TECHNICAL REPORT ARBRL-TR-02168

A NEW INTERNAL ENERGY CALCULATION FOR THE HELP CODE AND ITS IMPLICATIONS TO CONICAL SHAPED CHARGE SIMULATIONS

James A. Schmitt

June 1979

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.
Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade name or manufacturer's name in this report does not constitute endorsement of any commercial product.
REPORT DOCUMENTATION PAGE

4. TITLE (and Subtitle)
A New Internal Energy Calculation for the HELP Code and Its Implications to Conical Shaped Charge Simulations

7. AUTHOR(s)
James A. Schmitt

9. PERFORMING ORGANIZATION NAME AND ADDRESS
US Army Ballistic Research Laboratory
ATTN: DRDAR-BLB
Aberdeen Proving Ground, MD 21005

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
1161102JH63

11. CONTROLLING OFFICE NAME AND ADDRESS
US Army Armament Research & Development Command
Ballistic Research Laboratory (ATTN: DRDAR-BLB)
Aberdeen Proving Ground, MD 21005

12. REPORT DATE
JUNE 1979

13. NUMBER OF PAGES
94

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in blocks 20, 21 different from Report)

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)
HELP
HELP Code
Hydrodynamic code
Particle-In-Cell
Finite difference solution technique

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
When the HELP code is applied to conical shaped charge warhead problems, the computed internal energy predicts a thermal state completely different than that indicated by experiments. The cause of this phenomenon is the numerical inter-
change of the kinetic energy to internal energy which is generated by terms of
the order of the truncation error in the kinetic energy calculation. A corre-
cction is given and qualitative thermal agreement is achieved, for the first time,
Block 19.

Mesh refinement
Kinetic energy calculation
Internal energy calculation
Temperature calculation

Shaped charge
Conical shaped charge
Wedge impact
Oblique impact

Block 20.

Between a HELP code simulation and experimental evidence for a conical shaped charge. Furthermore, the ad hoc usage of a predetermined upper bound on the specific internal energy in the equation of state routine for shaped charge calculations is no longer required. The effects of the modifications on the pressures, velocities, specific total energies and densities are discussed.

The effect of the original kinetic energy calculation on the accuracy of the internal energy is problem dependent and criteria for such a determination are given in terms of the explicitly calculated truncation error terms for the specific internal energy. A mesh refinement study for a copper wedge impacting a perfectly reflexive wall is made using the original and modified versions of the code. The results not only show the tremendous deviations in the internal energies computed by the original version as the mesh is refined but also indicate that the internal energies computed by the modified version with a coarse mesh are better than those computed by the original version with a fine mesh. The same internal energy phenomenon which occurred in HELP can occur in other codes with a Particle-In-Cell based algorithm and the given correction is applicable.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURFS</td>
<td>5</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>7</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>9</td>
</tr>
<tr>
<td>II. THE HELP CODE</td>
<td>10</td>
</tr>
<tr>
<td>III. THE KINETIC ENERGY AND INTERNAL ENERGY CALCULATIONS</td>
<td>18</td>
</tr>
<tr>
<td>IV. THE MODIFIED HELP CODE</td>
<td>29</td>
</tr>
<tr>
<td>V. MESH REFINEMENT STUDY FOR A WEDGE IMPACT CALCULATION</td>
<td>31</td>
</tr>
<tr>
<td>VI. COMPARISON OF THE MODIFIED AND ORIGINAL FORMULATIONS</td>
<td>36</td>
</tr>
<tr>
<td>USING A 43\text{mm} CONICAL SHAPED CHARGE SIMULATION</td>
<td></td>
</tr>
<tr>
<td>VII. TEMPERATURE CALCULATIONS FOR THE 43\text{mm} CONICAL</td>
<td>52</td>
</tr>
<tr>
<td>SHAPED CHARGE</td>
<td></td>
</tr>
<tr>
<td>VIII. SUMMARY</td>
<td>58</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>60</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>61</td>
</tr>
<tr>
<td>APPENDIX A - LISTING OF MODIFICATIONS TO THE KINETIC ENERGY</td>
<td>65</td>
</tr>
<tr>
<td>CALCULATION IN HELP</td>
<td></td>
</tr>
<tr>
<td>APPENDIX B - LISTING OF REZONING ROUTINE AND MODIFICATIONS</td>
<td>77</td>
</tr>
<tr>
<td>APPENDIX C - LISTING OF TEMPERATURE AND SPECIAL PRINT ROUTINES</td>
<td>83</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>87</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>89</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Computational Cell for Cartesian Formulation of HELP</td>
</tr>
<tr>
<td>2</td>
<td>Typical Time History Profile of the Internal Energy per Volume in a Conical Shaped Charge Calculation</td>
</tr>
<tr>
<td>3</td>
<td>Typical Spatial Profiles of the Axial Velocity and Internal Energy per Volume in a Conical Shaped Charge Calculation</td>
</tr>
<tr>
<td>4</td>
<td>Spatial Profiles of the Relative Axial Velocity at 10us Along the Wall for a Copper Wedge Impact Calculation</td>
</tr>
<tr>
<td>5</td>
<td>Spatial Profiles of the Compression at 10us Along the Wall for a Copper Wedge Impact Calculation</td>
</tr>
<tr>
<td>6</td>
<td>Spatial Profiles of the Specific Internal Energy at 10us Along the Wall for a Copper Wedge Impact Calculation</td>
</tr>
<tr>
<td>7a</td>
<td>Initial Conical Shaped Charge Configuration</td>
</tr>
<tr>
<td>7b</td>
<td>Copper Configuration at 10us for Conical Shaped Charge</td>
</tr>
<tr>
<td>8</td>
<td>Comparison of the Specific Kinetic Energies Along the Axis of Symmetry at 16us</td>
</tr>
<tr>
<td>9</td>
<td>Comparison of the Specific Internal Energies Along the Axis of Symmetry at 16us</td>
</tr>
<tr>
<td>10</td>
<td>Cell-Centered Values of the Jet's Specific Internal Energy (MJ/kg) Computed by the Modified Formulation</td>
</tr>
<tr>
<td>11</td>
<td>Modified Version's Specific Internal Energy Profiles from the Stagnation Region to the Jet Tip at Various Time</td>
</tr>
<tr>
<td>12</td>
<td>Comparison of the Pressures Along the Axis of Symmetry at 16us</td>
</tr>
<tr>
<td>13</td>
<td>Comparison of the Axial Velocities Along the Axis of Symmetry at 16us</td>
</tr>
<tr>
<td>14</td>
<td>Comparison of the Jet Tip Velocity-Time Histories</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>Comparison of the Radial Velocities Along the Axis of Symmetry at 16µs</td>
</tr>
<tr>
<td>16</td>
<td>Comparison of the Specific Total Energies Along the Axis of Symmetry at 16µs</td>
</tr>
<tr>
<td>17</td>
<td>Comparison of the Compressions Along the Axis of Symmetry at 16µs</td>
</tr>
<tr>
<td>18</td>
<td>Variation of Jet's Temperature with Axial Distance at Various Distances from the Axis of Symmetry at 16µs</td>
</tr>
<tr>
<td>19</td>
<td>Variation of Jet's Temperature with Axial Distance at Various Distances from the Axis of Symmetry at 18.5µs</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Density Variation Within the Jet at 16ms</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Time dependent two-dimensional Eulerian computer codes like HELP and HULL are utilized to describe the unsteady interactions of continuous media (fluid and/or solids). Many of these continuum codes have a common ancestorial algorithm, the Particle-In-Cell method. During the evolutionary process, the new codes have deviated substantially from the original PIC method; for example, the discrete particles were replaced by a continuum, certain Lagrangian-type features were abandoned, and for calculations in solid mechanics, material strength and effects of the deviatoric stress tensor were included. These codes can produce very successful simulations but often the results are not totally satisfactory. Such is the case with the HELP code which is used by several research laboratories and corporations for diverse applications in compressible flow and elastic-plastic flows. In certain ballistics applications at the US Army Ballistics Research Laboratory, the code predicts velocities satisfactorily but an internal energy which implies a different thermal state than that indicated by experimental evidence. The purpose of this paper is to show that the original approximations in HELP lead to specific error terms that significantly and consistently influence the internal energy calculation and to propose a correction within the context of the current algorithm.

The internal energy algorithm in HELP is based on the finite difference approximation of the total energy equation and the kinetic energy calculated from updated mass and momentum values. This internal energy approximation is shown to include terms of the order of the truncation error which arise in the kinetic energy calculation from the finite difference approximations of the mass and momentum equations. These terms,

in certain cases, cause a less accurate calculation of the internal
energy (they increase the truncation error) and produce an interchange
of energy at each phase which is not modeled in the governing equations.

Evans and Harlow\(^3\) identified an energy transfer mechanism in the convec-
tion phase of the original PIC method which can be seen in HELP. This
mechanism is due only to spatial discretization and was illustrated in
one dimension. The following analysis involves all the phases in the
HELP algorithm, is two-dimensional, includes the effect of time discre-
tization, and applies to a different code with a different energy formula-
lization (the PIC algorithm transports total energy but directly calculates
the internal energy in its other phases). Although this paper deals
exclusively with the HELP algorithm, the concepts and results discussed
are applicable to other codes. In particular, the same internal energy
phenomenon is seen in calculations performed with the HULL code.

In Section II, the governing equations which are modeled by the HELP
algorithm are listed, the corresponding approximations are derived and
other salient features of the algorithm are discussed. A truncation
error analysis of the kinetic energy and the internal energy calculations
in Section III reveals the specific error terms arising from the HELP's
finite difference approximations of the governing equations. In Section
IV, the modifications to the original HELP code are given and their
implementation discussed. Section V contains a mesh refinement study
for both the original and modified version of the code. A copper wedge
impacting a perfectly reflective wall was used for this study. Section
VI contains a detailed comparison of the two versions for 43mm unconfined
conical shaped charge. Temperature profiles within the shaped charge
jet are given and discussed in Section VII. The summary of the report
is Section VIII.

II. THE HELP CODE

The unsteady motion and interaction of continuous media can be
described by a continuity equation, equations of motion, a total energy
equation and an equation of state. For simplicity, we shall consider
the Cartesian formulation. The appropriate two-dimensional equations in
conservative form are:

\[
\frac{\partial \rho}{\partial t} = \frac{\partial}{\partial x} (\rho u) - \frac{\partial}{\partial y} (\rho v), \quad (1)
\]

\[
\frac{\partial (\rho u)}{\partial t} = \frac{\partial}{\partial x} (\rho u u) - \frac{\partial}{\partial y} (\rho u v) - \frac{\partial P}{\partial x} + \frac{1}{\partial x} (S_{xx}) + \frac{1}{\partial y} (S_{xy}), \quad (2)
\]

\[
\frac{\partial (\rho v)}{\partial t} = \frac{\partial}{\partial x} (\rho v u) - \frac{\partial}{\partial y} (\rho v v) - \frac{\partial P}{\partial y} + \frac{1}{\partial x} (S_{xy}) + \frac{1}{\partial y} (S_{yy}), \quad (3)
\]
\[
\frac{\partial \rho E}{\partial t} = -\frac{\partial}{\partial x} (\rho u E) - \frac{\partial}{\partial y} (\rho v E) - \frac{\partial (u\rho)}{\partial x} - \frac{\partial (v\rho)}{\partial y}
\]

\[
+ \frac{\partial}{\partial x} (S_{xx} u + S_{xy} v) + \frac{\partial}{\partial y} (S_{yy} v + S_{xy} u),
\]

where \(t, x, y, \rho, u, v, P, S_{xx}, S_{yy}, S_{xy}, \) and \(E\) denote the time, two spatial coordinates, density, \(x\) and \(y\) components of velocity, pressure, the two normal and one shear stress components of the stress deviator tensor, and specific total energy, respectively. The cgs system of units is used within the HELP code. However, in this report, the results are stated in the SI system of units. The elements of the stress deviator tensor are functions of the velocity gradient. The pressure is computed via an equation of state of the functional form \(P = P(\rho, I)\), where \(I\) is the specific internal energy. The specific internal energy is obtained as the difference of the specific total energy and the specific kinetic energy:

\[
I = E - 0.5 \left(u^2 + v^2 \right).
\]

If the conservation eqs. (1) - (4) are integrated over an arbitrary control area, the time rate of change of a quantity within the control area can be related to the integrals of other quantities over the boundary enclosing that area. Performing the integration and using Green's Theorem, we obtain

\[
\frac{\partial}{\partial t} \int_A \rho dA = \int_B \left(\rho v dx - \rho u dy \right),
\]

\[
\frac{\partial}{\partial t} \int_A \rho u dA = \int_B \left(\rho v dx - \rho u dy \right) - \int_B Pdy \int_B \left(S_{xx} dy - S_{xy} dx \right),
\]

\[
\frac{\partial}{\partial t} \int_A \rho v dA = \int_B \left(\rho v dx - \rho u dy \right) + \int_B Pdx + \int_B \left(S_{xy} dy - S_{yy} dx \right),
\]

\[
\frac{\partial}{\partial t} \int_A \rho E dA = \int_B \left(\rho v dx - \rho u dy \right) + \int_B \left(Pdx - Pdy \right)
\]

\[
+ \int_B \left[\left(S_{xx} u + S_{xy} v \right) dy - \left(S_{yy} v + S_{xy} u \right) dx \right],
\]

11
where B is the boundary of area A in the positive sense. Eq. (7), for example, equates the time rate of change of the x-component of the momentum within the area A to the product of the specific momentum in the x direction and the net mass flow into the area plus the sum of certain surface forces (the pressure and the x-components of the deviator stress tensor) exerted over the boundary enclosing the area. Such interpretations are used to determine the HELP approximations to the governing equations.

The HELP code is an Eulerian code capable of describing unsteady multi-material interactions and of treating material strength as an elastic-plastic phenomenon. A consequence of the multi-material capability is mixed cells (cells containing more than one material). The complex treatment of these cells is important and indispensable to the correct running of the code. However, an accurate and complete analysis of these numerical techniques is unwieldy. An analysis of the pure cell (a cell containing only one material) algorithm reveals the cause of the internal energy problem. Hence, the following discussion will address only the pure cell algorithm. Furthermore, we consider only interior cells. We assume that the grid spacing \(\Delta x \) in the x-direction is constant as well as \(\Delta y \) in the y-direction. The control area \(A \) is taken to be the ith, jth computational cell. See Fig. 1. The left, right, top and bottom boundaries of this cell are denoted by the letters \(Z, R, A \) and \(B \), respectively. A time step \(\Delta t \) in this explicit algorithm is determined by a Courant condition. The area integrals in eqs. (6) - (9) are approximated by \(m = \rho \Delta x \Delta y \), \(m_u \), \(m_v \) and \(m_E \), respectively, where \(m \) denotes the mass per unit length. All the values are at the center of the computational cell. The time derivatives are approximated by a forward difference. The values of the cell centered mass, momentum and specific total energy at the new time level are found from the values at the previous time level. This is accomplished in three stages by determining the time rate of change of the mass, momentum and total energy due to i) the effects of the deviatoric stresses, ii) the effects of the pressure, and iii) the effects of the convection terms. These phases are appropriately named Sphase, MPHASE and TPHASE, respectively. During each time step, each value of the mass, momentum and total energy is updated sequentially by each phase in the order listed and each phase uses the previously updated values as its initial values. Each phase is solved independently of the others and are interconnected only through the initial values. The boundary integrals in eqs. (6) - (9) are approximated using the current values of the integrands at the boundaries of the computational cell. The pressure is calculated before SFACE and the stress deviator tensor is updated at the beginning of SFACE. The internal energy is updated by eq. (5) at the end of each phase.

Specifically, we list the HELP approximations to the conservation of mass, momentum and total energy equations. The HELP approximations
Figure 1. Computational Cell for Cartesian Formulation of HELP
to the eqs. (6) - (9) in the SPHASE portion of the calculation for the
ith, jth cell at the n th time step are:

\[\tilde{m} = m, \]

\[\tilde{\mu} = \mu + (S_{xx}^r - S_{xx}^t)\Delta y \Delta t + (S_{xy}^a - S_{xy}^b)\Delta x \Delta t, \]

\[\tilde{v} = v + (S_{xy}^r - S_{xy}^t)\Delta y \Delta t + (S_{yy}^a - S_{yy}^b)\Delta x \Delta t, \]

\[\tilde{E} = E + \left[(u^r S_{xx} - u^t S_{xx}^t) + (v^r S_{xy} - v^t S_{xy}^t) \right]\Delta y \Delta t \]

\[\quad + \left[(u^a S_{xy} - u^b S_{xy}^b) + (v^a S_{yy} - v^b S_{yy}^b) \right]\Delta x \Delta t, \]

where the tilde denotes the SPHASE updated value and the letter superscripts r, t, a, b refer to the evaluation of the term at the corresponding boundary. A variable without subscripts or superscripts denotes that quantity evaluated at the center of the ith, jth cell at the n th time level. The boundary value of a variable is the average of its cell centered values adjacent to that boundary, for example, \(S_{xx}^r = 0.5 \)

\[\left[(S_{xx})^n_{i+1,j} + (S_{xx})^n_{i,j} \right], \] where \((S_{xx})^n_{i,j} = S_{xx}[(i-\frac{1}{2})\Delta x, (j-\frac{1}{2})\Delta y, n\Delta t] \).

See Fig. 1. The approximations (10) - (13) can be derived from a physical interpretation of the SPHASE portions of eqs. (6) - (9). For example, consider the approximation (13). The effects of the stress deviator tensor on the time rate of change of the total energy \(\frac{\tilde{E} - E}{\Delta t} \) during the entire time step \(\Delta t \) is governed by the work rates per unit surface area, \(uS_{xx} \) and \(vS_{xy} \) acting on the right and left boundaries, and \(uS_{xy} \) and \(vS_{yy} \) on the top and the bottom boundaries, times the length of these boundaries.

The errors that are introduced by the numerical approximation (13) can be obtained by expanding the corresponding finite difference equation in a Taylor series. We use the mass-density relation \(m = \rho A x A y \) and rewrite eq. (13) as
A Taylor series expansion of each dependent variable in eq. (14) at the center of the \(i^{th}\), \(j^{th}\) cell at the \(n^{th}\) time level leads to

\[
\frac{3(\rho E)}{\Delta t} - \frac{3}{\Delta x}[\frac{\partial}{\partial x}(uS_{xx} + vS_{xy})] - \frac{3}{\Delta y}[\frac{\partial}{\partial y}(uS_{xy} + vS_{yy})] = -\Delta t \frac{1}{2} \left\{ \frac{3}{\Delta t^2} \right\}
\]

\[
\Delta x^2 \left\{ \frac{1}{6} \frac{3}{\Delta x^3} (uS_{xx} + vS_{xy}) - \frac{1}{4} \frac{3}{\Delta x} \left(\frac{3u}{\Delta x} \frac{3S_{xx}}{\Delta x} + \frac{3v}{\Delta x} \frac{3S_{xy}}{\Delta x} \right) \right\}
\]

\[
\Delta y^2 \left\{ \frac{1}{6} \frac{3}{\Delta y^3} (uS_{xy} + vS_{yy}) - \frac{1}{4} \frac{3}{\Delta y} \left(\frac{3u}{\Delta y} \frac{3S_{xy}}{\Delta y} + \frac{3v}{\Delta y} \frac{3S_{yy}}{\Delta y} \right) \right\}
\]

+ \(O(\Delta t^2) + O(\Delta x^2) + O(\Delta y^2)\).

The terms in eq. (4) which are relevant to SPHASE are given on the left-hand side of eq. (15) and the dominant error terms appear on the right-hand side. The order of error terms are \(O(\Delta t)\), \(O(\Delta x^2)\) and \(O(\Delta y^2)\). Thus, the approximation (13) is first order in time and second order in space within the context of SPHASE (assuming the post SPHASE values are those at the end of the time step). A similar analysis and results hold for approximations (11) - (12) and eqs. (2) - (3), respectively.
The HPHASE approximations are
\[\overline{\mu} = \mu, \]
\[\overline{\mu u} = \mu u - (\bar{P}^u - \bar{P}^b)\Delta y\Delta t, \]
\[\overline{\mu v} = \mu v - (\bar{P}^a - \bar{P}^b)\Delta x\Delta t, \]
\[\overline{\mu E} = \mu E - (\bar{P}^a \bar{E}^r - \bar{P}^b \bar{E}^b)\Delta y\Delta t, \]
where the bar denotes the HPHASE updated value and \(P = P(\rho, 1) \). The truncation error analysis of approximation (19) can be made in exactly the same manner as for approximation (13). The result is:
\[
\frac{3(\bar{\sigma} E)}{3t} + \frac{3(\bar{\sigma} u)}{3x} + \frac{3(\bar{\sigma} v)}{3y} = -\Delta t \left\{ \frac{1}{2} \frac{3^2(\bar{\sigma}E)}{3t^2} \right\} - \Delta x^2 \left\{ \frac{1}{6} \frac{3^3(\bar{\sigma}u)}{3x^3} - \frac{1}{4} \frac{3}{3x} \left(\frac{3\bar{\sigma}u}{3x} \right) \right\} - \Delta y^2 \left\{ \frac{1}{6} \frac{3^3(\bar{\sigma}v)}{3y^3} - \frac{1}{4} \frac{3}{3y} \left(\frac{3\bar{\sigma}v}{3y} \right) \right\} + O(\Delta t^2) + O(\Delta x^3) + O(\Delta y^3).
\]
Thus eq. (19) is a first order approximation in time and second order in space within the context of HPHASE. The other HPHASE approximations (17) and (18) are of the same order.

For simplicity in the discussion of the TPHASE approximations, we assume that the velocity has both positive \(x \) and \(y \) components. The TPHASE approximations which model the convection between cells are:
\[m^{n+1} = m + \delta m^c - \delta m^r - \delta m^b - \delta m^a, \]
\[(\mu u)^{n+1} = \mu u + \delta m^i u_{i-1,j} - \delta m^r u_i,j - \delta m^b u_{i,j-1} - \delta m^a u_{i-1,j}, \]
\[(\mu v)^{n+1} = \mu v + \delta m^i v_{i-1,j} - \delta m^r v_i,j - \delta m^b v_{i,j-1} - \delta m^a v_{i-1,j}, \]
\[(\mu E)^{n+1} = \mu E + \delta m^i E_{i-1,j} - \delta m^r E_i,j - \delta m^b E_{i,j-1} - \delta m^a E_{i-1,j}. \]
where \(\delta m^l, \delta m^b, \delta m^r, \delta m^a \) denote the convected mass per unit length from the left and bottom cells and to the right and top cells, respectively. See Fig. 1. In general, \(\delta m^d = \rho^d L^d u^d \Delta t \), where \(\rho^d \) denotes the density of the cell from which the mass is transported, \(u^d \) is the interpolated value of the velocity component normal to the cell boundary and \(L^d \) is the length of the cell boundary through which the mass is moved. For example, the factors in \(\delta m^l \) are \(\rho^l = \rho_{i-1,j}, u^l = 0.5 \left(\bar{u} + \bar{u}_{i-1,j} \right) / \left[1 + \Delta t \left(\bar{u} - \bar{u}_{i-1,j} \right) / \Delta x \right] \) and \(L^l = \Delta y \). We note that \(\bar{u}^d \) represents the transport velocity of \(\delta m^d \) based on linear approximations over the time step \(\Delta t \). The intuitive explanation of the TPHASE approximations for eq. (21) is that the mass at the end of TPHASE (the final value at \((n+1)\) time level) is the mass originally in the cell plus the mass transported into the cell \((\delta m^l, \delta m^b) \) minus the mass transported from the cell \((\delta m^r, \delta m^a) \). For the total energy approximation (24), a similar situation exists, except that now each convected mass is associated with the specific total energy of its "donor" cell. Within the context of TPHASE (assuming the post HPHASE values are the initial values at the \(n^{th} \) time level), the approximations (21) - (24) can be shown to be first order in time and space to the TPHASE portions of eqs. (1) - (4), respectively. For example, to determine the order of approximation (24), we substitute the appropriate mass approximations and obtain

\[
\frac{(\rho E)^{n+1} - (\rho E)}{\Delta t} + \frac{(\rho E)\bar{u}^l - (\rho E)_{i-1,j} \bar{u}_{i-1,j}}{\Delta x} + \frac{(\rho E)\bar{v}^a - (\rho E)_{i,j-1} \bar{v}_{i,j-1}}{\Delta y} = 0
\]

A Taylor series expansion of each dependent variable in eq. (25) at the center of the \(i^{th}, j^{th} \) cell at the \(n^{th} \) time level leads to

\[
\frac{3(\rho E)}{\Delta t} + \frac{3(\rho E u)}{\Delta x} + \frac{3(\rho E v)}{\Delta y} = - \frac{\Delta t}{2} \left[\frac{3}{\Delta t^2} (\rho E) - 2 \frac{3}{\Delta x} \left(\rho E u + \frac{3}{3x} \frac{\rho E \bar{u}}{3x} \right) - \frac{3}{\Delta y} \left(\rho E v + \frac{3}{3y} \frac{\rho E \bar{v}}{3y} \right) \right] \\
+ \frac{\Delta x}{2} \left[\frac{3}{3x} \left(\rho E \bar{u} + \frac{3}{3x} \rho E \bar{u} \right) \right] + \frac{\Delta y}{2} \left[\frac{3}{3y} \left(\rho E \bar{v} + \frac{3}{3y} \rho E \bar{v} \right) \right] \\
+ O(\Delta t^2) + O(\Delta x^2) + O(\Delta y^2).
\]
The terms in eq. (4) which are relevant to TPHASE are given on the
left-hand side of eq. (26) and the dominant error terms appear on the
right-hand side. The spatial gradients in the coefficient of Δt in eq.
(26) are the results of the transport velocities' \tilde{u}^r, \tilde{u}^t, v^a and v^b dependence on Δt. The order of the error terms are $O(\Delta t)$, $O(\Delta x)$ and $O(\Delta y)$. Thus, approximation (24) is first order in both time and space, which establishes the assertion.

We have shown that the SPHASE and HPHASE approximations of eqs. (1) - (4) are first order in time and second order in space and that the TPHASE approximations are first order in both time and space. Consequently, the order of the spatial approximation in TPHASE is less than that for either SPHASE or HPHASE and first order error terms will be dominant within the
algorithm.

III. THE KINETIC ENERGY AND INTERNAL ENERGY CALCULATIONS

In order to determine the cause of the unphysical internal energy values produced by the 1975 HELP code in conical shaped charge calculations, we must investigate how the total energy approximations are combined with the kinetic energy approximations to produce the internal energy approximations. To this end we list the partial differential equations for the kinetic and internal energies. The partial differential equation governing kinetic energy can be derived from eqs. (1) - (3) by the following identity:

$$\frac{\partial}{\partial t}(\rho e) = u \frac{\partial \rho}{\partial t} + v \frac{\partial \rho}{\partial x} - \frac{1}{2} (u^2 + v^2) \frac{\partial \rho}{\partial x}, \quad (27)$$

and can be written as

$$\frac{\partial}{\partial t}(\rho e) = - \frac{\partial}{\partial x}(\rho u e) - \frac{\partial}{\partial y}(\rho v e) - u \frac{\partial \rho}{\partial x} - v \frac{\partial \rho}{\partial y} + u \left(\frac{\partial S_{xx}}{\partial x} + \frac{\partial S_{yx}}{\partial y} \right) + v \left(\frac{\partial S_{xy}}{\partial x} + \frac{\partial S_{yy}}{\partial y} \right), \quad (28)$$

where $e = 0.5 (u^2 + v^2)$. An interpretation of the above manipulation is that given the exact solutions of eqs. (1) - (3), the derived function e is identical to the exact solution of eq. (28). We shall show that the HELP approximations do not share this property. The partial differential equation governing internal energy can be obtained by subtracting eq. (28) from eq. (4) and by using identity (5):
\[
\frac{3}{3t} (\rho I) = - \frac{3}{3x} (\rho I u) - \frac{3}{3y} (\rho I v) - P \frac{3u}{3x} - P \frac{3v}{3y}
\]

\[
+ S_{xx} \frac{3u}{3x} + S_{xy} \left(\frac{3v}{3x} + \frac{3u}{3y} \right) + S_{yy} \frac{3v}{3y}.
\]

In the HELP code, the specific kinetic energy \(e \) at the end of each phase is computed via

\[
e = 0.5 \left\{ \frac{(mu)^2}{m} + \frac{(mv)^2}{m} \right\}
\]

using the updated values of the mass and momentum from that phase. By using the approximations (10) - (12), (16) - (18) and (21) - (23), eq. (30) and the expressions for the mass in terms of the density, we can write the formulas used to determine the updated specific kinetic energy at the different phases in terms of the initial values at SPHASE, HPHASE and TPHASE. The resulting expressions are never explicitly used to calculate the kinetic energy but are numerically equivalent to eq. (30). The results are:

\[
\frac{\Delta e}{\Delta t} - \frac{\Delta e}{\Delta t} = u \left[S_{xx} \frac{r - S_{xx}}{\Delta x} + S_{xy} \frac{a - S_{xy}}{\Delta y} \right] + v \left[S_{xy} \frac{r - S_{xy}}{\Delta x} + S_{yy} \frac{a - S_{yy}}{\Delta y} \right]
\]

\[
+ \left\{ \frac{\Delta t}{2} \left[\left(S_{xx} \frac{r - S_{xx}}{\Delta x} + S_{xy} \frac{a - S_{xy}}{\Delta y} \right)^2 + \left(S_{xy} \frac{r - S_{xy}}{\Delta x} + S_{yy} \frac{a - S_{yy}}{\Delta y} \right)^2 \right] \right\}
\]

\[
\frac{\Delta e}{\Delta t} - \frac{\Delta e}{\Delta t} = -u \left[p_r - p^l \right] - v \left[p_a - p^b \right]
\]

\[
+ \left\{ \frac{\Delta t}{2} \left[\left(p_r - p^l \right)^2 + \left(p_a - p^b \right)^2 \right] \right\},
\]
A truncation error analysis of eqs. (31) - (33) reveals significant information about the kinetic energy approximations. Since we have shown that the dominant error terms within the HELP algorithm are of first order, we will not write the higher order terms. Proceeding in a similar fashion to the truncation error analyses of Section II, we obtain for eq. (31)

\[
\frac{\Delta(\rho e)}{\Delta t} - u \left(\frac{3S_{xx}}{\Delta x} + \frac{3S_{xy}}{\Delta y} \right) - v \left(\frac{3S_{xy}}{\Delta x} + \frac{3S_{yy}}{\Delta y} \right) = - \frac{\Delta t}{2} \left[\frac{\Delta^2(\rho e)}{\Delta t^2} - \frac{1}{2} \left(\frac{3S_{xx}}{\Delta x} + \frac{3S_{xy}}{\Delta y} \right)^2 \right] + O(\Delta t^2) + O(\Delta x^2) + O(\Delta y^2).
\]

The terms in eq. (28) which are relevant to SPHASÉ are given on the left-hand side of eq. (34) and the dominant error terms appear on the right-hand side. The order of the error terms are \(O(\Delta t)\), \(O(\Delta t^2)\) and \(O(\Delta x^2)\). Thus, approximation (31) is first order in time and second order in space, and the order of this approximation is consistent with the other SPHASÉ approximations. The terms
in eq. (34) are the lowest order terms of those enclosed by braces in eq. (31). Thus, the braced terms in eq. (31) which are included in the kinetic energy approximation in SPHASE are of the order of the truncation error.

An analogous truncation error analysis of eq. (32) and eq. (33) gives, for HPHASE

\[
\frac{\partial (\rho \phi)}{\partial t} + \frac{\partial}{\partial x} (\rho \phi u) + \frac{\partial}{\partial y} (\rho \phi v) =
\]

\[
- \frac{\Delta t}{2} \left\{ \frac{\partial^2 (\rho \phi)}{\partial t^2} - \frac{1}{\rho} \left(\frac{\partial p}{\partial x} \right)^2 - \frac{1}{\rho} \left(\frac{\partial p}{\partial y} \right)^2 \right\}
\]

\[
+ O(\Delta t^2) + O(\Delta x^2) + O(\Delta y^2),
\]

and for TPHASE

\[
\frac{\partial (\rho \phi)}{\partial t} + \frac{\partial}{\partial x} (\rho \phi u) + \frac{\partial}{\partial y} (\rho \phi v) =
\]

\[
+ \frac{\Delta t}{2} \left\{ \frac{\partial}{\partial x} \left[\frac{\partial (\rho \phi)}{\partial x} \right] - \rho \frac{\partial}{\partial x} \left(\frac{\partial \phi u}{\partial x} \right)^2 + \left(\frac{\partial \phi v}{\partial x} \right)^2 \right\}
\]

\[
- \frac{\Delta t}{2} \left\{ \frac{\partial}{\partial y} \left[\frac{\partial (\rho \phi)}{\partial y} \right] - \rho \frac{\partial}{\partial y} \left(\frac{\partial \phi v}{\partial y} \right)^2 + \left(\frac{\partial \phi u}{\partial y} \right)^2 \right\}
\]

\[
- \frac{\Delta t}{2} \left\{ \frac{\partial^2 (\rho \phi)}{\partial t^2} - 2 \frac{\partial}{\partial x} \left(\frac{\partial \phi u}{\partial x} \right) - 2 \frac{\partial}{\partial y} \left(\frac{\partial \phi v}{\partial y} \right)
\]

\[
- \rho \left(\frac{\partial (\phi u)}{\partial y} \right) \left[\left(\frac{\partial \phi u}{\partial x} \right)^2 - \left(\frac{\partial \phi v}{\partial x} \right)^2 \right] - \rho \left(\frac{\partial (\phi v)}{\partial y} \right) \left[\left(\frac{\partial \phi u}{\partial x} \right)^2 - \left(\frac{\partial \phi v}{\partial x} \right)^2 \right]
\]

\[
- \rho \frac{\partial u}{\partial y} \frac{\partial \phi u}{\partial x} \left(\frac{\partial \phi u}{\partial x} - \frac{\partial \phi u}{\partial x} \right)^2 + \left(\frac{\partial \phi u}{\partial x} - \frac{\partial \phi u}{\partial x} \right)^2 \right\}.\]
As in SPHASE, the HPHASE kinetic energy approximation is first order in time and second order in space, and includes terms (those enclosed in braces in eq. (32)) which are of the order of the truncation error. Eq. (36) shows that the TPHASE kinetic energy approximation is first order in both time and space. The terms enclosed in braces in eq. (33) contribute only to the $O(\Delta t)$, $O(\Delta y)$, $O(\Delta t)$ and higher order terms in eq. (36) and, consequently, are of the order of the truncation error.

Thus, the order of the approximations (31) - (33) are in accord with the other approximations in the three phases but these approximations include terms which are of the order of the truncation error: terms of order Δt is SPHASE and HPHASE and order Δt, Δx and Δy in TPHASE. These terms are consequences of calculating the kinetic energy from eq. (30) and from the particular choices made in the finite difference approximations of the mass and momentum equations in each phase. Furthermore, these terms do not model any term of the kinetic energy equation. In fact, if one would write directly a finite difference approximation to eq. (28) in a consistent manner with the HELP approximations of eqs. (1) - (4), the result would be eqs. (31) - (33) without the braced terms. Thus, the kinetic energy finite difference solutions within HELP do not share the corresponding property possessed by the exact solution of the partial differential equations: that is, the function e, eq. (30), derived from the finite difference solutions of the mass and momentum equations does not satisfy the finite difference approximation of eq. (28). Although the two approximations are the same in the theoretical limit as the mesh approaches zero, in practice the inclusion of terms of the order of the truncation error alters the accuracy of the calculation and the computed value.

By casting the above concepts into the framework of averaged quantities and fluctuations from their averages, an insight can be achieved into the nature of the truncation error terms. Consider an averaging procedure such that the average of the sum is the sum of the averages, the average of the average is the average and the average of a fluctuation is zero. The exact velocity can be written as the sum of the averaged velocity (doubled barred quantity) plus its fluctuation (primed quantity). Componentwise, we have

$$u = \overline{u} + u' \quad \text{and} \quad v = \overline{v} + v'. $$

The associated specific kinetic energy is

$$0.5(u^2 + v^2) = 0.5(\overline{u^2} + \overline{v^2}) + 0.5(u'^2 + v'^2) + (\overline{u}' \overline{u} + \overline{v}' \overline{u}). \quad (37)$$

Using the properties of the averaging procedure, we can write the average of eq. (37) as

$$0.5(\overline{u^2} + \overline{u'^2}) - 0.5(\overline{v^2} + \overline{v'^2}) = 0.5(u'^2 + v'^2). \quad (38)$$
The difference between the averaged exact specific kinetic energy and the specific kinetic energy of the averaged velocities is the averaged specific kinetic energy of the fluctuations which can be called the subgrid-scale specific kinetic energy. If we take the averaged values as the computed cell centered values at the end of a single time step, then the first term on the left hand side of eq. (30) can be associated with the specific kinetic energy computed via the finite difference approximation of eq. (28) to a given order of accuracy and the second term with the specific kinetic energy computed via the cell centered values of the mass and momentum. Consider, for example, the TPHASE approximation to the specific kinetic energy. Eq. (33) can be rewritten in terms of the averaged values as

\[
0.5(u^2 + v^2) = 0.5(u^2 + v^2) - \frac{\Delta t}{\rho^{n+1}} \{\text{truncation error terms}\}. \tag{39}
\]

Comparing eq. (38) with eq. (39), we obtain

\[
0.5(u^2 + v^2) = \frac{\Delta t}{\rho^{n+1}} \{\text{truncation error terms}\}. \tag{40}
\]

From eqs. (40) and (39), we see that the original formulation of HELP excludes the subgrid-scale kinetic energy. Accordingly, the direct calculation of the kinetic energy from eq. (28) includes it.

The effect of these truncation error terms is not confined to the kinetic energy calculation but is directly translated to the internal energy calculation via eq. (5). The accuracy of the internal energy calculation is of prime importance, since the pressure, temperature and strength properties of the material directly depend on the internal energy and not on either the total or kinetic energies. The dominant errors of the internal energy approximations in SPHASE can be seen by subtracting eq. (34) from eq. (15), in HPHASE by subtracting eq. (35) from eq. (20) and in TPHASE by subtracting eq. (36) from eq. (26). The results are for SPHASE,

\[
\frac{\partial (\rho I)}{\partial t} = S_{xx} \frac{3u}{3x} + S_{xy} \left(\frac{3u}{3y} + \frac{3v}{3x} \right) - S_{yy} \frac{3v}{3y}
\]

\[
= - \frac{\Delta t}{\rho} \left[\frac{\partial^2 (\rho I)}{\partial t^2} + \frac{1}{\rho} \left(\frac{\partial S_{xx}}{\partial x} + \frac{\partial S_{xy}}{\partial y} \right)^2 + \frac{1}{\rho} \left(\frac{\partial S_{xy}}{\partial x} + \frac{\partial S_{yy}}{\partial y} \right)^2 \right] \tag{41}
\]

\[
+ O(\Delta t^2) + O(\Delta x^2) + O(\Delta y^2),
\]

23
for HPHASE

\[
\frac{\partial (\rho I)}{\partial t} + \rho \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = -\frac{\Delta t}{2} \left[\frac{\partial^2 (\rho I)}{\partial t^2} + \frac{\partial}{\partial x} \left(\frac{\partial I}{\partial x} \right)^2 + \frac{\partial}{\partial y} \left(\frac{\partial I}{\partial y} \right)^2 \right] + \mathcal{O}(\Delta t^2) + \mathcal{O}(\Delta x^2) + \mathcal{O}(\Delta y^2),
\]

(42)

for TPHASE

\[
\frac{\partial (\rho I)}{\partial t} + \frac{\partial}{\partial x} \left[\frac{\partial (\rho I)}{\partial x} \right] + \frac{\partial}{\partial y} \left[\frac{\partial (\rho I)}{\partial y} \right] = \frac{\Delta x}{2} \left\{ \frac{\partial^2 (\rho I)}{\partial x^2} \right\} + \frac{\Delta y}{2} \left\{ \frac{\partial^2 (\rho I)}{\partial y^2} \right\} + O(\Delta t^2) + \mathcal{O}(\Delta x^2) + \mathcal{O}(\Delta y^2),
\]

(43)

where we have assumed \(\Delta x = \Delta y \) in order to simplify the TPHASE \(\mathcal{O}(\Delta t) \) term. The accuracy of the internal energy calculation depends primarily on the magnitude of the first order terms. The larger these terms are, the less accurate is the calculation. The structures of the first order terms in SPHASE and HPHASE are similar: a second time derivative of \((\rho I) \) plus positive terms which are a consequence of the truncation error terms in the kinetic energy calculation. These positive terms could be excluded from the kinetic energy calculation, and hence the internal energy calculation, without changing the order of the truncation error of the HELP algorithm. When the second time derivative of \((\rho I) \) is non-negative, the SPHASE and HPHASE internal energy values are computed with less accuracy than would occur if these truncation error terms were excluded. A typical time history of the quantity \((\rho I) \) for a conical shaped change simulation (see Section IV) is given in Fig. 2. The curvature of this graph is nonnegative except for a short interval corresponding to the stagnation region within a shaped charge. Thus, at least for significant portions of a shaped change simulation, the internal energy calculation in SPHASE and HPHASE is less accurate.
Figure 2. Typical Time History Profile of the Internal Energy per Volume in a Conical Shaped Charge Calculation
because of the inclusion of the truncation error terms from the kinetic energy calculation. Furthermore, even if the curvature of \((\rho 1)\) with respect to time was negative, the accuracy of the internal energy may still be less if the order of magnitude of the sum of the squared items is greater than the curvature term.

In the TPHASE calculation, each of three first order terms in eq. (43) should be analyzed to ascertain the effects of the truncation error terms from the kinetic energy calculation (the squared terms in eq. (43)) on the internal energy calculation. In shaped charge simulations, the \(O(\Delta y)\) term dominates the \(O(\Delta x)\) and \(O(\Delta t)\) terms, since the velocity and direction of the rate of change is primarily in the \(y\) direction and since a fairly coarse spatial computing mesh must be used (\(O(\Delta y) = 10^{-2}\) versus \(O(\Delta t) = 10^{-8}\)). Hence, we consider only the \(O(\Delta y)\) term, which we rewrite as:

\[
\frac{\sqrt{2}}{3y} \frac{\partial (\rho 1)}{\partial y} + \frac{\sqrt{2}}{3y} \frac{\partial (\rho 1)}{\partial y} + \frac{\sqrt{2}}{3y} \left[\left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right].
\]

Typical spatial profiles in shaped charge calculations of the quantities \(v\) and \(\rho 1\) along the axis of symmetry are given in Fig. 5. Since \(v\) is always positive and \(\frac{\partial (\rho 1)}{\partial y}\) and \(\frac{\partial (\rho 1)}{\partial y}\) are nonnegative throughout most of their variation, the sum of the first two terms is generally nonnegative. Consequently, since the third and fourth terms are always positive, the accuracy of the internal energy calculation is decreased. Thus, as was seen in the SPHASE and TPHASE approximations, the internal energy calculation for shaped charge calculations would generally be more accurate, if the truncation error terms from the kinetic energy calculation were excluded.

Another example of a flow in which the truncation error terms in the kinetic energy calculation would severely affect the internal energy calculation is in the expansion of perfect gas in a uniform pressure field. For a perfect gas, we have the relation \(\rho 1 = P(\gamma - 1)^{-1}\), where the constant \(\gamma\) is the ratio of specific heats. Consequently, in a uniform pressure field, the quantities \(\frac{\sqrt{2}}{3x} \frac{\partial (\rho 1)}{\partial x}\), \(\frac{\sqrt{2}}{3y} \frac{\partial (\rho 1)}{\partial y}\), \(\frac{\sqrt{2}}{3y} \frac{\partial (\rho 1)}{\partial y}\) would be zero in eqs. (41)-(43). If the truncation error terms from the kinetic energy calculation were excluded, the entire \(O(\Delta t)\) term in SPHASE would be zero as well as the entire \(O(\Delta x)\) and \(O(\Delta y)\) terms in TPHASE. Thus the internal energy approximations in SPHASE would be \(O(\Delta t^2)\) and TPHASE \(O(\Delta x^2)\) and \(O(\Delta y^2)\). Consequently, the approximations achieve a higher order of accuracy when the extraneous terms are excluded.
Figure 3. Typical Spatial Profiles of the Axial Velocity and Internal Energy per Volume in a Conical Shaped Charge Calculation
In other applications, the order of magnitude and/or the algebraic signs of the first order terms in eqs. (41) - (43) must be analyzed in order to determine the effects of truncation error terms in the kinetic energy calculation on the accuracy of the internal energy calculation. In regions of large gradients, the magnitude of these truncation error terms can be large because of their quadratic dependence on the first spatial derivatives. Since limitations on running time and machine storage necessitate fairly coarse computing meshes for two-dimensional simulations, the truncation errors related to the finite size of the mesh cell are more likely to be important than those related to the time step. Thus, the \(O(\Delta x)\) and \(O(\Delta y)\) terms in eq. (43) may dominate the truncation error. We shall see that this is the case in shaped charge calculations.

The inclusion of the truncation error terms in the kinetic energy calculation alters not only the computed values of the kinetic energy of a cell at each cycle but also the values of the internal energy. The coefficients of the \(\Delta t\) terms in eqs. (31) and (32) are positive and increase the kinetic energy. For equal spatial meshes \((\Delta x = \Delta y)\), the entire first order term in the TPHASE calculation is negative for Courant numbers less than a half and decreases the kinetic energy. The effect of truncation error terms on the internal energy is reversed because of eq. (S). The SPHASE and HPHASE terms decrease the internal energy and the TPHASE increases it. Thus, these terms can be interpreted as a transfer mechanism which is not modeled by the governing equations and which converts internal energy into kinetic energy and kinetic energy into internal energy. Consider, for example, the one dimensional first order energy approximation in TPHASE for motion in the x-direction. The only first order term that the internal energy calculation includes is the positive term:

\[
\frac{\tilde{u}_{i+1}^2 - u_i^2}{2\rho} \left(\Delta x - \frac{u_i \Delta t}{\Delta x} \right)
\]

Expanding expression (45) in a Taylor series about the cell center and the \(n\)th time level, we obtain

\[
(\lambda - \lambda') \left[\frac{\partial u}{\partial x} \right]^2
\]

to the lowest order, where \(\lambda = 0.5\rho u_0 \Delta x\) and \(\lambda' = +0.5\rho u^2 \Delta t\). If \((\lambda - \lambda')\) were the coefficient of viscosity, then expression (46) would be identical to the viscosity term in the one-dimensional internal energy equation for a viscous fluid. Thus, the energy transfer mechanism in this case could be defined as an explicit artificial viscosity term, since it is explicitly included in the difference equation much like the implementation of the von Neumann and Richtmyer artificial dissipation scheme.
Evans and Harlow\(^3\) identified the term corresponding to \(\lambda_\text{a}(\partial u/\partial x)^2\) in their one-dimensional analysis of the original PIC code. The term \(\lambda_\text{a}(\partial u/\partial x)^2\) is not included in their analysis, since they did not include the effect of time differencing. From expression (46), we see that the time discretization decreases the amount of kinetic energy converted to internal energy in TPHASE. This explicit type of artificial viscosity is confined only to the TPHASE energy calculation and is, in addition to the implicit artificial viscosity\(^6\) (that type of artificial viscosity deduced from the neglected truncation error terms within an algorithm), already inherent in a first order algorithm.

IV. THE MODIFIED HELP CODE

We have shown that the terms of the order of the truncation error which are included in the kinetic energy calculation decrease the accuracy of the internal energy calculation under certain circumstances. To determine the effects of omitting these terms in such a calculation, the HELP code was modified to allow a kinetic energy calculation which did not include the first order terms in eqs. (31) - (33). Consequently, the kinetic energy was not computed by the updated mass and momentum values but was considered a separate dependent variable. This kinetic energy for both pure and mixed cells was updated according to a direct finite differencing of eq. (28) in a manner consistent with the other approximations and was stored in an array. The array TKEG contains the cell centered specific kinetic energy and the array TKEGM contains the specific kinetic energy of each material in an interface cell. By implementing such a scheme, the algorithm still numerically conserves mass, momentum and specific total energy as before but now possesses a new discrete dependent variable, the specific kinetic energy, and another finite difference equation. However, the modified version required slightly less computing time than the original version, since all the quantities needed to compute a new kinetic energy value are already available from the mass and momentum calculations and future references to the kinetic energy are simply retrievals. Throughout the modified algorithm references to the specific kinetic energy are always to the arrays TKEG and TKEGM and never to the quantity \(0.5 (u^2 + v^2)\). Although other formulations are possible, the present one calculates the specific kinetic energy in the desired manner (hence, the internal energy) and is relatively easy to implement in the existing HELP code.

Since an accurate calculation of the specific internal energy is the ultimate goal, a natural alternative to the 1975 HELP algorithm is the

\(^6\) Roache, P. J., Computational Fluid Dynamics, Chapter V, Hermosa, Albuquerque, 1976.
direct calculation of the specific internal energy in every phase. This type of algorithm deletes the truncation error terms in the internal error calculation. In several examples (shaped charge simulations were not included), Karpp obtained significantly better internal energy values with this approach. A closely related algorithm is the 1971 version of HELP. This version directly solves for the specific internal energy in the SPHASE and HPHASE portions of the algorithm but transported the specific total energy in TPHASE. A stated reason (see Ref. 1) for the current total energy version of HELP was the problems rising from the internal energy calculation in HPHASE. The two pass energy calculation in HPHASE caused inaccurate definitions of pressure and velocities near free surfaces and, consequently, the inclusion of the GLUE subroutine to rectify them. The GLUE subroutine was not totally satisfactory. The desire to avoid these past difficulties compelled us away from an internal energy formulation and to the retention of the total energy formulation.

The modifications listed below apply to the version of HELP described in Ref. 1. This original formulation is available on the BRL CDC 7600 under the permanent file name BRLHELP, CY = 14. The permanent file identification is ID = CMCHYDRO. The modification deck is listed in Appendix A. It is in CDC UPDATE format and contains comment cards in order to explain each particular change. The modified version of HELP is available on the BRL CDC 7600 under the permanent file name BRLHELP, CY = 15. The permanent file identification is ID = CMCHHYDRO.

In addition to the changes in the common deck, HELPOM, the modifications affect 15 of the 57 subprograms in HELP: namely, SPHASE, HPHASE, TPHASE, EDIT, EQST, INPUT, SETUP, SETUPA, FILGRD, FILSET, RNDOFF, NEWMIX, NEWFLG, ENCHCK, and UVMOD. The modifications incorporated into HELP enables one to run simulations involving all the options of HELP described in Ref. 1 except the penetration and rezone packages. The modifications have not been included in any of the plugging routines: PLGADD, PLCALF, PLGGEN, PLGMAS, PLGTCR, PLGVAL, PLUGIV, PTSAV.

or in the REZONE subroutine. However, a rezoning deck10 which is used in conjunction with the REZONE subroutine was obtained. Both the deck and subroutine were modified to allow a limited rezone capability in the modified formulation. The restrictions on this rezone package are: i) the rezone package must be user-activated, ii) the computational grid can be extended only in the axial direction, and iii) the last row of computation cells (J = JMAX) must contain void. The rezone package combines cells as described in the HELP manual. The rezone deck (IDENTS REJAS and CHREZ) and the modifications (INDENT CORREZ) are listed in Appendix B in CDC UPDATE format.

The modifications are implemented in such a way as to retain the total energy conservation within the computational grid. At the end of 859 cycles (t = 16 \textmu s) in the 43 mm shaped charge calculation, presented in Section VI, the maximum relative error between the theoretical total energy and the actual total energy within the grid is \(1.09 \times 10^{-9}\). For this calculation, the modifications increased the storage requirements by only 6\% and decreased the running time by approximately 2\%.

Finally, we note that another correction set is listed in Appendix A under the IDENT CORREZ. This enables the MAPS subroutine to indicate small magnitude negative values in the MAPS output. Prior to this correction, a single dash was used as a symbol for both positive and negative ranges of a variable's value. With this correction a single dash represents positive values and a double dash negative values.

\section*{V. Mesh Refinement Study for a Wedge Impact Calculation}

Since the study of the internal energy problem is based on a truncation error analysis, a mesh refinement study is appropriate to the investigation of the effects of the truncation error terms on the accuracy of the computed specific internal energies. Because of the complexity of a full shaped charge simulation, a related model problem11 is simulated in the mesh refinement study. An observer stationed at the stagnation point in Fig. 7b (page 37) would find the uncollapsed liner moving towards him and separating into two parts (the slug and jet). Consequently, a 20 mm wide copper wedge traveling at 2 km/s was simulated as it impinged on a perfectly reflective wall at 30\(^\circ\) of obliquity. The wedge collapse was modeled with slab symmetry. The material constants for the copper are \(C_{\text{ZERO}} = 0.235 \text{ GPa, } R_{\text{MU}} = 45.50 \text{ GPa, } STK1 = 6.95 \text{ GPa,}\)

10 Lucenera, J. M., USA Ballistic Research Laboratory, Private Communication, April 1978.

STK2 = 5.5 GPa, STEZ = 0.53 MJ/kg and AMDM = 0.9785. See the HELP manual\(^1\) for the definition of the above constants. The initial density of the copper is \(8.9 \times 10^3\) kg/m\(^3\). We note that the initial pressure and specific internal energies are zero, since the code computes the overpressures and specific internal energies above the initial state. Consequently, throughout this report, the values of the specific internal energy are relative to the initial reference value and are not the absolute values. The material surrounding the wedge is void. A single pass through SPHASE was used. The Tillotson equation of state\(^2\) for copper was used. The coarse computational mesh was 30 by 100 cells (\(\Delta x = \Delta y = 1\) mm) and the fine mesh was 60 by 200 cells (\(\Delta x = \Delta y = 0.5\) mm). Both the original and modified version of the HELP code were run on a CDC 7600.

The results at 10\(\mu\)s after the wedge first impacts the wall are shown in Figs. 4-6. Besides the specific internal energy, two other important quantities, the relative axial velocity (relative to the end of the slug portion) and density, are compared along the wall in the slug, stagnation and jet regions. Qualitatively, the entire compression and relative axial velocity curves and the slug portion of the specific internal energy curve are similar among the mesh variations and version changes. However, the qualitative behavior of the jet's specific internal energy markedly differs between the two versions for either mesh. This is due to the increased gradients within the jet portion which can drastically increase the magnitude of the truncation error terms from the kinetic energy calculation, and thus, the truncation error. Quantitative comparisons were made at three positions in Figs. 4-6: the slug end, the stagnation point and the jet end. The symbol \(\dagger\) denotes the stagnation point (the cell along the wall with the largest pressure. While the total deviation among the relative axial velocity and compression curves from the largest computed value at the three stations was less than 7\% (except for 9.9\% in the compression at the jet's end), the total deviation of the specific internal energy curve was 82.1\%, 26.4\% and 63\% at the jet, stagnation and slug, respectively. The tremendous increase in the total deviation of the specific internal energy curve is due to the first order terms included in the calculation of the kinetic energy. In fact, the deviation of the coarse mesh specific internal results from the fine mesh results, decreased by over 62\% from the original version to the modified version. Consequently, one obtains much less variation in the specific internal energy values as one converges to the solution through a mesh refinement with the modified version. Fig. 6 suggests that the specific internal energy values which are computed by the modified version and with the coarse mesh provide a better approximation to the exact values than those values computed by the original version with the fine

Figure 4. Spatial Profiles of the Relative Axial Velocity at 10μs Along the Wall for a Copper Wedge Impact Calculation
Figure 5. Spatial Profiles of the Compression at 10μs Along the Wall for a Copper Wedge Impact Calculation
Figure 6. Spatial Profiles of the Specific Internal Energy at 10us Along the Wall for a Copper Wedge Impact Calculation
mesh. This trend is also present in the compression curve. The results of Fig. 6 also show that for this type of problem, the truncation error terms in the kinetic energy calculation associated with TPHASE (Courant number of 0.4 is used) dominate those associated with SPHASE and IIPHASE and cause the specific internal energy to be increased.

VI. THE COMPARISON OF THE MODIFIED AND ORIGINAL FORMULATIONS USING A 43MM CONICAL SHAPED CHARGE SIMULATION

We will consider the 43mm conical shaped-charge which is unconfined and has a rounded apex. See Fig. 7a. The actual warhead is obtained by rotating Fig. 7a about the axis of symmetry. The explosive is detonated and the detonation wave collapses the conical liner towards the axis of symmetry with a varying velocity. Sixteen microseconds after detonation, the liner consists of three parts (Fig. 7b): The uncollapsed liner, the low velocity large mass slug and the high velocity small mass jet. By performing a Galilean transformation at the point where an original ring of liner impinges on the axis of symmetry, a stagnation point in the flow can be shown to exist. This stagnation point divides the collapsed liner into the slug and jet. It is the jet which pierces the armor and is of prime concern to the shaped charge designer. By assuming that the liner can be modeled as an incompressible material under typical loading conditions, several researchers11,13,14 have developed one-dimensional analytical or simple numerical models to determine the velocity field. However, when two-dimensional axisymmetric geometry, compressibility, strength, and thermodynamic effects are included, a full numerical simulation is necessary. The liner collapse and early jet formation of this shaped charge was simulated using the BRLSC15 code (the precursor of the 1975 HELP code) and the results compared to experiments in Ref. 16.

Figure 7a. Initial Conical Shaped Charge Configuration

Figure 7b. Copper Configuration at 16us for Conical Shaped Charge
Since the HELP code\(^1\) is now generally used instead of the BRLSC code for shaped charge studies, we shall limit our discussion to the HELP's results. In order to further compare the original and modified versions of the HELP code, a conical shaped charge with a copper liner and Composition B explosive (Fig. 7a) is modeled in cylindrical coordinates and with identical material constants, initial conditions, code options and grid structure. The material constants for the copper are identical to those used in the copper wedge calculation. The slipline option is employed along the copper - Composition B interface. A void surrounds the entire warhead. The initial state is quiescent: all properties zero except the standard values of the densities \((8.9 \times 10^3 \text{ kg/m}^3)\) for copper and \(1.717 \times 10^3 \text{ kg/m}^3\) for Composition B. The explosive is point detonated at the intersection of the axis of symmetry and the base of the Composition B. The computational mesh is 60 cells in the radial direction and 187 cells in the axial direction. The axial increment is \(\Delta z = 0.52 \text{ mm}\) and the radial increment is \(\Delta r = 0.52 \text{ mm}\) for the first 46 cells and slowly increases to 19.93 mm at the last radial cell. In both calculations the bottom boundary is transmittive. The strength option with a single pass is utilized (that is, the contribution of the stress deviator tensor is included). The Jones-Wilkins-Lee equation of state\(^17\) for the explosive and the Tillotson equation of state\(^12\) for the copper are used. The constants used in these equations of state are given in the HELP reference manual\(^1\). Sample input-output for this shaped charge is given in Ref. 18. The calculations were performed on a CDC 7600.

Fig. 8 shows the specific kinetic energy along the axis of symmetry from the slug tail to the jet tip for both formulations at 16\(\mu\)s. The symbol + denotes the stagnation point. This comparison shows that modified algorithm values are always larger than those of the original algorithm. Thus, the truncation error terms in the kinetic energy calculation associated with the spatial discretization dominate those associated with the temporal discretization. In fact, throughout the flow field, the original formulation gave smaller values of kinetic energy than the modified. Fig. 9 is the comparison of the specific internal energies along the axis of symmetry at 16\(\mu\)s. The modified code predicts up to 88\% decrease in the specific internal energy values of the original code. Along the axis, the original formulation predicts a liquid-vapor slug and a liquid-vapor jet, whereas, the modified formulation predicts

Figure 8. Comparison of the Specific Kinetic Energies Along the Axis of Symmetry at 16 μs
Figure 9. Comparison of the Specific Internal Energies Along the Axis of Symmetry at 16us
a solid slug and a jet which remains a solid until near the tip region where it liquifies. We note that the BRLSC code results16 indicate even a higher specific internal energy value than the HELP 1975 algorithm. The specific internal energy value corresponding to the melting point of copper (53 MJ/kg) is a material property input value. The specific internal energy value corresponding to the incipient vaporization point of copper (1.38 MJ/kg) is contained within the Tillotson equation of state. In the original formulation, the specific internal energy of each cell in the entire jet is well above the value corresponding to incipient vaporization at 16\textmu s. Thus, the jet is characterized as a liquid-vapor jet. However, in the modified formulation, the specific internal energy of the same cells is generally below that for melt and a solid jet with several melted sections is predicted. See Fig. 10. Although no actual temperature measurements have been taken for this shaped charge, experimental evidence of Von Holle and Trimble19 supports the conclusion that the copper jet is in the solid state. Thus, qualitative thermal agreement is achieved for the first time with the modified formulation. Fig. 11 illustrates the specific internal energy values generated by the modified formulation at various times along the axis of symmetry from just behind the stagnation point to the jet tip. The relative positions of the curves do not indicate their actual relative positions predicted by the code. The decrease in the specific internal energy values in the jet as a function of time is not constant and become less as time increases. The proportion of the computational cells within the jet with a specific internal energy value higher than that of melt decreases from 1.00 to 0.76 to 0.32 to 0.24 as time increases from 8 to 12 to 16 to 18.5\textmu s, respectively.

Major differences in the internal energy illustrated in Fig. 9 will drastically affect the material properties of the slug and jet. An investigation into the copper's strength, ductibility and cohesion cannot be computationally investigated with the original version of HELP, since it predicts a liquid-vapor state for most of the copper in the slug and jet. In particular, when the specific internal energy of a cell is equal to or greater than that for melt, the stress components are equated to zero and the flow variables remain unchanged during SPHASE. Consequently, in the original formulation and for the 43mm conical shaped-charge problem, the inclusion of the strength option does not generate significantly different values of the flow variables. Since the values of the specific internal energy in the modified version are almost always below melt, the inclusion or exclusion of the SPHASE contribution is now primarily controlled by the tensile failure criterion. If the material density ρ is such that $\rho/\rho_0 < \text{AMDM}$ (ρ_0 = initial density), the material has failed and the SPHASE contribution is ignored.

0.53 < \varphi \leq 0.94
0.093 < \varphi \leq 0.53

NOTE: INCIPIENT VAPORIZATION = 1.38 MJ/kg
MELT = 0.53 MJ/kg

Figure 10. Cell-Centered Values of the Jet's Specific Internal Energy (MJ/kg) Computed by the Modified Formulation
Figure 11. Modified Version's Specific Internal Energy Profiles from the Stagnation Region to the Jet Tip at Various Time
The parameter AMDM is a material strength input value. Hence, the effects of SPHASE on a conical shaped charge calculation are now dependent on an input value. A sensitivity study of the calculation on this parameter AMDM should be made with the modified formulation. However, such a comparison is not included in this report.

Comparisons of the pressures, velocities, specific total energies and densities between the two versions along the axis of symmetry at 160s are shown in Figs. 12-17. Although significant differences in the above quantities are expected, especially within the jet, as the result of phase differences predicted by the codes (see Fig. 9), the discrepancies between the versions are not major, except for the density. The cause of the small discrepancies can be traced to the pressure calculation. The effect of the specific internal energy on the other computed quantities is controlled by the equation of state. In the original version, a predetermined upper bound on the specific internal energy is used in the equation of state for the liner material in an ad hoc manner. For shaped-charge calculations (code option NLINER = 0), the maximum value of the specific internal energy utilized in the equation of state for the primary liner material is the incipient vaporization value. In our example, the largest specific internal energy value used in the pressure calculation of the original version is 1.38 MJ/kg, even though all the cells of the jet have values above 1.38 MJ/kg. In the modified version of HELP, the ad hoc usage of this upper bound is abandoned. Hence, the pressure and other variables are consistent with the actual computed value of the specific internal energy in the modified version.

The pressures are compared in Fig. 12. The graph corresponding to the values computed by the modified formulation show a more uniform decay to the initial pressure. The stagnation point overpressure of the modified version is 6% greater than that of the original version. The stagnation point occurs at the same position in both versions. The graphs of the pressure and of the radial velocity (Fig. 15) and the compression (Fig. 17) correlate well for the jet and slug's interior. Regions of high pressure correspond to large negative radial velocities and values of compression greater than one. The axial velocities of the two formulations (Fig. 13) are identical near the stagnation region. Both versions predict that the physical inverse velocity gradient is still slightly present near the jet tip. The large values of the axial velocity cause the slightly longer jets of the original formulation (approximately two computational cells). The effect of the inverse velocity gradient on the kinetic energy can be seen in Fig. 8. As in Fig. 13, the gradient is larger in the modified version than in the original. The jet tip velocity values of the original formulation (Fig. 14) are somewhat larger for times greater than 5μs but the percentage difference is small—at 160s, the difference is less than 2%. The relative jet tip (jet tip minus slug tail) velocity predicted by the modified version at 160s is 6.023 km/s. This value is 7.9% lower than the experimental value cited in Ref. 16. The radial velocities are compared
Figure 12. Comparison of the Pressures Along the Axis of Symmetry at 16\,us
Figure 13. Comparison of the Axial Velocities Along the Axis of Symmetry at 16us
Figure 14. Comparison of the Jet Tip Velocity-Time Histories
Figure 15. Comparison of the Radial Velocities Along the Axis of Symmetry at 16us
DENOTES STAGNATION POINT

Figure 16. Comparison of the Specific Total Energies Along the Axis of Symmetry at 16µs
DENOTES STAGNATION POINT

\[\rho_o = 8.9 \times 10^3 \text{ (kg/m}^3\text{)} \]

Figure 17. Comparison of the Compressions Along the Axis of Symmetry at 16us
in Fig. 15. Since the radial velocity is modified so that the jet material at zero overpressure will not expand radially (zero radial velocities are imposed), an accurate assessment of this quantity is difficult away from the stagnation region. However, in the modified formulation the negative radial velocities, which cause a compression of the copper at the axis of symmetry, correlate well with the nonzero pressure values in Fig. 12. In the original formulation, this type of correspondence is not as well correlated. The specific total energies of the two versions are compared in Fig. 16. The effect of the small inverse velocity gradient seen in Figs. 8 and 13 is again reflected in the graph of the specific total energies. Fig. 17 shows a comparison of the compression \(\frac{\rho}{\rho_0} \) values. Throughout most of the slug and jet, the density values of the modified code are approximately 10% greater than the original. The density discontinuity which appears near the jet tip in both formulations could be numerically caused. See Section VII. The magnitude of the jet tip’s discontinuity is larger in the original version and so is its associated undershot. Before decreasing to the final undershot value in the modified version, the jet’s density is approximately 95% of the initial density of the liner. No density measurements have been experimentally determined for the 43mm copper shaped charge.

However, experimental results for a 36mm copper shaped charge predict the density variation of the unbroken jet to be from 90% to 81% of the initial liner density. Although the original version seems to be in better agreement with Jamet’s results than the modified version, a HELP simulation of the actual experiment with identical explosives and configurations would have to be completed in order to accurately ascertain which version possessed the better correspondence. In the stagnation region, the modified formulation gives improved values—compression \(\frac{\rho}{\rho_0} \) of the copper. The sudden density decreases in the slug region predicted by the modified version can be correlated to the sudden pressure decreases. See Fig. 12.

Negative specific internal energy values are computed by both formulations of the HELP code in the uncollapsed liner and along the interface between the slug and the explosive. However, in the modified formulation the number and magnitude of the negative internal energy values increase. This is consistent, since the original formulation added the positive values of the truncation error terms in the specific kinetic energy calculation to the specific internal energy. See the discussion of Fig. 8. The computed specific internal energy value is the value over the initial specific internal energy. Consequently, the actual internal energy of a material in a computational cell may still be positive even though the computed value is negative. Nonetheless, in a total energy formulation, the computed negative specific internal energy values are

a consequence of the computed kinetic energy being greater than the computed total energy. The numerical source of this situation in the HELP code must be identified and corrected before any simulation can be completely satisfactory.

VII. TEMPERATURE CALCULATIONS FOR THE 43MM CONICAL SHAPED CHARGE

It is not the purpose of this section to give a definitive statement on the temperature distribution within the jet for a 43mm shaped charge but rather to identify the current problems in an accurate temperature calculation and to present a first attempt in computing a temperature profile. The computed profiles do agree qualitatively with experimental evidence.

Since the Tillotson equation of state used in HELP does not compute temperature values, the temperature routine from the HULL code was utilized. The HULL's temperature routine is a temperature fit which uses data in Ref. 22 and requires values of the density and specific internal energy. The coding used in the HELP code is listed in Appendix C. This routine was chosen, since it is used for temperature measurements in shaped charge simulations by the HULL code and it is accessible. However, the question of its applicability to simulations involving phase transitions (from solid, through melt, to liquid) is unanswered. A definite need does exist for a highly accurate copper equation of state (see Ref. 23). More sophisticated equation of states, such as the BRLGRAY equation of state, could be used when they are incorporated in the HELP code.

Since the temperature depends explicitly on the density and specific internal energy, accurate values of these quantities are essential to a correct temperature calculation. For example, if the density value is

9.8 \times 10^3 \text{ kg/m}^3 \text{ and specific internal energy value is } 0.46667 \text{ MJ/kg, then a 6.43\% decrease in density and a 3.45\% increase in the specific internal energy produces over a 15\% change in the calculated HULL temperature value. Consider Table 1 which lists the jet's density for the modified version at 16\mu s within the computational cells from the jet tip to the stagnation region. The prefix M with a number indicates that it is a free surface cell (a mixed cell composed of void and copper). The striking feature of the array of numbers is that in a given column the density of every free surface cell is identical. This peculiarity results from the numerical algorithm in HELP (see subroutine NEWRHO) and is not necessarily a physical result. The same phenomenon occurs in both the original and modified formulations. Thus computed temperature value involving a free surface cell would be at best suspect. Consequently, a comparison with Von Holle and Trimble's experimental jet skin temperature \(^25\) will not be made. First, HELP's free surface density calculation must be analyzed and modified, if necessary.

With an awareness of the limitations discussed above, we now consider the temperature profile within the jet (pure cells only) with the HULL temperature routine. We note that the specific internal energy computed by the HELP code must be augmented by an initial value of 0.11335748 \text{ MJ/kg (corresponds to a temperature of 287.87K at an initial pressure of 0.101325 MPa) to obtain the actual value of the copper's specific internal energy. Between 16 and 18.5\mu s, the jet is defined by at most three pure cells in the radial direction for a given axial position. Figs. 18 and 19 show the temperature profile at 16 and 18.5 \mu s, respectively, of pure cells within the jet at various radial positions. The radial distances 0.26 mm, 0.78 mm and 1.3 mm measure the length from the axis of symmetry to the center of the first, second and third radial cells, respectively.

The melting point of copper under the initial conditions is 1356.6K. \(^26\) The code predicts non-ambient pressures in the jet along most of the axis of symmetry and ambient pressures in most of the second and third radial cells. Consequently, the \(r = 0.78 \text{ mm and } r = 1.3 \text{ mm curves in both figures predict that the jet is in the solid state. Along the axis of symmetry one cannot determine the actual state of the copper without more precise thermodynamic data. Throughout most of the jet, the results of the modified HELP substantiates Von Holle and Trimble's conclusion \(^19\) of a solid jet. Thus qualitative thermal agreement between experimental evidence and computer simulation is achieved.

Table 1. Density Variation Within the Jet at 16µs

<table>
<thead>
<tr>
<th>Distance from Axis of Symmetry</th>
<th>M 0.26mm</th>
<th>M 0.78mm</th>
<th>M 1.30mm</th>
<th>M 1.82mm</th>
<th>M 2.54mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7672</td>
<td>M 8.9000</td>
<td>M 8.9000</td>
<td>M 8.9000</td>
<td>M 8.9000</td>
<td>M 8.9000</td>
</tr>
<tr>
<td>7.9480</td>
<td>M 8.9000</td>
<td>M 8.9000</td>
<td>M 8.9000</td>
<td>M 8.9000</td>
<td>M 8.9000</td>
</tr>
<tr>
<td>8.0471</td>
<td>M 8.9000</td>
<td>M 8.9000</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
</tr>
<tr>
<td>8.0855</td>
<td>8.4719</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
</tr>
<tr>
<td>8.1110</td>
<td>8.4878</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
</tr>
<tr>
<td>8.1416</td>
<td>8.4871</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
</tr>
<tr>
<td>8.1748</td>
<td>8.1725</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
</tr>
<tr>
<td>8.2110</td>
<td>8.1451</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
</tr>
<tr>
<td>8.2516</td>
<td>8.1116</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
</tr>
<tr>
<td>8.2899</td>
<td>8.3869</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
</tr>
<tr>
<td>8.3201</td>
<td>8.3734</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
</tr>
<tr>
<td>8.3479</td>
<td>8.3634</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
</tr>
<tr>
<td>8.3787</td>
<td>8.3598</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
</tr>
<tr>
<td>8.4203</td>
<td>8.2745</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
<td>M 11.312</td>
</tr>
<tr>
<td>Distance from Axis of Symmetry</td>
<td>.20mm</td>
<td>.78mm</td>
<td>1.30mm</td>
<td>1.82mm</td>
<td>2.34mm</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>8.5098</td>
<td>6.7489</td>
<td>8.6662</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5169</td>
<td>6.9168</td>
<td>8.6703</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5242</td>
<td>7.1430</td>
<td>8.6714</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5315</td>
<td>7.3787</td>
<td>8.6683</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5384</td>
<td>7.5989</td>
<td>8.6639</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5447</td>
<td>7.7892</td>
<td>8.6596</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5503</td>
<td>7.9460</td>
<td>8.6555</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5551</td>
<td>8.0763</td>
<td>8.6517</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5592</td>
<td>8.1903</td>
<td>8.6476</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5633</td>
<td>8.2976</td>
<td>8.6428</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5682</td>
<td>8.4025</td>
<td>8.6379</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5755</td>
<td>8.4998</td>
<td>8.6347</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5862</td>
<td>8.5737</td>
<td>8.6345</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.6028</td>
<td>8.6112</td>
<td>8.6384</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.6258</td>
<td>8.6252</td>
<td>8.6484</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.6560</td>
<td>8.6424</td>
<td>8.6643</td>
<td>M 9.5116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.7595</td>
<td>8.7111</td>
<td>8.7095</td>
<td>8.1814</td>
<td>M 10.300</td>
<td></td>
</tr>
<tr>
<td>8.8457</td>
<td>8.7933</td>
<td>8.7783</td>
<td>8.7566</td>
<td>M 10.300</td>
<td></td>
</tr>
<tr>
<td>8.9525</td>
<td>8.8877</td>
<td>8.8633</td>
<td>8.7632</td>
<td>M 10.300</td>
<td></td>
</tr>
<tr>
<td>9.0733</td>
<td>8.9954</td>
<td>8.9840</td>
<td>8.8093</td>
<td>M 10.500</td>
<td></td>
</tr>
</tbody>
</table>
Figure 18. Variation of Jet's Temperature with Axial Distance at Various Distances from the Axis of Symmetry at 10 ps
Figure 19. Variation of Jet's Temperature with Axial Distance at Various Distances from the Axis of Symmetry at 18.5us
for the first time. Finally, the temperature profiles in the jet decreases with time since the jet is expanding.

For comparison, the values of the density and specific internal energy from the original versions were used with the HULL temperature routine. The corresponding temperature values in almost every pure cell within the jet were greater than 3000K. At ambient conditions, the vaporization temperature of copper is 2848K. These temperature results are larger than those implied by experimental evidence by at least a factor of two.

VIII. SUMMARY

We have shown by a truncation error analysis that terms of the order of the truncation error in the HELP algorithm are included in the kinetic energy calculation. In the original HELP code, the updated values of kinetic energy were computed as consequences of the updated mass and momentum values. This value is shown to deviate from that computed directly by a first order approximation of the kinetic energy equation by first order terms which depend quadratically on the spatial derivatives of the velocity, pressure, and elements of the deviator stress tensor. These truncation error terms can severely alter the related internal energy calculation. The effect of these truncation error terms from the kinetic energy calculation on the accuracy of the internal energy is problem-dependent and the criteria for such a determination is given in terms of the explicitly calculated truncation error terms for the specific internal energy. A method was suggested to avoid these terms within the confines of the basic HELP algorithm. Although in certain computations these truncation error terms may remain negligible, in others they can be significant and produce spurious results. A case in point has been cited and illustrated by applications to problems in warhead mechanics. A mesh refinement study for a copper wedge impacting a perfectly reflective wall was made. The results show tremendous deviations as the mesh size decreases in the internal energy values, while other quantities show relatively little deviations. In the modified formulation, significantly smaller deviations in the internal energy values and consequently, a more consistent deviation with the other quantities are observed. Drastic improvements in the internal energy values are also seen in conical shaped charge calculations. Temperature profiles of the jet's interior were computed using the temperature fit routine from the HULL code. When ambient pressures are computed by the code, the corresponding values of the temperature are between 700(K) and 1100(K) which are well below that for melted copper. Thus, qualitative thermal agreement is achieved for the first time between a HELP code simulation and experimental evidence for a conical shaped charge.

The upper bound on the specific internal energy (the value corresponding to the incipient vaporization of the material) in the Tillotson
The equation of state for the liner material has been removed in the modified formulation. Now the specific internal energy value used in the pressure calculation is always the value calculated by the algorithm. Since the original formulation used this ad hoc upper bound, the deviation of the pressures, velocities and specific total energies between the two versions is generally small. However, the density values in the modified formulation within the jet are approximately 95% of the initial density, instead of approximately 85% in the original version.

Although a comparison of a conical shaped charge simulation with and without the SPHASE portion of the calculation has not been completed with the modified formulation, the effects of strength should be appreciable since the SPHASE calculation is now included by a significantly larger number of pure cells (mixed cells have no strength). Consequently, simulations performed for detailed jet information should use the strength option.

Besides the obvious effects of an improved internal energy calculation, another effect is the increased dependence on the material constants used within the code. A case in point is in the shift from the internal energy dependent cut-off value in the SPHASE calculation in the original formulation to a tensile failure criterion in the modified formulation. Thus, the necessity of accurate material constants and models becomes more acute.

As we noted in Sections VI and VII, problems still exist within the HELP code with respect to an accurate internal energy and temperature calculation. The numerical problem related to the computation of negative internal energies along the slip line interface between the copper and explosive as well as in the uncollapsed liner must be corrected. The determination of free surface densities must also be improved. A verified temperature routine incorporated into the modified version of HELP is also needed. Once these are accomplished, the HELP code can be used with confidence to predict not only the jet's shape and jet tip velocity, but also thermodynamic quantities of the jet, such as its density, pressure and temperature.

In the TPHASE section of the original HELP algorithm, the truncation error terms were identified with an explicit artificial viscosity in the internal energy calculation. Consequently, the modified formulation may require implementation of the artificial viscosity option available in HELP in cases where the original formulation did not.

The 1971 version of HELP has a different energy formulation. In SPHASE and TPHASE the specific internal energy was updated directly by a finite difference approximation and the specific total energy was obtained as the sum of the specific internal and kinetic energies. In TPHASE, the specific total energy was updated directly and the specific internal was obtained as the difference of the specific total and kinetic energies. Although the proposed changes in this report are no longer
directly applicable to such a code, the basic concept developed in this report is: Truncation error terms generated in the calculation of a kinetic energy value from the current values of mass and momentum must be excluded for an acute overall energy calculation.

A noteworthy feature of the analysis and modification is that it is directly relevant to codes other than HELP. In fact, any code with a HELP type algorithm can be erroneously affected by the truncation error terms in the kinetic energy calculation. In particular, the same unphysical internal energies in the jet are computed by the NULL code.

A possible alternative solution to the problem discussed in this report is the upgrading of the HELP algorithm to second order accuracy. Such an approach has proven beneficial for the standard particle-in-cell codes. This type of change would require considerable analysis and rewriting of the HELP algorithm. Present problems, which stem primarily from the mixed cell treatment and which may not be solved by a second order algorithm, should be addressed first.

ACKNOWLEDGEMENT

The author wishes to thank Janet M. Lacetera for the many helpful discussions concerning the running of the HELP code.

Clark, R., Los Alamos Scientific Laboratory, Private Communication.
REFERENCES

27. Clark, R., Los Alamos Scientific Laboratory, Private Communication.
APPENDIX A

LISTING OF MODIFICATIONS TO THE KINETIC ENERGY CALCULATION IN HELP
IDENT KINENG

I HELP COM.108

C ***SDLKEL, SDLKER, SDLKEB, SDLKET ARE KINETIC ENERGIES OF A GIVEN
C MATERIAL TRANSPORTED ACROSS LEFT, RIGHT, BOTTOM AND TOP
C BOUNDARIES OF AN INTERFACE CELL
C ***SDLKEL IS KINETIC ENERGY OF MASS TRANSPORTED ACROSS LEFT
C SIDE OF CELL

*D HELP COM.112
 4 MFGREZ, REZAMX, REZAI X, REZXMS, REZSIE, REZRHO, SDLKEL, SDLKER, SDLKEB,
 5 **KET, DLKEL

*D MEMF. AND.45
 3 SPLEPT(4, 200), SDLKEL(4, 200), SDLKER(4), SDLKEB(4),
 4 SDLKET(4), DLKEL(200)

*I MEMEXPND.59

C ***TKEG IS SPECIFIC KINETIC ENERGY IN A CELL
C ***TKEGXM IS SPECIFIC KINETIC ENERGY OF MATERIALS IN INTERFACE
C CELLS
LEVEL 2, TKEG, TKEGM
COMMON/KEGCHK/ TKEG(12001), TKEGM(4, 800)

*D EDIT.17
C ***USE CORRECT KINETIC ENERGY
ESUM=ESUM+XMASS(N,M)*(SIE(N,M)+TKEGM(N,M))

*D EDIT.20
C ***USE CORRECT KINETIC ENERGY
20 ESUM=ESUM+AMX(K)*(TKEG(K)+AIX(K))

*D EDIT.136

*D EDIT.137
C ***WRITE CORRECT KINETIC ENERGY
WRITE(KUNITW) (U(I), V(I), AMX(I), AIX(I), TKEG(I), P(I), MFLAG(I), I=1,
1 KMAX), (DETIM(I), I=1, KDT)

*D EDIT.146

*D EDIT.147
C ***WRITE CORRECT KINETIC ENERGY
WRITE(KUNITW) (XMASS(M,L), RHO(M,L), SIE(M,L), TKEGM(M,L), US(M,L),
1 VS(M,L), SAMPX(M,L), SGAMC(M,L), SAMMP(M,L), SAMMY(M,L), SAMMP(M,L), M=1, NMAT),
2 L=1, NMXCLS)

*D EDIT.177
C ***USE CORRECT KINETIC ENERGY
WSK=WS*TKEG(K)

*D EDIT.190
C ***USE CORRECT KINETIC ENERGY
WSK=WS*TKEGM(M,MC)

*D EQST.124, EQST.130
C DELETE AD HOC UPPER BOUND ON SPECIFIC INTERNAL ENERGY
C IN THE PRESSURE CALCULATION FOR THE LINER MATERIAL

*D ENENCK.8
C ***USE CORRECT KINETIC ENERGY
EKC=AMX(IK2)*TKEG(KK2)

*D ENENCK.13
C ***USE CORRECT KINETIC ENERGY


```fortran
EKM = XMASS(KLM, MBAN) * TKEGM(KLM, MBAN)
*I FILGRD.28
C ***COMPUTE INITIAL VALUES OF ARRAY TKEGM
    TKEGM(N,M) = 0.5 * (US(N,M)**2 + VS(N,M)**2)
*I FILGRD.32
C ***USE TKEG AS A STORAGE VARIABLE
    TKEG(K) = TKEG(K) + XMASS(N,M) * TKEGM(N,M)
*I FILGRD.40
C ***COMPUTE INITIAL VALUES OF ARRAY TKEG FOR MIXED CELL
    TKEG(K) = TKEG(K) / AMX(K)
*I FILGRD.50
C ***SET MATERIAL KINETIC ENERGY TO CELL KINETIC ENERGY IN
    NON-SLIP CELLS
    TKEG(N,M) = TKEG(K)
*I FILGRD.101
C ***COMPUTE INITIAL VALUES OF ARRAY TKEG FOR PURE CELLS
    TKEG(K) = 0.5 * (U(K)**2 + V(K)**2)
*D FWRD.123
C ***USE CORRECT KINETIC ENERGY TO COMPUTE ETH
    162 ETH = ETH + XMASS(N,M) * (SIE(N,M) + TKEGM(N,M))
*D FWRD.125
C ***USE CORRECT KINETIC ENERGY TO COMPUTE ETH
    163 ETH = ETH + AMX(K) * (AIX(K) + TKEG(K))
*D FLGSET.51
C ***USE CORRECT KINETIC ENERGY
    ETH = ETH - XMASS(N,M) * (TKEGM(N,M) + SIE(N,M))
*D FLGSET.55
C ***USE CORRECT KINETIC ENERGY
    ETH = ETH + XMASS(N,M) * (TKEGM(N,M) + SIE(N,M))
*D HPHASE.168
*D HPHASE.169
C ***COMPUTE CORRECT CHANGE IN KINETIC ENERGY BY MODELLING THE
    PARTIAL DIFFERENTIAL EQUATION FOR THE CHANGE OF KINETIC
    ENERGY IN HPHASE
    DKE = DU * U(K) + DV * V(K)
C ***COMPUTE CHANGE IN SIE WITH CORRECT DKE
    DIE = DE - DKE
*D HPHASE.181
C ***DELETE ALTERATIONS TO KINETIC ENERGY AND THUS TO INTERNAL
    ENERGY DUE TO CHANGES IN THE VELOCITY COMPONENTS IN
    SUBROUTINE UVCALC
    257 CONTINUE
*D HPHASE.182, HPHASE.184
*D HPHASE.191, HPHASE.196
*I HPHASE.198
C ***UPDATE THE KINETIC ENERGY OF EACH MATERIAL IN MIXED CELL
    IF (XMASS(N,M) .GT. 0.) TKEGM(N,M) = TKEGM(N,M) + DKE
*I HPHASE.200
C ***UPDATE KINETIC ENERGY ARRAY
    TKEG(K) = TKEG(K) + DKE
```
**D INPUT.163
**D INPUT.164
C ***READ THE CORRECT KINETIC ENERGY
 READ (KUNITR) (U(I),V(I),AMX(I),AIX(I),TKEG(I),P(I),MFLAG(I),I=1,
 1 KMAX), (DETIM(I),I=1,KDT)
**D INPUT.173
**D INPUT.174
C ***READ CORRECT KINETIC ENERGY
 READ (KUNITR) ((XMASS(M,L),RHO(M,L),SIE(M,L),TKEG(M,L),US(M,L),
 1 VS(M,L),SAMPY(M,L),SGAMC(M,L),SAMMY(M,L),SAMP(M,L),M=1,NMAT),
 2 L=1,NMXCLS)
*I NEWFLG.16
C ***SET KINETIC ENERGY OF CELL NOT IN USE TO ZERO
 TKEGM(NN,M)=0.0
*I NEWMIX.14
C ***DEFINE KINETIC ENERGY FOR NEW MIXED CELL
 TKEGM(NO,M)=TKEG(K);
**D RNDOFF.27
C ***USE THE CORRECT KINETIC ENERGY
 OUTK=DM*TKEGM(N,M)
**D SETUP.136
**D SETUP.137
C ***WRITE THE CORRECT KINETIC ENERGY
 WRITE (KUNITW) (U(I),V(I),AMX(I),AIX(I),TKEG(I),P(I),MFLAG(I),I=1,
 1 KMAX), (DETIM(I),I=1,KDT)
**D SETUP.147
**D SETUP.148
C ***WRITE THE CORRECT KINETIC ENERGY
 WRITE (KUNITW) ((XMASS(M,L),RHO(M,L),SIE(M,L),TKEG(M,L),US(M,L),
 1 VS(M,L),SAMPY(M,L),SGAMC(M,L),SAMMY(M,L),SAMP(M,L),M=1,NMAT),
 2 L=1,NMXCLS)
*I SETUP.112
C ***INITIALIZE KINETIC ENERGY MATERIAL ARRAY
 TKEG(N,M)=0.0
*I SETUP.123
C ***INITIALIZE KINETIC ENERGY GRID ARRAY
 TKEG(K)=0.0
**D SPHASE.628
C ***COMPUTE CORRECT CHANGE IN KINETIC ENERGY BY MODELLING THE
 PARTIAL DIFFERENTIAL EQUATION FOR THE CHANGE OF KINETIC
 ENERGY IN SPHASE
 DKE=DELU*UKT+DELV*VKT
**D SPHASE.629
C ***COMPUTE CHANGE IN SIE WITH CORRECT DKE
 DIE=DE-DKE
*I SPHASE.644
C ***UPDATE THE SPECIFIC KINETIC ENERGY OF EACH MATERIAL IN
 A MIXED CELL
 TKEGM(MM,MK)=TKEGM(MM,MK)+DKE
*I SPHASE.654
***UPDATE KINETIC ENERGY ARRAY
TKEG(K) = TKEG(K) + DKE

***USE CORRECT KINETIC ENERGY
E = E + MASS(NN2, MM2) * (TKEGM(NN2, MM2) + SIE(NN2, MM2))

***USE CORRECT KINETIC ENERGY
E = E + (XMASS(KK2) * (TKEG(KK2) + AIX(KK2))

***SET KINETIC ENERGY FLUX OF EACH MATERIAL AT AXIS TO ZERO
SDLKEL(N,J) = 0.

***SET KINETIC ENERGY FLUX OF CELL AT AXIS TO ZERO
DLKEL(J) = 0.

***INITIALIZE KINETIC ENERGY FLUX OF EACH MATERIAL AT BOTTOM TO ZERO
SDLKEB(N) = 0.

***USE CORRECT KINETIC ENERGY FOR BOTTOM FLUX OF PURE CELL
DLKEB = TKEG(K) * AMMY
DELEB = DLKEB

***INITIALIZE KINETIC ENERGY FLUX AT BOTTOM
DLKEB = 0.

***USE CORRECT KINETIC ENERGY FOR BOTTOM FLUX OF EACH MATERIAL
SDLKEB(N) = TKEGM(N, M) * SAMMY(N, M)

***USE CORRECT KINETIC ENERGY FLUX OF EACH MATERIAL TO DETERMINE FLUX OF WHOLE CELL FOR KINETIC AND TOTAL ENERGY FLUXES
DLKEB = DLKEB + SDLKEB(N)
DELEB = DELEB + SDELEB(N) + SDLKEB(N)

***USE CORRECT KINETIC ENERGY FOR OUTFLOW OF KINETIC ENERGY AT BOTTOM OF GRID
OUTKE(N) = OUTKE(N) - SDLKEB(N)

***SET CORRECT KINETIC ENERGY FLUX AT BOTTOM TO ZERO
DLKEB = 0.

***INITIALIZE SPECIFIC KINETIC ENERGY FLUXES AT TOP AND RIGHT TO ZERO
EKAMPY = 0.0
EKAMMP = 0.0

***USE CORRECT KINETIC ENERGY TO DETERMINE SPECIFIC KINETIC ENERGY FLUX
EKAMP=TKESM(MFK,MFL-100)

***USE CORRECT KINETIC ENERGY TO DETERMINE SPECIFIC TOTAL

C ENERGY FLUX

EKAMP=SIEM(MFK,MFL-100)+EKAMPY

*D TPHASE.227

C ***USE CORRECT KINETIC ENERGY TO DETERMINE SPECIFIC KINETIC

C ENERGY FLUX

330 EKAMP=TKEG(M)

C ***USE CORRECT KINETIC ENERGY TO DETERMINE SPECIFIC TOTAL

C ENERGY FLUX

EKAMP=AIX(M)+EKAMPY

*I TPHASE.236

C ***USE CORRECT KINETIC ENERGY FLUX TO FIND FINAL VALUE AT TOP

DLKET=AMPY*EKAMPY

*D TPHASE.239

C ***USE CORRECT KINETIC ENERGY FOR OUTFLOW OF KINETIC ENERGY

C AT TOP OF GRID

OUTKE(MFK)=OUTKE(MFK)+AMPY*TKKG(M)

*D TPHASE.293

C ***USE CORRECT KINETIC ENERGY TO DETERMINE SPECIFIC KINETIC

C ENERGY FLUX AT RIGHT FOR MIXED CELL

EKAMP=TKESM(MFK,MFL-100)

C ***USE CORRECT KINETIC ENERGY TO DETERMINE SPECIFIC TOTAL

C ENERGY FLUX FOR MIXED CELL

EKAMP=SIEM(MFK,MFL-100)+EKAMP

*D TPHASE.301

C ***USE CORRECT KINETIC ENERGY TO DETERMINE SPECIFIC KINETIC

C ENERGY FLUX AT RIGHT FOR PURE CELL

466 EKAMP=TKKG(M)

C ***USE CORRECT KINETIC ENERGY TO DETERMINE SPECIFIC TOTAL

C ENERGY FLUX FOR PURE CELL

EKAMP=AIX(M)+EKAMP

*I TPHASE.311

C ***USE CORRECT KINETIC ENERGY FLUX TO FIND FINAL VALUE AT RT.

DLKET=AMPY*EKAMP

*D TPHASE.314

C **USE CORRECT KINETIC ENERGY FOR OUTFLOW OF KINETIC ENERGY AT

C RIGHT OF GRID

OUTKE(MFK)=OUTKE(MFK)+AMPY*TKKG(M)

*I TPHASE.319

C ***INITIALIZE TOP AND RIGHT FLUXES OF KINETIC ENERGY TO ZERO

DLKET=0.

DLHSH=0.

*I TPHASE.341

C ***USE CORRECT KINETIC ENERGY FOR KINETIC ENERGY FLUX

EKAMP=TKKH(KT)

*I TPHASE.344

C ***USE CORRECT KINETIC ENERGY FOR KINETIC ENERGY FLUX

EKAMP=TKESM(N,MT)

*I TPHASE.356
C ***USE CORRECT KINETIC ENERGY FOR KINETIC ENERGY FLUX
EKAMMP=TKEGM(KR)
*I TPHASE.359
C ***USE CORRECT KINETIC ENERGY FOR KINETIC ENERGY FLUX
EKAMMP=TKEGM(N,MR)
*D TPHASE.362
*D TPHASE.363
***USE CORRECT SPECIFIC KINETIC ENERGY FLUXES
560 WSA=EKAMMP
WSB=EKAMMP
*I TPHASE.365
C ***INITIALIZE MIXED CELL TRANSPORT VARIABLES
SDLKET(N)=0.
SDLKER(N)=0.
*D TPHASE.384
C ***COMPUTE CORRECT KINETIC ENERGY FLUX FOR EACH MATERIAL
SDLKET(N)=SAMPY(N,MR)*WSA
C ***COMPUTE CORRECT TOTAL ENERGY FLUX
DELET=DELET+SDELET(N)+SDLKET(N)
C ***COMPUTE CORRECT KINETIC ENERGY FLUX OF CELL
DLKET=DLKET+SDLKET(N)
*D TPHASE.397
C ***COMPUTE CORRECT KINETIC ENERGY FLUX FOR EACH MATERIAL
SDLKER(N)=SAMPY(N,MR)*WSB
C ***COMPUTE CORRECT TOTAL ENERGY FLUX
DELER=DELER+SDELER(N)+SDLKER(N)
C ***COMPUTE CORRECT KINETIC ENERGY FLUX OF CELL
DLKER=DLKER+SDLKER(N)
*D LCHANGE.16
*D TPHASE.430
C ***USE CORRECT KINETIC ENERGY FOR OUTFLOW OF KINETIC ENERGY AT
C TOP OF GRID
620 OUTKE(N)=OUTKE(N)+SDLKET(N)
*I TPHASE.436
C ***SET KINETIC ENERGY FLUX TO ZERO
DLKET=0.0
*D LCHANGE.17
*D TPHASE.457
C ***USE CORRECT KINETIC ENERGY FOR OUTFLOW OF KINETIC ENERGY AT
C BOTTOM OF GRID
660 OUTKE(N)=OUTKE(N)+SDLKEB(N)
*I TPHASE.462
C ***SET KINETIC ENERGY FLUX TO ZERO
DLKER=0.0
*D TPHASE.465
C ***USE CORRECT KINETIC ENERGY
WSA=TKEGM(K)
*I TPHASE.467
C ***COMPUTE TOTAL CHANGE IN KINETIC ENERGY FOR PURE CELL
SIGKE=-DLKET-DLKER+DLKEB+DLKER(J)
*I TPHASE.470
C *** INITIALIZE VALUE OF EKNEW TO ZERO
 EKNEW=0.
*I TPHASE.473
C *** COMPUTE NEW VALUE OF KINETIC ENERGY FOR PURE CELL
 EKNEW=(SIGKE+AMX(K)*TKEG(K))/WS
*I TPHASE.486
C *** COMPUTE NEW VALUE OF KINETIC ENERGY FOR MIXED CELL
 SSIGKE=-SDI*KE(T(N))-SDLKER(N)+SDLKEL(N,J)+SDLKEB(N)
*I TPHASE.492
C *** SET KINETIC ENERGY OF CELL TO ZERO
 TKEGM(N,MK)=0.
*I TPHASE.500
C *** TRANSFER CORRECT KINETIC ENERGY VALUE
 EKNEW=EKNEW
*I TPHASE.503
C *** COMPUTE TOTAL CHANGE IN KINETIC ENERGY FOR MIXED CELL
 EKNEW=(SSIGKE+XMASS(N,MK)*TKEGM(N,MK))/WS
*D TPHASE.504, TPHASE.516
C *** LINES 504-516 WERE DELETED SINCE KINETIC ENERGY EQUATION IS BEING MODELED AND THERMALIZED ENERGY IS A PROPERTY OF ORIGINAL SCHEME
 720 SWSA=(SIE(N,MK)*XMASS(N,MK)+SWSB)/SWS
*I TPHASE.525
C *** SET COMPUTED KINETIC ENERGY TO ARRAY VALUE FOR A MIXED CELL
 TKEGM(N,MK)=EKNEW
*D TPHASE.538
C *** COMPUTE NEW VALUE OF INTERNAL ENERGY BASED ON CORRECT K.E.
 SIENEW=(AIX(K)*AMY(K)+WSB-SIGKE)/WS
*I TPHASE.547
C *** SET COMPUTED KINETIC ENERGY TO ARRAY VALUE FOR A PURE CELL
 TKEG(K)=EKNEW
*D TPHASE.569
C *** COMPUTE TOTAL ENERGY IN GRID WITH CORRECT KINETIC ENERGY
 ENERGY=ENERGY+AMX(LJD)*(AIX(LJD)+TKEG(LJD))
*D TPHASE.564
*D TPHASE.565
C *** COMPUTE TOTAL ENERGY IN GRID WITH CORRECT KINETIC ENERGY
 ENERGY=ENERGY+XMASS(NJ,MJ)*(SIE(NJ,MJ)+TKEGM(NJ,MJ))
*I TPHASE.573
C *** WRITE KINETIC ENERGY FLUXES FOR CELL CENTERED QUANTITIES
 WRITE (6,1330) DLIKCT,DLIKER,DLKKEB,DLKEL(J)
*I TPHASE.582
C *** WRITE KINETIC ENERGY FLUXES FOR EACH MATERIAL IN MIXED CELL
 WRITE (6,1340) (N,SDLKET(N),SDLKER(N),SDLKEB(N),SDLKEL(N,J),N=1,NM1AT)
*I TPHASE.588
C *** SET KINETIC ENERGY FLUXES TO ZERO FOR EACH MATERIAL
 SDLKEB(N)=0.
 SDLKEL(N,J)=0.
*I TPHASE.608
C
***STORE FLUXES TO BE USED IN TRANSPORT OF KINETIC ENERGY
SDLKEB(N)=SDLKET(N)
SDLKEL(N,J)=SDLKER(N)

*I TPHASE.626
C
***STORE FLUXES FOR KINETIC AND INTERNAL ENERGIES WHICH USE
C
CORRECT KINETIC ENERGY
SDLKEB(MFK)=EKAMP*AMPY
SDLKEL(MFK)=DELET-SDLKEB(MFK)

*I TPHASE.633
C
***STORE FLUXES FOR KINETIC AND INTERNAL ENERGIES WHICH USE
C
CORRECT KINETIC ENERGY
SDLKEL(MFK,J)=EKAMP*AMPY
SSIGC(MFK,J)=DELET-SDLKEL(MFK,J)

*I TPHASE.643
C
***STORE KINETIC ENERGY FLUX
DLKEL(J)=DLKER

*I TPHASE.647
C
***STORE KINETIC ENERGY FLUX
DLKEB=DLKET

*D TPHASE.698
C
***USE CORRECT KINETIC ENERGY
WS=TKEG(K)

*I TPHASE.715
C
***INITIALIZE KINETIC ENERGY SUM TO ZERO
EKSUM=0.

*D TPHASE.728
C
***USE CORRECT KINETIC ENERGY
WS=TKEGM(N,M)

*I TPHASE.740
C
***SET KINETIC ENERGY OF MIXED CELL TO ZERO
TKEG(N,M)=0.

*I TPHASE.744
C
***SUM KINETIC ENERGIES
EKSUM=EKSUM+TKEGM(N,M)*XMASS(N,M)

*I TPHASE.753
C
***DEFINE KINETIC ENERGY OF CELL
TKEG(K)=EKSUM/XMsuma

*I TPHASE.758
C
***SET KINETIC ENERGY OF CELL TO ZERO
TKEG(K)=0.

*I TPHASE.771
C
***SET KINETIC ENERGY OF MIXED CELL TO ZERO
TKEGM(N,MK)=0.

*I TPHASE.781
C
***SET KINETIC ENERGY OF CELL TO ZERO
TKEG(K)=0.

*I TPHASE.857
1330 FORMAT (7H DLKEL=1PE15.8,6X,6HDLKER=1PE15.8,6X,6HDLKEB=1PE15.8,10H
1 DLKEL(J)=1PE15.8)
1340 FORMAT (I3,8H SDLKET=1PE15.8,6X,7HSDLKER=1PE15.8,6X,7HSDLKKB=1PE15.8,6X,7HSDLKEL=1PE15.8)
*D UVMOD.69
C ***DELETE ALTERATIONS TO KINETIC ENERGY AND THUS TO INTERNAL
C ENERGY DUE TO CHANGES IN THE VELOCITY COMPONENTS IN
C SUBROUTINE UVMOD
C ***LINES 69,70,82,83,85,87-91 OF UVMOD WERE DELETED
*D UVMOD.70
*D UVMOD.82
*D UVMOD.83
*D UVMOD.85
40 CONTINUE
*D UVMOD.87,UVMOD.91

*ID CORMAP
*D MAP.13
APPENDIX B

LISTING OF REZONING ROUTINE AND MODIFICATIONS
*ID REZJAS
*D MAIN.23
C REZONE AT CYCLE REYC9
C USER MUST SUPPLY REYC9 IN NEXT STATEMENT
 IF(WZ .NE. REYC9) GO TO 30
*IDENT CHREZ
*D REZONE.159,REZONE.160
C SET NJMAX=JEXTY WHERE JEXTY = THE NUMBER OF ROWS TO BE REZONED
 NJMAX=JEXTY
 IF (MOD(JEXTY,2) .EQ. 0) GO TO 210
*D REZONE.172
 210 NJMAX1=NJMAX/2
 NJMAX3=NJMAX+1
*D REZONE.182
 IF (I.GE. NJMAX) GO TO 225
 IF (I .LT. NJMAX .AND. IVARDY .EQ. 1) GO TO 220
*I REZONE.188
 GO TO 230
 225 TY(N,M)=TY(N,M)-NJMAX1
*D REZONE.196
 IF(I.GE. NJMAX) GO TO 255
 IF(I.LT. NJMAX .AND. IVARDY .EQ. 1) GO TO 250
*I REZONE.202
 255 YP(M)=YP(M)-NJMAX1
*D REZONE.238
 DO 320 J=1,NJMAX1
 DO 324 J=NJMAX3,NJMAX1+1
 DO 325 I=1,JMAX
 K=(NJMAX2-1)*I+M+1
 MFLAG(K)=MFLAG(M)
 AIX(K)=AIX(M)
 U(K)=U(M)
 V(K)=V(M)
 TKEG(K)=TKEG(M)
 AMX(K)=AMX(M)
 IF(CYCP143 .LT. 0) GO TO 326
 STRSRZ(K)=STRSRZ(M)
 STRSRRZ(K)=STRSRRZ(M)
 STRSRZ(K)=STRSRRZ(M)
 326 IF(IDRT .LE. 0) GO TO 327
 DETIM(K)=DETIM(M)
*C ** ZERO OUT ORIGINAL CELL ***
 327 AIX(M)=0.0
 AMX(M)=0.0
 U(M)=0.0
 V(M)=0.0
 TKEG(M)=0.0

PRECEDING PAGE BLANK—NOT FILMED
IF (IDRT .LE. 0) GO TO 328
DETN(M) = 0.0
328 IF (ICYCH3 .LT. 0) GO TO 329
STRSR(R) = 0.0
STRSUZ(M) = 0.0
STRZZ(M) = 0.0
329 CONTINUE
325 CONTINUE
NJMAX2 = NJMAX2 + 1
324 CONTINUE

*D REZONE.248
DO 330 J = 1, NJMAX1
*D REZONE.250, REZONE.251
NJMAX2 = NJMAX1 + 1
NJMAXS = NJMAX
NJMAX4 = JMAX - NJMAX1
DO 340 J = NJMAX2, NJMAX4
Y(J) = Y(NJMAXS + 1)
340 NJMAXS = NJMAXS + 1
NJMAX5 = NJMAX4 + 1
YDELT = Y(NJMAX4) - Y(NJMAX4 - 1)
DO 345 J = NJMAX5, JMAX
345 Y(J) = Y(J - 1) + YDELT
*I REZONE.257
DO 370 J = NJMAX5, JMAX
*D REZONE.259
*D REZONE.282
DO 380 J = NJMAX5, JMAX
*D REZONE.285, REZONE.287
I2 = NJMAXS + 2
IF (JDBT .GT. 0) JDBT = NJMAX5 + 1
IF (JTPF .GT. 0) JDPF = NJMAX5 + 1
*D REZONE.303
IY = , 15, /

*IDENT CORRE2
*D MEMEXPND.58
3 REZROH(4,200), TJKM(2,4)
*I REZONE.133
TKEG(K) = 0.0
*I REZONE.141
TKEGM(N, MFK) = 0.0
*I REZONE.141
TKEGM(N, MF) = 0.0
*I REZONE.265
TKEG(K) = 0.0
*I REZONE.274
TKEGM(N, MF) = 0.0
\[A_{IX}(K) = \left(A_{IX}(L) \ast AM_{X}(L) + A_{IX}(M) \ast AM_{X}(M) \right) / WSA \]
\[T_{KEG}(K) = \left(T_{KEG}(L) \ast AM_{X}(L) + T_{KEG}(M) \ast AM_{X}(M) \right) / WSA \]

* I COMPRS.48
\[T_{KEG}(M) = 0.0 \]

* I COMPRS.59
\[T_{KEG}(L) = 0.0 \]

* I COMPRS.80
\[T_{TKM}(II, JJ) = 0.0 \]

* I COMPRS.103
\[T_{TKM}(JJ, II) = T_{KBM}(II, N) \]

* I COMPRS.109
\[T_{KBM}(II, N) = 0.0 \]

* I COMPRS.126
\[T_{TTK}(1, MFM) = T_{KEG}(M) \]

* I COMPRS.138
\[T_{TTK}(2, MFL) = T_{KEG}(L) \]

* I COMPRS.152
\[T_{KEG}(K) = 0.0 \]

* B COMPRS.171
\[S_{IE}(II, N) = (SS_{IE}(1, II) \ast XM_{AS}(1, II) + SS_{IE}(2, II) \ast XM_{AS}(2, II)) / WS_{B} \]
\[T_{KBM}(II, N) = (T_{TTK}(1, II) \ast XM_{AS}(1, II) + T_{TTK}(2, II) \ast XM_{AS}(2, II)) / WS_{B} \]

* I COMPRS.173
\[T_{KEG}(K) = T_{KEG}(K) + T_{KBM}(II, N) \ast XM_{ASS}(II, N) \]

* I COMPRS.177
\[T_{KEG}(K) = T_{KEG}(K) / WSA \]

* D COMPRS.184
* D COMPRS.185
* I COMPRS.181
\[TKE = 0.0 \]

* I COMPRS.186
\[TKE = TKE + T_{KBM}(II, N) \ast XM_{ASS}(II, N) \]

* I COMPRS.191
\[T_{KEG}(K) = T_{KEG}(K) / WSA \]
APPENDIX C

LISTING OF TEMPERATURE AND SPECIAL PRINTING ROUTINE
The HULL temperature routine uses the absolute specific internal energy value and not the specific internal energy value above the initial value. Consequently, this routine augments the specific internal energy value from the HELP code by 0.11335748 MJ/kg which corresponds to a temperature of 287.87K at ambient pressure of 0.101325 MPa and ambient density of 8.9 x 10³ kg/m³. The routine has two purposes: to calculate a temperature value for the copper material according to the HULL temperature routine and to list the cell values of certain quantities associated with the copper material. It was appended to the MAIN subroutine by an UPDATE directive INSERT.

*ID HULLTEMP
*INCLUDE

WRITE (6,1025)
1025 FORMAT (1HI,5X,1HI,3X,1HI,6X,4HMASS,9X,5HU-VEL,8X,5HV-VEL,9X,3HSIE,*10X,3HSKE,8X,7H02+V2/2,6X,7HDENSITY,7X,4HTEMP,10X,3HSTE)

REFRHO=8.9
F1=-1285.
F2=-10000.
F3=2.54E-07
F4=1.63E-07
EMP=1.41E10
ES=5.31E10
DO 1021 I=1,IMAX
DO 1021 J=I,JMAX
K=(J-1)*IMAX+I+1
IF (MFLAG(K) .GT. 100) GO TO 1023
IF (MFLAG(K) .NE.1) GO TO 1021
C PURE CELL
SKE=0.5*(U(K)**2+V(K)**2)
E=AIX(K)
DENSITY=AMX(K)/((TAU(I)*DY(J))

KEY=1
GO TO 1031
1032 CONTINUE
 TENG=AIX(K)+TKEG(K)
 WRITE (6,1022)I,J, AMX(K),U(K),V(K),AIX(K),TK+EG(K),SKE,

1022 FORMAT(1H ,1HP, 2(IX,I4),9(IX,1PE12.4))

GO TO 1021
C MIXED CELL
1023 M=MFLAG(K)-100
IF(SIE(1,M) .EQ. 0.0; GO TO 1021
N=1
SKE=0.5*(US(N,M)**2+VS(N,M)**2)
DENSITY=RHO(1,M)
E=SIE(1,M)
KEY=2
GO TO 1031
1033 CONTINUE
1027 TENG=SIE(N,M)+TKEGM(N,M)
WRITE (6,1024) I,J, XM(N,M),US(N,M),VS(N,M),SIE(N,M),TKEGM(N,M)
*) ,SKE, DENSITY, TEMP, TENG
1024 FORMAT (1H1,H,M, 2(I4), 9(I1PE12.4))
GO TO 1021
1031 CONTINUE
C HULL TEMPERATURE ROUTINE
E=E+1.13335748E9
RMU=DENSITY/REFRHO-1
RMU=AMAX1(RMU,-1.0)
RMU=AMIN1(RMU,0.679)
S=AMAX1((E-EMP)*1.E-03,0.0)
EE=AMAX1(E,EMP+AMAX1(E-EMP-ES,S))
IF(RMU.LT.0.0) GOTO 100
CON1=(F2*RMU+F1)*RMU
CON2=F3
GOTO 200
100 CON1=0.0
CON2=F3+F4*RMU
200 TEMP=CON1+CON2*EE
DTDE=CON2
IF(E.GT.EMP.AND.E.LT.(EMP+ES))DTDE=DTDE*1.0E-03
IF(TEMP.GE.10.0) GO TO 11
IF(CON1.EQ.0.0) GOTO 11
CON2=10.0*CON2/(10.0-CON1)
TEMP=CON2*E
DTDE=CON2
11 CONTINUE
IF (KEY.EQ.1) GOTO 1032
GO TO 1033
1021 CONTINUE
LIST OF SYMBOLS

e - specific kinetic energy (J/kg)
m - mass per unit length (kg/m)
t - time (s)
u - x-component of velocity (m/s)
v - y-component of velocity (m/s)
x - Cartesian spatial coordinate (m)
y - Cartesian spatial coordinate (m)
A - cross sectional area of computational cell (m²)
B - boundary of computational cell traversed in a positive sense (m)
E - specific total energy (J/kg)
I - specific internal energy (J/kg)
L - length of cell boundary (m)
O - order symbol
P - pressure (Pa)
S - stress deviator tensor (Pa)
\(\delta m \) - transported mass per unit length (kg/m)
\(\lambda \) - 0.5\(pu \Delta x \)
\(\lambda' \) - 0.5\(pu^2 \Delta t \)
\(\rho \) - density (kg/m³)
\(\Delta t \) - time increment (s)
\(\Delta x \) - grid increment in the x-direction (m)
\(\Delta y \) - grid increment in the y-direction (m)
SUBSCRIPTS

i - denotes the number of the cell in the x-direction
j - denotes the number of the cell in the y-direction
n - denotes the number of time increments

SUPERSCRIPTS

a - denotes the computational cell boundary above its center
b - denotes the computational cell boundary below its center
d - denotes generic computational cell boundary
e - denotes the computational cell boundary to the left of its center
r - denotes the computational cell boundary to the right of its center
p - denotes value of a variable at the completion of SPHASE
q - denotes value of a variable at the completion of HPHASE
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Defense Documentation Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: DDC-DDA</td>
</tr>
<tr>
<td></td>
<td>Cameron Station</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22314</td>
</tr>
</tbody>
</table>

1	Director
	Defense Research and Engineering
	ATTN: Tech Lib, Rm 3D-1039
	Washington, DC 20301

1	Director
	Defense Advanced Research Projects Agency
	ATTN: Dr. Ernest F. Blase
	1400 Wilson Boulevard
	Arlington, VA 22209

1	Commander
	US Army Materiel Development and Readiness Command
	ATTN: DRCDMD-ST
	5001 Eisenhower Avenue
	Alexandria, VA 22333

1	Commander
	US Army Aviation Research and Development Command
	ATTN: DRSAV-E
	P. O. Box 209
	St. Louis, MO 63166

1	Director
	US Army Mobility Research and Development Laboratory
	Ames Research Center
	Moffett Field, CA 94035

1	Commander
	US Army Electronics Research and Development Command
	Technical Support Activity
	ATTN: DELSD-L
	Fort Monmouth, NJ 07703

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Communications Rsch and Development Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDCO-PPA-SA</td>
</tr>
<tr>
<td></td>
<td>Fort Monmouth, NJ 07703</td>
</tr>
</tbody>
</table>

2	Commander
	US Army Missile Research and Development Command
	ATTN: DRDMI-R
	DRDMI-YDL
	Redstone Arsenal, AL 35809

1	Commander
	US Army Tank Automotive Research & Development Cmd
	ATTN: DRITA-UL
	Warren, MI 48090

7	Commander
	US Army Armament Research and Development Command
	ATTN: Dr. N. Clark
	Mr. G. Randers-Pehrson
	Mr. J. Pearson
	Mr. J. Hershkowitz
	Mr. A. Anzalone
	DRDAR-TSS (2 cys)
	Dover, NJ 07801

8	Commander
	US Army Armament Research and Development Command
	ATTN: DRDAR-SC/Mr. Hirshman
	Mr. F. Puzicky
	DRDAR-SCN/Mr. Kahn
	DRDAR-SCW/Mr. Townsend
	DRDAR-IC-F/Mr. Loeb
	Mr. E. Friedman
	DRDAR-ICV/Mr. Barriere
	Mr. Reisman
	Dover, NJ 07801
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Armament Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: RSAR-LEP-L, Tech Lib</td>
</tr>
<tr>
<td></td>
<td>Rock Island, IL 61299</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Benet Weapons Laboratory</td>
</tr>
<tr>
<td></td>
<td>US Army Armament Research and Development Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRMAR-LCB-TL</td>
</tr>
<tr>
<td></td>
<td>SARWV-PDR-S/S, Sautter</td>
</tr>
<tr>
<td></td>
<td>SARWV-PDR-ANN/Dr. Zweig</td>
</tr>
<tr>
<td></td>
<td>SARWV-RDD-SE/PA Alto</td>
</tr>
<tr>
<td></td>
<td>Watervliet, NY 12189</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Jefferson Proving Ground</td>
</tr>
<tr>
<td></td>
<td>ATTN: STLJP-TP-0</td>
</tr>
<tr>
<td></td>
<td>Madison, IN 47250</td>
</tr>
<tr>
<td>3</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Materials and Mechanics Research Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRMR-ARL/W, Woods</td>
</tr>
<tr>
<td></td>
<td>DRMR-T/1, Mescall</td>
</tr>
<tr>
<td></td>
<td>Tech Lib</td>
</tr>
<tr>
<td></td>
<td>Watertown, MA 02172</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Natick Research and Development Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRXRE/Dr. Stelling</td>
</tr>
<tr>
<td></td>
<td>Natick, MA 01762</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>US Army TRADOC Systems Analysis Activity</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATAA-SL, Tech Lib</td>
</tr>
<tr>
<td></td>
<td>White Sands Missile Range</td>
</tr>
<tr>
<td></td>
<td>NM 88002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Assistant Secretary of the Army (R&D)</td>
</tr>
<tr>
<td></td>
<td>ATTN: Asst for Research</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20310</td>
</tr>
<tr>
<td>2</td>
<td>HQDA (DAMA-ZA; DAMA-AR)</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20310</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Research Office</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 12211</td>
</tr>
<tr>
<td></td>
<td>Research Triangle Park</td>
</tr>
<tr>
<td></td>
<td>NC 27709</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Ballistic Missile Defense Systems Command</td>
</tr>
<tr>
<td></td>
<td>Huntsville, AL 35804</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>US Army BMD Advanced Technology Center</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 1500, West Station</td>
</tr>
<tr>
<td></td>
<td>Huntsville, AL 35807</td>
</tr>
<tr>
<td>2</td>
<td>Chief of Naval Research</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 427</td>
</tr>
<tr>
<td></td>
<td>Code 170</td>
</tr>
<tr>
<td></td>
<td>Department of the Navy</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20355</td>
</tr>
<tr>
<td>2</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Naval Air Systems Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code AIR-310</td>
</tr>
<tr>
<td></td>
<td>Code AIR-350</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20560</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Naval Ordnance Systems Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code ORD-0352</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20560</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>2</td>
<td>Commander and Director</td>
</tr>
<tr>
<td></td>
<td>David W. Taylor Naval Ship Research & Development Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: Tech Library</td>
</tr>
<tr>
<td></td>
<td>Aerodynamic Lab</td>
</tr>
<tr>
<td></td>
<td>Bethesda, MD 20084</td>
</tr>
<tr>
<td>4</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. H. Sternberg</td>
</tr>
<tr>
<td></td>
<td>Mr. W. Walker</td>
</tr>
<tr>
<td></td>
<td>Dr. J. Coughlin</td>
</tr>
<tr>
<td></td>
<td>Code 730, Lib</td>
</tr>
<tr>
<td></td>
<td>Silver Spring, MD 20910</td>
</tr>
<tr>
<td>2</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: DG-50/K. Bannister</td>
</tr>
<tr>
<td></td>
<td>DX-21, Lib Br.</td>
</tr>
<tr>
<td></td>
<td>Dahlgren, VA 22448</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 45, Tech Lib</td>
</tr>
<tr>
<td></td>
<td>China Lake, CA 93555</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20375</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Naval Ordnance Station</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code FS13A/P. Sewell</td>
</tr>
<tr>
<td></td>
<td>Indian Head, MD 20640</td>
</tr>
<tr>
<td>1</td>
<td>USAF/AFRDDA</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20330</td>
</tr>
<tr>
<td>1</td>
<td>AFSC/SDW</td>
</tr>
<tr>
<td></td>
<td>Andrews AFB</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20331</td>
</tr>
<tr>
<td>4</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20375</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>US Bureau of Mines</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. R. Watson</td>
</tr>
<tr>
<td></td>
<td>4800 Forbes Street</td>
</tr>
<tr>
<td></td>
<td>Pittsburgh, PA 15215</td>
</tr>
<tr>
<td></td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. M. Wilkins</td>
</tr>
<tr>
<td></td>
<td>Dr. J. Kury</td>
</tr>
<tr>
<td></td>
<td>Dr. E. Lee</td>
</tr>
<tr>
<td></td>
<td>Dr. H. Horning</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 808</td>
</tr>
<tr>
<td></td>
<td>Livermore, CA 94550</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>3 Director</td>
<td>Lawrence Livermore Laboratory</td>
</tr>
<tr>
<td></td>
<td>ATTN: E. D. Giroux G. L. Goudreau Tech Lib</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 808 Lawrence, CA 94550</td>
</tr>
<tr>
<td>1 Director</td>
<td>NASA Scientific and Technical Information Facility</td>
</tr>
<tr>
<td></td>
<td>ATTN: SAK/DL P. O. Box 8757</td>
</tr>
<tr>
<td></td>
<td>Baltimore/Washington International Airport, MD 21240</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Director</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td></td>
<td>ATTN: Tech Lib 2800 Oak Grove Drive</td>
</tr>
<tr>
<td></td>
<td>Pasadena, CA 91103</td>
</tr>
<tr>
<td>1 Director</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td>Langley Research Center ATTN: MS 185/Tech Lib</td>
</tr>
<tr>
<td></td>
<td>Hampton, VA 23365</td>
</tr>
<tr>
<td>1 Director</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td>Lewis Research Center ATTN: MS 1/1/Lib R-ALRO-AE/A. Felix</td>
</tr>
<tr>
<td></td>
<td>21000 Brookpark Road Cleveland, OH 44135</td>
</tr>
<tr>
<td>1 Director</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td>George C. Marshall Space Flight Center ATTN: MS-1/Lib</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>Lockheed Missiles and Space Company</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. J. E. May 55-80 Bldg 57</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 504</td>
</tr>
<tr>
<td></td>
<td>Sunnyvale, CA 94088</td>
</tr>
<tr>
<td>1</td>
<td>Martin Marietta Aerospace</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. A. J. Culotta</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 5378</td>
</tr>
<tr>
<td></td>
<td>Orlando, FL 32805</td>
</tr>
<tr>
<td>1</td>
<td>Orlando Technology Inc.</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. D. Matuska</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 855</td>
</tr>
<tr>
<td></td>
<td>Shalimar, FL 32579</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Physics International Corpo</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. L. Behrmann</td>
</tr>
<tr>
<td></td>
<td>2700 Merced Street</td>
</tr>
<tr>
<td></td>
<td>San Leandro, CA 94577</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Rockwell International Science Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. Norman Malmuth</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 1085</td>
</tr>
<tr>
<td></td>
<td>1000 Oaks, CA 91360</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>S&D Dynamics, Inc.</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. M. Soifer</td>
</tr>
<tr>
<td></td>
<td>755 New York Avenue</td>
</tr>
<tr>
<td></td>
<td>Huntington, NY 11743</td>
</tr>
<tr>
<td>2</td>
<td>Sandia Laboratories</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. W. Herrmann</td>
</tr>
<tr>
<td></td>
<td>Dr. L. Bertholf</td>
</tr>
<tr>
<td></td>
<td>Albuquerque, NM 87115</td>
</tr>
<tr>
<td>1</td>
<td>Shock Hydrodynamics</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. L. Zernow</td>
</tr>
<tr>
<td></td>
<td>4710-4716 Vineland Avenue</td>
</tr>
<tr>
<td></td>
<td>N. Hollywood, CA 91602</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 1 | Southwest Research Institute
ATTN: Mr. Peter S. Westine
P. O. Drawer 28510
8500 Culebra Road
San Antonio, TX 78228 |
| 1 | SRI International
ATTN: Dr. A. Florence
Poulter Laboratories
Menlo Park, CA 94025 |
| 4 | University of California
Los Alamos Scientific Lab
ATTN: Dr. J. Walsh
Dr. R. Karpp
Dr. R. Clark
Tech Lib
P. O. Box 1663
Los Alamos, NM 87545 |
| 1 | Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street
Madison, WI 53706 |
| 1 | Washington State University
Department of Physics
ATTN: Prof. G. Duvall
Pullman, WA 99163 |
| | Aberdeen Proving Ground
Dir, USAMSAA
ATTN: Dr. J. Sperrazza
DRXSY-MP, H. Cohen |
| | Cdr, USATECOM
ATTN: DRSTE-TO-F |
| | Dir, Wpns Sys Concepts Team
Bldg. E5510, LA
ATTN: DRDAR-Acm |