A METHOD TO OVERCOME THE PROBLEM OF SERIES RESISTANCE IN THE CAPACITANCE-VOLTAGE TECHNIQUE FOR CARRIER DENSITY DETERMINATION

by Amitabh Chandra

School of Electrical Engineering, Cornell University, Ithaca, N.Y. 14853

The net donor density of n type GaAs epitaxial layers is commonly determined from capacitance-voltage measurements made on a Schottky barrier deposited on the epitaxial layer. The back ohmic contact is usually alloyed to the substrate, if it is n type, or to the layer itself, if the substrate is semi-insulating (Fig. 1). In the latter case, the resistance R in series with the Schottky diode capacitance C can be significant and can introduce an error in the determination of C. In this note, a practical solution to the problem is proposed.

The capacitance meter used for C-V characterization usually measures capacitance by phase sensitive detection. Under conditions of constant bias, the a.c. equivalent circuit between the Schottky and ohmic contacts consists of a capacitance C in parallel with a leakage a.c. conductance G, this combination being in series with the resistance R (Fig. 2). The admittance Y between the ohmic and the Schottky contacts at $\omega/2\pi$ hertz can be expressed as

$$Y = G' + j\omega C'$$

(1)

where ω
\[
G' = \frac{[GH + \omega^2 RC^2]}{[H^2 + \omega^2 R^2 C^2]},
\]

and
\[
C' = \frac{C}{[H^2 + \omega^2 R^2 C^2]},
\]

and where
\[
H = RG + 1.
\]

A small signal a.c. voltage \(\vec{V} = V_0 e^{j\omega t} \) (typically 15 mV at 1 MHz) is superimposed on the d.c. bias. By detecting the current 90° out of phase with \(\vec{V} \), the capacitance meter essentially measures \(C' \). For Schottky barriers on GaAs, \(G \) is usually very small. Under the conditions \(RG \ll 1 \) and \(\omega^2 RC^2 \gg G \), Eqs. (2) and (3) become
\[
G' = \frac{\omega^2 RC^2}{1 + \omega^2 R^2 C^2},
\]

and
\[
C' = \frac{C}{1 + \omega^2 R^2 C^2}.
\]

For high purity (n-) GaAs layers about 10 microns thick, doped in the low \(10^{14} \text{ cm}^{-3} \) range, and grown on semi-insulating substrates, the sheet resistance can be of the order of \(10^4 \text{ ohms/} \square \). For 0.030" diameter Schottky barrier contacts, the zero bias capacitance is typically in the range 10 - 30 pf. Using \(\omega = 2\pi \times 10^6 \text{ sec}^{-1} \), \(C = 15 \text{ pf} \) and \(R = 10^4 \text{ ohms} \) gives \(\omega CR \sim 1 \). Thus the error in the measurement of \(C \) can be quite significant, leading to an even larger error in the estimation of \(N_D - N_A \).
Solution

The problem of series resistance may be overcome if in addition to measuring C' the instrument also obtains G' (by detecting the current in phase with \bar{V} on a second phase sensitive detector). Then C may be extracted from C' and G' as

$$C = C' + \frac{G'^2}{\omega^2 C'} \quad (7)$$

A simple substitution of Eqs. (5) and (6) into the R.H.S. of (7) proves this identity. Using suitable calibrations, the outputs C' and G' / ω can be made available as analog voltages. The squaring, division and addition operations can all be accomplished by appropriate analog circuitry to yield an analog output representing C.

The extent of the error made in assuming $RG << 1$ can be determined by substituting Eqs. (2) and (3) into the R.H.S. of Eq. (7). This gives upon simplification the elegant equation (see Appendix)

$$C' + \frac{G'^2}{\omega^2 C'} = C + \frac{G^2}{\omega^2 C} \quad (8)$$

Thus even if RG is not $<< 1$, Eq. (7) will still hold provided $\omega C >> G$.
Appendix - Derivation of Equation (8)

\[
C' + \frac{G^2}{\omega^2 C'} = \frac{C}{H^2 + \omega^2 R^2 C^2} + \frac{(GH + \omega^2 RC^2)^2}{\omega^2 C/(H^2 + \omega^2 R^2 C^2)}
\]

\[
= \frac{\omega^2 C^2 + G^2 H^2 + 2GH\omega^2 RC^2 + \omega^4 R^2 C^4}{\omega^2 C(H^2 + \omega^2 R^2 C^2)}
\]

Expanding the third term in the numerator gives

numerator = \omega^2 C^2 \left[1 + 2GR + G^2 R^2 + \omega^2 R^2 C^2 \right]

\[+ \omega^2 C^2 G^2 R^2 + G^2 H^2 \]

\[= (\omega^2 C^2 + G^2)(H^2 + \omega^2 C^2 R^2) \]

Thus

\[C' + \frac{G^2}{\omega^2 C'} = \frac{\omega^2 C^2 + G^2}{\omega^2 C^2} = C + \frac{G^2}{\omega^2 C^2} \]

References

Figure Captions

Fig. 1. Reverse biased Schottky barrier on epilayer.

Fig. 2. A.C. equivalent circuit of reverse biased Schottky barrier.
Schottky barrier contact

depletion region

epilayer

S-I substrate

Ohmic back contact
List of Symbols

C \quad \text{Capacitance across Schottky depletion region (a.c.)}

C' \quad \text{Equivalent capacitance seen across circuit (a.c.)}

G \quad \text{Leakage conductance across Schottky depletion region (a.c.)}

G' \quad \text{Equivalent conductance seen across circuit (a.c.)}

H \quad RG + 1

j \quad \sqrt{-1}

N_{D-N_A} \quad \text{Net donor density}

R \quad \text{Resistance in series with Schottky barrier}

T \quad \text{Time}

V \quad \text{Applied d.c. bias voltage}

\ddot{V} \quad \text{Small signal a.c. modulation voltage}

V_o \quad \text{Amplitude of } \ddot{V}.

Y \quad \text{A.C. admittance of circuit}

\omega \quad \text{Angular frequency of } \ddot{V}.