A SIMPLE MODEL FOR ASSESSING THE IMPACT OF SPARE PARTS DURING INITIAL DEPLOYMENT OF NEW WEAPONS SYSTEMS

W. KARL KRUSE

US Army Inventory Research Office, ALMC
Room 800, US Custom House
2nd & Chestnut Sts., Philadelphia, PA 19106

US Army Materiel Development & Readiness Command
5001 Eisenhower Avenue
Alexandria, VA 22333

Approved for Public Release; Distribution Unlimited

This report presents an alternative to the 90-90 rule for assessing the impact of spare parts support during initial deployment. The method is felt to be an improvement to 90-90 because it considers the relative failure rates of the spares, and because it distinguishes reparable components from repair parts. An effort was made to keep the model simple.
A SIMPLE MODEL FOR ASSESSING THE IMPACT OF SPARE PARTS DURING INITIAL DEPLOYMENT OF NEW WEAPONS SYSTEMS
A SIMPLE MODEL FOR ASSESSING THE IMPACT OF SPARE PARTS DURING INITIAL
DEPLOYMENT OF NEW WEAPONS SYSTEMS

Background

When new weapons systems are ready to be fielded, parts support may not be sufficient to allow the system to function at an acceptable level. Recently, DARCOM has been using a simple, but arbitrary, statistical criterion to determine when parts support is sufficient. The criterion is called the 90-90 rule and requires that at least 90% of the stockage lines and 90% of the stockage quantity be available before the system is fielded.

New policies in the provisioning area are now being evaluated and, as a result, DARCOM requested the Inventory Research Office (IRO) with assistance from the Army Materiel Systems Analysis Activity to determine the propriety of the 90-90 rule. It was hoped to determine the effect of using 90-90, as well as other forms, 85-85 for example, on the operational readiness of the system.

Complicating Factors

Even in the cleanest of weapon system operating environments, the state of the art in modelling is just reaching the point where long term or steady state operational readiness can be estimated as a function of parts stockage. Yet in this case, we must deal with, probably, the most turbulent period in the life of the weapon system.

The form of the rule itself presents other problems. It is often pointed out that 90-90, or any similar combination except 100-100, does not guarantee that the "right" items are on hand. In statistical jargon, the 90-90 rule is considered an indicator, but it does not guarantee a prescribed operational availability. The important factors that affect operational availability are

(1) the maintenance factor of the part,
(2) the number of applications of the part on the equipment,
(3) redundancy of the part on the system,
(4) location of parts in supply system,
and (5) due-in status of parts on-order.
Another factor which needs to be considered is the deployment plan for the system since this indicates the ultimate use of the parts due-in.

It is probably possible to build a computer simulator to model the transient state and account for at least the above factors, but such an approach would be time consuming, costly, and possibly intractable.

Model

Because of the above problems, we limited our efforts to developing a better indicator to replace the 90-90 type of rule. We will first describe the model and then discuss its virtues.

Definitions

- **MTBF** = mean time between system failures
- **MTTR** = mean time to restore system not including parts delays
- **A_{LRU}** = accommodation provided by LRU's for which there is stock. An LRU in this case is any reparable component whose failure will down the system.
- **A_{RP}** = accommodation provided by repair parts for which there is stock
- **TAT** = average time to repair LRU's
- **NMOS** = time horizon
- **[X]** = largest integer \(< X\)

Assumptions

1. System up times and down times are deterministic.
2. If a component is in stock at the beginning of the time horizon, there is never a shortage of that component during the time horizon.
3. No additional components arrive during the time horizon.

Let \(q_r = \text{probability system cannot be restored if it fails.} \)

\[q_r = 1 - Pr \]

We estimate \(q_r = (1-A_{LRU})(1-A_{RP}) \) since if the LRU and the repair part are not available, the system cannot be repaired. The accommodation rates, \(A_{LRU} \) and \(A_{RP} \), are used to estimate the probability that the LRU and repair part, respectively, are available.
If all failures can be repaired, then the maximum number of cycles which can begin in NMOS is

\[
C_{\text{MAX}} = 1 + \left[\frac{\text{NMOS}}{\text{MTBC}} \right]
\]

where

\[
\text{MTBC} = \text{MTBF} + \text{MTTR} + (1-A_{\text{LRU}})(A_{\text{RP}})(\text{TAT})
\]

= the average cycle length, i.e., the average time from when a system begins an up period until it begins its next up period.

Now without regard for the time horizon, we let \(P(k) \) = probability the number of cycles is > \(k \). We set \(P(k) = (\Pr)^{k-1} \) which assumes that the probability of being able to restore the system on the \(n^{th} \) cycle is independent of what happens on all other cycles.

If \(C_{\text{MAX}} = 1 \), then

\[
\text{UPTIME} = \text{time system is operating during NMOS}
\]

= minimum (MTBF, NMOS)

If \(C_{\text{MAX}} \geq 2 \), then

\[
\text{UPTIME} = \sum_{k=1}^{\text{C}_{\text{MAX}}-1} (\text{MTBF})(P(k)) + (\text{REM})(P(C_{\text{MAX}}))
\]

where

\[
\text{REM} = \min \left((\text{NMOS} - (\text{C}_{\text{MAX}}-1)(\text{MTBC})) , \text{MTBF} \right)
\]

= the uptime in the \(C_{\text{MAX}}^{th} \) cycle which occurs within NMOS

As an indicator of the operational readiness during NMOS we use

\[
\text{OR Indicator} = \frac{\text{UPTIME}}{\text{NMOS}}
\]
The following table shows an example of the model for several values of NMOS, A_{RP}, and A_{LRU}. MTTR was set to .1 months, MTBF to .5618 months, and TAT to .666 months.

<table>
<thead>
<tr>
<th>NMOS</th>
<th>A_{LRU}</th>
<th>A_{RP}</th>
<th>ORIndicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>.70</td>
<td>.70</td>
<td>.701</td>
</tr>
<tr>
<td>2</td>
<td>.70</td>
<td>.80</td>
<td>.703</td>
</tr>
<tr>
<td>2</td>
<td>.70</td>
<td>.95</td>
<td>.702</td>
</tr>
<tr>
<td>2</td>
<td>.80</td>
<td>.70</td>
<td>.761</td>
</tr>
<tr>
<td>2</td>
<td>.80</td>
<td>.80</td>
<td>.764</td>
</tr>
<tr>
<td>2</td>
<td>.80</td>
<td>.95</td>
<td>.766</td>
</tr>
<tr>
<td>2</td>
<td>.95</td>
<td>.70</td>
<td>.830</td>
</tr>
<tr>
<td>2</td>
<td>.95</td>
<td>.80</td>
<td>.834</td>
</tr>
<tr>
<td>2</td>
<td>.95</td>
<td>.95</td>
<td>.841</td>
</tr>
<tr>
<td>6</td>
<td>.70</td>
<td>.70</td>
<td>.536</td>
</tr>
<tr>
<td>6</td>
<td>.70</td>
<td>.80</td>
<td>.575</td>
</tr>
<tr>
<td>6</td>
<td>.70</td>
<td>.95</td>
<td>.632</td>
</tr>
<tr>
<td>6</td>
<td>.80</td>
<td>.70</td>
<td>.609</td>
</tr>
<tr>
<td>6</td>
<td>.80</td>
<td>.80</td>
<td>.652</td>
</tr>
<tr>
<td>6</td>
<td>.80</td>
<td>.95</td>
<td>.711</td>
</tr>
<tr>
<td>6</td>
<td>.95</td>
<td>.70</td>
<td>.788</td>
</tr>
<tr>
<td>6</td>
<td>.95</td>
<td>.80</td>
<td>.799</td>
</tr>
<tr>
<td>6</td>
<td>.95</td>
<td>.95</td>
<td>.816</td>
</tr>
</tbody>
</table>

This approach improves upon the 90-90 type rule in several ways. For one, it uses accommodation which simultaneously accounts for the number of parts in stock and their expected demands. Accommodation will be high only if the most important items are in stock. All of the necessary information to compute accommodation is available from the PMDR or as a by-product from ARCSIP.

Another improvement is that it distinguishes repairable components from repair parts. If a component fails, the consequences are much more severe if the repair parts are not available to fix the component. On the other hand, the component can be repaired and replaced on the system in a reasonable time if the repair parts are available. A weakness of the approach,
however, is that it does not recognize that the serviceable stock of components may be depleted if there are no repair parts to fix them.

The model also uses a finite time horizon to deal with the transient nature of the problem. Since the model is meant to be used to assess whether equipment should be fielded given current stock status, and since presumably the stock situation can only improve with time, it is appropriate to use the model with short time horizons where the assumptions are most valid.
DISTRIBUTION

COPIES

Deputy Under Sec'y of the Army, ATTN: Office of Op Resch
Asst Sec'y of the Army (I,L&FM), Pentagon, Wash., DC 20310
Headquarters, US Army Materiel Development & Readiness Command

DRCPA-S
DRCDMR
DRCP S

DRCP-S-P ATTN: Mr. Boehm
DRCP-S
DRCMDM

DRCM-M
DRCM-M-R
DRCM-M-S
DRCM-RS
DRCM-SP
DRCM-ST

DRCM-SL
DRCM-M
DRCM-MS

DRCM-MP
DRCM-E

DRCE

DRCMP

DRCQA

DRCRE

DRCMM-L

Dep Chf of Staff for Logistics, ATTN: DALO-SMS, Pentagon, Wash., DC 20310

Dep Chf of Staff for Logistics, ATTN: DALO-SML, Pentagon, Wash., DC 20310

Defense Logistics Studies Info Exchange, DRXMC-D
Defense Documentation Center, Cameron Sta., Alexandria, VA 22314
Commandant, US Army Logistics Mgt Center, Ft. Lee, VA 23801
Office, Asst Sec'y of Defense, ATTN MRA&L-SR, Pentagon, Wash., DC 20310

Commander, USA Armament Materiel Readiness Cmd, Rock Island, IL 61201

ATTN: DRSAR-MM
ATTN: DRSAR-SA

Commander, USA Communications & Electronics Materiel Readiness Cmd, Ft. Monmouth, NJ 07703

ATTN: DRSEL-MM
ATTN: DRSEL-SA

Commander, USA Missile Command, Redstone Arsenal, AL 35809

ATTN: DRSMI-S
ATTN: DRSMI-D
COPIES

Commander, USA Troop Support & Aviation Materiel Readiness Command, St. Louis, MO
ATTN: DRSTS-SP
ATTN: DRSTS-SPSS

Commander, US Army Tank-Automotive Materiel Readiness Command, Warren, MI 48090
ATTN: DRSTA-F
ATTN: DRSTA-S

Commander, US Army Aviation Research & Development Command, St. Louis, MO 63166

Commander, US Army Electronics Research & Development Command, ATTN: DRDEL-AP, Adelphi, MD 20783

Commander, US Army Natick Research & Development Command, ATTN: DRXNM-O, Natick, MA 01760

Commander, US Army Logistics Center, Ft. Lee, VA 23801

Commander, US Army Logistics Evaluation Agency, New Cumberland Army Depot, New Cumberland, PA 17070

Commander, US Army Depot Systems Command, Chambersburg, PA 17201

Commander, US Air Force Logistics Cmd, WPAFB, ATTN: AFLC/XRS, Dayton, Ohio 45433

US Navy Fleet Materiel Support Office, Naval Support Depot, Mechanicsburg, PA 17055

Mr. James Prichard, Navy Sea Systems Cmd, ATTN: PMS3061, Dept of US Navy, Wash., DC 20362

ALOG Magazine, ATTN: Tom Johnson, USALMC, Ft. Lee, VA 23801

Commander, USDRC Automated Logistics Mgt Systems Activity, P.O. Box 1578, St. Louis, MO 63188

Director, DARCOM Logistics Systems Support Agency, Letterkenny Army Depot, Chambersburg, PA 17201

Commander, Materiel Readiness Supply Activity, Lexington, KY 40507

Director, Army Management Engineering Training Agency, Rock Island Arsenal, Rock Island, IL 61202

Defense Logistics Agency, Cameron Sta, Alexandria, VA 22314

Mr. Ellwood Hurford, Scientific Advisor, ATCL-SCA, Army Logistics Center, Ft. Lee, VA 23801
Logistics Studies Office, DRXMC-LSO, ALMC, Ft. Lee, VA 23801

Procurement Research Office, DRXMC-PRO, ALMC, Ft. Lee, VA 23801

Air Force Logistics Management Center, ATT: AFLMC/LGY,

Gunter Air Force Station, AL 36114

US Army Armament Material Readiness Command, Rock Island, IL 61201

ATTN: PM, M110E2 8" Howitzer

US Army Armament Research & Development Cmd, Dover, NJ 07801

ATTN: PM, Cannon Artillery Weapons Systems/JPM Semi-Active

ATTN: PM, COPPERHEAD (GLGP)

ATTN: PM, Division Air Defense (DIVAD) Gun

ATTN: PM, Selected Ammunition

US Army Aviation Research & Development Cmd, St. Louis, MO 63166

ATTN: PM, Advanced Scout Helicopter

ATTN: PM, Aircraft Survivability Equipment

ATTN: PM, CH-47 Modernization Program

ATTN: PM, Tactical Airborne Remotely Piloted Vehicle/Drone System

PM, Navigation Control Systems, Bldg 2525, Ft. Monmouth, NJ 07703

US Army Communications Research & Development Cmd, Ft. Monmouth, NJ 07703

ATTN: PM, Army Tactical Communications Systems

ATTN: PM, Army Tactical Data Systems

ATTN: PM, Tactical Operations System/Operations & Intelligence

Tactical Data Systems

ATTN: PM, Tactical Fire Direction System/Field Artillery

Tactical Data Systems

ATTN: PM, Position Location Reporting System/Tactical

Information Distribution Systems

ATTN: PM, Automatic Test Support Systems

ATTN: PM, Multi-Service Communications Systems

ATTN: PM, Single Channel Ground & Airborne Radio Subsystem

PM, Missile Minder/Air Defense Tactical Data Systems, Redstone

Arsenal, AL 35809

PM, Satellite Communications, Fort Monmouth, NJ 07703

PM, Control & Analysis Centers, Vint Hill Farms Station, Bldg 260,

Room 11, Warrenton, VA 22186

PM, FIREFINDER, Fort Monmouth, NJ 07703

PM, Remotely Monitored Battlefield Sensor System, Ft. Monmouth, NJ 07703

PM, SOTAS, Fort Monmouth, NJ 07703

PM, FAMECE, Fort Belvoir, VA 22060

US Army Tank-Automotive Materiel Readiness Cmd, Warren, MI 48090

ATTN: PM, Commercial Construction & Selected Material

Handling Equipment

ATTN: PM, Heavy Equipment Transporter

ATTN: PM, M113/M113A1 Family of Vehicle Readness

PM, M60 Tanks, 38111 Van Dyke Ave., Warren, MI 48090

US Army Tank-Automotive Research & Development Cmd, Warren, MI 48090

ATTN: PM, Armored Combat Vehicle Technology

ATTN: PM, Improved TOW Vehicle