In two previous memoranda, (references (a) and (b)) methods were described for calculating the sound pressure on circular flexural disks and obtaining their radiation impedance. Unfortunately, it was only feasible to obtain the sound pressure by means of an electronic computer, and the radiation impedance data had to be obtained by numerically integrating the computer data for the sound pressure. In this memorandum the double integrals needed to compute the radiation impedance are evaluated. Simple expressions are given for radiation impedance suitable for direct hand calculation.

According to reference (a), radiation impedance for circular flexural disks, referred to their average normal surface velocity \(\bar{U} \), is given as

\[
Z = R + iX = \frac{1}{\alpha} \int_0^a P(r) \left[U \bar{u}(r) - 2 \pi r \frac{d}{dr} \right] dr.
\]

We take \(\bar{u} \) to be

\[
\bar{u} = U e^{i\omega t} \sum_{n=0}^{\infty} \alpha_n \left(\frac{a}{a_n} \right)^n = U e^{i\omega t} \left[\alpha_1 + \sum_{n=2}^{\infty} \alpha_n \left(\frac{a}{a_n} \right)^n \right].
\]

Most flexural disk problems of interest can be formulated using only even powers of \(r/a \). Using the relation

\[
P(r) = \rho c U \epsilon^{i\omega t} \sum_{n=0}^{\infty} \alpha_n Z_n(r)
\]

it is seen that

\[
R/\rho c \pi a^2 = 2 \left(\frac{U}{\bar{U}} \right)^2 \int_0^a \left(\Re \sum_{k=0}^{\infty} \alpha_k Z_k \left(\sum_{n=2}^{\infty} \alpha_n \frac{a}{a_n} \right)^n \right) \times dx
\]
SOUND PRESSURE DISTRIBUTIONS AND RADIATION IMPEDANCE FOR FLEXIBLE DISKS-PART III

Porter, David T.

Naval Underwater Systems Center
New London, CT

Office of Naval Research, Code 220
800 North Quincy St.
Arlington, VA 22217

Approved for public release; distribution unlimited.

UNCLASSIFIED

Security Classification of This Page (When Data Entered)

READ INSTRUCTIONS BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO.
912-79-62

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER
1-450-00-00/S-F001 03 04-804

7. AUTHOR(s)

8. CONTRACT OR GRANT NUMBER(s)
Nonr-266(84)

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Naval Underwater Systems Center
New London, CT

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS
Office of Naval Research, Code 220
800 North Quincy St.
Arlington, VA 22217

12. REPORT DATE
19 SEP 62

13. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESS (IF different from Controlling Office)

15. SECURITY CLASS. (OF THIS REPORT)
UNCLASSIFIED

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (OF THIS REPORT)

17. DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)

20. ABSTRACT (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)
and
\[
\frac{X}{\rho c \pi a^2} = 2 \left(\frac{U^2}{|u|^2} \right) \sum_{k} \left(\sum_{j} \alpha_k \alpha_j \chi^j \right) \chi d\chi. \quad (5)
\]

The pressure components \(Z_k\) are given in reference (a) for the case when \(k\) is 0, 2, and 4.

Interchanging integration and summation, we have
\[
\frac{R}{\rho c A} = 2 \left(\frac{U}{|u|} \right)^2 \sum_{k} \sum_{j} \alpha_k \alpha_j \int_{0}^{\infty} R_k(z_k) \chi^{l+j+1} d\chi. \quad (6)
\]

and
\[
\frac{X}{\rho c A} = 2 \left(\frac{U}{|u|} \right)^2 \sum_{k} \sum_{j} \alpha_k \alpha_j \int_{0}^{\infty} I_m(z_k) \chi^{l+j+1} d\chi. \quad (7)
\]

From Eqn. (2) we see that
\[
|u| = U \sum_{n \text{ even}} \alpha_n (\pi/n)^n \quad (8)
\]

and
\[
|a| = \frac{1}{\pi a^2} \int_{0}^{2\pi} \int_{0}^{\infty} |u| r dr d\alpha = 2 \sum_{n \text{ even}} \frac{\alpha_n}{\pi a^2} \quad (9)
\]

It now remains to evaluate the following two integrals:
\[
S_{k\ell} = \int_{0}^{\infty} R_k(z_k) \chi^{l+j+1} d\chi, \quad T_{k\ell} = \int_{0}^{\infty} I_m(z_k) \chi^{l+j+1} d\chi. \quad (10)
\]

We also define the complex quantity
\[
Q_{k\ell} = S_{k\ell} + i T_{k\ell} = \int_{0}^{\infty} Z_{k\ell} \chi^{l+j+1} d\chi \quad (11)
\]

so that
\[
\frac{X}{\rho c A} = \frac{1}{2 \left(\frac{U}{|u|} \right)^2 \sum_{n \text{ even}} \alpha_n} \sum_{k \text{ even}} \sum_{l \text{ even}} \frac{\alpha_k \alpha_l}{\pi} Q_{k\ell}. \quad (12)
\]

When \(k\) and \(\ell\) are even, we shall be able to integrate \(S_{k\ell}\) and \(T_{k\ell}\). Two examples will be carried out, \(Q_{00}\) and \(Q_{20}\). Tables I and II show \(S_{k\ell}\) and \(T_{k\ell}\) for \(k \text{ and } \ell = 0, 2\) and 4. It will be shown in the Appendix that \(Q_{k\ell} = Q_{\ell k}\).

Referring to Eqn. (11),
\[Q_{oo} = \int_0^1 Z_0 x \, dx = \int_0^1 \left(1 - \frac{1}{\alpha} \int_0^\alpha e^{-iKR_0} \, d\alpha \right) x \, dx \]
\[= \frac{1}{2} - \frac{1}{\alpha} \int_0^1 \int_0^\alpha e^{-iKR_0} \, d\alpha \, dx \]

In reference (a), \(R_o \) was defined as
\[R_o = r \cos \alpha + (a^2 - r^2 \sin^2 \alpha)^{1/2} \]
so that
\[\frac{R_o}{\alpha} = \frac{r}{\alpha} \cos \alpha + (1 - \frac{r^2}{\alpha^2} \sin^2 \alpha)^{1/2} \]

Therefore,
\[Q_{oo} = \frac{1}{2} - \frac{1}{\alpha} \int_0^1 \int_0^\alpha e^{-iKR_0} \left(\frac{r}{\alpha} \cos \alpha + (1 - \frac{r^2}{\alpha^2} \sin^2 \alpha)^{1/2} \right) \, d\alpha \, dx \]

In the \(x-\alpha \) plane, the integration is over a semicircle with unit radius. We now make a change of variables
\[u = \frac{x}{\alpha} \sin \alpha, \quad v = \frac{x}{\alpha} \cos \alpha \]
and the differential area element \(x \, dx \, d\alpha \) becomes \(du \, dv \), and we have
\[Q_{oo} = \frac{1}{2} - \frac{1}{\alpha} \int_0^1 \int \frac{1}{u^{1/2}} \, e^{-iku \sqrt{1-u^2}} \, dv \, du \]
\[= \frac{1}{2} - \frac{1}{\alpha} \int_0^1 \frac{1}{u^{1/2}} \left(\int \frac{1}{u^{1/2}} \, e^{-iku \sqrt{1-u^2}} \, dv \right) \, du \]

When the integration over \(v \) is performed, we have,
\[Q_{oo} = \left[\frac{1}{2} - \frac{1}{\alpha} \int_0^1 \frac{1}{u^{1/2}} \left(\frac{1}{-iu} e^{iku \sqrt{1-u^2}} \frac{1}{iu} e^{iku \sqrt{1-u^2}} \right) \, du \right] \]
\[= \frac{1}{2} + \frac{i}{\pi ku} - \frac{i}{\pi ku} \int_0^1 e^{-2i \frac{ku \sqrt{1-u^2}}{iu}} \, du \]
Letting \(u = \sin \phi \), the last integral in Equ. (19) becomes

\[
\int_{e}^{e} e^{-2iK_a \sqrt{-u^2}} \, d\phi = \int_{0}^{\pi} e^{-2iK_a \cos \phi} \cos \phi \, d\phi = 1 - \frac{\pi}{2} S_{1}(2K_a) - \frac{\pi}{2} J_{1}(2K_a).
\]

(20)

This last integration was done with the help of one integration by parts, and reference (c). \(S_{1}(2K_a) \) denotes the Struve function of order one and argument \(2K_a \). Therefore, we have

\[
Q_{oo} = \frac{1}{2} + \frac{i}{2K_a} S_{1}(2K_a) - \frac{1}{2K_a} J_{1}(2K_a)
\]

(21)

so that finally we get

\[
S_{oo} = \frac{1}{2} - \frac{J_{1}(2K_a)}{2K_a}
\]

(22)

and

\[
T_{oo} = \frac{S_{1}(2K_a)}{2K_a}
\]

(23)

If \(\alpha \phi = 1 \), and all other \(\alpha \phi = 0 \), then we have simply the piston with uniform surface velocity. Referring to Equ. (12),

\[
\frac{R_{oo} A}{\rho \alpha^2} = 2 S_{oo} = 1 - \frac{J_{1}(2K_a)}{K_a}
\]

(24)

and

\[
\frac{X_{oo} A}{\rho \alpha^2} = 2 T_{oo} = \frac{S_{1}(2K_a)}{K_a}
\]

(25)

These are the familiar equations for the radiation resistance and reactance of a circular piston.

The same methods that were used to evaluate \(Q_{oo} \) will be used in obtaining \(Q_{20} \).

\[
Q_{20} = \int_{0}^{\pi} Z_{2} \, r \, dr
\]

(26)

Referring to reference (a) for \(Z_{2} \), and again setting \(x = r/a \),

\[
Z_{2} = x^{-1} + (1 - \frac{2}{(K_a)^2}) Z_{0}
\]

\[
+ \frac{2i}{\pi K_a} \int_{0}^{\pi} e^{-i \frac{r}{K_a} \sin \alpha} e^{-i \frac{x}{K_a} \cos \alpha} \, d\alpha.
\]

(27)
Then we have
\[
Q_{ke} = \int_0^1 (x^2 - 1) x \, dx + \int_0^1 \left(1 - \frac{2}{(k\mu_j)^2}\right) Z_c \, x \, dx
\]
\[+ \frac{2i}{\pi k\alpha} \int_0^1 \int_{\sqrt{1-u^2}}^{\sqrt{2-u^2}} e^{-ik\alpha (x^2 + 1 - x^2 u^2)} \, x \, dx \, du. \tag{28}\]

Simplifying and again changing from the x-u plane to the u-v plane,
\[
Q_{ke} = \frac{1}{4} - \frac{1}{2} + \left(1 - \frac{2}{(k\alpha_j)^2}\right) Q_{ko}
\]
\[+ \frac{2i}{\pi k\alpha} \int_0^1 \int_{\sqrt{1-u^2}}^{\sqrt{2-u^2}} e^{-ik\alpha \sqrt{1-u^2}} \sqrt{1-u^2} \, dv \, du. \tag{29}\]

so that
\[
Q_{ke} = -\frac{1}{4} + \left(1 - \frac{2}{(k\alpha_j)^2}\right) Q_{ko}
\]
\[+ \frac{2i}{\pi k\alpha} \int_0^1 \sqrt{1-u^2} \, e^{-ik\alpha \sqrt{1-u^2}} \left[\frac{e^{-ik\alpha \sqrt{1-u^2}} - e^{ik\alpha \sqrt{1-u^2}}}{-ik\alpha} \right] du. \tag{30}\]

Carrying out the inner integration, we see that
\[
Q_{ke} = -\frac{1}{4} + \left(1 - \frac{2}{(k\alpha_j)^2}\right) Q_{ko}
\]
\[+ \frac{2i}{\pi k\alpha} \int_0^1 \sqrt{1-u^2} \, e^{-ik\alpha \sqrt{1-u^2}} \left[\frac{e^{-ik\alpha \sqrt{1-u^2}} - e^{ik\alpha \sqrt{1-u^2}}}{-ik\alpha} \right] du. \tag{31}\]

and
\[
Q_{ke} = -\frac{1}{4} + \left(1 - \frac{2}{(k\alpha_j)^2}\right) Q_{ko}
\]
\[- \frac{2}{\pi (k\alpha_j)^2} \int_0^1 \sqrt{1-u^2} \left(e^{-2ik\alpha \sqrt{1-u^2}} - 1 \right) \, du. \tag{32}\]

It can be shown that
\[
\int_0^1 \sqrt{1-u^2} \, \, du = \frac{\pi}{4}. \tag{33}\]
By again letting \(u = s \) in \(\phi \), expressing \(\cos^2\phi \) as \(1 - \sin^2\phi \), and using reference (c), we obtain
\[
\int e^{-z_i k_{a} \sqrt{1-u^2}} \, du = \int e^{-z_i k_{a} \sin^2 \phi} \cos \phi \, d\phi
\]
\[
= \frac{\pi}{2} \left[J_0(2k_{a}) - \frac{J_1(2k_{a})}{2k_{a}} - i \left(S_0(2k_{a}) - \frac{S_1(2k_{a})}{2k_{a}} \right) \right].
\]
(34)

Finally,
\[
S_{2c} = \frac{1}{4} - \frac{1}{2} \frac{J_0(2k_{a})}{(k_{a})^2} - \frac{J_1(2k_{a})}{(k_{a})^2} \left(\frac{1}{2} - \frac{1}{2} \frac{(k_{a})^2 - 3}{(k_{a})^2} \right)
\]
(35)

and
\[
T_{2c} = \frac{S_0(2k_{a})}{(k_{a})^2} + \frac{(k_{a})^2 - 3}{2} \frac{S_1(2k_{a})}{(k_{a})^3}.
\]
(36)

Considerable arithmetical care must be taken in using the formulae in Table I. The numerical computation of the \(S_{k\phi} \) and \(T_{k\phi} \) often involves the subtraction of large comparable numbers, which leads to a reduction in significant figures in the result. For this reason, a very accurate Table of Bessel and Struve functions is required, with perhaps seven (7) figures, such as is found in reference (d).

Unfortunately, this work has not led to a formula not involving integrals for the pressure distribution on a circular piston or on a flexural disk. However, it has led to such a formula for the integral of this pressure over the disk.

\[\text{DAVID T. PORTER}\]
\text{Mathematician}
LIST OF REFERENCES

(c) W. Groebner, N. Hofreiter, Integraltafel, Zweiter Teil, Bestimmte Integrale, 2nd Edition, Springer-Verlag, Berlin, 1959 (Section 511, Equ. (11c) and Section 513, Equ. (3a)).

APPENDIX

THE RECIPROCITY OF \(Q_{k\ell} \) AND \(Q_{\ell k} \)

We wish to show that \(Q_{k\ell} \equiv Q_{\ell k} \). To do this, we first write \(Q_{k\ell} \) as

\[
Q_{k\ell} = \int_0^\alpha Z_\kappa (\frac{r}{a})^\ell \, d\alpha = \frac{1}{a^2} \int_0^\alpha Z_\kappa (\frac{r}{a})^\ell \, r \, dr.
\]

Integrating with respect to an angle \(\alpha \) around a circle,

\[
Q_{k\ell} = \frac{1}{2\pi a^2} \int_0^{2\pi} \int_0^\alpha Z_\kappa (\frac{r}{a})^\ell \, r \, dr \, d\alpha.
\]

This double integral can be considered as the integral of \(Z_\kappa (r/a)^\ell \) over the circular area \(S\ell \). Therefore,

\[
Q_{k\ell} = \frac{1}{2\pi a^2} \int_{S\ell} Z_\kappa (\frac{r}{a})^\ell \, dS \ell.
\]

and so, we wish to show that

\[
\int_{S\ell} Z_\kappa (\frac{r}{a})^\ell \, dS \ell = \int_{S\kappa} Z_\kappa (\frac{r}{a})^\ell \, dS \kappa.
\]

Consider now the mutual radiation impedance between two superimposed circular pistons, \(\kappa \) and \(\ell \), which have normal surface velocities

\[
V_{nK} = U_K (\frac{r}{a})^\kappa e^{i\omega t}
\]

and

\[
V_{n\ell} = U_\ell (\frac{r}{a})^\ell e^{i\omega t}.
\]

The mutual radiation impedance between the two pistons, referred to their edge velocities, \(U_K \) and \(U_\ell \), will be, following reference (e), Equ. (8),

\[
Z_{k\ell} = \frac{1}{V_K V_\ell \ast} \int_{S\ell} P_K (r_\ell) V_{n\ell} \ast (r_\ell) \, dS \ell.
\]

Because the reciprocity of \(Z_{k\ell} \) and \(Z_{\ell k} \) applies here,

\[
Z_{k\ell} = Z_{\ell k},
\]

and

\[
\frac{1}{V_K V_\ell \ast} \int_{S\ell} P_K (r_\ell) V_{n\ell} \ast (r_\ell) \, dS \ell = \frac{1}{V_\ell V_K \ast} \int_{S\kappa} P_\ell (r_\kappa) V_{n\kappa} \ast (r_\kappa) \, dS \kappa.
\]
Here

\[V_l = U_l e^{i\omega t}, \quad V_K = U_K e^{i\omega t} \quad \text{(A10)} \]

and

\[P_l = \rho c U_l e^{i\omega t} Z_l, \quad P_K = \rho c U_K e^{i\omega t} Z_K \quad \text{(A11)} \]

Therefore, we have

\[
\frac{1}{U_K U_l} \int_{S_l} \rho c U_K Z_K U_l (\%)^l dS_l
\]

\[
= \frac{1}{U_K U_l} \int_{S_K} \rho c U_K Z_K U_l (\%)^l dS_l . \quad \text{(A12)}
\]

And so,

\[
\int_{S_l} Z_K (\%)^l dS_l = \int_{S_K} Z_K (\%)^l dS_K \quad \text{(A13)}
\]

which was needed to be shown to prove \(Q_{k,l} \equiv Q_{l,k} \).
TABLE I

\[\beta = \kappa a \quad J_0 = J_0(2\kappa a) \quad J_1 = J_1(2\kappa a) \]

\[S_{00} = \frac{1}{2} - \frac{J_1}{2\beta} \]

\[S_{20} = \frac{1}{4} - \frac{1}{2\beta^2} - \frac{J_1}{2\beta^2} (\beta^2 - 3) - \frac{J_0}{\beta^2} \]

\[S_{22} = \frac{1}{6} - \frac{1}{2\beta^2} - \frac{J_1}{2\beta^2} (\beta^4 - 10\beta^2 + 10) - \frac{J_0}{\beta^4} (2\beta^2 + 3) \]

\[S_{40} = \frac{1}{6} - \frac{1}{\beta^4} + \frac{\beta^2}{\beta^4} - \frac{J_1}{2\beta^4} \left(\beta^4 - 14\beta^2 + 40 \right) \]

\[-\frac{J_0}{\beta^4} (2\beta^2 - 14) \]

\[S_{42} = \frac{1}{8} - \frac{5}{6\beta^2} + \frac{3}{\beta^4} - \frac{J_1}{2\beta^4} \left(\beta^6 - 25\beta^4 + 140\beta^2 - 140 \right) \]

\[-\frac{J_0}{\beta^6} (3\beta^4 - 32\beta^2 + 70) \]

\[S_{44} = \frac{1}{10} - \frac{1}{\beta^4} + \frac{4}{\beta^6} - \frac{J_1}{2\beta^6} \left(\beta^8 - 44\beta^6 + 5\beta^4 - 201\beta^2 + 2016 \right) \]

\[-\frac{J_0}{\beta^8} \left(4\beta^6 - 80\beta^4 + 504\beta^2 - 1008 \right) \]
\[T_{66} = \frac{S_1}{2\beta} \]

\[T_{26} = \frac{S_1}{2\beta^2} (\beta^4 - 3) + \frac{S_0}{\beta^2} (2\beta^2 - 5) + \frac{20}{3\pi\beta^3} \]

\[T_{40} = \frac{S_1}{2\beta^5} (\beta^4 - 14\beta^2 + 40) + \frac{S_0}{\beta^6} (2\beta^2 - 14) + \frac{8}{3\pi\beta^3} \]

\[T_{42} = \frac{S_1}{2\beta^7} (\beta^4 - 25\beta^2 + 140\beta^2 - 140) + \frac{S_0}{\beta^8} (3\beta^4 - 32\beta^2 + 70) + \frac{16}{\pi\beta^3} - \frac{250}{3\pi\beta^3} \]

\[T_{44} = \frac{S_1}{2\beta^9} \left(\beta^6 - 44\beta^4 + 504\beta^4 - 2016\beta^2 + 2016 \right) + \frac{S_0}{\beta^8} \left(4\beta^6 - 80\beta^4 + 504\beta^2 - 1008 \right) + \frac{1}{5\pi\beta^2} \left(160\beta^4 - 2016\beta^2 + 6720 \right) \]