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I.  INTRODUCTION 

This report summarizes the results of a workshop dealing with the 
fundamental processes involved in the combustion and ignition of solid 
gun and rocket propellants.  The workshop was sponsored by the Workshop 
Committee of the JANNAF Combustion Working Group, and was held on 
26-27 July 1977 at the Ballistic Research Laboratory. 

The subject matter of the workshop was limited to nitrate ester 
and nitramine propellants.  It was considered worthwhile to consider 
both types of propellants together for the following reasons.  First, 
there might be similarities in the chemistry of these two types of 
propellants, since they both apparently involve decomposition of the 
solid into formaldehyde and nitrogen oxides, which subsequently 
undergo a reaction in the flame zone.  Secondly, the types of experi- 
mental measurements that have been carried out in the past on the 
two propellant types are in some cases different, and it was felt 
that it might be useful to consider whether some of the experiments 
that had traditionally been performed with one of these propellant 
types might profitably be applied to the other.  Finally, this 
approach brought together in a few cases researchers who were not 
previously acquainted with each other's work. 

An attempt was made to deal only with the results of experimental 
and theoretical research that can be related to, or discussed in 
terms of, the fundamental chemical and physical processes involved in 
the thermal decomposition, ignition and combustion of this class of 
propellants.  Interest centered on the chemical mechanisms and kinetics 
of these processes, although it was recognized that chemical and 
physical processes must be intimately tied together in processes as 
complex as ignition and combustion.  The goals of the workshop were to 
assess the present state of fundamental knowledge of the reactions of 
these propellants, to identify those areas where information is 
currently lacking, and to stimulate ideas for promising new techniques 
and experiments. 

The type of subject matter considered included the following: 

I.  Composition/Ingredient Chemical Effects 

A. Propellant-catalyst interactions 

B. Propellant-binder interactions 

C. Comparisons with linear (aliphatic) amines and esters 

II.  Propellant Ignition/Combustion Properties 

A.  Thermal decomposition rates and products 



B. Ignition mechanisms 

C. Isolation of primary reactions 

D. Chemical interpretations of pressure exponent changes/ 
plateau burning phenomena 

E. Solid phase, surface, gas phase reactions 

F. Phase transitions:  melting, vaporization, polymorphs 

G. Flame structure and diagnostics; species concentrations/ 
temperature profiles 

III.  Modeling (involving chemistry):  Potential and Prospects 

The first half of the one-and-a-half day workshop involved 
informal presentations by a number of the particpants, with inter- 
spersed discussion.  The second half was devoted to discussion of 
particular questions or problems, most of which were presubmitted by 
the participants and distributed prior to the date of the workshop. 

The workshop was attended by 22 invited participants, plus a 
number of observers (see Table I).  The workshop was organized and 
coordinated by the author of this report. 

Due to the length of time that has lapsed since the workshop, 
no attempt will be made to summarize new results presented by the 
participants at the workshop.  (Much of this has since been published; 
some of it was presented at the 15th JANNAF Combustion Meeting, and 
will be summarized in the proceedings of this meeting.)  Rather, the 
rest of this report will be devoted to:  a)  a brief review of the 
nitramine slope break and nitrate ester catalysis phenomena, to which 
most of the discussion was directed, including a few representative 
references that might be a useful starting point for reviewing the 
literature of these subjects; b)  a general summary of the workshop 
discussions; and c)  a more specific listing of some of the formal 
presubmitted discussion questions, together with some of the ideas and 
recommendations that arose in discussing them; and d)  a conclusion. 

II.  BACKGROUND 

Brief Review of Nitramine Slope Break and Nitrate Ester Catalysis 
Problems. 

1.  Slope Breaks in Nitramines 

Figure 1 illustrates the slope break phenomena typically observed 
for HMX* in strand burner measurements with inert or mildly energetic 

* - ayolotetvamethylenetetran-itvamine. 
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binders.  At low pressures the larger particle size propellant exhibits 
burning rates significantly lower than that of the pure nitramine.  At 
about 20 MPa (2900 psi), a sudden increase in the pressure exponent 
occurs, and the burn rate rapidly approaches that of the pure nitramine. 
A second discontinuity then occurs, and thereafter the burn rate appears 
to follow that expected for the pure nitramine.2 Fine particle pro- 
pellant, on the other hand, exhibits higher burning rates at low 
pressure, a much milder slope break at pressures higher than the coarse 
particle slope break, and thereafter a burning rate that approaches 
that of the pure nitramine only at very high pressure, if at all.  RDX* 
and many other nitramines-^'^, including linear nitramines, show behavior 
similar to that of HMX. 

Increasing the binder energy (and therefore the burning rate) to 
a value closer to that of the nitramine increases the low pressure 
burn rate and thereby minimizes the magnitude of the large particle 
slope changes.5 Bimodal HMX (i.e., mixture of coarse and fine) 
propellants behave very much like the propellants containing fine 
HMX only.°  Burning rates of HMX propellants at low pressures are 

eye lotrimethy lenetrinitramine. 

1. N.S. Cohen, "Combustion of Nitramine Propellants", 11th JANNAF 
Combustion Meeting, CPIA Publication 261, Vol. I, pp. 267-283, 
December 1974. 

2. (a)    T.L.   Boggs,  J.L.  Eisel,   C.F.   Price,  and D.E.   Zurn,   "Burning 
Rates of Cyclotetramethylenetetranitramine   (HMX)",   15th JANNAF 
Combustion Meeting,  Newport,  RI,  September 1978;   (b)    T.L.  Boggs, 
C.F.  Price,  D.E.   Zurn, R.L.  Derr,  and E.J.  Dibble,   "Temperature 
Sensitivity of Deflagration Rated of Cyclotetramethylenetetranitramine 
(HMX)",  13th JANNAF Combustion Meeting,  CPIA Publication 281,   Vol. 
I,  pp.   45-56,  December 1976;   (a)    also same authors,   "The Self 
Deflagration of Cyclotetramethylenetetranitramine  (HMX)",  AIAA/SAE 
13th Propulsion Conference,   11-13 July 1977,   Orlando,   FL,  Preprint 
No.   77-859. 

3. J.E. Flanagan, "Relationship of Nitramine Combustion Phenomena and 
Chemical Structure", 13th JANNAF Combustion Meeting, CPIA Publica- 
tion 281,   Vol.   I,  pp.   69-74,   December 1976. 

4. R.L.   Simmons,   "New Nitramines for Gun Propellants",   15th JANNAF 
Combustion Meeting,  Newport,  RI,  September 1978. 

5. N.S.   Cohen and L.D.  Strand,   "Nitramine Propellant Research",   13th 
JANNAF Combustion Meeting,   CPIA Publication 281,   Vol.   I,  pp.   75-88. 
December 1976. 

6. (a)    K.P.  McCarty,   "Mechanism of Combustion of HMX Propellants", 
14th JANNAF Combustion Meeting,  CPIA Publication 292,   Vol.  I, pp. 
243-258,  December 1977;   (b)    also K.P.  McCarty,   "Effect of 
Formulation Variables on HMX Propellant Combustion",   15th JANNAF 
Combustion Meeting,  Newport,  RI,  September 1978. 



increased by materials such as lead compounds ' ; catalysis is 
considered to be yet another way to minimize slope break effects. 
Of the three ways to minimize slope breaks (binder-propellant matching, 
use of small particle sizes, and low pressure catalysis), binder- 
propellant matching would appear to be the most effective.  For many 
applications, however, the use of a fast burning binder will result 
in a propellant that is too hot; burning rate pressure exponents 
may also be too high, even though slope breaks have been eliminated. 

The slope breaks with nitramine propellants occur at pressures 
higher than the operating pressures of most rocket motors, and there- 
fore represent a problem only insofar as they stand in the way of 
the trend to operate rocket motors at increasingly higher pressures. 
The problems with nitramines for gun applications are more complex, 
and have been the subject of two workshops^»' and a number of 
papers.10-12  Burning rate exponent shifts may not even manifest 
themselves under the rapidly-rising pressure environment of a gun 
chamber.  In one closed bomb study with HMX/inert binder propellants  , 
no slope breaks were observed with bimodal 2/10u HMX, but breaks were 
observed with class E (V15u) HMX.  Rather, the ballistic variability 
observed with nitramine propellants is probably due to the generally 
higher pressure exponents for nitramine propellants. 

7. G.E.  Herriott and R.L.   Foster,   "Ballistic Modification of Minimum 
Smoke Propellants",   15th JANNAF Combustion Meeting,  Newport,  RI, 
September 1978. 

8. L.   Stiefel,   "Review of Workshop on the Combustion of Nitramine 
Propellants for Guns",   10th JANNAF Combustion Meeting,   CPIA 
Publication 243,  pp.   199-216,   December 1973. 

9. R.L.  Simmons,   "Workshop Report on Nitramine Gun Propellant 
Combustion",   13th JANNAF Combustion Meeting,   CPIA Publication 281, 
Vol.  I, pp.   1-8,  December 1976. 

10. R.L.  Simmons,   "High Pressure Ballistics of Nitramine Gun Propellants", 
9th JANNAF Combustion Meeting,   CPIA Publication 231,   Vol.   Ill,  pp. 
41-59,  December 1972. 

11. O.K.   Heiney,   "Advanced Gun Propellants",  J.   Nat.   Defense,   Weapons 
Technology,  pp.   152-157,  September-October 1973. 

12. R.W.   Geene,  J.J.  Rocchio,  I.W.   May,  and R.W.   Deas,   "Results of 
Recent Theoretical and Experimental Studies of Nitramine Gun 
Propellant Performance",   13th JANNAF Combustion Meeting,   CPIA 
Publication 281,   Vol.   I,  pp.   9-20,  December 1976. 

13. A.A.  Juhasz and J.J.  Rocchio,   "High Pressure Burning Rates of 
Nitramine Propellants",   14th JANNAF Combustion Meeting,   CPIA 
Publication 292,   Vol.   II,  pp.   81-89,  August 1977. 



Various explanations for the slope break behavior of nitramine 
propellants have been proposed, including a) crystal fracture; b) change 
from condensed phase to gas phase control when the thickness of the 
thermal wave approaches the crystal dimension-"-^; c) change in chemical 
mechanism; d) particle dewetting; e) condensed phase reaction at the 
binder nitramine interface^-5; f) in depth particle-to-particle burning 
when the melt layer disappears^; and g) an ignition delay for the ft 

nitramine crystals, which becomes unimportant for higher pressures. 
The last two of these involve rather well-developed scenarios that 
attempt to explain most of the observed features of nitramine 
propellant burning, and are based, respectively, on the observations 
that the melt layer becomes thinner with increasing pressure and 
vanishes at pressures near those where the slope break appearsl°, 
and that quenched samples show large HMX crystals protruding from the 
binder matrix for low pressure burning.° None of these mechanisms 
has received general acceptance, however, and most have difficulty 
explaining all of the observed features of nitramine propellant 
combustion. 

Modeling of nitramine propellant combustion has received consider- 
able interest in recent years.17-J.9  Results are generally insensitive 
to the model employed since unknown variables in the models are 
usually "fit" to available burning rate data.-'-'  Most current 
modeling effortsl°>19 involve extensions of the BDP (Beckstead-Derr- 

14. J.J.  Rocchio and A.A.  Juhasz,   "HMX Thermal Decomposition Chemistry 
and Its Relation to HMX-Composite Propellant Combustion",   11th 
JANNAF Combustion Meeting,   CPIA Publication 261,   Vol.   I,  pp.   247- 
266,  December 1974. 

15. R.N.  Kumar and L.P.  Strand,   "Combustion Problems of Nitramine 
Propellants",  AIAA Paper 75-239,  AIAA 13th Aerospace Science 
Meeting,  Pasadena,   CA,   20-22 January  1975. 

16. J.W.  Taylor,   "The Burning of Secondary Explosive Powders by a 
Convective Mechanism",   Trans.   Faraday SOG.,   58,   561-568   (1962). 

17. M.W.  Beckstead and K.P.  McCarty,   "Calculated Combustion Character- 
istics of Nitramine Monopropellants",   13th JANNAF Combustion 
Meeting,   CPIA Publication 281,   Vol.   I,  pp.   57-68,   December 1976. 

18. C.F. Price, T.L. Boggs, and H.H. Bradley, "Modeling the Combustion 
of Monopropellants", 14th JANNAF Combustion Meeting, CPIA Publica- 
tion 292,   Vol.   I,  pp.   307-324,   December 1977. 

19. M.W.   Beckstead,   "A Model for Solid Propellant Combustion",   14th 
JANNAF Combustion Meeting,  CPIA Publication 292,   Vol.  I,  pp.   281- 
306,  December 1977. 
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20 
Price) model  of composite propellant combustion, although other 
approaches have been taken.21 Thermal decomposition chemistry of 
HMX and RDX is also an active area now, with several new contributions 
appearing each year.  Most of these are directed at establishing the 
initial steps in the decomposition mechanism of the nitramine 
molecule.  Most of the earlier work has been summarized in Reference 22. 
Several papers on this subject were presented at the 15th JANNAF 
Combustion Meeting, and these can be consulted for references to 
other recent papers.  Comprehensive reviews and bibliographies are 
currently being prepared for publication. 

2.  Catalysis of Nitrate Ester Propellants 

Catalysis of nitrate ester (e.g., nitrocellulose) propellants, 
unlike slope break phenomena with nitramine propellants, is a deliber- 
ately induced effect to improve the combustion of rocket and gun pro- 
pellants.  Figure 2 9hows the type of behavior that results when one 
or two percent of catalyst (usually a lead salt) is added to a nitrate 
ester propellant.  The low pressure burn rate i9 enhanced, resulting 
in what has come to be called the "super rate", "plateau" and "mesa" 
regions.  At higher pressures the burn rate approaches that of the 
noncatalyzed propellant.  The plateau and mesa regions have very low 
pressure exponents, and this, together with the low sensitivity to 
initial temperature in these regions23 (not shown in Figure 2) makes the 
catalyzed propellants ideal for rocket motor applications.  "Platonized" 
propellants have also been considered for gun applications as well. 

A fundamental understanding of the site and mechanism of the cata- 
lytic activity would be desirable, since it would permit rational design 
of propellants having the desired burning properties, and minimize 
the need to resort to costly trial-and-error procedures. 

Nevertheless, neither the mechanism nor the location of the 
catalytic activity can be considered to be known.  Proposed theories 
cover almost the whole range of conceivable sites:  a) direct 
chemical interaction between lead salt and nitrocellulose molecule, 

20. M.W.   Beckstead,   R.L.   Derr,  and C.F.   Price,   "The Combustion of 
Solid Monopropellants and Composite Propellants",   13th Symposium 
(International)  on Combustion,   The Combustion Institute,  pp.   1047- 
1056,   1971. 

21. M.  Benreuven,  L.H.   Caveny,  R.J.   Vichnevetsky,  and M.  Summerfield, 
"Flame Zone and Sub-Surface Reaction Model for Deflagrating RDX", 
16th Symposium (International) on Combustion,  The Combustion 
Institute,  pp.   1223-1233,   1976. 

22. K.P.  McCarty,   "HMX Propellant Combustion Studies",  AFRPL-TR-76-59, 
December 1976 (available from DDC as AD B017527). 

23. N.   Eisenreich,   "Abhängigkeit der Abbrandgeschwindigkeit von der 
Anfangstemperatur bei Festtreibstoffen",  Institut fur Chemie der 
Treib-und Explosivstoffe,  May 1975. 

11 
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Fig. 1. Burning rate characteristics of pure HMX 
and HMX-inert binder propellant 
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24 resulting in enhanced rate of unimolecular dissociation  ; b) modifi- 
cation of secondary chemical steps in the solid phase or at the 
surface, leading to an increased solid phase heat release and surface 
temperature, which in turn results in acceleration of the subsequent 
gas phase reaction^; c) no change in solid phase heat release, but 
increased heat release^ or reaction rate^7-29 in the "fizz" zone 
(the first, very thin gas phase reaction zone just above the 
propellant surface), resulting in increased heat transfer back to 
the surface; d) increased ultraviolet radiation from the "secondary" 
flame zone (the luminous flame zone separated from the burning surface 
by the thin "fizz" zone and much thicker "dark" zone), leading to 
photochemical acceleration of subsurface reactions.™ The original 
references should be consulted for a more complete and accurate 
description of the proposed mechanism involved in each case. 

Observations relevant to double base propellant catalysis include 
the following:  catalytic behavior is very similar, no matter what 

24. N.P.   Suh,   G.F.  Adams,   and C.   Lenchitz,   "Observations on the Role 
of Lead Modifiers in Super-Rate Burning of Nitrocellulose Pro- 
pellants",   Combustion and Flame,   22^   289-293  (1974). 

25. R.A.   Fifer and J.A.   Lannon,   "Effect of Pressure and Some Lead Salts 
on the Chemistry of Solid Propellant Combustion",   Combustion and 
Flame,   24^   369-380   (1975). 

26. D.J. Rewkin, J.A. Ricks, J. Fowling, and R. Watts, "The Combustion 
of Nitric Ester-Based Propellants: Ballistic Modification by Lead 
Compounds",   Combustion Science Tech.,   2,   307-327  (1971). 

27. (a)    N.   Kubota,   T.J.   Ohlemiller,  L.H.   Caveny,  and M.   Summerfield, 
"The Mechanism of Super-Rate Burning of Catalyzed Double-Base 
Propellants",   15th Symposium  (International)  on Combustion,   The 
Combustion Institute,  pp.   529-540,   1974;  also   (b)  AIM J.,   12,   1709- 
1714   (1974)j  also   (c)  Princeton U.,   AMSR No.   1087,   AD-763  786, 
March 1973. 

28. N.   Kubota,   "Determination of Plateau-Burning Effect of Catalyzed 
Double-Base Propellants",   17th Symposium  (International)  on 
Combustion,  Leeds,   UK,  August 1978. 

29. G.   Langelle,  J.   Duterque,   C.   Verdier,  A.   Bizot,  and J.   Trubert, 
"Combustion Mechanisms of Double-Base Solid Propellants",  17th 
Symposium (International) on Combustion,  Leeds,  UK, August 1978. 

30. L.A.  Lee,  T.D.  Austin,  and A.T.   Camp,   "A Photochemical Combustion 
Mechanism for Mesa and Plateau Burning Double-Base Propellants", 
11th JANNAF Combustion Meeting,   CPIA Publication 261,   Vol.   I, 
pp.   293-306,   December 1974. 
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compound of lead is used.  Copper compounds, as well as compounds of 
certain other metals, also produce accelerated burning at low 
pressures.  Catalytic effects are much smaller for hotter (and 
therefore faster burning) propellants, or for propellants with more 
highly nitrated nitrocellulose.  Product analysis for low pressure 
(flameless) combustion25 shows that there is a higher ratio of CO2 
to CO in the "fizz" zone products for catalyzed propellants, and perhaps 
greater reduction of NO to N2.  Catalytic effects with pure nitro- 
cellulose are similar to those for double base (nitrocellulose- 
nitroglycerine) propellant.25 Photographs of burning platonized 
propellants show a thick layer of carbonaceous char on the propellant 
surface in the super rate region; this diminishes in the plateau 
region and is no longer apparent at still higher pressures.  Metallic 
lead particles may also form on the surface and be ejected into the 
flame, which is much more luminous for the catalyzed propellant. 
Photographs also indicate that the decrease in dark zone length 
(flame standoff) with increasing pressure is similar for catalyzed 
and uncatalyzed propellants, and that the flame continues to approach 
the surface with increasing pressure in the plateau region, even 
though the burning rate remains essentially constant.27,28,31 Experi- 
ments with imbedded microthermocouples indicate that surface temperatures 
for a catalyzed propellant are either slightly higher27 or approxi- 
mately the same^o as those for the uncatalyzed propellant, and that 
the final "fizz" zone temperature is not significantly different for 
the catalyzed propellant.27,28 The "fizz" zone temperature gradients, 
dT/dx, for the catalyzed propellant are significantly higher in the 
super rate region than for the unmodified propellant,27-29 an(j this 
temperature gradient remains roughly constant in the plateau region. 

Reference 27c is a useful summary of the combustion characteristics, 
thermal decomposition chemistry and modeling of double-base propellants. 
The thermal decomposition of nitrocellulose-based propellants is not 
presently being widely studied.  This is probably due to the greater 
interest in nitramines at this time, and also because the polymeric 
structure of nitrocellulose and the much greater extent of reaction 
in the solid phase make it more difficult to determine the initial 
decomposition steps from the thermal decomposition products.  (Final 
product type molecules such as CO, CO2 and H2.O are found among the 
major products even for slow decomposition under vacuum conditions.) 

III.  GENERAL SUMMARY OF WORKSHOP DISCUSSION 

Considering the topic of the workshop, there was very little 
discussion of specific chemical mechanisms involved in the ignition 
or combustion of the solid propellants.  This indicates, it would 

31.     N.   Eisenreich,   "A Photographic Study of the Combustion Zones of 
Burning Double Base Propellant Strands",  Propellants and Explosives, 
3,   pp.   141-146  (1978). 
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seem, the primitive 9tate of our understanding of the fundamental 
processes involved.  This state of affairs is a result of the fact 
that diagnostic techniques have not yet been found that would make it 
possible to probe the condensed phase, surface or early (close to 
the burning surface) gas phase reactions of a burning propellant. 
Consequently, there is no direct information available (e.g., 
concentration profiles) about the fundamental processes that occur 
in these regions.  No new ideas that might change this situation 
came up at the workshop, although there is widespread hope that one 
of the new laser diagnostic techniques will eventually prove 
successful in probing the early gas phase reaction zone. 

For the present, all our information comes from indirect 
sources.  Thermal decomposition experiments are a prime example, 
since they are presently being carried out in so many laboratories 
with nitramines.  There was a lot of discussion at the workshop 
concerning which experimental techniques would be expected to most 
closely simulate the solid phase kinetics and mechanisms operative 
under actual combustion conditions.  Although it appears to be 
possible to approach the temperatures (e.g., 300-1000°C) and heating 
rates (^ 10,000-50,000 deg/sec) of the solid in combustion, 
compromises are inevitably involved.  For example, it may be 
impossible to avoid gas phase reactions, even in an initial vacuum, 
for conditions of very rapid decomposition; also it is not obvious 
that a sample under such conditions will experience the temperatures 
assumed if it is a material that easily vaporizes (e.g., RDX) or 
sublimes (e.g., HMX).  Nevertheless, there was general agreement 
that thermal decomposition experimentalists should be on the lookout 
for possible temperature, pressure and heating rate effects in 
analyzing and comparing results.  The effects of these variables 
are not yet well understood.  When they are, it will be possible to 
better assess the relevance of thermal decomposition studies to propel- 
lant combustion.  For the gas phase processes, even indirect studies 
have been almost totally neglected, to the extent that kineticists in 
the propellant field do not even try to formulate a plausible mechanism 
for the important gas phase flame reactions of the solid propellants! 
Some ideas were developed at the workshop for indirect studies involving 
investigation of model gas phase systems (ba-?ed on the products observed 
in thermal decomposition experiments); such studies have, since the 
workshop, been begun in several research laboratories.  Ultimately, 
this may turn out to be the most important result of the workshop. 

There was a divergence of opinion concerning the prospects for 
detailed modeling of the fundamental processes of ignition and combustion, 
One group felt that modeling in such detail would never be feasible, 
and even if feasible, would be of no particular value to the propellant 
formulator or user — that the current type of modeling, involving 
engineering correlations or parametric representation of complex 
processes would always be sufficient.  The other group pointed out 
recent advances in the combustion community in developing the capability 
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to model in detail processes such as flame propagation through flammable 
gases.  This group felt that such modeling techniques could be applied 
in some way to propellant combustion, and that such modeling might 
ultimately be the only way to gain an understanding of the relative 
importance of — and interaction between — the various chemical 
and physical processes involved in ignition and combustion. 

There was much discussion concerning the possible role of chemical 
changes in the nitramine slope break phenomenon.  In fact, this topic 
evoked the most lively discussions of the workshop.  Perhaps improperly, 
the discussion began as an either/or proposition: Why can't the slope 
break behavior of nitramine propellants be due to a change in chemical 
mechanism rather than, as usually assumed, a physical effect? The 
mechanism-change hypothesis is as follows:  Suppose the pure nitramine 
normally decomposes by an "autocatalytic" mechanism, for example by 
decomposing into NO2, which in turn reacts with the propellant in such 
a way as to enhance the rate of decomposition (this is really accelera- 
tion by products, not autocatalysis).  In a propellant, however, 
binder decomposition produces species (for example formaldehyde) 
which react with the NO2, thereby suppressing the autocatalysis. 
Above a certain pressure, binder suppression of autocatalysis becomes 
ineffective (perhaps due to slower diffusion) and the burning rate 
increases to that of the pure nitramines.  As with many of the other 
slope break interpretations, it is difficult with such a scheme to 
explain the lower burning rate of the larger particle propellant at 
the low pressures. 

In any case, the following arguments were brought up in favor of 
a chemical explanation:  a) HMX and RDX behave similarly, even though 
they have quite different physical properties, b) other composite 
propellants with similar physical properties do not exhibit such 
phenomena, and c) some homogeneous nitramine propellants reportedly 
exhibit slope breaks.  This last point, if correct, is extremely 
important; data showing clear slope breaks for homogeneous nitramine 
propellants were not available, however, and could not be assessed. 
Arguments for a physical explanation include:  a) the observed 
particle size effects suggest a physical effect, b) scanning electron 
microscope pictures of extinguished samples show changes in surface 
characteristics (melt layer or particle protrusion) at pressures 
near those where exponent changes are observed, and c) physical 
changes can be rapid, taking place over a temperature range of a few 
degrees or less.  (The surface temperature probably doesn't change 
much over a small pressure range.)  It might be thought that correlation 
of the behavior of different binders would provide the most insight. 
Unfortunately, the effect of different binders seems to correlate 
best with the thermodynamic properties of the binders, and not with 
their physical or expected chemical properties. 
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Actually, the whole question of "chemical-vs-physical" is perhaps 
somewhat artificial and oversimplistic.  For example, the chemical- 
mechanism change hypothesis must invoke binder-oxidizer flame diffusion 
effects in order to explain the low pressure suppression of the pure 
nitramine burn rate, and this can be considered a physical (mixing) 
process.  On the other hand, a physical interpretation based on a 
change of phase at the surface would have to include the quite likely 
possibility that the chemical mechanism, or at least the rate of 
reaction, might be different in the two phases; likewise, disappear- 
ance of an ignition delay could certainly be considered to be, at 
least partly, a chemical change.  Therefore, it seems quite appropriate 
that no consensus of opinion was achieved on this question at the 
workshop.  Nevertheless, the question of the role of chemistry in 
nitramine propellant behavior is valid and important, since, if 
chemical processes play a role, the possibility exists for chemical 
modification and control. 

The area of propellant catalysis was also discussed at some length. 
In the case of nitrocellulose-based propellants, catalysts have been 
successfully used for several decades and there has been considerable 
interest in recent years in determining the mechanism of the process. 
The nitramine community, on the other hand, is still looking for 
good catalysts, and has not devoted as much effort to determining 
how they function.  An attempt was made by the workshop participants 
to compare the known behavior of catalysts in nitrate ester and 
nitramine propellants.  Contrary to reports in previous years, it now 
appears that nitramine burn rates can indeed be significantly increased 
at low pressures by catalysts; moreover, the best nitrate ester catalysts 
(e.g., lead compounds) are also among the most effective for nitramine 
propellants.  (The common use of nitrocellulose binder certainly makes 
the interpretation more difficult, however!)  Other similarities, or 
differences, are not yet apparent; the effect of catalysts on the 
nitramine propellant combustion chemistry has not yet been measured, 
and it is not yet clear whether nitramine propellants exhibit plateau 
and mesa burning similar to that for double-base propellants. 

The problem of determining the site and mechanism of catalysis 
in nitrocellulose-based propellants remains unresolved.  There appears 
to be no firm evidence to support a direct interaction between the 
additive and the undissociated propellant molecule.  The observed 
pressure dependence of the flame standoff does not support the photo- 
chemical model.  A very basic difference of opinion exists as to 
whether the site of catalysis is in the condensed phase or in the 
"fizz" zone.  Thermocouple measurements, together with a solution of the 
energy balance equations, suggest that the solid phase heat release 
is probably unchanged by the catalyst, implying that catalysis occurs 
in the gas phase "fizz" zone.  Surface carbon formation, on the other 
hand, suggests that the condensed phase reaction and heat release 
are altered.  Some experiments were suggested that might resolve this 
question.  For example, if the rate of rapid thermal decomposition 
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under flameless conditions could be shown to be significantly greater 
for the catalyzed propellant for the same heat input, this would indi- 
cate catalysis of a condensed phase process.  (Laser augmented flameless 
regression would be one of many possible experimental techniques with 
which to make this comparison.) 

IV.  SPECIFIC DISCUSSION QUESTIONS, IDEAS, AND RECOMMENDATIONS 

The following are a few of the specific questions submitted by 
the workshop participants for discussion, together with some of the 
resulting ideas and recommendations. 

1. Can an experimental test be designed to distinguish whether 
the pressure break phenomenon observed with nitramine propellants is 
due to a chemical (i.e., change of mechanism) or physical (i.e., change 
of phase or surface structure) effect? 

No simple experimental test was suggested, but it was considered 
that the following types of experiment would be useful:  a) thermal 
decomposition and burn rate data for samples in atmospheres of specific 
gases or doped with chemical sources of reactive species (e.g., HCHO, 
NO2, etc.), including, where appropriate, use of isotopically 
substituted molecules; b) definitive strand burner data for homo- 
geneous and liquid nitramines; c) systematic studies with binders 
that would be expected to produce widely varying decomposition products; 
and d) burn rate measurements for single crystals of HMX at pressures 
as high as possible to confirm, as currently assumed, that HMX itself 
exhibits no slope breaks (published single crystal data only extends 
to about 20 MPa [2900 psi]).  Pressed strands of pure HMX do undergo 
a sharp slope change at sufficiently high pressures, but this is 
generally assumed to be due to in-depth burning (surface area increase) 
when the melt layer disappears. 

2. Where does catalytic activity influence HMX decomposition/ 
combustion (solid, liquid, or gas phase)?  Nitrocellulose decomposition/ 
combustion? 

Recommend that experiments include:  a) thermal decomposition studies 
with catalyzed propellants.  If the rate of thermal decomposition 
is increased by the additive, solid phase control would be indicated 
since no flame would be present; b) DSC/DTA comparisons for catalyzed 
and uncatalyzed propellants; c) burning rate measurements for pressed 
strands of binderless HMX with catalyst, to determine if the nitramine 
decomposition, or that of the binder, is enhanced by the additive in 
nitramine propellants and; d) a controlled set of experiments with nitro- 
cellulose and nitramine propellants to determine if the chemical effects 
are similar for both types of propellant. 

18 



3. To what extent do slow and fast decomposition experiments 
produce the same products as high pressure combustion? 

As already mentioned, such questions are prompted by the large 
number of thermal decomposition studies that have been published and 
are underway, especially for the nitramines.  Those not involved in 
the area quite naturally ask questions such as:  "To what use can 
the results of thermal decomposition studies be put?  How do the 
results of the different studies compare and what is the justification 
for doing even more studies of this kind?" It is recommended that 
a critical review of the thermal decomposition literature be undertaken, 
and that an attempt be made to correlate the available data in terms 
of the results obtained and the conditions under which the experiments 
were run.  It was felt that such comparisons might bring to light any 
variations in thermal decomposition chemistry with such variables as 
pressure, temperature and heating rate, and in addition would make 
it possible to assess the relevance of thermal decomposition results 
to the chemistry of burning propellants.  Several difficulties were 
foreseen that might make such a task difficult.  These include the 
following:  Different diagnostic techniques measure different species, 
making comparisons difficult.  Many studies have resulted in only 
qualitative, not quantitative, results, or are poorly documented. 
Finally, different studies have used different propellants.  In order 
to alleviate this situation, it is recommended that future studies 
be better documented, make use of simple, well-characterized samples, 
cover a wide range of rates, and if possible involve analysis by 
standardized techniques and procedures. 

4. Can nitramines burn in a "fizz" burning mode and do they have a 
dark zone? 

It is apparently not clear whether nitramines exhibit the same 
multiple flame zone structure, and incomplete burning at low pressure, 
as nitrate esters.  The reason for this lack of information is apparently 
the fact that the nitramine flame is difficult to see at lower pressures. 
Two types of experiments were suggested:  Microthermocouple measurements 
of temperature as a function of distance above the burning propellant 
surface should establish the flame zone structure for the nitramines, 
and also provide useful heat release information for the modelers. 
Calorimetric measurements and product analysis for low pressure 
combustion should indicate if incomplete burning occurs, and if so, 
provide valuable information about the early gas phase chemistry.  Both 
of these techniques have already been successfully applied to nitrate 
ester propellants. 

5. Why are the burning rates of pure HMX and RDX similar? 

At low temperature, the thermal decomposition of RDX is much faster 
than that of HMX, either due to the lower melting point of RDX 
(decomposition from a melt is considered to be faster than solid 
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phase decomposition) or because vaporization is an important process. 
Nevertheless, in combustion they both burn at approximately the same 
rate, despite the large difference in melting points and vapor 
pressures.  This suggests either that vaporization and/or melting are 
not important processes in the high pressure combustion, or that the 
surface temperature of burning HMX is much higher than that of RDX. 
(Another possibility is that the rate constant for HMX decomposition 
is much higher than that for RDX, or perhaps melting is important but 
vaporization is not, and the rate constants for decomposition from the 
melt are approximately equal at high temperature.)  It is recommended 
that comparative surface temperature measurements be made for burning 
HMX and RDX in order to determine what processes are important under 
combustion conditions. 

6. What effect might a pressure-induced phase transition to a 
polymorph other than 6-HMX have on the pressure slope break during 
combustion? 

The possibility of a polymorphic transition being responsible for 
the slope break phenomenon was considered.  No evidence for such an 
effect is apparent.  Contrary to observation, such an effect would 
probably be expected always to occur at the same pressure, and would 
be expected for pure HMX as well.  Nevertheless, it is recommended 
that the high pressure polymorphs of HMX and RDX be determined.  It 
was also felt that there should be a critical review of available 
theory and data related to the kinetics of phase transitions (including 
melting).  In other words, under what conditions will a phase transition 
not have time to occur, even though the temperature is above the 
equilibrium transition temperature?  Such considerations may play a 
significant role in future modeling efforts with nitramine propellants. 

7. Can a technique be developed for measuring the thermal 
conductivity of explosives and propellants at high temperatures and 
pressures? 

Thermal conductivities for the solid at temperatures up to those 
of the burning surface are required in most combustion models, but 
are not in general available.  The problem is that there is no technique 
available to measure the conductivity above the decomposition temperature 
since, in general, decomposition will be accompanied by self-heating. 
Moreover, if a high temperature phase transition (including melting) 
occurs, it is not even possible to extrapolate low temperature data to 
the conditions of interest.  Clearly, a transient experimental technique 
of some kind is required.  No suggestions were made as to how this 
might be done. 
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8.  To what extent does the kinetics of the gas phase reactions 
above the surface determine the combustion rate? 

This topic developed into a discussion of possible flame diagnostics 
to probe the gas phase reactions near the surface of the burning 
propellant.  The difficulty lies in the fact that the "fizz" zone of 
nitrate ester propellants is extremely thin — perhaps 100 microns 
even at very low pressures.  Surface irregularities on the burning 
propellant are much larger than this, making most optical techniques 
out of the question.  For nitramines, the situation may or may not be 
different, depending on whether they have a flame structure similar to 
that of the nitrate esters.  It was suggested that non-transmission 
optical techniques (e.g., fluorescence, Raman) might be successful. 
It was also suggested that some useful experiments might be done with 
thin film propellant samples burning edgewise.  For such a configuration 
the reaction zone of interest would not be obscured by surface 
irregularities.  The outer flame zones pose much less of an experimental 
problem, although the chemistry there probably does not significantly 
influence the burning rate of the propellant.  (Some limited success 
in probing the outer flame zone of double-base propellants has already 
been achieved, most notably with rapid scan i.r. spectroscopy.) 

It became evident in this discussion that our knowledge of the 
important gas phase chemical processes will of necessity come from 
indirect sources, at least for the immediate future.  Several model 
systems were recommended for experimental study.  Suggested experiments 
included:  a) shock tube studies of the high temperature pyrolysis of 
nitramines in the gas phase, b) measurement of species concentration 
profiles for burner flames of aliphatic nitrate esters and nitramines 
and, c) characterization of flames, and ignition limits, of the known 
propellant decomposition products (e.g., HCHO + NO /N„0/N0). 

V.  CONCLUSION 

The workshop provided a useful assessment of our current state of 
understanding of the fundamental chemical reactions involved in the 
combustion of double-base and nitramine propellants.  At present, our 
knowledge is still very primitive.  Some recommendations have been 
made for research that should provide more detailed information about 
these processes. 
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