
N-1158-1-ARPA

May 1979

ARPA ORDER NO.: 3460/3681
9Pl0 Information Processing Techniques

DESIGN OF A RULE-ORIENTED SYSTEM FOR IMPLEMENTING EXPERTISE

D. A. Waterman, R. H. Anderson, Frederick Hayes-Roth, Philip Klahr,
Gary Martins, Stanley J. Rosenschein

A Rand Note
prepared for the
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA, CA. '10406

The research described in this report was sponsored by the
Defense Advanced Research Projects Agency under Contract
No. MDA903-78-C-0029.

The Rand Publications Series: The Report is the principal publication doc­

umenting and transmitting Rand's major research findings and final research

results. The Rand Note reports other outputs of sponsored research for

general distribution. Publications of The Rand Corporation do not neces­

sarily reflect the opinions or policies of the sponsors of Rand research.

Published by The Rand Corporation

ARPA ORDER NO.: 3460/3681
9Pl0 Information Processing Techniques

N-1158-1-ARPA

May 1979

DESIGN OF A RULE-ORIENTED SYSTEM FOR IMPLEMENTING EXPERTISE

D. A. Waterman, R. H. Anderson, Frederick Hayes-Roth, Philip Klahr,
Gary Martins, Stanley J. Rosenschein

A Rand Note
prepared for the
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA, CA. 90406

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

-iii-

PREFACE

This Note describes the preliminary design of a Rule­

Oriented System for Implementing Expertise (ROSIE). This system

is intended as a tool for model builders seeking to apply expert

knowledge to the analysis of problems and to the evaluation of

solutions in complex domains, especially domains for which useful

analytic models are unavailable.

This preliminary design--the result of a six-month design

exercise--formed the basis of a proposal for implementation of

the software system submitted to the Information Processing

Techniques Office of the Defense Advanced Research Projects

Agency.

The Note is being distributed to promote discussion and

exchange of views with colleagues interested in rule-directed

systems for heuristic modeling. It is intended for a technical

audience; basic knowledge of the architecture of rule-based

systems is assumed.

-v-

SUMMARY

The preliminary design has been completed of a modeling

system that will enable experts and end-users alike to

participate directly in the creation of interesting applications

systems. ROSIE has been designed to be a flexible system capable

of processing large quantities of information efficiently and

effectively. In addition, it is able to facilitate interaction

with the external world and is implementable within a short time

period.

ROSIE is flexible and friendly, i.e., easy to modify, use

and understand. This is accomplished by making ROSIE models

rule-based and by providing the user with a support package that

facilitates his use of the system. The rule syntax of ROSIE is

similar to RITA: IF-THEN rules in an English-like framework.

However, rule semantics have been expanded to facilitate

iteration through a data set and to provide an abstraction and

aggregation hierarchy mechanism. We have also introduced an

event-driven monitor capable of testing when expressions become

true. This permits the user to notice when things are changing

and simplifies implementing alerts or other kinds of change

detecting processes.

To handle the problem of processing large amounts of

information we have modularized the rule and data elements so

individual modules can be accessed and executed independently.

This provides a means for maintaining only the currently active

-vi-

and perhaps relevant modules in core at any one time. The

mechanism for achieving modularity relies on the concepts of

partitioning and activation. The user partitions his rules and

data into separate sets based on his expectations regarding their

interdependencies. Rule and data sets are activated, i.e.,

permitted to interact to cause rules to fire, only when deemed

relevant by the user or the ROSIE monitor.

The support package in ROSIE includes many features for

assisting the user, all built around the notion that rules are

simply another type of data element that may be accessed and

manipulated by rules. Editing facilities are rule-based and thus

may be extended or modified by the user. The user may construct

auxiliary rule sets that assist him in determining rule

correctness by examining the main rule set, looking for important

similarities or differences in rules. A sophisticated

explanation facility is included that traces the operation of the

system at various levels, providing a way to justify system

inferences and debug faulty rule sets. Reasoning in the presence

of uncertainty is handled by permitting the user to assign

weights or "certainty factors" to rules and data. The user can

then specify a certainty range, and only rules and data with

certainty factors in that range will be used in the calculation.

-vii-

CONTENTS

PREFACE ... iii

SUMMARY... v

Section
I. INTRODUCTION. 1

II. SYSTEM DESIGN-- AN OVERVIEW......................... 7
Large Rule/Data Sets . 7
Friendly Support Environment....................... 8
Interaction With the External World 10
Modifiability...................................... 12

III. DATA SPECIFICATION. 14
Element Forms. 14
Element Hierarchies.... 19

IV. RULE SPECIFICATION. 25
Rule Forms. 26
Instance Sets.... 30
Case Phrase...... 31
Variables. 32
Datasets/Activation................................ 32

V. USER SUPPORT ENVIRONMENT 37
The User's Top-level View of the System 37
Editing Functions...... 39
Model Analysis..... 42

REFERENCES.. 53

-1-

I. INTRODUCTION

This Note describes the preliminary design of a Rule­

Oriented System for Implementing Expertise (ROSIE). This system

will serve as a tool for model builders seeking to apply expert

knowledge to the analysis of problems and the evaluation of

solutions in complex domains, especially domains for which useful

analytic models are unavailable. Its basic simplicity, together

with powerful user-support features, will encourage enterprising

users to take the lead in developing innovative models to serve

their own mission areas.

Computer systems that faithfully incorporate human

judgmental expertise offer substantial advantages to the

military, especially if they can be built with reasonable effort.

They promise to make such expertise widely sharable, helping to

relieve the demand for highly trained and experienced operational

personnel. Additionally, a single system may incorporate the

expertise of many contributors, resulting in a net improvement in

the overall mission performance of the system. In most cases,

ROSIE programs are expected to serve as aids to--not replacements

for--human decisionmakers, whose performance they will sharpen

and stabilize.

Potential applications for systems of this kind abound in

the civilian and military worlds.

anticipated in areas such as:

Military applications are

-2-

tactical: ops planning, experiments, gaming

personnel: training, testing, practice

mil ops: situation analysis, plan evaluation

logistics: basing, staging

maintenance: cycle planning, policy evaluation

Models built within the ROSIE system may constitute

simulations in the application domain. Control in these models

is data-directed (Hayes-Roth, Waterman, & Lenat, 1978; Waterman,

1978a, 1978b); that is, actions are specified by sets of rules.

For readers not familiar with rule-based systems and

prior Rand R&D in this area, the following background information

provides some additional context. A rule-based system can be

thought of as having three components: a set of rules of the

form

IF <conditions> THEN <actions>;

a data base against which the rule conditions are tested, and

which is altered by the execution of rules' actions; and a

monitor program that contains logic regarding the order in which

rules are to applied, what to do in case more than one rule

applies (i.e., has true conditions) at one time, and so forth.

The rule-based system may be situated between the user and other

external systems as shown below.

USER

-3-

+----------------+ +------
: rule-based : : external

-------->: system :-------->: information
: : : system

<--------: (rules+ data :<--------:
+ monitor)

I I
I I

I
I

(e.g., DBMS,
files)

+----------------+ +------

That is, the rule-based system is capable of interacting with the

user (e.g., to obtain advice, to explain its behavior upon

request) and also communicating with one or more external

information systems (which might be contained within the same

host computer, or accessed via data networks) to obtain needed

information in the course of its calculations. Within this

general system architecture, the rule-based system might play

several different roles:

o A decision aid or planning aid for the user,
containing a number of rules ("heuristics") that
guide its deliberations in generating plans or
proposed decisions. In this role, the logic within
the rules and data of the rule-based system is of
paramount interest, with the rule-based system
possibly calling upon external information systems
for needed data;

o A flexible interface to external information
systems. In this case, the user's primary interest
is in the external system, but he prefers to
interact with that system through a tailored (rule­
based) interface capable of mapping user requests
into an interactive dialog that extracts needed
information from the external system. Here the
rule-based system often acts as a "surrogate user",
dealing with the external system as if it were a
human user of that system; in this manner, no
changes are needed in the external system in order
to obtain the advantages of this tailored interface.

ROSIE is a system that allows rules + data + monitors to be

-4-

developed that will become a total "rule-based system" for any of

the above uses. Its design is quite heavily influenced by

earlier experience with a similar, but much simpler, rule-based

system developed by Rand called RITA (Anderson & Gillogly, 1976;

Anderson et al, 1977). Readers desiring additional background

information on the design philosophy involved in ROSIE's

precursors and examples of the uses of rule-based systems are

urged to consult the above references.

The ROSIE design exploits and integrates many current

ideas in artificial intelligence research. The use of a rule­

based language builds on previous work on MYCIN (Shortliffe,

1976) and other work in pattern-directed inference system design

(Waterman & Hayes-Roth, 1978b). The event- or change-driven

rule-invocation strategies are based on the use of demons in

PLANNER and ARS (Hewitt, 1971, 1972; Stallman & Sussman, 1976)

and similar schemes for speech understanding (Hayes-Roth &

Mostow, 1975). We have borrowed the idea of a hierarchical data

structure capable of supporting abstraction and inheritance from

the work on units and frames (Minsky, 1975; Martinet al., 1977;

Lenat, 1976, 1977; Lenat & Harris, 1978; Winograd, 1975; Bobrow &

Winograd, 1977; Charniak, 1975; Havens, 1978). Many of the ideas

related to the use of rules as data and the inclusion of

elaborate user support features were inspired by INTERLISP

(Teitelman, 1974). We intend to retain the positive user-

oriented features of these languages while incorporating new

features that simplify the handling of rich and complex domain

-5-

descriptions. Major features include:

o hierarchic structures on data elements and rules, to
support abstraction in the models

o user selection of existence-driven or event-driven
rule-invocation strategies

o user control of rule iteration

o user control of rule and data activation, including
a "rule-subroutining" capability

o user support tools

In the design of the ROSIE system, our primary aim has

been to support the creation of realistic models. We know from

experience with RITA and other rule-based systems, that realistic

modeling implies fairly large sets of model elements: rules and

data elements. We also know that to be useful to end-users

(i.e., people with expertise in some significant problem domain,

but lacking expertise in conventional computer programming), a

powerful system must be easy to learn and use (Waterman, 1977;

Waterman & Jenkins, 1977). Hence, the main requirements on the

ROSIE design are:

o efficient and effective handling of large rule and
data sets for realistic modeling

o a "friendly" user environment that facilitates both
system building and use

o system flexibility and modifiability to allow
exploration of implementation alternatives

o implementation within a relatively short
period to support near-term applications

time

-6-

Our choice of an implementation environment for ROSIE was

largely determined by these criteria. Embedding the prototype

system in INTERLISP will permit fast implementation and allow a

flexible approach to monitor strategies and other key system

decisions. Running the ROSIE system on a PDP-10 class computer

will give users the speed and memory capacity needed for building

large models.

The following sections describe in greater detail the

features of the ROSIE system. Section II discusses the ROSIE

design requirements, relating them to the current design.

Sections III and IV describe data and rule specifications and

Section V concludes with a discussion of the user support

environment.

-7-

II. SYSTEM DESIGN -- AN OVERVIEW

LARGE RULE/DATA SETS

Vast amounts of information are needed to reach decisions

in complex application areas. To handle this problem we have

modularized the rules and elements so individual modules can be

accessed and executed independently. This provides a means for

maintaining only the currently active and perhaps relevant

modules in core at any one time. The mechanism for achieving

modularity relies on the concepts of partitioning, activation,

and abstraction. The user partitions his rules and data into

separate sets based on his expectations regarding their

interdependencies. Rule and data sets are activated, i.e.,

permitted to interact to cause rules to fire, only when deemed

relevant by the user or the ROSIE monitor.

The user is able to handle many different kinds of rules

at different levels of generality through abstraction, i.e.,

organizing the elements so that the "INSTANCE" relations between

very general and very specific elements are made explicit.

General rules apply to categories of data types called concepts.

We have used data abstraction in order to make it easy to write

rules that apply to all instances of general concepts. This

works by allowing elements that represent low-level or very

specific concepts (e.g., a carrier) to inherit attributes

specified by higher-level or more general concepts (e.g., naval

platform) of which they are instances. Thus, a rule that checks

-8-

to see if "carriers" have some attribute x will be satisfied if

either the proper value of the attribute is associated with

"carrier" or is associated with a more general concept of

"carrier" such as "naval platform."

Similarly, aggregation is used to permit the user to

access collections of elements using simple rules. Here the

"member of" relation between aggregated elements and their

constituent parts is made explicit. Questions about being a

member of something are answered by finding the closure of all

sets and subsets that are members of the element in question.

Finally, we will achieve a significant efficiency by

allowing the rules to fire in response to events or changes in

the data base. This use of an event-driven monitor also

simplifies the rules, permitting the user to create rule sets

that act as large collections of demons acting independently of

one another. In addition, we envisage permitting the user to

formulate different control rules, which we call monitor

programs, that would be specially adapted to the efficient use of

large sets of rules or searches of large data bases.

FRIENDLY SUPPORT ENVIRONMENT

A primary goal is to make the system familiar and

friendly. By familar we mean non-radical, extending ideas

already developed in other systems. For example, we have

borrowed the idea of an English-like syntax from RITA and MYCIN,

the concept of data abstraction hierarchies from a number of AI

-9-

programs (Minsky, 1975; Lenat, 1977; McCalla, 1978), and the idea

of recognition nets to speed up the rule matching from the ACORN

work (Hayes-Roth & Mostow, 1975). We understand these ideas

quite well because they have been implemented either at Rand or

elsewhere several times before. By friendly we mean a system

that is easy to use and understand. We accomplish this in two

ways--by designing the system around a simple rule syntax and by

providing the user with a support package that facilitates his

use of the system.

The rule syntax of ROSIE is quite similar to RITA: IF­

THEN rules in an English-like framework. However, most of the

awkwardness of RITA programming is gone. For example, in RITA it

is difficult to write rules that look for a certain kind of

pattern in the data and then perform a particular action to all

instances of the data elements matching that pattern. It is

difficult to write single rules that apply to classes of data

elements. Also, at present the user often needs to specify the

program state as a condition for rule firing and a change of

state as an action in order to obtain sequential rule firings or

prevent a single rule from firing repeatedly. To avoid these

problems we have expanded rule semantics to facilitate iteration

through a data set and have provided the abstraction and

aggregation hierarchy mechanism. We have also introduced an

event-driven monitor to allow expressions to be tested for their

becoming true. Thus rules can detect if an expression is

currently true but was not true on the last tested cycle and

-10-

cause appropriate action to be taken. This permits the user to

notice when things are changing and simplifies implementing

alerts or other kinds of change detecting processes.

The support package includes many features for assisting

the user, all built around the notion that rules are simply

another type of data element that may be accessed and manipulated

by rules. Editing facilities in ROSIE are rule-based and thus

may be extended or modified by the user. The user may construct

auxiliary rule sets that assist him in determining rule

correctness by examining the main rule set, looking for important

similarities or differences in rules. A sophisticated

explanation facility is included that traces the operation of the

system at various levels, providing a way to justify system

inferences and debug faulty rule sets. Reasoning in the presence

of uncertainty is handled by permitting the user to assign

weights or "certainty factors" to rules and data. The user can

then specify a certainty range, and only rules and data with

certainty factors in that range will be used in the calculation.

INTERACTION WITH THE EXTERNAL WORLD

One of the distinctive strengths of the RITA system, when

compared to other existing production-rule programming systems,

is the simplicity and power of its facilities for interaction

with the external world. The ability of user models to affect

the external world, and to be affected by external events, is

important for many applications; it is indispensable for command

-11-

and control decision support models which require the monitoring

and interpretation of real-world situations. An especially

important application of a real-world interface is the driving of

graphic and alphanumeric display systems by the user's model.

The experience of many RITA users suggests that RITA's relation

to the external world is the appropriate model to pursue for the

new system.

This interaction is mediated through the exchange of

character strings with the host operating system. The right-hand

sides of rules influence the behavior of the host computing

system just as would a user sitting at a terminal--by composing

commands to the host system, and receiving messages from the host

operating system in reply. For example:

IF users OF system IS NOT KNOWN
THEN SEND "systat" TO tenex
AND RECEIVE {ANYTHING FOLLOWED BY sys-prompt}

AS users OF system;

WHEN THERE IS AN active-force [f]
WHOSE astab IS NOT CURRENT

THEN FOR ALL CASES SEND astab-request OF [f] TO ladder
AND RECEIVE {ANYTHING FOLLOWED BY end-of-report}

AS astab OF [f];

In this way, the user's rules can exercise all of the

host system's capabilities, including network access (where

available) to other systems. Such an approach, which takes

advantage of all existing operating system facilities, pays off

in two ways: it builds upon the user's knowledge of the host

system, and it simplifies the implementation of ROSIE.

-12-

The exchange of character strings with the host system

requires the existence of string analysis and composition

mechanisms within ROSIE itself. These will resemble the highly

successful RITA "pattern" and "concatenate" features.

MODIFIABILITY

It is important to make the system modifiable by the user

to reflect his growing insight and expertise. Thus the monitor

programs, the code controlling the way the rules make contact

with the data base, are themselves formulated as rule-based

programs. Two or three alternative rule-based monitors will be

made available, although the sophisticated user will have the

option of modifying or rewriting them himself. In this way we

make almost all of the facilities of the system accessible to the

user. Not only have we carried over the idea from LISP that

"data equals program," but we have carried over the good ideas

from INTERLISP that the system facilities themselves are written

in the same formalism as the applications. Thus increasing the

user's expertise in the applications program provides a

capability for simultaneously increasing his expertise in the

overall system.

-13-

Force 23
Kynda

Force 37

Fig. 1 -·Naval Force Configuration

A typical ROSIE application is threat assessment, i.e.,

representing friendly and enemy forces is a manner that

facilitates the recognition of an immediate or potential threat

to one side pr the other. Figure 1 is a simple illustration of a

naval force configuration that is amenable to threat analysis.

The problem is to develop a data base representing this

configuration and rules describing how to calculate threats.

This example will be used throughout the paper to assist in

describing the design and use of ROSIE.

-14-

III. DATA SPECIFICATION

The basic system components are called knowledge

elements. Knowledge elements represent cohesive pieces of

knowledge such as events or the status of material objects, and

the collection of these elements is called the knowledge base

(sometimes referred to as the "data base" in other rule-based

systems). Two types of elements exist: concepts and objects. A

concept is an element that describes a class of data elements,

e.g., plane, ship, battle, war. Classes of events may be

represented as concepts, e.g., "losing a battle," while

particular events may be represented as objects, e.g., "losing

battle 34." Concepts have information associated with them that

is representative of the class in general. For example, the

concept "plane" might have the following associated information:

it flies through the air, is self-propelled, etc. An object, on

the other hand, represents a specific "real world" entity. It is

usually a particular instantiation of some concept. For example,

the data base might contain the concept "carrier" and an object

"Enterprise, 11 representing a particular carrier.

ELEMENT FORMS

An element is composed of a name with any number of

associated attribute-value pairs. The name is a string of text

that references or 11 names" the element, while the attributes are

characteristics of the element that can have associated values.

-15-

The name-attribute-value triple can be represented either as

statements or graphs. These are illustrated below.

The <attribute1> of the <name>
is <value1>.

The <attribute2> of the <name>
is <value2>.

name

attribute/ \ attribute2

value1 value2

These representations can be used to describe the object

"Enterprise" from Figure 1 as shown below.

The course of the Enterprise
is 315.

The speed of the Enterprise
is 20.

315

Enterprise

20

A similar example for the concept whose name is "carrier" is

shown below.

The armament of a carrier
is planes.

The platform-type of a carrier
is surface.

carrier

armamen~ ~latform-type
planes surface

We will later show how to link these two representations into a

coherent structure called an element hierarchy (see Figure 2).

It is also possible to associate values directly with names. The

name has an implicit default attribute called "own value" (V).

For example:

-16-

enemy force friendly force
The enemy force is F-23.

lv lv The friendly force is F-37.

F-23 F-37

Two types of attributes are permitted in ROSIE, user-

defined attributes and system attributes. The user-defined

attributes are arbitrary words representing relations the user

would like to define between the element's name and value. The

system attributes are reserved words with special meaning to the

ROSIE monitor. The four most important system attributes are

"OWN VALUE" (V), "EXISTENCE" (E), "INSTANCE" (I), and "MEMBER"

(M).

The "OWN VALUE" attribute (V) directly links a value to a

name, thus providing a basic binding mechanism analogous to the

assignment of values to identifiers in conventional programming

languages. This attribute is untyped and can be set by a simple

assignment statement, e.g., "SET enemy-force TO F-23" sets the V

attribute of enemy-force to F-23. Evaluating an object consists

of returning the value of its V attribute. The V attribute

permits the construction of more compact, succinct element

descriptions in many cases, e.g., using "the enemy force IS F-23"

rather than "the current name OF the enemy force IS F-23."

The "EXISTENCE" attribute (E) applies to objects and has

a value representing the certainty that the object actually

exists. For example, if a blip on a radar screen is interpreted

as an enemy plane it may be important to include an estimate of

-17-

certainty that the plane does exist, as shown below.

plane-4

1 E

.8

Here the certainty that plane-4 exists is estimated as .8. If no

information about the value of the E attribute is present in the

knowledge base, it is assumed to be 1 (completely certain).

The "INSTANCE" attribute (I) is used to link concepts to

other concepts or objects that are instances of or examples of

the original concept. When the I attribute is used to form a

name-attribute-value link the name is always a concept, the

attribute is I, and the value is either an object or concept

name. Examples are shown below.

platform carrier

1 I

carrier Enterprise

The examples state that an instance of a platform is a carrier,

and an instance of a carrier is the Enterprise. Since the value

of an attribute can be an element name, the I link can be used to

build complex nets, as discussed in the next section.

The "MEMBER" attribute (M) is used to link elements to

other elements that represent components of the original element.

-18-

The M attribute always links concepts to other concepts, and

objects to other objects (see below).

task force force-37

1M 1M
carrier Enterprise

The examples state that "a member of a task force is a carrier,"

and "a member of force-37 is the Enterprise."

All system attributes have corresponding inverse

attributes whose links are automatically defined when the

original attribute is defined. Thus when the user states "an

INSTANCE OF a platform IS a ship," or "ship IS an INSTANCE OF a

platform" the following links are made between ship and platform:

platform ship

1' 1-I
ship platform

indicating that the concept "platform" includes the special case

"ship."

-19-

ELEMENT HIERARCHIES

There are two fundamental kinds of hierarchies that can

be constructed in ROSIE, abstraction hierarchies and aggregation

hierarchies. The abstraction hierarchy is defined by "INSTANCE"

links between high-level concepts and lo\ver-level concepts or

objects. The links from higher concepts to lower concepts are

traversed via the reserved attribute "INSTANCE" (I), while upward

links are traversed via the reserved attribute "IS A" (-I).

Hierarchies of this special kind can be created by type

declarations as well as by direct manipulation of the reserved

attributes. Examples of type declarations of the intended kind

are:

o EVERY ship IS a platform

o EVERY OBJECT WHOSE armament IS planes IS a carrier

o platforms INCLUDE surface craft AND aircraft

o surface craft INCLUDE ships AND submarines

o ships INCLUDE carriers, destroyers AND cruisers

o carriers INCLUDE the Enterprise AND the Kittyhawk

The abstraction hierarchy is useful for expressing

permanent type-token relationships among the objects in the

universe. This hierarchy is a network of elements connected by I

links, e.g.,

I I I
el ---> e2 ---> e3 ---> e4.

-20-

Each element in the hierarchy inherits the user-defined

attributes and values above it (going against the arrows) in the

network. If the same attribute can be accessed more than once

during upward traversal through the links, the lowest (closest)

attribute-value pair is inherited. In Figure 2, the information

that carriers carry planes and are surface vessels does not have

to be stored repetitively with the objects "Enterprise" and

"Kittyhawk." Instead, these objects "inherit" these values

through upward traversal of the !-links. Thus a rule referring

to a ship whose armament is planes would match both "Enterprise"

and "Kittyhawk." This I-link inheritance can be suppressed by the

addition of a "DON'T INHERIT" flag as an additional property of

the attribute.

-21-

ship

""p~~;orm-

~
carrier destroyer surface

armam7 Il ~
planes Enterprise Kittyhawk

I \ course/ \ speed

course speed ~ ~

315 20 314 21

Figure 2. An Example of an Abstraction Hierarchy

Aggregation hierarchies can be built by connecting

elements via the "MEMBER" or M link. They may be accessed by

using "MEMBER" in the retrieval clause, e.g., "IF THERE IS a ship

THAT IS A MEMBER OF a U.S. task force," or "IF THERE IS A MEMBER

OF a U.S. task force WHOSE name IS Enterprise." When M-

hierarchies and !-hierarchies intersect, the search for MEMBER

will proceed appropriately through the !-hierarchy as well.

There is no inheritance of attributes through theM-links.

Since the user may himself define new attribute types and

link them to elements as desired, he has the potential for

creating arbitrarily complex networks in the data base. These

networks are created by explicit manipulation of attributes and

-22-

links, either by editing or by rule-directed manipulation of

attributes. The only privileged monitor operation supported for

these hierarchies is transitive traversal of these links during

matching.

Ship

Platform U.S. Fleet

f
U.S. Task Force

Carrier F-23

Enterprise

Figure 3. An Example of Abstraction and
Aggregation Hierarchies

threatening
force

F-37

Objects can only be members of objects and concepts can

only be members of concepts, but both objects and concepts can be

instances of concepts. Figure 3 illustrates the use of I, M and

user-defined attributes in a data hierarchy that partially

-23-

represents the configuration shown in Figure 1. System-defined

attribute types are shown in upper case. Note that "threatening

force" is a user-defined attribute name. The user (or system

builder) defines his own attribute names and element names; the

naming convention is completely arbitrary. Alternatively,

"threatening force" could have been used as an element name.

Concepts linked to concepts through member-of relations

mean that every instance of the higher level concept contains an

instance of the lower level concept, for example,

U.S. task force

lM
carrier

means that every U.S. task force contains a carrier, but not that

every carrier is a member of a U.S. task force. Links composed

of member-instance pairs lead to "possible" or "could be"

inferences, as shown below.

U.S. task force

lM
carrier

nuclear carrier

Here we may infer that a nuclear carrier could be a member of a

-24-

U.S. task force, but not that this is necessarily true. Whether

or not we want to incorporate mechanisms to deal with inferences

of this sort (and other similar ones) is still an open question.

An attribute has other information associated with it

besides the value to which it is pointing. It has a data TYPE

that can be number, list, string, element-name, or boolean; an

INHERITIBILITY flag that determines whether or not it will be

inherited via the I-links, and a CERTAINTY factor describing how

certain it is that the attribute of the element has the given

value.

There is a universal system concept (an implicit top

node) that can have associated with it default attributes,

attribute types, and values. All elements then inherit these

properties. For example, if the system concept has the attribute

LOCATION, with type LIST, then all elements in the system would

have it.

-25-

IV. RULE SPECIFICATION

Rules are represented as conventional knowledge elements;

hence they have attribute/value pairs associated with them and

can be accessed and modified by other rules. The feature that

distinguishes a rule element from a data element is the presence

of a "condition" attribute representing the rule's left-hand and

an "action" attribute representing the right-hand side. Shown

below are other built-in attributes rules may have in addition to

those the user may care to define. (Note that this list is not

exhaustive.)

Name: name of the rule (must be unique)

Condition: the left-hand side of the rule

Action: the right-hand side of the rule

Certainty: certainty factor associated with the rule

Priority: priority relative to other rules

Creator: name of creator

Date: creation date

Purpose: explanation of rule purpose

Comments: additional commentary regarding the rule

Since rules are simply another form of knowledge element, they

are amenable to internal analysis by other rules and to inclusion

in hierarchies within the system. There is no formal distinction

between rules that manipulate rule elements and rules that

manipulate data elements. This mechanism will be convenient and

-26-

useful for selecting from a very large set of rules and objects

those that constitute interesting subsets for review, correctness

checking, or activation.

The monitor that controls rule matching, selection and

execution can be chosen by the user from a menu of available

monitors. If none fits his specifications and he is an

experienced programmer he will be able to modify existing

monitors or write his own in ROSIE. The default monitor that is

available is the ordered monitor. This monitor assumes that

priorities have been assigned to each rule; these priorities are

often based on the order the rules are entered into the system.

A cycle in this system consists of selecting a rule that matches

the data and executing it. The highest priority rule that

currently matches is the one selected. Once the rule actions are

executed (creating the possibility of new rules that match) the

cycle starts again. This continues until no rules match or the

action STOP is executed.

RULE FORMS -----

Rules fall into three categories: WHEN-THEN, IF-THEN,

and DO. The WHEN-THEN rule cannot fire more than once for each

distinct (set of) knowledge element(s) that matches its

conditions or left-hand side (LHS). The only way it can fire

again on the same element is when the matching value of the

element has been changed. This is an example of an event-driven

or demon-like rule. This rule has the form shown below.

-27-

WHEN <conditions> THEN <actions> {ELSE <actions>}

example:

WHEN THERE IS a ship WHOSE affiliation IS NOT KNOWN AND
the DISTANCE BETWEEN the ship AND the U.S. task force
IS LESS THAN 30 miles
THEN ADD the name OF the ship TO the potential threat list

AND SEND the name OF the ship TO the USER

In the above example all ships with unknown affiliation and close

proximity to the U.S. task force are added to the potential

threat list. Each time the rule fires, one new ship is added,

i.e., the rule must fire n times to add n ships to the list.

After a ship's name is added to the list it is sent to the user.

Because the rule fires only on knowledge base changes and only

once for each data element no special mechanism is needed to keep

the rule from being invoked continuously for the same knowledge

elements.

The IF-THEN rule is analogous to the standard RITA rule.

It is existence-driven; it fires repeatedly as long as the

conditions are true, even if the elements matching its conditions

have not been changed. The actions are executed once during each

monitor cycle; repeated rule firings require repeated cycles.

The form of this rule is shown below.

IF <conditions> THEN <actions> {ELSE <actions>}

example:

IF the state OF the system IS "compute relative threat"
THEN SET the state OF the system TO "set threat level"

AND SET the relative threat OF the system TO (100
* attack density OF the U.S. task force)/
engagement density OF the U.S. task force

-28-

After the THEN actions have been performed and the conditions are

no longer true, rule firing is terminated.

The DO rule is analogous to a RITA "immediate action."

When used as part of a rule set, it behaves like a rule that is

always true, e.g., "IF TRUE THEN <actions> and executes its

actions each time it is tested by the monitor. When used alone

it has the effect of a command and is executed as soon as it is

read by the monitor. It has the form shown below.

DO <actions>

example:

DO ACTIVATE RULESET rs23
AND ACTIVATE DATASET d15

This type of rule permits the user to effectively insert commands

into his rule sets. This capability was found to be quite useful

in the RITA system.

Rule actions can have the following forms. (Note that

this list is not exhaustive.)

assignment: SET <attribute> OF <name> TO <value>

list: PUT <value> INTO <attribute> OF <name>

creation: CREATE <item> (creates elements or attributes)

deletion: DELETE <name> I DELETE <attribute> OF <name>

I/0: SEND, RECEIVE, OPEN, CLOSE, READFILE

termination: STOP I RETURN

rule: WHEN-THEN, IF-THEN, or DO

-29-

activation: ACTIVATE <rulesets> DEACTIVATE <rulesets>

subroutine: CALL <rulesets>

The assignment, list, creation, deletion and I/0 actions all

correspond to useful actions available in RITA. The use of a

rule as an action allows the user to create conditional

expressions within the right-hand side (action side) of a rule.

Experience with RITA has shown that this capability can

significantly reduce the number of rules needed to express

certain types of repetitive procedures. The activation and

subroutine capabilities facilitate organizing the program in a

modular form that is more efficient and easier to debug. More

will be said about these capabilities in the next section.

Rule conditions have the form of a boolean expression

with parentheses for disambiguation, e.g., A & (B v C) & -D. The

two basic forms of the expression are:

<attribute> OF <name> IS <value>
THERE IS <name> WHOSE <attribute> IS <value>.

Again this list is not exhaustive, as there are many relations

other than equality (e.g., greater than, less than, contains,

between, etc.) needed to provide the user with a workable set of

tools for rule construction.

-30-

INSTANCE SETS

When a rule's left-hand side is tested by the monitor an

attempt is made to form the instance set for the rule's

condition. The instance set of a boolean expression is the union

of all ordered subsets of elements that match the expression,

assuming automatic inheritance of attributes for more specific

elements, i.e., those lower in the I-link hierarchy tree. This

set is then used to instantiate rule variables. The methods used

to create and use the instance set depend on the type of monitor

being used and the type of rule being executed.

The SET action in "SET <attribute> OF <name> TO <value>"

stores the new value at the highest level element in the instance

set and deletes existing values at lower levels, unless they are

flagged for no inheritance. (If necessary, cached values are

updated.)

In the condition part of a rule the user may explicitly

mention the type of knowledge element being sought. For example:

IF THERE IS a <name> WHOSE ...
IF THERE IS a CONCEPT <name> WHOSE
IF THERE IS an OBJECT <name> WHOSE
IF THERE IS an INSTANCE OF CONCEPT <name> WHOSE ...

In the "CONCEPT <name>" reference the instance set is the whole

tree including the element referred to by <name> and all

instances and abstractions under it.

The clause "a <name> WHOSE <attribute> IS <value>" causes

a search for the attribute starting at the <name> element and

-31-

proceeding down the "INSTANCE" hierarchy. If the attribute has

still not been found when the objects are reached, the search

continues back up the tree above the original <name> node until

either the attribute is found or the tree terminates.

CASE PHRASE

The rule "WHEN <conditions> THEN <actions>" executes its

actions for one member of the instance set each time it is fired.

If it is desired to execute the actions for all members of the

instance set during a single rule firing, the rule must be

reformulated as "WHEN <conditions> THEN FOR ALL CASES <actions>."

The "FOR ALL CASES" phrase may be used with IF-THEN rules in the

same manner. The example below illustrates the "FOR ALL CASES"

phrase.

RULE 1: WHEN THERE IS a ship WHOSE speed IS LESS THAN 20 KNOTS
THEN SEND the name OF the ship TO the USER

RULE 1a: WHEN THERE IS a ship WHOSE speed IS LESS THAN 20 KNOTS
THEN FOR ALL CASES SEND the name OF the ship TO the USER

When rule 1 is tested against the knowledge base and found to be

true it is executed only for the first ship in the knowledge base

whose speed is less than 20 knots. Thus, other rules are tested

and made available for execution before rule 1 necessarily has a

chance to fire again for other ships with speeds less than 20

knots. Rule 1a, on the other hand, does not relinquish control

to other rules until it has been executed for every ship in the

knowledge base with speeds less than 20 knots. This permits the

-32-

user to write rules that can efficiently iterate through the data

when so desired.

VARIABLES

Variables can be used in rule expressions to represent

element names, attributes or values. The variable is identified

by being enclosed in brackets, for example:

a ship [x] WHOSE length IS GREATER THAN 150
an ELEMENT [x] WHOSE ATTRIBUTE [y] IS VALUE [z]
IF THERE IS an ELEMENT [x] THAT IS A MEMBER OF a fleet [y]
THEN SET the status OF [x] TO the status OF [y]

The binding of a variable takes place when the variable first

occurs in the expression, typically after the defining term. The

defining term can be "ELEMENT," "OBJECT," "CONCEPT," or a

particular element, object, or concept. The default defining

term is "ELEMENT." The scope of the binding is within one rule.

DATASETS/ACTIVATION

We allow named datasets and the ability to activate or

deactivate them, e.g., "ACTIVATE classified-value-table." Since

rules and data are treated alike the same activation mechanism is

used for both, i.e., rulesets and their rules are just knowledge

elements that can be (de)activated like data. Activation can be

initiated either by user commands or by rule actions. Of course

activating rules is quite different (in terms of effect) from

activating data, since the monitor makes a clear distinction

-33-

between rules and data. Only rule elements can be executed

whereas all elements, including other rules, can be matched

against the left-hand sides of rules during condition testing.

There are two kinds of activation: global and local.

Global activation involves defining a permanent operating

context, i.e., the set of rules and data currently available for

processing. The actions "ACTIVATE" and "DEACTIVATE" will be

given the following meaning: "ACTIVATE alpha" means mark all the

rules in the set alpha as accessible for current operations;

"DEACTIVATE alpha" means mark all the rules as not accessible.

This can be applied easily to both rules and objects without

distinction. When elements are activated this way by a rule's

action they are not available for processing until the execution

of the rule has terminated.

Activation and deactivation of rules and data is handled

uniformly by the actions shown below. Activation adds rules or

data in the named set to the active set.

ACTIVATE RULESET <name>
ACTIVATE DATASET <name>

Deactivation removes rules or data from the active set.

DEACTIVATE RULESET <name>
DEACTIVATE DATASET <name>

Local activation involves defining a temporary operating

context, i.e., a set of rules and data that are active only while

the rule that activated them is still being executed. Thus local

-34-

activation is analogous to a subroutine call, and the action

"USE" will be used to indicate this type of activation. Hence,

"USE alpha" means that the rules in alpha become the current

active set and all other rules in the system are marked as

inaccessible until a "RETURN" action is executed in alpha. The

effect of executing the return will be to reinstantiate the set

of rules that existed prior to the use action. The distinction

here is that there is a push and pop stacking mechanism that

applies to "USE" and "RETURN," and does not apply to "ACTIVATE"

and "DEACTIVATE." The form of the USE action is shown below.

USE RULESET <name>

There is an open question as to whether "USE" and

"RETURN" should apply to data as well as rules. A second more

fundamental issue concerns the passing of parameters via the

"USE" action to a new rule set. The parameters to be passed

should be subject to the push and pop mechanism, along with the

set of active rules so that the "USE" mechanism can be used

recursively.

Datasets can be defined by actions in rules,

illustrated below.

ASSIGN <name> TO DATASET <dataset name>

example:

IF THERE IS an ELEMENT [x] WHOSE type IS "navy"
THEN ASSIGN [x] TO DATASET navops

as

-35-

ASSIGN <name> TO RULESET <ruleset name>

example:

IF THERE IS a RULE [x) WHOSE certainty IS > .5
THEN ASSIGN [x] TO RULESET goodrules

Dataset definitions add names to the value of the DATASET

attribute (D) associated with each data element, e.g., "ASSIGN x

TO DATASET navops" sets up the link:

<data element x>

(navops)

where D is a system attribute. However, in the case of ruleset

definitions the user will perceive a hierarchy of I and M links

as illustrated below.

M
Ruleset Rule

11
rsl

R2

Thus the user will be able to write rules that make use of

inheritance and membership properties with regard to rule

characteristics, e.g.,

-36-

IF THERE IS a RULE [x] THAT IS NOT a MEMBER OF a RULESET
THEN ASSIGN [x] TO RULESET rsl

-37-

V. USER SUPPORT ENVIRONMENT

The user support facilities of ROSIE are intended to help

the user cope with the special problems of large, rich models.

Models of real-world interest may be expected to involve large

numbers of rules and data elements--far too many for the model

builder or user to comprehend in detail. While user support

issues are important in the design of any computing system, they

are especially critical in large, complex systems intended for

use by non-programmers. Hence, considerable effort has gone into

planning effective user support facilities for ROSIE--to provide

a friendly and helpful environment for the model builder.

In this section, we outline three classes of key user

support facilities in functional terms: top-level interface,

editing, and model analysis.

THE USER'S TOP-LEVEL VIEW OF THE SYSTEM ---- - --- ----- ---- -- --- ------

Before the user can approach the substantive tasks of

heuristic modeling--building data and rule elements--he must be

able to invoke ROSIE from the host operating system and correctly

interact with ROSIE. To aid the new user learning about the

varied ROSIE features the system will incorporate a tutorial

mechanism capable of describing the features and demonstrating

how to use them. Thus a new user will be able to interact

effectively with ROSIE even if he has a minimal understanding of

the basic concepts underlying the ROSIE design.

-38-

The user must exercise control over system options and

features. Thus, the system must have a set of commands that

permit the user to control modes, options, file loading, running,

interruption of running, resumption of running, trace setting,

debugging, and the verbosity with which the system describes its

own behavior. The model for these features is the latest

implementation of RITA; these RITA functions will be included in

the initial design for ROSIE.

There is one important top-level command, not present in

RITA, that gives the user the ability to activate a particular

set of rules and/or data elements from the command level; e.g.,

USE edit-rules;

This gives the user an easy way to isolate for execution a set of

editing rules, or correctness-checking rules (see below), that

are embedded within a user model.

The commands associated with these facilities can be

typed directly at the user's terminal, or they can be embedded in

loadable ROSIE files to simplify subsequent system

initialization.

Also provided is the RITA concept of immediate rules-­

rules that are entered from the user's terminal and are executed

at once. These rules differ from system commands in that they

dynamically interact with the elements of the user's current

model; e.g.,

-39-

IF THERE IS A carrier [c) WHOSE readiness IS low
THEN FOR ALL CASES DEACTIVATE [c);

Immediate rules differ from ordinary rules in that they do not

become a part of the universe of rules within a user model; they

are executed at once and then discarded.

Special editing capabilities are described below which

further enhance the user's top-level control of the system.

EDITING FUNCTIONS

The principal tool that the model-builder will use to

create and modify elements of his model (rule and data elements)

is a text editor. In this role, the editor will carry much of

the burden of interaction between the user and ROSIE. The

functional properties of the editor must be designed to

gracefully and unobtrusively assist the user in his work; those

described in the following paragraphs are suggested by a broad

sampling of user experiences with the RITA system.

The main function of the editing facilities is to

facilitate the manual creation or change of rule and data

elements. (Rules and data can also be created as a result of

rule actions). To support this, it is desirable to provide a

sophisticated prompting facility. Prompting should be optional,

and should be driven by user-specified templates for the most

common kinds of structures in the user's model. The goal of

prompting is to save the user from routine typing and to reduce

the likelihood of typographical errors.

-40-

Access to the editor can be invoked manually whenever the

model is quiescent, so that rule and data elements can be edited.

As an aid to debugging, an existing execution context can be

preserved while manual editing occurs; this will allow model

execution to be halted for editing and then resumed with no loss

of current states, bindings, etc.

In addition to manual editing, there are two ways in

which the user can build editing aids into the model itself using

ROSIE language facilities. First, he can use rules to locate

data in the model that needs editing, and package these materials

for later manual editing; e.g.,

IF THERE IS A RULE [r]
WHOSE conditions CONTAIN {'carrier'}
THEN FOR ALL CASES SEND [r] TO edit-file;

will gather up all rules which mention carriers in their left-

hand sides and send copies of them to a file. This file can

later be edited manually and the modified contents returned to

the model.

Extending this approach, the user can build rules that

actually edit other rule or data elements in the model; e.g.,

CREATE CONCEPT tf-subs;

IF THERE IS A tf-escort [tfe]
WHOSE INSTANCE IS submarine [s]

THEN FOR ALL CASES REMOVE [s] FROM (tfe]
AND INCLUDE [s] IN tf-subs;

These rules carry out a systematic change in the user's taxonomy

-41-

of submarines, moving those formerly categorized as task-force

escort vessels into a new category called "tf-subs." If the

number of affected elements is large, then this rule would save

the user substantial manual editing labor while eliminating the

possibility of typing errors.

To help the system protect privileged data fields from

editing (e.g., the internal object ID field) and as an adjunct to

a fairly rich prompting facility, we plan to include partial

syntax checking on rules and data so that at least superficial

syntax checks can be done before the material is released from

the editor, saving time and computing resources.

As support for interactive use of the language, the most

recent lines typed by the user at his terminal will be captured

in a transparent manner. If one or more of these lines proves to

be erroneous, resulting in rejection by the system, the user will

be able to edit the offending line(s) and resubmit them instead

of having to retype the entire sequence. Once again, this should

save typing and soften

typographical errors.

the

This

adverse effects of simple

facility will apply to all

interactive inputs, e.g., commands, immediate rules, or prompted

responses.

-42-

MODEL ANALYSIS

An important question for any model builder is whether

the behavior of the model, in the most general sense, accords

with his expectations and needs. Where this is in doubt, the

user will want to iterate through cycles of analysis, testing and

modification in the hope of arriving at a state of the model that

satisfies his goals. This process of model analysis is

ordinarily easier for small, sparse models for which the user is

able to maintain a more or less complete mental image. For

large, rich models, which ROSIE is intended to support, we

recognize the importance of supplementing the model builder's

intuition with specific tools to assist in the analysis process.

In the following subsections we describe three sets of such

tools, each of which addresses an important class of analysis

problems: consistency in the model, inference with uncertainty,

and explanation of results.

Consistency Among Rules and Data Elements:

An obvious source of anomalous behavior in a model is the

presence of collections of rule elements and/or data elements

whose members are inconsistent with one another. Here are some

simple examples of blatant inconsistencies:

(A) OBJECT carrier,
NAME Enterprise,
LOCATION Pacific,

-43-

OBJECT carrier,
NAME Enterprise,
LOCATION Atlantic,

(B) IF THERE IS A red-sub
WHOSE range IS LESS THAN 3

THEN USE RULESET antiplane ;

IF THERE IS A red-sub
WHOSE range IS LESS THAN 3

THEN USE RULESET antisub ;

These cases could have reasonably arisen as a result of

clerical error or carelessness in entering new material into the

model, either directly from the users terminal or from loadable

ROSIE files. Or they might arise from rule-based

What can be done about this problem of consistency? The

formal issues in evaluating consistency among the elements of

complex models can be very deep; there is, in fact, little hope

of providing a comprehensive automated solution to the detection

or correction of consistency faults. Instead, the system will

include approaches to helping the user identify collections of

data elements and rules that may embody consistency defects, as

well as other sources of faulty behavior in the model. The

primary burden of recognizing the defects themselves, and of

repairing them, rests with the model builder or user. He has

superior human pattern-recognition talents, and may be presumed

to possess unique competence to make such judgments of his own

-44-

model. The goal of system design in this area is to provide good

tools for the user to help him in this task.

Two kinds of tools will be made available, each focusing

on the identification of "families" of rules and/or data elements

whose properties may involve consistency or correctness issues.

Both rest on the hypothesis that consistency defects of the more

tractable kinds are likely to involve collections of rules and

data elements with high internal similarity. The members of a

family of rules would share key LHS and/or RHS elements; the

members of a family of data elements would share attributes

and/or values.

Simple similarity metrics can be used to construct

procedures that recognize similarities among sets of rules. At

the "fulcrum" of family discovery, the user will either directly

supply examples of key shared materials, or will point to

existing rules and/or data-elements that embody them; the system

procedures will then collect the members of the implicitly

defined family from among the elements of the model, and organize

them to simplify the user's review. While the design of these

procedures will lead them to err on the side of

overinclusiveness, the user will be given control of the

similarity threshold employed so he can limit the size of

generated families.

In addition to the built-in system procedures just

described, the user may often be able to create his own

procedures for reviewing portions of the model. As in the

-45-

editing situation, he may create and invoke rulesets whose

function is to identify and collect families of related data

elements and rules for review.

Reasoning in the Presence of Uncertainty:

Unlike a system of classical mathematical or logical

inference in which all premises and inference rules are assumed

perfectly correct and reliable, the elements of a heuristic

inference model may differ substantially from one another in

reliability or certainty. Some rules and facts will enjoy the

user's full confidence; others will have a more questionable

status. Also, the user's estimate of particular facts and rules

will change with growing knowledge and experience.

The main problem this situation poses for the user of a

heuristic model is how to estimate the reliability of inferences

and predictions which are based upon uncertain information and

transformations. The developers of RITA chose to leave this

issue entirely to the user as a way of avoiding difficult

problems of implementation in a minicomputer environment. The

most common approach, among systems which attempt to solve this

problem (Shortliffe, 1976) is to:

o let the user express his estimate of the
reliability of facts and rules on one or more
numerical scales, and

-46-

o provide built-in functions which compute
similar estimates for new inferences on the
basis of the estimates of the facts and rules
used to reach them.

But this approach has itself given rise to two new

problems. The first concerns the form of the certainty-combining

functions to be embedded in the system; it is still a matter for

dispute which (if any) of several candidate functions is the

theoretically 'correct' or 'best' one. The second problem is

simply that none of the candidate functions has met with uniform

user satisfaction; users express doubts about the confidence

estimates which the system assigns to new inferences--they are

irregularly higher or lower than the user himself would like to

assign to the same conclusions, sometimes dramatically so.

The approach adopted for ROSIE is based

hypotheses:

o the heuristic model builder and users of such
models need help in assessing the strength of
the model's inferences and predictions, but

o present understanding of the logical and
psychological bases of heuristic inference is
too weak to yield a comprehensive, fully
automated solution which users should accept.

on two

From these we conclude that the most useful strategy is

to provide system support for the kind of inference validation

that people routinely employ in coping with the uncertainties of

heuristic reasoning in everyday life: a careful review of the

evidence. Hence, while ROSIE invites the user to assign

-47-

"certainty factors" to his rules and facts, the system will not

routinely apply special functions for combining these in

evaluating new inferences; instead, facilities are provided for

locating and reviewing the facts and rules used in reaching them.

The final assignment of new certainty factors is then left to the

user. However, there will be a few certainty combining packages

built into ROSIE for use by sophisticated users who understand

their effects and implications. For example, we will supply one

very simple yet useful certainty combining function that works as

follows. All new data produced will have a certainty equal to the

minimum certainty factor (over both rules and data) used to

produce it.

Certainty factors (CFs) are expressed as numbers, and the

user can employ whatever kind of numerical scale the system can

support for this purpose. It may be desirable to provide mapping

from words representing different degrees of certainty (e.g.,

HIGH, MEDIUM, LOW) into corresponding numerical values--either

point values or interval values. The user will be able to assign

a CF to each rule and to the value of every attribute of data

elements. For the time being it is assumed that, where the user

does not supply a CF, the default CF will be presumed to be

unity, or the highest value representing complete certainty. A

single user-defined CF scale is used for both rules and data

elements. In addition to their primary role in inference

evaluation, it may be that CFs, like other components of rules

and data elements, can play a role in conflict resolution; it is

-48-

too early to make a judgement on this issue.

The approach to validating conclusions is to assist the

user in reviewing the chain of reasoning involved in reaching the

conclusions, with particular attention to the weaker premises and

rules. A running history of the system's actions will be

maintained in a history file; the contents of this file will be

used to support post-mortem traces and other debugging functions

as well as reviews of inference. ROSIE will contain tools

capable of searching this history file, collecting the facts and

rules underlying particular inferences, and organizing these

materials for the model builder's use.

When the model is run, the user will have the option of

providing a cutoff point or threshold CF value. The threshold

will limit the scope of the data or rules to be considered in the

calculation, as only items with CF values equal to or greater

than the threshold will be used in the calculation. Thus a

threshold of .8 would refer to "all data elements and rules with

a CF of .8 or above." If the user prefers to think in terms of

more abstract CFs the system will give him a CF test to calibrate

his certainty and will map it into a set of linguistic terms,

e.g., CERTAIN, HIGH, MEDIUM, LOW. He will then use these values

in conversing with the system, although ROSIE will internally use

standard numerical values.

An inference will be made using all rules and data above

the threshold value (which has a default value of 0). If no

certainty combining package is specified, all new data produced

-49-

will have a default certainty of 1, as illustrated in the example

below.

DATA

d1: .8 d2: . 9 d3: .6 d4: 1.0

RULES

.9
r1: c1 & c2 & c3 ---> a1

.8
r2: c3 & c4 & c5 ---> a1

.6
r3: c4 & c6 ---> a2

If the threshold value is .8 then only d1, d2, d4, r1 and

r2 would be used in the calculation. If r1 was properly

instantiated by d1, d2, and d4 then a1 would be added to the data

with a default CF of 1, and the process would continue.

The user will be able to ascertain the true validity of

an inference by querying the system about the chain of reasoning

used to reach the decision. For example, he might choose to

examine:

o data and rules by CF (a display of the rules and
data involved, ordered by ascending/descending CFs)

o weak links (rules/facts with CFs below some user­
specified threshold)

o initial data (initial rules/facts used in the chain)

o intermediate facts (new attribute values created in
the course of inference)

-50-

If he lacks confidence in the decision reached by the

system he can change the CFs on the rule or data elements, or

change the CF threshold value, and run the model again, repeating

this until he obtains a decision he trusts.

Explanation of Model Behavior:

The work of gaining insight into the behavior of a

complex model has static and dynamic aspects. In the preceding

sections on editing facilities and consistency checking tools we

have outlined the ways in which the ROSIE system can help the

user review and modify the component parts of a static model--the

rules and data elements that make it up. As a model runs, its

rules and data elements interact dynamically with one another and

with the system's monitor. The user's concern with heuristic

reasoning in the presence of uncertainty deals with one facet of

the dynamic interaction among the rules and data elements. In

this section, we focus on more general interactions among the

rules, the data elements, and the ROSIE monitor.

Much of the information useful in explaining the behavior

of the system to the user exists in the history file which the

system maintains. One key approach to assisting the user to

understand the system's behavior, therefore, is based on

providing various specialized filters to extract from the history

file information which would help the user to understand the

system's actions.

-51-

One type of filter that may be defined on the history

file produces an explanation of a chain of reasoning. This

mechanism, because it is based upon the general history file, can

be used equally well to help explain forward or backward chains

of inference. At various user-controlled levels of detail, the

system can exhibit chains of inference by rules, by rules and

data, by rules and data with bindings, etc. In addition, the

explanation facility can make use of annotations on rule and data

elements, supplied as attributes by the model builder, to help

the user understand sequences of system actions. If the history

file internally takes the form of ROSIE data elements, then the

full generality of the modeling capability can be applied to it

for scanning and other similar activities.

Often, the user will require information about the

behavior of the system which goes beyond inference schemas. He

may want to trace all rules which actually fire, those rules

whose left-hand sides were true, those rules whose left-hand

sides were merely tested, those which were retrieved for a test.

The user may be interested in the reason why the left-hand side

was retrieved but failed to be tested, or he may want to know the

criterion that was applied to exclude this rule during conflict

resolution. Similar concerns may apply for the data elements:

which elements have their values tested, which are members of an

instance set, or which have their values set. For these

purposes, ROSIE will include mechanisms for tracing the system's

actions at various levels of detail.

-52-

The hierarchy among the levels of tracings can be

tentatively defined as follows. At the lowest level the user

will be told when a designated rule fires, at a higher level,

when its left-hand side evaluates to true, and when it fires; at

a still higher level, when its left-hand side is. being tested, or

when it evaluates true, or when it fires; at a higher level

still, when the rule has been gathered in the search for eligible

left-hand sides, or when it is tested, or is true, or fires. And

at the highest level of all, the level of greatest detail, the

system will be asked to tell 'everything' about system actions

affecting the rule (or data element).

The ROSIE system will construct concise English-like

descriptions of the system's behavior with respect to the

designated elements, so as to avoid imposing on the user the

burden of remembering in detail the functions of the monitor:

conflict resolution, search strategy, and testing strategies.

The material emitted by the system in response to trace

or other explanatory commands can be directed by the user either

to the user's terminal (for immediate viewing) or to a file (for

later use) or both.

-53-

REFERENCES

Anderson, R. H., and J. J. Gillogly, Rand Intelligent Terminal
Agent (RITA): Design Philosophy, R-1809-ARPA, The Rand Cor­
poration, Santa Monica, California, 1976.

Anderson, R. H., M. Gallegos, J. J. Gillogly, R. B. Greenberg,
and R. Villanueva, RITA Reference Manual, R-1808-ARPA, The
Rand Corporation, Santa Monica, California, 1977.

Bobrow, D. G., and T. Winograd, "An Overview of KRL, A Knowledge
Representation Language," Journal of Cognitive Science,
1977, !, pp. 3-46.

Charniak, E., "Organization and Inference in a Frame-like System
of Common Knowledge," Proc. TINLAP, Cambridge, Mas­
sachusetts, June 1975, pp. 46-55.

Havens, W. S., A Computational Model for Frame
Thesis, Department of Computer Science,
B.C., 1978.

Systems, Ph.D.
UBC, Vancouver,

Hayes-Roth, F., and D. J. Mostow, "An Automatically Compilable
Recognition Network for Structured Patterns," Proceedings of
the Fourth International Joint Conference on Artificial
Intelligence, Tbilisi, USSR~S, pp. 246-251~

Hayes-Roth, F., D. A. Waterman, and D. Lenat, "Principles of
Pattern-directed Inference Systems," Pattern-directed
Inference Systems, Waterman, D. A., and F. Hayes-Roth
(eds.), Academic Press, New York, 1978.

Hewitt, C., "Procedural Embedding of Knowledge in PLANNER,"
Proceedings of the Second International Joint Conference on
Artificial Intelligence, Brit. Comput. Soc., London, 1971,
pp. 167-184.

Hewitt, C., Description and Theoretical Analysis
of Planner: A Language for Proving Theorems
MOdels in Robots, TR-258, MIT AI Lab.,
sachusetts, 1972.

(Using Schemata)
and Manipulating
Cambridge, Mas-

Lenat, D., AM: An Artificial Intelligence Approach to Discovery
in Mathematics as Heuristic Search, SAIL AIM-286, Stanford
Artificial Intelligence Laboratory, Stanford, California,
1976. Jointly issued as Computer Science Department Report
No. STAN-CS-76-570.

Lenat, D., "Automated Theory Formation in Mathematics,"
Proceedings of the Fifth International Joint Conference on

-54-

Artificial Intelligence, Cambridge, Massachusetts, 1977, pp.
833-842.

Lenat, D., and G. Harris, "Designing a Rule System that Searches
for Scientific Discoveries," Pattern-directed Inference
Systems, Waterman, D. A., and F. Hayes-Roth (eds.), Academic
Press, New York, 1978.

Martin, N., P. Friedland, J. King, and M. Stefik, "Knowledge Base
Management for Experiment Planning in Molecular Genetics,"
Proceedings of the Fifth International Joint Conference on
Artificial Intellig~ Cambridge, Massachusetts, 1977, p~
882-887.

McCalla, G. I., An Approach to the Organization of Knowledge for
the Modelling of Conversation, Technical Report 78-4,
Department of Computer Science, University of British Colum­
bia, 1978.

Minsky, M., t!A Framework for Representing Knowledge," The
Psychology of Computer Vision, Winston, P. H. (ed~
McGraw-Hill, New York, 1975.

Shortliffe, E. H., Computer-based Medical Consultations: MYCIN,
American Elsevier, New York, 1976.

Stallman, R., and G. J. Sussman, "Forward Reasoning and
Dependency-directed Backtracking in a System for Computer­
aided Circuit Analysis," Memo 380, MIT AI Lab, Cambridge,
Massachusetts, 1976.

Teitelman, W., Interlisp Reference Manual, Xerox Palo Alto
Research Center, Palo Alto, California, 1974.

Waterman, D. A., An Introduction to Production Systems, P-5751,
The Rand Corporation, Santa Monica, California, 1976.

Waterman, D. A., Rule-directed Interactive Transaction Agents: An
Approach to~owledge Acquisition, R-2171-ARPA, The Rand
Corporatio~ Santa Monica, California, 1977.

Waterman, D. A., and B. Jenkins, Heuristic Modeling Using
Rule-based Computer Systems, P-5811, The Rand Corporation,
Santa Monica, California, 1977.

Waterman, D. A., and F. Hayes-Roth,
directed Inference Systems,"
Systems, Waterman, D. A., and F.
Press, New York, 1978. (a)

"An Overview of Pattern­
Pattern-directed Inference
Hayes-Roth (eds.), Academic

Waterman, D. A., and F. Hayes-Roth, Pattern-directed Inference

-ss-

Systems, Academic Press, New York, 1978. (b)

Winograd, T. , "Frame
Declarative/Procedural
Understanding: Studies
and A. Collins (eds.),

Representations and
Controversy," Representation

in Cognitive Science, Bobrow, D.
Academic Press, New York, 1975.

the
and
G.'

RAND/N-1158-1-ARPA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

