the groundwater may
thus be considered. Approximate values may be calculated for pesticides .
in both 1liquid and gas systems [167]. Otherwise, it 1is empirically
determined from Fick's Law [37]. Since the net rate of chimical move-~
ment from areas of high to low chemical concentration is a function of
the difference in concentrations, and the distance between the two areas,
an empirical ratio was established in which the proportiopality constant
D is known as the diffusivity.

i o mn

In some cases where transport through partially saturated (i.e.,
mcisture containing) soil is being considered, diffusion through both
the air spaces and :0il moisture is taken into account with the usa of
a siagle ccefficient called the apparent diffusion ccefficient.

Leistra [167) has observed three main factois which lead to the

apparent diffusion coefficient in scil. They are: (1) diffusion of

the chemical as a bulk quantity in the phase concerned, (2) the volume

; fraction of the phase, and related soill geometries, and (3) purtitioning
P of a pesticide over the scil phaser, with the processas of adsorption )
and ocolution acting to possibly retard diffusion. B
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In addition to these major phygicochemical parameters usei in soil-

éj groundwater models, occasionally the "halflife' of the chemical is f
! required for the consideration of assumed first-order decay processes 3
X [155].
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F. Chemical Spill Models

Our review of chemical spil]l models was essentially limited to the
models incorporated in the U.S. Coast Guard's Chemical Hazards Response
Information System (CHRIS). The CHRIS manual is an official publica-
tion of the U.S. Coast Guard and consists of the following volumes:*

CG-446-1 A Condensed Guide to Chemical Hazards
CG-446-2 Harardous Chemical Data

CG-446-3 Hazard Assessment Handbook

CG-446-4 Response Methods Handbook.

The manual provides timely information essential for proper decision-
making by responsible Coast Guard personnel and others during emergen-
cies involving the water transport of hazardous chemicals.

Of key interest to this program is the Hazard Assessment Handbook
and the associated Hazard Assessment Computer System (HACS). The
Handbook describes procedures to be used for estimating the quantity of
a hazardous chemical that may be released accidentally during shipment.
It also describes how to estimate its concentration in air and in water
as a function of time and distan:e from the discharge. Methods for
predicting the resulting toxicity, fire and explosion effects are also
described. The details of the calculations are described #n two
separate documents [231,232]. (Some of the mathematical models employed
have been independently reviewed [74] ).

HACS 18 a computerized version of the Handbook. The calculations
use data on the physicochemical properties of various chemicals as
given in CG~446-2. Many of the data points in CG-446-2 are estimated
values since literature values were not available. At present a physi-

cal properties data base for about 1500 chemicals is available for use
in HACS.

In the initial steps involved in the use of HACS, a few basic proper- !
ties of the spilled chemical (e.g., density, solubility, vapor pressure) '
and the environment (temperature, dimensions of stream, ignition or

non-ignition of flammable chemicals, etc.) are used to select the ap-

propriate branch(es) from a hazard assessment tree (Figure 8). Then,

as necessary, additicnal data on the chemical and the environment are .
obtained and used in the mathematical model(s) available for that ’
branch. Hazard assessment codes, which refer to various branches in ;
Figure 8, are given below for a few sampie chemicals.

*Most of these volumes were published in 1974 and are available through
N'TDIOSO
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Chemical

Dichlorodifluoromethane
Ethylene

Gasoline (automotive)
Polychlorinated biphenyl
Sodium

Sodium fluoride
Trichloroethylene

Depending upon the details of the spill and the chemical's hazard
code(s), various mathematical models from the HACS are called into :
use. The types of programs possible are shown by the boxes in Figure 8. !
A more detailed listing of available programs is given in Table 23.

Hazard Code (see Figure 8)

A-C an’/or A-I-J

A, A-C, A-D-E, and/or A-D-F-G j
A-T-U and A-V-W |
A-11 \
A-RR-C
A-SS
A-X-Y

s
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TABLE 23

PROGRAMS AVAILABLE FOR CHEMICAL SPILL
MODELING IN THE U.S. COAST GUARD's HAZARD
ASSESSMENT COMPUTER SYSTEM

ity

1. Venting rate
2. Spreading of a liquid cn water

3. Mixing and dilution

™
7 s e PR b s AL L ki e 1§ e

] 4. Vapor dispersion
5. Flame size

6. Thermal radiation from flames

bt L e 2k s

Spreading of a low-viscosity liquid on a high-viscosity
liquid

~4
.
et aatidb . L

8. Simultaneous spreading and evaporation of a cryogen on
water

9. Simultaneous spreading and cooling of a high-vapor-
pressure chemical

[,

[ VP DU

10. Mixing and dilution of a high-vapor-pressure, highly- i
©  water-soluble chemical

3 11. Boiling rate model for heavy liquids with boiling
! temperatures less than ambient

: 12. Sinking to and spreading on the riverbed of an insoluble,
o heavier-than-water l1iquid chemical

13. Dissolution and dispersion of chemicals ¢f finite
solubility

14. Dissolution of cold and soluble chemicals under water

i a7l Mk ks L 0 . —trtme e AL 1k

%' 15. Spreading on the water surface of a continuously
X released, lighter-than-water, immiscible liquid

t 16. Heating, rupture and release of a pressurized cargo
in a fire
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V. SCOPE AND APPROACH FOR PHASE I
[Note: This information was included in the original
Technical Proposal for Phase II. Also note, as de-
scribed in the Executive Summary, that four proper-
ties were subsequently added to the list to be in-

cluded in the handbook, two of which will be treated
in a more qualitative manner.])

A. Scope of Work

We will prepare an estimation methods handbook which will evaluate and
describe avaliable estimation methods for the properties listed in

Table 2. The scope of work may be lirited to a subset of this list, at
the discretion of the Government. The groups identifi~d in Table 2 are

associated with breakpoints in our cost proposal which is being sub-
mitted separately.

For each of the properties chosen, a study program will be designed and
carried out which will look for and evaluate all available estimation
techniques, correlation equations, etc. The study program will include
literature searches, contact with the author(s) of key papers, and a
subsequent critical evaluation to look at questions dealing with method

applicability, method errors, ease of method's use and the availability
of data for use in the method.

A draft final report will be prepared that includes a description of all
estimation techniques considered appropriate for the handbook, along
with all basic equations, tabular data, exemplar problems, and a descrip-
tion on how to estimate the methcd ercvors. Estimation techniques which,
after evaluation, are not considered appropriate for inclusion may only
be briefly described and the reason for the non-inclusion stated. The
report will also contain recommendations for future research, especially

in connection with those properties for which useful estimation techni-
ques were not available.

The draft final report will ke submitted to the sponsors for review.

A final Phase II report will then be prepared and followed up with a
Technical Transfer meeting at Fort Detrick.

B. Approach

The technical appreach to the work in Phase II will involve the following
basic steps:

a. Assignment of responsibility to individuals for the work on specific
parameters, and the initial formulation of a study program for each
of the properties/parameters selected.

b. Gathering of all relevant information for each property/estimation
technique.

c. Evaluation of available estimation techniques.
d. Preparation of write-ups fcr each application estimation technique.
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e. Determination of future research requirements in the area of esti-
mation technique development.

f. Preparation of a draft final report.

8. Preparation of a final report.

h. Technical Transfer mee:ing.

Each of these steps 1s brieflv described below:

a.

Each property/parameter will be assigned to a senior profes-
sional who will subsequ *ntly be responsible for the preparation
of the handbook chapter(s) for those properties. In the
Technical Proposal we have tentatively identifled specific
individuals who will be assigned such responsibility for each

of the properties. The first task of these individuals would

ve the preparation of a detailed work plan for eanch property.

In most cases, we already have a fairly clear overview of the
estimation technique(s), correlation equations, data bases, etc.,
that are available. The plan would include not only actual work
reqquirements (’ iterature searches, evaluations, contacts with
exifrts required, etc.), but time and budgetary restrictions as
well.

The bul' of our work would focus on those properties for which
ornie or more estimation technique or correlation equations
existed, but where no aritical review had been undertaken.
Relatively little work would be required on properties such as
those covered in Reid and Sherwood's The Properties of Gases and

Liquids.

The plans would be reviewed by the key members of the case team,
our consultant, the ADL Review Committee and the sponsors.

The collection of the required information on each property and
estimation technique would include both a careful literature
search, as well as personal contact, where possible, with the
originators of the more recent research papers on the subject.

The literature search strategy for each parameter/estimation
method nay differ somewhat and will be formulated - in part - on
the basis of information cbtained in Phase I. In Phase I we com-
piled & bibliography of nearly 200 reports, articles and books
dealing with subjects pertineut to this program. In most cases,
we have already obtained copies of the reports and reviewed them.

From these reports we can identify key researchers in each proper-

ty estimation field and contact them for the most recent informa-
tion in the field. Personal contact may be required for most
property estimation techniques since the published research
papers seldom contain all the data required (for error estima-
tion or methed evaluation) and are often unclear as to applicable
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units, l.mitations in use. or test conditions. We intend to
request the raw data whenever it ig apparent that the published
data have been significantly reduced or limited for any purpose.

The collected data and informat!on are then used to evaluate each
estimation technique or correlation equation. This specifically
includes a determination of: (1) the applicability to different
chemical classes, (2) the range of values (of the estimated para-
meter) the method 1s good for; (3) the nature and size of the
errors involved; (4) the proper methcds of use and the ease of
use; and, (5) the quantity and quality of the data (e.g., para-
meter or substructure coefficients) available for use in the
method.

The analysis of method errors will, as previously mertioned, be
coordinated by one individual (Dr. M. Richards). He will, where
appropriate, review reported error limits associated with esti-
mation methods, fvepare a uniform method for us to use in
describing errors (or quality of "fit") associlated with correla-
tion equations, and set up procedures whereby we can derive our
own estimate of the method errors. One possible mechanism for
this is the use of two sets of chemicals in the evaluation of a
method; one, the 'teaching set'", is used to evaluate the method
and "determine'" what the likely errors are; the other, the "test
set", is subsequently used to check the previous findings. (The
check involves a compavison of actual and estimated values.)
This "teaching set'"/'"test set' concept can also be used in many
cases to determine the range of applicability of a method, both
in terms of chemical class and property range.

The write-up on each estimation method, following from the above
analysis, wouid be expected to follow the following basic format:

1. introduction - A brief description of the property and the
basis for the estimation methods available.

2. Applicability - A clear description of the limits to the
methcd applicability in terms of chemical class, range of
values of the parameter, test conditions, ete.

3. Method Description - This section will contain the basic
equations, values of constants, tabular data, and any other
information, and instructions needed for actual calculation
of an estimate. '

4. Errors - This section will, to the extent possible, give a
qualitative and quantitative description of the errors in-
hercent in the method and indicate how the possible error in
an estimated valua can itself be estimated.

5. Examples - One or more examples (several when the method is
complex) will be given to show the proper use of the method,
and the difference between the estimated and actual value of
the parameter.
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t 6. References - All references will be listad at the end of
each section dealing with the estimation of a specific para-
meter.

] Where more than one estimation method, or correlation equation :
) is available for a given parameter, a discussion of the relative ¢

usefulness of each will also be included in the se.tion dealing
with that parameter.

W2 would expect to give each estimation-method write-up a "user's i
test'" prior to acceptance for the final report. In this "user's i
test', a technical person unfamiliar with the method would be !
given the write~up and asked to estimate the property values and 3

the probable errors for a set of chemicals. The difficulties |
the user encountered with the write-up would - to the extent ]
pussible - be removed by additional evaluative work and/or re- ;
writing. If significant difficulties were encountered on the f
1
1

first test, a second test would be held.

L o i

We plan to have each initial draft of the write-up on a property

; undergo peer review by a knowledgeable person. The person may ?
f be from our own internal case tear. (including our consultant, !
i Dr. Robert Reid) or from a University, Federal Agency or private
company. We expect that such an independent peer review will
add significantly to the completeness and quality of the final
report. A second technical review will be required in any case O
where substantial changes result from the initial review. f%

e. We will, for each property identified in the Phase I study,
consider what additional research might be conducted to further
develop estimation techniques for that parameter. This would .
be done whether or not an estimation technique or correlation
equation already existed for the parameter, although special '
emphasis might be put on those properties for which no reliable
estimation method was available. In different instances, these
recommendations for future work might, for example, point out:

g —— AT TR . R L A e

) e The need for more basic data oa actual values of the "pro-

perty" under various test conditiounms. !
e The need for a bet:er understanding of the mechanisms of
the chemical or physical actions involved, with the possi-
bility of theoretical treatments (including the formula-
i tion of equations).
; e The fact that data exists for additional correlations to
be tested and developed from.

@ The fact that the property was probably related to struc-
ture in a manner similar to some other property for which
detailed information on the property-structure relationship
existed and that an estimation technique might, thus, be
developed if a similar set of substructures and related

5 coefficient values could be determined.
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h.

The draft final report will contain the output from the work
described in (d) and (e) above. Each of the method descriptiaoms,
as described in (d) above, would be grouped with all other
method descriptions for the same parameter. A schematic outline
of the report is given in Table 24.

We plan to have this draft final report undergo a careful review
and editing process. A technical review will first be undertakern
by the case leader and other key members of the case team, by

at least one member of the review couuittee, and the project
officer. The technically edited report will then be given to a
professional editor (William F. Reehl) who will insure that the

resulting report is well written, well organized and easy to
read.

All tables, figures and any other art work will be put in final
form at this time. Our Art Department will rework all graphs,
charts, and figures, as appropriate, so that the finished figures
can be used for bhe book planned for Phase 1II. 1In addition,

we plan to process the final version of the text through our

DecSet text-editing system gso that future revisions are facili-
tated.

The final typed version of the draft final report will then be
submitted to the sponsors for review.

The comments from the spousors will direct any changes required
for the preparation of the final report.

Following submission of the final report, a Technical Transfer

meeting will be held at Fort Detrick to review the recently-
covpleted Phase II work, and discuss plans for Phases III and IV.
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v.

etc.

XX.
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TABLE 24

SCHEMATIC OUTLINE OF THE PHASE 11 FINAL REPORT

Introduction (background, purpose, scope, etc.)

The Use cof Estimation Methods

(Comments on symbols and units used, estimation errors,

and general caveats on necessary checks for applicability,
etc.)

Property A [e.g., Solubility in Water]

1. Methced (a); format as described in (d)
2. Method (b)

etc.
n. Recommendations for Best Method

Property B [e.g., Volatilization from Water, Rate of]

1. Method (a)
2. Method (b)
etc.

n. Recommendations

Property C
etc.

Recommendations for Future Research

1. Property A
2. Property B
3. Property C
etc.
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VI. BIBLIOGRAPHY

A. Other Bibliographies Used

The eleven citations on the following two pages are of bibliographies

that were used in the literature search efforts in Phase I of this
prcgram,
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5.

. Cavagnaro, D.M., “Atmospheric Modeling of Air Pollution. Volume 2. 1974-1976 (A Bibliog-
raphy with Absiracts),” National Technical Information Service, Springfield, VA (June
1978). (NTIS/P5-78/0630/0WP).

Cavagnaro, D.M., “Atmospheric Modeling of Air Pollution, Volume 3. 1977-June 1978 (A
Bibliography with Abstracts),” National Technical Informauion Service, Springfield, VA.
(June 1978). (NTIS/P5-78,/0631/8WP).

Copenhaver, E.D. (Ed.), NSF-RANN Trace Contamirants Abstracts, by Toxic Materials
Information Center, Oak Ridge National Laboratory, Oak Ridge, TN:

(i) Val. 1, No. 6 (July 1974) (Yearly Review Issue)
(ii) Vol. 2, No. 1 (August 1974)
(iii) Vol. 2, No. 2 (May 1975)
(iv) Vol. 2, No. 3 (June 1975)
(v} (December 1975)
(vi) (July 1976)
(vii) (September 1976)
(viii) (April 1977), Harnden, D.S. (Ed.)
(viiii) (October 1977), Ross, R.H. (Ed.)
(Program terminated after this issue).

. Copenhaver, E.D. and B.K. Wilkinson, ‘“Transport of Hazardous Substances Through Soil
Processes. Volume 1: Arsenic, Beryllium, Cadmium, Chromium, Copper, Cyanide, Lead,
Mercury, Selenium, Zinc and Others,”” Ecology and Analysis of Trace Contaminants Pro-
gram, Oak Ridge National Laboratory, Oak Ridge, TN (November 1974). (ORNL-EI5-74-
70, Part 1).

Copenhaver, E.D. and B.K. Wilkinson, “Transport of Hazardous Substances Through Soil
Processes. Volume 2: Pesticides,” Ecology and Analysis of Trace Contaminants Program,
Oak Ridge National Laboratory, Oak Ridge, TN (November 1974). (ORNL-EI5-74-7, Part
2).

. Corrill, L.S., E.D. Copenhaver and H.V. Leland, ‘“Heavy Metals and Other Trace Elements
in Aquatic Environments,” citations (with abstracts) from the literature; Ecology and
Analysis of Trace Contaminants Program, Oak Ridge National Laboratory, Oak Ridge, TN
(September 1974). (ORNL-EI5-74-69).

Leliman, E.J., “Sediment Water Interaction and its Effect Upon Water Quality (A Bibliog-
raphy with Abstracts),” National Technical Information Center, Springfield, VA (January
1977). (NTIS/PS-77/0021/4WP).

. Lehman, E.J., “Water Quality Modeling — Hydrological and Limnological Systems. Vol-
ume 2. 1975-June 1977. (A Bibliography with Abstracts),”” National Technical Information
Service, Springfield, VA (June 1978). (NTIS/PS-78/0649/0WP).

Lehman, E.J., “Water Quality Modeling — Hydrological and Limnological Systems. Vol-

ume 3. July 1977-June 1978. (A Bibliography with Abstracts),” National Technical Infor-
mation Service, Springfield, VA (June 1978). (NTIS/PS-78/0650/8WP).
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10. Wilkinson, B.K., L.S. Corrill and E.D. Copenhaver, “Environmental Transport of Chem -
icals,” Oak Ridge National Laboratory, Oak Ridge, TN (1974); Report No. ORNL-EIS-74- : i
68. :

11. Wilkinson, B.K. and S.K. Smith, “NSF-RANN Trace Contaminants Program,” by Toxic :
Materials Information Center, Oak Ridge Nationa! Laboratory, Oak Ridge, TN (December i
1975). (ORNL-EIS-83). Second directory, by P.A. Purnell, S.K. Smith and C.F. Wilkes 5
(October 1976). (ORNL-EIS-97).
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B. Articles, Books and Reports

The bibliography on the following pages lists, in alphabetical order
by author, all of the articles, books and reports that resulted from our
literature search efforts (through December, 1978) in Phase I. We ~
have obtained ani reviewed about 95 percent of these listings. (Copies .
of the remainder have been ordered but not yet received.) Subsequent to ‘
our review of these documents, we have found that a relatively small '
number contain little or no information of importance to this program;
thege wil_ be removed from future bibliographies prepared for this program.

Since December, 1978, we have identified about one hundred additional
articles, reports or books that may be of use in this program. Citations
for these will be added to any revised bibliography prepared.

In addition to the new entries, mentioned above, we hope to have time
to prepare a subject and author index for the expanded bibliography prior
to the formal initiation of Phase II. ]

110 ) {

Arthur D Little Inc.

T e e e v+ . e g
, . e e e e e e resee o D
TS T T A T . . S e




e e AT

e

o]

10.

11.

Abrams, D.S. and J.M. Prauenitz, “Statistical Thermodynamics of Liquid Mixtures: A

New Expression for the Excess Gibbs Energy of Partly o.. Completely Miscible Systems,"”
AIChE -1, 21 (1): 116 (1975).

Adams, R.J., Jr., “Effect of So1l Organic Matter on the Movement and Activity of
Pesticides in the Enviicnment,” in Trace Substs aces in Environmental Health-V, D.D.
Hemphill (Ed.), Proc. Conf. Univ. of Missouri, Columbia, MO (1971).

Adams, R.T. and F.M. Kurisu, “Simulation of Pesticide Movement on Small Agricultural

Watersheds,” report by ESL, Inc., Sunnyvale, CA, to the U.S. Environmental Protection
Agency, Athens, GA (Sept. 1976). (PB-259 933/0ST).

Adamson, J. and T.D. Inch, “Pussible Relationships Between Structure and Mechanism of
Degradation of Organophosphorous Insecticides in the Soil Environment,” in Proc. 7th

British Insecticides and Fungicide Conference — 1973, held in Brighton, England,
No.v 19-22, 1973, pp. 65-72.

Alexander, M., “Biodegradation: Problems of Molecular Eecalcitrance and Microbial
Fallibility,” Adv. Appl. Microbiol., 7: 35-80 (1965),

Alexander, M., “Nonbiodegradable and Other Recalcitrant Molecules,” Biotechnol.
Bioeng., 15 (4): 611-647 (1973).

Alexander, M., “Environmental and Microbiological Problems Arising from Recalcitrant
Molecules,” Microb. Ecol., 2: 17-27 (1975).

Anon,, “A Literature Survey of Benchmark Pesticides,” Unpublished report prepared by
the George Washington University Medical Center, Dept. of Medical and Public Affairs,
Science Communication Division, Washington, D.C. for the U.S. Environmentai Pro-
tection Agency, Office of Pesticide Programs, Washington, D.C. (1 March 1976). (Note:
This report contains 6 chapters with summaries for each written by the authors indicated:
Ch. 1, “Solubility, Hydrolvsis, Diasociation Constants, and other Constants” by V.H.
Freed; Ch. 2, “Soil Degradation and Persistence,” by D.D. Kaufmar; Ch. 3, “Vapor
Pressure and Vapor Losses,” by W. Spencer; Ch. 4, “Photochemistry of Benchmark

Pesticides,” by D.G. Croshy; Ch. 5, “Leaching, Diffusion, and Sorption, by W.J. Fermer;
Ch. 6, “Bioaccumulation,” by R.L. Metcalf.)

Anon., Assessing Potential Ocean Pollutants, National Academy of Sciences, Washing-
ton, D.D. (1975).

Anon.,, “Criteria and Rationale for Decision Making in Aquatic Hazard Evaluation (Third
Draft),”” Aquatic Hazards of Pesticides Task Group of the American Institute of Biological
Sciences, in Estimating the Hazard of Chemical Substances to Aquatic Life, ASTM

STP 657, John Ciarns, Jr., K.L. Kickson and A.W. Maki (Eds.), American Scciety for
Testing and Materials (1978), pp. 241-273.

Anon., Decision Making for Regulating Chemicals in the Environment, National
Academy of Sciences, Washington, D.C. (1975).
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12.  Anon., “Initial Report of the TSCA Interagency Testing Committee to the Administrator,
. Environmentel Protection Agency,” U.S. Environmental Protection Agency Report No,
] EPA 560-10-78-001 (January 1978).

13. Anon., “Non-Point Water Quality Modeling in Wildland Management: A State-of-the Art
Assessment,” Voluine I, U.S, EPA, Office of Research & Development, Athens (July,
1977), GA.

3 14.. Anon., Ozone and Other Photochemical Oxidents, National Academy of Sciences,
Washington, D.C. (1977).

15. Anon,, “Pesticide Transport and Runoff Model for Agricultural Lands,” U.S. EPA Tech-
nology Series, EPA-660/2-74-013 (Dec., 1973).

16. Anon., Principles for Evaluating Chemicals in the Environment, National Academy of
: Sciences, Washington, D.C. (1975).

17. Anon., “Proceedings of the Conference on Environmental Modeling and Simulation,” held
in Cincinnati, OH on April 19-22, 1976; sponsored by the U.S. Environmental Protection i
Agency (July 1976). (EPA 600/9-76-016).

] 18. Anon., “Proposed Working Document for the Development of an ASTM Draft Standard on .:
% Standard Practice for a Laboratory Testing Scheme to Evaluate Hazards to Non-Target L
; Aquatic Organisms,”” ASTM Subcommittee E35.21 on Safety to Man and Environment, in f
Estimating the Hazard of Chemical Substances to Aquatic Life, ASTM STP 657, John ’
Cairns, Jr., K.L. Kickson, and AW, Maki (Eds.), American Society for Testing and :
Materials (1978), pp. 202-237. :

4 19.. Anon., “Second Report of the TSCA Interagency Testing Committee to the Administrator,
f Environmental Protection Agency,” U.S. Environmental Protection Agency, Office of

Toxic Substances, Washington, D.C. (April 1978).

] 20. Anon., Tables of Bimolecular Gas Reactions, NBS Reference Data Series No. 9, (1967).

“ 21. Anon., Tables of Chemical Kinetics. Homogeneous Reactions, NBS Circular 510 (Date
P ?7); Suppiement No, 1 (Date ?); Supplement No. 3 (Date ?).

n 22. Anon., Vapor-Phase Organic Pollutants, National Academy of Sciences, Washington,
: D.C. (1976).

. 23. Bahner, L.H., A.J. Wilson, J.M. Sheppard, J.M. Patrick and L.R. Goodman, “Kepone
4 (Trademark) Bioconcentration, Accumulation, Loss, and Transfer through Estuarine Food
r; Chains,” report by Environmental Research Lab., Gulf Breeze, Fla. to the U.S. Environ-
i

mental Protection Agency (1977). (EPA/600/J-77/074; PB-277 183/OWP).

3 24. Bailey, G.W. and J.L. White, “Review of Adsorption and Desorption of Organic Pesticides
by Soil Colioids, with Implications Concerning Pesticide Bioactivity,” J. Agric. Food
Chem., 12 (4): 324-332 (1964).
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25.

26.

27.

28.

29.

30.
31,

32,

33.

34.

35.

36.
37.

38.

Bailey, G.W. and J.L. White, “Factors Influencing the Adsorption, Desorption, and Move-
ment of Pesticides in Soil,” Residue Rev., 32: 29-92 (1970).

Baily, H.C. et al., “Systems for Rapid Ranking of Environmental Pollutants,”” EPA-600/5-
78-012, Office of Health and Ecological Effects USEPA, Washington, D.C. (1978).

Baldwin, J.P., P.H. Nye and P.B. Tinker, “Uptake of Solutes by Multiple Root Systems
from Soil. III. Model for Calculating the Solute Uptake by a Randomly Dispersed Root
System Developing in a Finitz Volume of Soil,” Plant Soil, 28 (3): 621.635 (1973).

Bark, L.S. and R.J.T. Graham, “Studies in the Relationship between Molecular Structure
and Chromatographic Behavior,” J. Chromatogr., 25: 357-366 (1966).

Baughman, G.L. and R.R. Lassiter, “Prediction of Environmental Pollutant Concentra-
tion,” in Estimating the Hazard of Chemical Substances {0 Aquatic Life, ASTM STP
657, John Cairns, Jr., K.L. Kickson and A.W. Maki (Eds.), American Society for Testing
and Materials (1978), pp. 35-54.

Bayer, D.E. and J. M. Lumb, “Penetration and Translocation of Herbicides,”” Chapter 9 in

Pesticide Formulations, W. Van Volkenburg (Ed.), Marcle Dekker, Inc., New York (1973).

Bedard, R.G., ‘‘Biodegradability of Organic Compounds,” Master of Science Thesis, Univ.
of Connecticut (Storrs) (1976). (PB 264 707).

Benyon, K.I., “Chemical Aspects of the Loss of Insecticides from Soil,”” in Proec. 7th
British Insecticide and Fungicide Conference-1973, held in Brighton, England, Nov. 19-
22, 1973, pp. 791-809.

Biggar, J.W., G.R. Dutt and R.L. Riggs, “Predicting and Measuring the Solubility of p, p-
DDT in Water,” Bull. Environ. Contam. Toxicol., 2: 90 {1967).

Blanchard, F.A., I.T. Takahaski, H.C. Alexander and E.A. Bartlett, ‘“‘Uptakz, Clearance,
and Bioconcentration of C-Sec-Butyl-4-Chlorodiphenyl Oxide in Rainbow Trout,” in
Aquatic Toxicology and Hazard Evaluation, ASTM STP 634, F.L. Mayer and J.L.
Hamelink (Eds.), American Society for Testing and Materials, (1977) 162-177.

Blau, G.E. and W.B. Neely, “Mathematical Model Building with an Application to
Deterizine the Distribution of Dursban® Insecticide Added to a Simulated Ecosystem,”
Adv. Ecol. Res., 9: 13-163 (1975).

Blau, G.E., W.B. Neely and D.R. Branson, ‘“Ecokinetics: A Study of the Fate and Distribu-
tion of Chemicals in Laboratory Ecosystems,” AIChE oJ., 21 (5): 854-861 (1975).

Boast, C.W., “Modeling the Movement of Chemicals in Soil by Water,” Soil Sci., 115 (3):
224-230 (1973). :

Branson, D.R., “A Naew Capacitor Fluid — A Case Study in Product Stewardship,” in
Aquatic Toxicology and Hazard Evaluation, ASTM STP 634, F.L. Mayer and J.L.
Hamelink (Eds.), American Society for Testing and Materials (1977), pp. 44-61,
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39.

40.

41.

42.

43.

44,

45,

46.

47.

48,

49,

Branson, D.R., “Predicting the Fate of Chemicals in the Aquatic Environment from
Laboratory Data,” in Estimating the Hazard of Chemical Substances to Aquatic Life,
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