The Fixed Acoustic Buoy (FAB) was designed and constructed by Martin Company (formerly Martin Aircraft Corp., Baltimore, Md.) to study various parameters relating to ambient noise in the deep ocean. In December 1960 the unit was implanted in 13,700 feet of water in an area approximately 19 miles southwest of Plantagenet Bank, Bermuda. This technical memorandum describes the FAB unit and the technique used to place it on the bottom. A 16 mm. motion picture film report of the operations is also available at USN USL Photo-Optical Techniques Branch.

A complete description of the electrical and mechanical features of the array may be found in reference (a), Fig. 1, which is reproduced from that document, gives a schematic representation of the mechanical arrangement involved. The array is described as a "steerable, symmetrical linear array of twenty-one hydrophones with individual inputs to a beam forming system". (Ref. (a)).

The array was designed to study ambient noise in the deep ocean, with respect to "level, spectrum, angle of arrival, sea state and season". (Ref. (a)).

Some mechanical modifications which are not shown in Fig. 1, were made to the system prior to implanting. These include the addition of a 4600 lb. cement anchor; the enlargement of the buoyancy tank to hold 562 gallons of gasoline; and the lengthening of the cable between the float and the mast from 25 feet to 250 feet. There were no reported changes to the electronics.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>Report Number</th>
<th>Govt Accession No.</th>
<th>Recipient's Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>953-12</td>
<td></td>
</tr>
</tbody>
</table>

4. TITLE (and Subtitle)

IMPLANTING OF THE FIXED ACOUSTIC BUOY (FAB) OFF BERMUDA

7. AUTHOR(s)

Misisco, Paul T.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Underwater Systems Center
New London, CT

11. CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research, Code 220
800 North Quincy St.
Arlington, VA 22217

12. REPORT DATE

10 FEB 61

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)

15. SECURITY CLASS. (of this report)

UNCLASSIFIED

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-4601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
Fig. 2 shows the mast and the hydrophone arrangement.

Fig. 3 is a detail shot showing the hydrophone placement in the mast and a portion of the wiring harness.

Figs. 4 and 4a present two views of an individual hydrophone. The film box is 4 inches square, and it is included to give some idea of hydrophone size. In Fig. 4a can be seen the preamplifier which was mounted concentric with the axis of the element.

Fig. 5 shows a general view of the pressure-proof sphere which housed the electronics. In the background the cement anchor can be seen.

Fig. 6 shows the arrangement of the electronics nested in the sphere.

Fig. 7 shows the general arrangement of the battery box which housed two sets of Nickel-Cadmium batteries. The main feeder cable to the mast can be seen on the right. The articulated chain in the foreground was connected to the sphere to prevent excessive strain on the feeder cable.

Fig. 8 shows the anchor, sphere, battery box and feeder cable. Note that the cable has been protected against chaffing by several layers of high-pressure steam hose and a Manila rope whipping. Note also, the link chain used to join the battery box to the sphere. This was later replaced by the articulated chain shown in Fig. 7.

Fig. 9 shows a general view of the buoyancy tank in its cradle, alongside the launching ship.

Fig. 10 is a close-up view of the tank, and Fig. 11 shows the two pressure-relief valves mounted on the tank to permit continuous equalization of pressure with depth during the implanting operation.

Launch Procedures:

Implanting operations were originally scheduled for mid-November, 1960, using the USS AEOLUS and a chartered commercial vessel, the Inagua Ranger. The unit was placed on board at Norfolk Va., and transported to Bermuda. While making detailed photographs of the hydrophone mast, several fractures in the poly-ethylene "tee-joints" used in the wiring harness were noticed. These were reported and promptly repaired.

The AEOLUS then proceeded to the operational area, and laid the first
The leg of the coaxial cable which was to be used to link the FAB to the monitoring station. While enroute, additional fractures in the polyethylene harness were discovered and the operations were halted. The AEOLUS returned to Norfolk, and the harness was removed and returned to Martin Company for refabrication.

It was ultimately learned that the fractures were due to improper curing of the polyethylene.

Because of operational commitments, the AEOLUS was unable to continue its participation and the FAB unit and its associated equipment was transferred to USS NEPTUNE. On November 28, the NEPTUNE departed Norfolk for Bermuda with the repaired FAB unit on board.

While at Bermuda, the unit was checked out electronically and a test launching was made at dockside to familiarize the crew with launch procedures.

On 9 December, the NEPTUNE arrived on station at the FAB site and began launching operations.

Fig. 12 is a sketch showing the method of launching.

Fig. 13 shows the unit prior to launching. Two-and-one-half miles of nylon line were attached to the buoy by a corrosive link. The other end of the line was given to the Inagua Ranger which opened range to approximately two and one-half miles.

Fig. 14 shows the buoy being towed from the NEPTUNE by a small PR Boat. Two lines may be seen attached to the nose of the buoy. One leads to the PR Boat, while the other is the nylon line attached to Inagua Ranger.

Once the buoy was afloat the mast was lowered from the NEPTUNE by three lines as shown in Fig. 15. An additional line was attached to the cement anchor and may be seen in Fig. 16. In this manner, the unit was lowered to the bottom.

Two abortive attempts to place the unit were made on December 9. In both instances the corrosive link shown in Fig. 17 broke during the original streaming operation, and had to be replaced.

On December 10 the unit was successfully planted. The coaxial cable link between the FAB and the monitoring station was completed, and the unit began operating.
Civilian personnel aboard ship to take part in these operations are listed below:

Mr. H. Wyeth
Simplex Co.
Senior Project Leader

Mr. J. Roe
Simplex Co.
Liaison Officer

Mr. Earl Goss
Simplex Co.
Cable Splicer

Mr. L. Blickley
Martin Co.
Project Leader

Mr. D. Webb
Martin Co.
Electronic Engineer

Mr. R. Oberlin
Martin Co.
Electronic Engineer

Mr. G. Gerlach
Martin Co.
Electronic Technician

Mr. J. Hawkins
Martin Co.
Electronic Technician

Mr. G. Overman
Martin Co.

Mr. F. Gibbs
Hastings Raydist Co.
Navigational Equipment Engineer

Mr. P. Misisco
USN USL
Photographer

While aboard the USS AEOLUS and the USS NEPTUNE I arranged to ride the helicopters assigned to assist on these operations. Aerial photographs were taken of the Naval facilities in Bermuda, the ships assigned to this operation, and Argus Island. Negatives and prints are on file at the USN USL Photo-Optical Techniques Branch office.

PAUL T. MISISCO
Photographer (Scientific)
List of References:

[a] Fixed Acoustic Buoy, by L. Buckley, Martin Co.
Baltimore, Md.

Engineering Report 11213,
USL Acc. #34807, of May 1960
USL Tech Memo No. 953-12-61

Fig. 1

U. S. Navy Underwater Sound Laboratory
NP24 - 19856 - 3 - 61

Official Photograph
Fig. 4

U. S. Navy Underwater Sound Laboratory
NP24 - 19859 - 3 - 61

USL Tech Memo No. 953-12-61

Official Photograph
From: Commanding Officer and Director
U. S. Navy Underwater Sound Laboratory
Fort Trumbull, New London Connecticut

To: Department of the Navy
Chief, Bureau of Ships (Code 370)
Washington D. C.

Subj: USL Technical Memorandum, forwarding of

Encl: (1) Subject Technical Memorandum Serial 953-12-61, all Feb 10, 1961
Unclassified Copy #42

1. Subject USL Technical Memorandum is forwarded as enclosure (1) to this letter, for your information and retention.

2. This Technical Memorandum was written by
Paul T. Misisco of this Laboratory, and is unclassified.

F. H. Hunt
By direction

Copy to:
Code 689A4, BuShips (Mr. Kimelian), Copy #49
Martin Company (Mr. Bonner) Copy #41
NEL (Dr. Wilson) Copy #43
NRL (Dr. Saxton) Copy #44
Hudson Laboratory (Dr. Frosch) Copy #45
Tudor Hill Lab., Bermuda (F. Weigle) Copy #46
ONR rep. (CDR. Tyler) Copy #47
ONR (Mr. A. O'Neal) Copy #48