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ABSTRACT

54h|s final report covers the theoretical development of and experimental
results for the stress analysis and strength characterization of thick
composite laminates. Thick composite laminates (consisting of 38 plies

or more) are being evaluated for use In future high performance
anti-ballistic missiles and other aerospace applications. The theoretical
development includes the derivation of a high-order theory of plate
deformation which accounts for the effects of transverse shear deformation,
transverse normal strain, and.a non-linear distribution of the in-plane
displacements with respect to the thickness coordinates. The theory Is
developed for both homogeneous and laminated plates.and is presented
respectively in Chapters | and 2. Chapter 3 presents further examination
of this high-order plate ory via stress solutions which have been carried
out to assess its accurac This theory, in effect, enables close
estimation of three-dimensional stress components from essentially
two-dimensional analysis.

The effects of the three~dimensional state of stress on the strength of a
thick laminates are analysed with a 3-0 failure criterion. -+n Chapter 4,
the tensor polynomial method is extended with full account given to
three-dimensional stress state effects and is presented together with
experiment and evaluation of the coefficients. combined theoretical
development of thick-plate analysis and three-dimensional failure criterion
is expected to improve confidence and full utilization of composites in
applications where the thickness of the laminates prevents them from being
adequately treated by current thin-plate formulations.
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SUMMARY

This final report covers the theoretica! development of and
experimental results for the stress analysis and strength characterization
of thick composite laminates. Thick composite laminates (consisting
of 38 plies or more) are being evaluated for use in future high
performance anti-ballistic missiles and other aerospace applications.
The theoretical development includes the derivation of a high-order
theory of plate deformation which accounts for the effects of transverse
shear deformation, transverse normal strain, and a non-|inear
distribution of the in-plane displacements with respect to the
thickness coordinates. The theory is developed for both homogeneous
and laminated plates and is presented respectively in Chapters | and
2. Chapter 3 presents further examination of this high-order plate
theory via stress solutions which have been carried out to assess
its accuracy. This theory, in effect, enables close estimation of
three-dimensional stress components from essentially two-dimensional
analysis.

The effects of the three-dimensional state of stress on the
strength of a thick laminates are analysed with a 3-D failure
criterion. In Chapter 4, the tensor polynomial method is extended
with full account given to three-dimensional stress state effects and
is presented together with experiment and evaluation of the
coefficients. The combined theoretical development of thick-plate

analysis and three-dimensional failure criterion is expected to

improve confidence and full utilization of composites in applications




where the thickness of the laminates prevents them from being

adequately
treated by current thin-plate formulations.




INTRODUCTION

In many structura! applications, special characterization methods
are needed to model very thick, laminated composites. These thick

composites are currently being evaluated for future high performance

antiballistic missiles and other aerospace applications. A rational
characterization must include 1) extending current two-dimensional
laminated-plate theory to reflect the three-dimensional characteristic
of these thick plates for the purpose of accurately estimating
deflection and the three-dimensional state of stress, 2) establishing
failure criterion to assess the effect of the three-dimensional state
of stress and hence of the strength of a thick laminate. In light of
these requirements, a high-order plate deformation theory is derived
to remove the restriction of the plane-section-remains-plane
hypothesis in conventional laminated plate theory by allowing a

plane section to assume third-order displacement modes. This theory
is fully developed for homogeneous and laminated plates and is
presented, together with stress solutions, in chapters |, 2 and 3.

In order to present the theory in complete and concise form the
theories and stress solution are presented in the format of self-
contained chapters. Finally the effects of a three-dimensional state
of stress on the strength of the thick laminates are assessed with

a three-dimensional tensor polynomial failure criterion in chapter 4.
These four chapters together provide the necessary tools for the
stress analysis and strength characterization of thick laminates
composites. Thesme tools should enhance a more complete and confident

utilization of composites in the form of thick laminates.
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Chapter 1

A HIGH ORDER THEORY OF PLATE DEFORMATION

Homogeneous Plates

K. H. Lo, R. M. Christensen, and E. M. Wu
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ABSTRACT

A theory of plate deformation is derived which accounts for the
effects of transverse shear deformation, transverse normal strain,
and a nonlinear distributiz~ of the in-plane displacements with respect
to the thickness coordinate. Tha theory is compared with lower order
plate theories through application to a particular problem involving
a plate acted upon by a sinusoidal surface pressure. Comparison is
also made with the exact elasticity solution of this problem. It is
found that when the ratio of the characteristic length of the load
pattern to the plate thickness is of the order of unity, lower order
theories are inadecuate and the present high order theory is required
to give meaningful results. The present work treats homogeneous

plates while Chapter Il involves laminated plates.

INTRODUCT ION

The development and application of classical plate theory is one
of the achievements of modern engineering. It is continuously being
applied to new problems to gain new and needed design information.
Despite its successes, however, the inherent limitations of the classical
theory necessitate the development of more refined and higher order
theories of plate behavior. More sophisticated models of plate behavior
find application to problems where classical plate theory is simply
inadequate to describe the behavior. Such examples concern plate with
cutouts, contact problems involving plates, and laminated plates. The
present work concerns the derivation and evaluation of a particular high

order theory of plate behavior.
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Before describing the present theory, it is necessary to briefly

review the recent developments in the generalization of classical
plate theory. Reissner [1,2] was the first to provide a consistent
theory which incorporates *the effect of shear deformation. The derivation

given by Reissner resulting in displacements of the form

u=u® + Y,
v =\ o+ zwy (1)

w=w’

where z is the coordinate normal to the middle plane, and u®, v°,

Wx. Wy, and w° have a dependence upon the in-plane coordinates x and vy,
and wx, Wy, and w® are actually weighted averages. The basic
assumption used by Reissner involved consistenrt forms for the stress
distributions across the thickness. A special variational theorem was
used to determine both the equations of equilibrium in terms of
resultants and the stress-strain relations in the form involving
resultants and the functions in (1). At the same level of approximation,
Mindlin [3] employed kinematic assumptions of the form of (1), and
without introducing corresponding stress distribution assumptions,
obtained the governing equations from a direct method. In Mindlin's
derivation it was necessary to introduce a correction factor into

the shear stress resultants to account for the fact that relations (1)
predict a uniform shear stress through the thickness of the plate,
which is incorrect and in general would violate surface conditions.

The correction factor was evaluated by comparison with an exact

elasticity solution. It is useful to observe that the form (1) applies




to both the classical theory of plate bending as well as to the

theories of Reissner and Mindlin which include the effect of transverse
shear deformation. Thus, considering the terms in (1) as the first
terms in a power series expansion in z, it is seen that the classical
theory and the shear deformation theory are of the same order of
approximation. The classical theory is merely a special case of the
shear deformation theory, wherein the shear modulus in terms associated
with the transverse shear deformation is taken to be very large,
such that transverse shear deformation can be neglected.

There have been several theories proposed which are of higher order
than those of Reissner and Mindlin. Typical efforts along these lines
will be mentioned here. The next higher order theory from that

embodied in (1) involves displacement forms of type

u=u + zwx
= y° + 2
v =y zwy (2)

= ° 2
w=w’ + zwz + 2 Cz

which invludes the effect of transverse normal strain. Displacement
assumptions of the form of (2) along with corresponding stress
distribution assumptions have been used by Naghdi [4] to derive a

general theory of shells, and by Essenburg [5] to derive the corresponding
one-dimensional plate theory. |In the context of contact problems,
Essenburg [5] demonstrated the utility and advantages of the theory

based upon (2) over lower order theories. Whitney and Sun [6] also
utilized assumptions of the level of (2) to develop a theory of

lamianted cylindrical shells. However, there is an inconsistency in

7




their approach. Tﬁoy used a shear correction factor of the same type
as that employed by Mindlin in deriving stress resultants. Whereas

a factor of this type was appropriate to Mindlin's derivation since it
assumed uniform shear stresses across the thickness, the same type of
correction factor is not appropriate for use with the displacements of
the form of (2). This is because non-uniform shear stresses are
implied by (2) along with consequent satisfaction of top and bottom

3 boundary conditions of shear tractions; thus the rationale for a

correction factor is obviated.

The next higher level theory is based upon the assumed displacement

forms

u=uy + zwx + zzcx
e 2
vy o+ zwy +z Cy (3)

w=w o+ zwz + zzcz

A theory derived from (3) has been given by Nelson and Lorch [7] for

application to laminates. This theory however has the same defect

in application as that mentioned above in connection with Ref. [6];
namely, a shear correction factor was employed when in fact it is
inconsistent with the level of approximation in (3). Hildebrand,

Reissner and Thomas [8] briefly examined a theory of the level of

(3) and concluded that the inclusion of the quadratratic terms in the
in-plane displacements does not provide a significant advantage over
the lower level theory.

Reissner [9] has presented a theory which to a consistent degree

of approximation gives

S,
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vy + z3¢x
- 3
v zwy + 2z ¢y (&)

= ° 2
w=w +2 Cz

where the last relation in (4) follows by combining relations (9) and

(11) of Ref. [9].

to (4) gives very accurate results compared with the elasticity solution

for the bending of a plate with a circular hole. t should be noted
that the theory based upon (4) represents the lowest order correction

for out-of-plane deformation effects to the classical theory embodied

in the first terms in (4). Though these results obtained by Reissner

are impressive, a theory based upon (4) neglects the contribution of

in-plane modes of deformation; only out-of-plane effects are considered.

Such in-plane effects may be of importance in certain plate problems,
and this effect will be investigated herein.

The theory to be presented here is appropriate to the following

displacement forms:

u=u’+ zwx + zzcx + z3¢x
L 2 3
v =y o+ zwy +z Cy + 2z ¢y (5)

2
- (-]
w=w + zwz 0 Cz

which is of the same level as the Reissner theory corresponding to
(4) but includes both in-plane and out-of-plane modes of deformation.
The theory of plate behavior based upon (5) will be derived by
application of the principle of stationary potential enzrgy. The

accuracy of this theory will be assessed by direct comparison with an

exact solution from the theory of elasticity.

Reissner has shown that the plate theory corresponding
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Before turning to the derivation, it is pertinent to outline the
motivation for the present work. The primary intended application for
the present high order plate theory is in the field of laminates.

It is well known that laminated plate behavior provides a particularly
critical test of the Bernoulli hypothesis concerning plane sections
remaining plane. The mismatch in properties causes deviations from the
lowest order terms in displacement forms (4). However, to place the
present work in its proper context, it is useful to derive it first in
the form directly suitable for application to homogeneous plates.
Accordingly, the present paper, Chapter | is concerned with homogeneous
plate behavior while Chapter Il, following, is concerned with the
application to laminates. The present work thus affords the opportunity
to assess the importance of the full form of displacements (5) compared
with the partial form (4) for certain types of problems. This same
question will be further explored in the context of laminates in
Chapter |I1.

Finally, it should be mentioned that a theory of the level of (5)
certainly is of a rather complicated form, and the question arises
whether there is a practical need for such a theory. It is a question
of the degree of accuracy required. For problems which involve
rapidly fluctuating loads with a characteristic length of the order
of the thickness, the results presented herein show that a theory of
the degree of sophistication of (5) is required to give meaningful
results. Also, it should be recognized that the theory to be developed
here is amenable to numerical integration with respect to the planar

X,y coordinates.
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THEORY

Plate theories can be developed by expanding the displacements
in power series of the coordinate normal to the middle plane. In
principle, theories developed by this means can be made as accurate
as desired simply by including a sufficient number of terms. In
practice, however, a point of diminishing returns is reached whereby
the complexity of the resulting forms becomes too great. Here, we
seek the minimum number of terms which include the effects of
transverse shear deformation, transverse normal strain, and warpage
of the cross section. Thus the displacements are taken in the form

of (5).

The principle of stationary potential energy is used to derive

the governing equilibrium equations. It is found that
.+ + =0
NX.X NXY,Y qx
N, _+N kg 9

Y»Y XY 3 X Y
+ +q=0
G ® Yy

+ - +m =0
HX,X MxY ’y Qx X

" - B i = (6)
MY:Y ny'x Qy my
+ -~-N +m=0
Rx,x RY’Y z
-2R +n =0
PX,X = PxY'Y X x

+ = gR. ¥ =0
PY.Y PXY.X . ke

S + S - 2M, +n=0

X, X YsY
M - + 2 =0
E;,x " MXY.Y 38” X
"

M - +2 =0
Y,Y g Mxy.x 35Y Y




where the stress resultants are defined by

and

with

- o
N, Ny N N q, Q h/2 [
- lcx ay %2 Txy Txz Tyz]dz (7
M M M R R -h/2 2
b 3 Y 2 Xy X Y ;
¥ rF » h/2
R Yy ny
Lt I t 3j (o, o, Txy) dz (8)
L"* W e -h/2 Lz
h/2 2
[5" Sy] -f-hlz 2- (T xz Tyz) dz )
o, 0 = [T (W2t W] [ R
S 2
(qy ny) = [Tyz(hlz)"yz( W2)1 [tk /10]3
(mx lx) = [r¥z(h/2) ke (-h/2)] [h/2 h3/8]
(my zy) - [Tyz(hlz) * T, ( -h/2)) h/2  h7/8] Qo
(@ n) =lo,(h/2)- ot h/2) LI 214
h
m o= & o, (2) 40, (-/2)]

The resultants in terms of the displacement functions are given by

o

3
7 w2005, + ALy

N = (A+2u)hu’® g ? Ahv* 'y + lhw + =

3
Ny « \hu®,  + (A+2u)hv y * Mg, + ﬁ llcx'x + (A ZH)CY'VI

p 3
h
N, = Ahu®, + AWE, 4 ey, + 33 D, e ] (1)
3
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h
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2
hs
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3
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5
h
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3 5
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7
h
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5
h
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ST s A el
Qx ¥ wx ¥ W 12 3 X Z,X

§ uh3 (15) 1
Qy = uhlwy +w .y] * S [3¢y + Cz'yl
h3
Re=57 &+, ]
b3 (16)

Y 12 [ch 4 wz.Y]

-and

3 5
uh ° uh
=7 Wt v T B gl
3 5 (17)
ph ° uh

where X\ and u are the Lamé constants.
Finally, the boundary conditions along the edge of the plate

require that one member of each of the following eleven products must

be presecribed:

where n and t are the directions normal and tangential to the edge

of the plate.
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When expressed in terms of displacements, relations (6) comprise
a set of eleven coupled second order partial differential ¢ juations

which govern the behavior of the present plate theory.

EVALUATION OF PLATE THEORIES

An approximate theory can be critically assessed in comparison
with an exact result. Fortunately, there are exact solutions available
from the theory of elasticity which are suitable for the present
purposes. The solution of use here is that of the deformation of an
infinite plate of thickness h subjected to a pressure on the top

surface z = h/2 of the form
. X
q = q, sin T (18)

with all other surface tractions vanishing identically. From

equations (1) it follows that

qx.qyumx-my-nx-ny-!,x-ly-o (]9)
with
h X
m fqos‘"-l.—
2
n-bﬁ-qo sinz-l_’£ (20)

The equations of equilibrium (6) take the following special forms

for this problem
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wly, s we, e B2
X, X ¥ xx 12 3q>x.x g Cz.xx] i, i
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3
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3
h
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h
* 3 [(3n-2)\)<.*ax_x + uc!'xx] +n=0
hS
% [(X*Zu)wx.xx + (ZX‘3U)CZ'x - 9u¢x]

5 s
h h °
* W5 [(X*Zu)tbx‘xx) - P-l.-- N’x +w ’x] =0

3
o h— -
(A+2p) hu e ¥ thz.x + (A+2u) 3 & 0

X 5 XX

!‘.3. [(2u-A)g + 1 - Ahw®, = (A+2p)hy_ + m=0
12 Xy X Z,XX X z

bi [(A+2p) u® = g+ 20y ]

12 "xx X 24X

ho
* % [(A+2u)cx'xx] =0

hS
17 ““’2")‘&.“ + ncz.x] ‘5 [(MZUMX’“]

(21)

(22)




and

5 S 3

bh” rh” = _ uh 2
12 wv.xx M T <:’y.xx uhwy 3 0, 0
5 7 3

h - gh” . bh g

8 Dy B Y 4F 4y T Y 7O

Note that the equations partially decouple such that the equation
grouping in each of the above number sets are individually determinate.
Obviously, the solution for the generalized displacement functions
involve terms proportional to sin mx/L and cos m™x/L. Making the
appropriate assumptions of this type, relations (21) - (24) can be
solved analytically in closed form.
The completed solution can be used to evaluate the displacements

and stress for comparison purposes. The mid-plane displacement is

given by

° qO

% o Y ik
w® = == =57 33600 (1-v)(1-2v) + [7200-16920v + 5520v°]) (f)
m

+ lhOv(l-v)n" (%) A - (1-v)2a8 ({l)s}sin -"_:

coo ()] )

2

{h(l-v) [8'400 (1-2v) + 120 (.1-\,)“,2 ({_)

17

(24)

(25)
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The solution for the stress component 9, is given by

" 15 (0-v%r? (/)2 D2 (@2/m)2-1] :
x " % [m (1-2v) + 24 (1=v)12 (/)2 + (1-v)2a (h/L) ]

+[:—2 (}LT)z (33600 (1-2v) - 120 (1-v) (10-7v) m2h2
o oot (2)']

>IN

L2

(26)

+ 12(1~v) (ﬁ) 3 [2800 (2-v) + 280 (l-\))'n'2 (h) . ]] stn =

2
/[16800 (1-2v) + 240 (1-v) n? (%) + 2 (1-v)2r" (%) 4,

These results are to be compared with the exact solution, taken from

Little [10]. Other lower order approximate theories also will be compared

with the present results. First, the classical theory result is noted to be

q 4
w’ --Dg LE sin(l:_i) (27)

w -_D_g’:- [1-0-1:—0 ¢ -{-%—}%%—(—E—-)z] sin:—x (28)
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Essenburg's theory gives

Finally, for comparison, the present theory with cx = Cy = ¢x = ¢Y =0

(29)

in (5) has been evaluated and will be referred to as the 'Level (2) Theory',

consistent with equations (2).

. ol

b

1

This solution is

20n2

(1-v) 120 + (l-v)'n'z (h/L)ZJ

-

b(1-v) 1120 + (1-v)7% (h/L)2)

L
+ (l-v)wh (

h

()’

2
hvzwz (b-) + 20\11r2 (-h-

L

For the stress component ox, the classical, the shear deformation

Reissner, the Essenburg, and the Level (2) theories all give the same

results,
q
0
dx-|2—2-

sin

r-lg

2

)

(30)

(31)




DISCUSSION

Through comparison with an exact solution, we seek to determine
the relative accuracy of the various approximate theories, including the
one presented herein. Due to the high order of the terms included in
the present theory, it is of course not corivenient to use. Accordingly,
it would be helpful to deduce guidelines by which on can ascertain
when it is necessary to use a high order theory, as given here, and
when a lower order theory will suffice.

The range of theories to be considered are from the classical
case to the present form. In between these extremes, the well-known
Reissner shear deformation theory will be considered along with the
extension of it by Essenburg to include transverse normal strain
effects. Essenburg's theory employs assumptions upon both stresses
and displacements. The Level (2) theory referred to in the previous
section uses exactly the same assumuptions upon displacement as in
Essenburg's theory; however, no corresponding assumptions are made
upon the stresses. Rather, the Level (2) theory solution is obtained
as a special case of that given herein, which of course is derived
directly from potential energy. Thus, the Essenburg theory and the
Level (2) theory are of the same order, but involve different
derivations, and it will be of interest to compare them directly with
each other.

Stress distributions across the thickness of the plate are
displayed in Figure 1 for h/L = 1.5, where L is the half wave length
of the sinusoidal loading pattern. Thus, the ordinate, h/L, is the

ratio of thickness of plate to characteristic length of the loading

20




pattern. The high order theory due to Reissner corresponding to

Level (4) is of the same order as the present theory based upon (5),
the difference being that Reissner's theory omits the combined effects
between in-plane and out-of-plane deformation modes. Thus, the Reissner
Level (4) theory of necessity produces antisymmetric stress states
about the middle plane of the plate. From Fig. | it is seen that the
exact solution deviates strongly from the anti-symmetry characteristics
just mentioned; thus it is clear that a theory of the type of (4)

could not come close to reproducing the exact solution. Also, it is
obvious from Figure 1 that the Reissner Level (1) and the Essenburg
theories provide no improvement over the classical theory in terms

of the accuracy of the stress representation. Considering the complex
shape of the exact solution stress distribution, the present high order
theory provides an effective modeling result.

The maximum value of stress 9. (flexural stress) is plotted
against h/L in Figure 2. Clearly, when the ratio of the thickness to
the characteristic length of the load is of the order of 1, the present
high order theory is needed to properly model the deformation effects
in the plate and lower order theories are inadequate. This specific
conclusion of course applies only to the present example, but we
speculate that in all problems where disturbing features have a
characteristic length of the order of the thickness, then a theory at
least of the order of the present one would be required to properly
model effects.

The maximum displacement of the middle plane of the plate according

to the various theories are compared with the exact result in Figure 3.
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It is seen that for h/L = 1.5 the deviations between the approximate

theories and the exact result are substantial, and the deviations
continue to increase with increasing h/L. The present high order

theory is seen giving the result closest to the exact result. The
results from Essenburg's theory and the Level (2) theory are of about
the same level of accuracy as one would expect for the reasons described
above. Note also that the present high order theory is clearly superior
to the Level (2) theory.

The main result of the present work is viewed as a complement to
the result found by Reissner (9], this result being that a theory of
the level of (4) or (5) is needed, in generai, to provide a significant
improvement in the level of accuracy over that afforded by the classical
theory of plate deformation. Further, it follows that with a theory
of the level of (4) or (5), very accurate results can be obtained.

It is now possible to answer the question raised in the Introduction
of whether in a given problem the coupling effects implicit in (5) are
needed rather than using the simpler form (4). |In the example studied
by Reissner [9] of the bending of an infinite plate with a circular
hole, the results derived from a theory corresponding to (4) were
entirely satisfactory and sufficient, whereas in the present example
the theory based upon (5) is required for the reasons described above.
An examination of the governing set of differential equations (6) shows
that the sets of equations governing the in-plane and the out-of-plane
deformation modes completely decouple. In the problem studied by
Reissner [9], the in-plane contributions to the problem are easily

shown to vanish identically, thus a theory based upon (5) provides no
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new information over one based upon (4) in that problem. However, in

the present problem the in-plane contribution to the solution has been

shown to be significant, and cannot be neglected. Thus, it is seen

that for plate bending problems where the loading characteristics possess
a high degree of asymmetry, with respect to the middle plane, then a

theory of the type of (5) rather (4) is required, while problems with

loading characteristics which are close to being anti-symmetrical with
respect to the middle plane then a theory of the type of (4) is
sufficient. The bending of an infinite plate with a circular hole

is an example of the latter type of problem, while the problem
considered herein as well as contact problems, are examples of the
former type. Of course, neither type of high order theory is needed
unless the disturbing feature of geometry or the characteristic load
length are of the order of the plate thickness.

Finally, it is appropriate to mention the nature of the stress
resultants involved in the present theory. As seen from (7) - (9),
there are resultants of higher order than bending moments and shear
force involved in the governing differential equations. These same
higher order resultants are also necessarily involved in the
specification of edge conditions. It is logical to ask what is the
significance of such high order resultants in edge condition
specifications, and is there any way to avoid involvement with them.
The answer to this question is very simple. There is no way to avoid
consideration of these high order resultants in the present context;
indeed, it would be disturbing if the present high order theory did

not require the specification of corresponding high order resultants
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along edges. For traction-free edges, of course, the resultants of all

orders simply vanish. For loaded edges, the distribution of tractions
across the thickness must be obtained or assumed, from which the
resultants of all orders can be determined.

The extension of the present plate theory to laminated plate
conditions is of particular importance since it is known that for
laminates the distribution of in-plane displacements across the thickness

may be strongly nonlinear. This extension is presented in Chapter Il of

this same work.
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FIGURE CAPTIONS

Figure 1: Flexural stress dis:ributions for v = 0.25 and h/L = 1.5,
Figure 2: Maximum flexural stress distributions for v = 0.265.

Figure 3: Mid-plane displacement solution for v = 0.25.
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Chapter 2

A HIGH ORDER THEORY OF PLATE DEFORMATION

Laminated Plates

K. H. Lo, R. M. Christensen, and E. M. Wu
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ABSTRACT

The high order theory of plate deformation developed in Chapter | of
this work is extended here to model the behavior of laminated plates.
Through comparison with elasticity solutions, it is shown the present

theory correctly models effects not attainable from the classical theory.

INTRODUCT tON

With the increasing use of composite materials in thick laminated
form, the need for advanced methods of analysis is obvious. For such
laminated systems, the components of stress and strain transverse to
the plane of the laminate strongly influence the behavior. Thus,
classical laminated plate theory, which is not formulated to account
for the effect of these transverse stress and strain components, is not
applicable to thick laminates. A high order theory of plate behavior
is herein developed for application to laminates; this theory is an
extension of that developed in Part | of this work [1], for application

to homogeneous plates.

Many different high order laminated plate theories have been
proposed which are intended to improve upon the classical laminated
plate theory by accounting for the effects of the transverse components
of strain in the plate. Typical examples of such theories are cited
in [2-5]. The simplest of all the improved laminated theories are

the ones based on an assumed displacement field of the form

u=u’ (x,y,t) + wa(x,y,t)
v=v®o(x,y,t) + Zwy(x.y.t) (m

we=w (x,y,t)
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Actually, relations (1) apply to both the classical form and the
improved shear deformation theory, the difference being that in the
classical theory the W‘ and Wy terms are directly specified in terms
of derivatives of w. Despite the increased generality of the shear
deformation theory, the related flexural stress distributions show
little improvement over those of the classical laminated plate theory.
It is apparent that higher order terms are needed in the power series
expansions of the assumed displacement field to properly model the
behavior of the laminates.

In this paper, a consistent high order laminated plate theory is
derived for the flexural behavior of laminated plates. The following

displacement field is assumed:
° 2 3
U=t (xy) +zb (xy) + 27 5 (x,y) + 270, (x,y)

v =v® (x,y) + zwy (x,y) + 22 &y (x,y) + z3¢y (x,y) (2)

2

w=w (x,y) + 29, (x,y) +2° 2, (x,y)

The level of truncation in Equations (2) is consistent in the sense
that the transverse shear strains due to in-plane displacements u and

v are of the same order in z as those determined by the transverse
displacement w. This high order laminated plate theory is an extension
of the thick plate theory developed earlier for homogeneous isotropic
plates [1]. The accuracy of the theory is assessed through its
application to the problems of a bi-directional and an angle-ply

laminate subjected to sinusoidal surface loading.
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In addition to surface loading problems, there are other classes
of problems of practical interest which require the use of a theory of
the order of the one given herein. For example, stress risers such as
cut-outs, loaded holes and subsurface cracks, and problems involving
the impact of laminates by foreign objects cause stress distributions
and localized stress gradients through the thickness of the plate that
are essentially three-dimensional in nature and require the application

of a high order theory.

LAMINATED PLATE THEORY

The theory used in this paper is based on the assumed displacement
field as given in Equations (2). The constitutive relations for any

layer of the laminate are of the form

o e g HE 7
™ S S22 C3 . Sel (5

9 Cia C2 Cy3 Cye| |Gy

o, C13 Ca3 C33 C3¢| |,

T . 0. €' @ Y

_xz L..l6 26 36 63 Lx):

Tyz u Cus| |Vyz

Txi C&S C55 sz

where cij are the components of the anisotropic stiffness matrix. It
should be noted that all the six components of stress and strain tensors

are included in this theory.
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The governing equations pertinent to this theory are derived

using the principle of stationary potential energy in the same g,
manner as that in Ref. [1]. Eleven equilibrium equations are obtained
for the determination of the eleven generalized displacement coefficients
in Eqs. (2). The details of the derivations are omitted here; suffice
it to say in full form the derivation is rather lengthy. These
governing equations are recorded here, in an archive journal, for
possible future use in related problems.

Governing equilibrium equations of higher order plate theory are

given by

N +
X, x xy,y X

X, X Y,Y

X, x Mxy.y B Mt et
Ny,y £ ny,x = Qy + L =0 )
Rx,x + Ry,y - Nz +m=0
Px.‘ + Ny 2Rx +n_ =0

ot g T AR i, = 8

Sx,x + Sy,y = ZHZ +n=20
ﬁ*,x §: ﬁ;y,y " S "
MY.Y + ny.x - 3SY + ﬁy =0
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where

and

x oy N B R Qy h/2 1
i [c!x G T T b
Mx MY M M R R

z xy “x Ny ~h/2 z
.
P P P h2 [ 22
X Yy Ty
= g, g..T d
NoOH, N J( {: 3:} O %y Tuy) 02
{ M M -
b e Ty g h/2 z i
{'h/Z )
[s, s 1= 2 ik T ) dz
X Y Xz z
Jﬂﬂ2 Y

are the force resultants appropriate to this theory and

~
0
3

N
]

; 2
x M) = [T (h2)-T (-h/2)] [1  h7/4)

* i 5 6
(ay ny) = b, (2, 0/ D ho/A =
(m, £ = [7,,(h/2) + 7 _(-n/2)] [h/2  h%/8)

iy
(my 2y) = [Tyz(h/Z) + Tyz(-h/Z)] [h/2  h7/8]
(@ n) =[o,(h/2)- o (-h/2101  hP/a]

m =

N

[o,(h/2) + o,(-h/2)]
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Along the edge of the plate, one member or each of the following
eleven products‘must be prescribed:

e L]
Une Nnt e Hn ¢n

b BIELP T

t' “n Tn nt °t
M o, ano (7)

gt r

Nn
Hnt
ﬁ; d’n

Rn Wz and Sn L2
where n and t are the directions normal and tangential to the edge of
the plate.

The equations and boundary conditions given in (4)-(7) are
independent of the properties of the materials of the plate and hence
hold true for homogeneous isotropic as well as laminated plates.

Mext, the governing equilibrium equations are expressed in terms
of the displacement coefficients.

Using Eqns. (2), (4), (5) and strain-displacement relations, the

governing equilibrium equations can be written in the following form:

S e
u a,
X %y,
w® -q i
) m j
7 > 8)
bl [2 |3
iyJ
v, -m
cx nx
Sy Ty
5 -n
¢x zx
¢ 2
g N 5 I
e I §




where the operators LI j are symmetric and have the following forms
’

» XY
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L4 B o
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L, Fle utfy
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where the notation [ ] ¥ etc. refers to derivatives of the column matrix

of generalized displacements shown In (8).

tg,8 = Ls,11 ~ Oy U )

tg,g = 2(F3q = Fus) [

Lg,10 " 47,11

Lg, 1

9,9 " Mg 1 1 = 2Myg T 1 =y [ 1+ b0y,

= +
e '

LLS. | [ #M3e73Mys 2Hy3=3Hy, :
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Llo,lo-l ) | 241 Leg H

y 55
AN I 0 S PO o T i [ Y o
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The coefficients Alj' Bij’ Dij' Flj' H, . Klj and }: i are defined

as follows

e et e

(Aij’ B;,

For symmetric laminates, Bij’ Fij’ and KIJ are identically equal to zero.

J

= Keg [ ]'xx+2K26[ ],xy+x22[ ],yy"’F'm[ )|

’ Dij’ Flj’ Hij’

]’x + 2(F23 i F“') [ ].Y

(9)

ij

h/2 ]
KU’LU) -f (‘.2’22’23’2“'25’26) C‘jdl
=h/2 (10)
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Problems involving angle-ply and cross-ply laminates subjected

to static sinusoidal loadings are next used to assess the dearee of

accuracy of this high order laminated plate theory.

NUMERICAL EXAMPLES

A. Angle-Ply Laminate

Consider an infinite angle-ply laminate of thickness, h, subjected

to a pressure on the top surface z = h/2 of the form

X
q=aq sln-T- (n)

with all other surface tractions identically equal to zero. The problem

can be solved by assuming a solution of the form

g o2 ™
u (ao +za, + 2%, +2 a3) cos T

v = (b° +2b, + zzbz + z3b3) cos %? (12)

b} 2 e XX
w (c°+zc| +2 cz) sin —

where the constants a, bi’ and c,; are determined by the satisfaction
of the governing equations given in the Appendix.
Numberical results for a three-layer symmetric laminate are shown
in Figures 1-4. The ply orientations and thickness are (+30°, =30°, +30°)
and (h/b4, h/2, h/4) respectively. The following properties are used for

each ply




EL = 26 x )06 psi, ET - l06 psi

6 6

GLT = 0.5 x 10 psi, GTT = 0.2 x 10" psi (13)

b Rl ¢ el [
where L and T are the directions parallel and normal to the fibers,

respectively, and VLT is the Poisson's ratio measuring transverse strain

under normal stress parallel to the fibers. These are typical values

of high modulus graphite/epoxy composites. The stress and displacement

components in Figures 1-4 are normalized as follows

IOOTu

um= —
qth
(14)
] g - b
= s2's R
qO

for comparison with the exact elasticity solutions given by Pagano [7].

Figures | and 2 show the flexural stress distributions for the
case L/h = 10 and L/h = 4, respectively. The agreement with exact
elasticity solution is exceptionally good in the region of high values
of flexural stresses. As the interface between different layers is

approached, the stresses in the +30° is slightly different from that

given by exact elasticity solutions. However, such a slight difference
is immaterial, especially at the regions of low values of stresses.

Figures 3 and 4 show the corresponding in-plane displacement in

the x-direction. As in the case of flexural stresses, good agreement

with exact elasticity solutions is observed. The solutions in Figures 3
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and 4 reveal the necessity for modeling the nonlinear distribution

of displacements.

B. Bidirectional Laminates

A more critical test of the laminated plate theory can be obtained
by repeating the above problem for a symmetric bidirectional laminate.

In this case a higher discontinuity in material properties is experienced
at the interface of different layers. Numerical results for a three-
layered (0°, 90°, 0°) bidirectional laminate are given in Figures 5 and 6
for the flexural stress distributions. The material properties in each
layer are the same as given in Eqs. (13) and the results are compared
with the exact elasticity solutions given by Pagano [8].

As in the case of angle-ply laminates, close agreement of the
numerical results with exact elasticity solutions is obtained. The
relatively large discrepancies in the values of the flexural stresses
at the interface between different layers is due to the high discontinuity
in the values of Cll across the interface of different layers. However,
as before, such discrepancies occur in the regions of low values of
flexural stresses where accurate predictions of flexural stresses are

not important.

DISCUSSION

By comparing the results obtained with the exact elasticity
solutions and the classical laminated plate solutions, it is obvious
that the present high order laminated plate theory gives a much better

approximation to the behavior of laminated plates. This is especially
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true in the case of relatively thick laminates where the effects of
the transverse components of stress and strain could not be neglected.
As in Ref. [1], the present high order theory is expected to give
reasonably accurate solutions for problems where the characteristic
length of the loading pattern or the dimensions of the disturbing
features, such as cut-outs, are of the order of thickness of the plate.
The laminate stiffness coefficients Bij' Flj‘ and Kij’ as‘given
in Eq. (14) represent the coupling between the in-plane and out-of-plane
response of the laminate. In the case of symmetric laminates, it can
be seen from Eq. (14) that these coupling coefficinets are identically
equal to zero. Thus, for symmetric laminates, the governing eleven
equilibrium equations can be separated into a set of five second-order
differential equations governing the in-plane displacement components

of the laminate as given by

I u=u® (x,y) + zzcx (x,y)
v =y o(x,y) + zzcy (x,) (15)
W=z, (x,y)

and a set of six second order differential equations governing the

flexural displacement components as given by

u=ay (x,y) + z3¢x (x,y)
it * (x,y) + z3¢y (x,y) (16)

w=w (x,y) + zziz (x,y)
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For symmetric laminates subjected to loadings which also are
symmetrical with respect to the middle plane of the lamina“a, Eqs. (15)
provide an approximation to the in-plane response of the laminates,
with no contribution coming from Eqs. (16).

Similarly, if the symmetric laminate is subjected only to
anti-symmetrical loadings, Eqs. (16) provide an approximation to the
flexural behavior of the laminate. For loadings which are neither
symmetrical nor anti-symmetrical, terms from both Eqs. (15) and (16)
will contribute to the total response of the laminate. For many
problems, however, the in-plane contributions to the flexural behavior
of symmetric laminates are small except for very thick laminates. To
illustrate this, Fig. 7 gives the flexural stress distribution for a
moderately thick symmetric angle-ply laminate based on Eqs. (2) and
(16) for L/h = 4. As can be seen from the figures, the two different
stress distributions are extremely close to each other. Based upon
the results obtained in Part |, it would probably be at about L/h = |
where the contributions from both Eqs. (15) and (16) are comparable.

For unsymmetric laminates, the coupling coefficients aij‘ Fij and
KU are not identically equal to zero and, hence, the in-plane and
out-of-plane deformations are coupled with each other. The behavior
of the laminate is thus determined by the solution of a set of eleven
coupled second order partial differential equations. Figure 8 gives
the flexural stress distributions for a [+30°, -30°, +30°, -30°, +30°,
=30°] unsymmetric laminate subjected to a sinusoidal loading as
specified by Eqs. (11). The corresponding solutions obtained by

using Eqs. (16), i.e., neglecting the coupling effects of the in-plane
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displacements components, are also given. From Fig. 8 it is seen that
the flexural stress distributions are strongly influenced by the effects
of in-plane coupling. In fact, the use of only the terms in (16) leads
to a solution which has a continuous flexural compconent of stress,
which as seen from Fig. 8, is completely erroneous. Thus, Eqgs. (2)
must be used to obtain accurate stress distributions.

Finally, it should be mentioned that the present results were
obtained with no recourse to shear correction factors, which are
commonly employed in laminated plate analysis. As discussed in Chapter |

of this work, it would be inconsistent to employ these factors with a

high order theory of plate deformation.
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

Flexural stress distributions for [+30°, -30°]s angle-ply
laminate at L/h = 10.0.

Flexural stress distributions for [+30°, -30’]s angle-ply
laminate at L/h = 4.0.

In-plane displacement u for [+30°, -3-°]s angle-ply
laminate at L/h = 10.0.

In-plane displacement u for [+30°, -3O°]S angle-ply
laminate at L/h = 4.0.

Flexural stress distributions for [0°, 90°, 0°] cross-ply
lamiante at L/h = 10.0.

Flexural stress distributions for [0°, 90°, 0°] cross-ply
laminate at L/h = 4.0.

Comparison of flexural stress distributions due to

Eqs. (2) and (9) for [+30°, -30"]S angle-ply laminate at
L/h = 4,

Comparison of flexural stress distributions due to

Eqs. (2) and (9) for unsymmetric [+30°, -30°, +30°, -30°,

+30°, -30°] angle-ply laminate at L/h = 10.
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Chapter 3

STRESS SOLUTION DETERMINATION FOR
HIGH ORDER PLATE THEORY

K. H. Lo, R. M. Christensen and E. M. Wu
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ABSTRACT

The high order theory of plate deformation developed in
References [1] and [2] is further examined herein. Specifically,
stress solutions are given and evaluated against exact elasticity
solutions under stringent short wave length load conditions. By the
first method the stresses are evaluated directly from the resulting
displacement solutions. In a more refined procedure, the transverse
shear stresses and the transverse normal stress are evaluated by an
alternate equilibrium method. The latter procedure is shown to be more ib

accurate than the former.

INTRODUCT ION

It has long been recognized that classical plate theory must be
modified to treat certain high order effects. The first comprehensive
generalization of the classical theory was that given by Reissner [3].
Since Reissner's work, there have been a great many further generalizations
beyond the classical theory assumptions, with perhaps the highest order
theory to date being that given by Lo, Christensen and Wu (1] and [2].

Preliminary steps were taken in References [I] and [2] to assess the

3 O] TIPSR AP 1t

accuracy of the theory. In this paper this important subject is

examined in greater detail.

g e ST vy

The theory developed in References [1] and (2] is based upon an

assumed displacement field of the type

u=ut(x,y) +z (x,y) + zzcx(x,y) + z3¢x(X.y)

B e A e 7

v = v®(x,y) + zwy(x,y) + zzcy(x.y) % z3¢y(x,y) (1)

w=w(x,y) + 20 (x,y) + zzcz(x.y)
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where u and v are the in-plane displacement components, w the out of

plane or transverse components, z the normal coordinate, and the
remaining functions in (1) depend upon the in-plane coordinate x and y.
The governing theory, based upon the principle of stationary potential
energy, resulted in eleven second order partial differential equations
to determine the eleven functions in (1). It appears that an approach
of this type is the logical way to proceed if one wishes to determine
only the displacements. It is less clear that this approach is the
most expeditious method if one seeks to determine stresses. Now the
comparisons with exact elasticity results given in References (1] and
(2] were only for the in-plane stress components, the transverse shear
stresses and the transverse normal stress were not evaluated. Therefore
the more complete stress information to be given here will help to
answer the question of the general accuracy of the theory. Before
proceeding with this however, it is useful to consider the three
theoretical approaches to plate and shell development, and some
advantages and disadvantages of each.

The first and most obvious approach to deriving an approximate
plate theory utilizes assumptions upon the forms of displacements, as
in (1). The governing differential equations could then be derived
either by a direct method as in the case of classical plate theory,
or by the use of the principle of stationary potential energy as in
Reference [1]. Equilibrium is violated by this approach, that is to
say, the equilibrium equations are only approximately satisfied through

weighted averages. The second possible approach is the direct reversal

of that just described. Stress expansions in z are assumed and the
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governing differential equations are derived either by a direct

approach or by the use of the complementary energy principle. Typical
examples of this approach include the work of Reference [4]. In this
method the equilibrium equations are satisfied, the stress strain
relations are satisfied, but the compatibility of displacements is
violated. In the third approach, assumptions are made upon both the
stress states and the displacement forms where by both equilibrium

and compatibility conditions are satisfied. However the stress strain
relations are violated. Reissner's plate theory is the most common
form of this type, Reference [3].

It is the stress state which usually is the item of interest in
most problems. Accordingly it might seem to be most rational to use either
of the latter two stress type theories, but not the theory which depends
exclusively upon displacement assumptions. However, such reasoning
involves one se(ious problem, namely it would eliminate the extension
of the theory to model laminate behavior. This consequence is
because of the fact that in laminates the in-plane stress components
are discontinuous and it becomes as exceedingly complex matter to
construct a high order theory which must inherently account for
discontinuous stresses. However, even in laminates the displacements,
of course, are continuous, and since a major impetus in constructing
new high order theories is for use with laminates, it is herein
considered necessary to proceed with the displacement theory of
Reference [1]. The displacement theory of Reference [1] in fact has

been extended to model laminates by Lo, Christensen and Wu [2].
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This status of affairs still leaves us with séﬁe uncertainty.

Is the displacement type theory of Referénces (1] and [2] the best
means by which to deduce the stress state under conditions where
high order effects are of importance? The doubt arises because the
equilibrium conditions are violated by the theory wheras stresses
possess a one to one correspondence to the equilibrium conditions.
However, there is one possible means by which the accuracy of the
stresses obtained by this displacement type theory can be improved.
The possible procedure is as follows. Use the high order theory based
upon (1) to deduce the in-plane stress components, ox, cy, and Txy'
Then insert these stress solutions into the equilibrium equations
and solve for the out of plane/transverse stress components Tyz, . S
and o, by integration. This procedure clearly results in a stress
solution which satisfies equilibrium exactly. The procedure is
suggested by the classical theory approach, which does not directly
provide a solution for the transverse stress components, and they
have to be found by the method described above.

Thus, the stresses implicity in the high order displacement
type theory of References [1] and [2] will be determined by two
separate means. First the in-plane and transverse stresses will be
found directly from the displacement solution through the use of the
strain-displacement and stress strain relations. By the second method
the in-plane stresses will be found by the method just described and
they will then be used to determine the transverse stresses by

integrating the equations of equilibrium. These two alternate methods

of deducing stress will be compared and tested against exact elasticity
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solutions. Both cases of homogeneous plates and laminates will be

considered.

THEORETICAL CONSIDERATIONS

The assumed displacement fields are given by relations (1). The
polynomial expansion for w is truncated at one order lower than the
expansions for u and v such that the contributions to the transverse
shear strains from u and v are of the same order in z as that from

the terms in w. The strain-displacement relations of the linear theory

of elasticity are

2 3
ex-u°,x+z\b +sz’x+z¢

Xy X X,X
- o - 2 + 3 2
B o A RGNy (2)
€, = lbz + ZZCZ
and
& ° 2 & 8
ny ny + zrxy i Bxy 27Ky y
2
= o
You B Xy t2E, F 2B, (3)
2

= (-]
sz sz + 2 _ + 28

yz yz




The stress strain relations appropriate to an anisotropic material

are given by

(o, T [6n €12 €15 S G5 Gg] [Ex ]
% - €22 €23 Cay C25 Co6| |Sy
9%, €33 C34 O35 C36| |52
Tyz P Cuy chS Cue sz
T, | s Cor gl [Tx

BB ke KA

(5)

where Clj' i,j=1,2, ..., 6 are the stiffness coefficients. The

derivation of the governing equations for this higher order plate

theory is given in Reference [1] for homogeneous isotropic plates,

and its extension to laminated plate conditions is given in

Reference [4]. The evaluation of the stresses will now be given by

the two methods mentioned in the introduction.

STRESS EVALUATION, HOMOGENEOUS PLATE

An infinite homogeneous isotropic plate is subjected to sinusoidal

loadings as in Reference [1]. The prescribed surface tranctions are

"x . - -
0,(h/2) = g sin (T ) oz( W) = 0

and
Tz (2 W2) = Tya (+ h/2) = 0

where h is the plate thickness.
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The solutions to the plate problems are [!],

. N me
u [Ao+zAl+zA2+zA3]cos(L)

v=o0 (8) ’
W= [cl + zcz + zzC3] sin"(l:_‘-)

where the constants Ao, A', Az. I\3 and Cl, Cz. and C3 are obtained by
satisfaction of the governing differential equations and bohndary
conditions. From (3), (4) and (5) the transverse stress components ’

appropriate to a homogeneous isotropic plate are - !

o, = Au®, + Vi) + A+ 2m) y, :
+zy,  + Yy, + 20+ 202 ] (9)

2 3
+z J\(Cx’x + cy'y) + 2 >\(¢x’x + ¢y’y)

and

Tz = B, + w0 ) +2ul2 49, )+ zzu(}«ibx * %,

. 2
Tyz = Wb, +wSh) +zu(2 + 9, ) + 20030, + T, L) (10)

Substituting (8) into (9) and (10) gives the transverse stress

components for the infinite plate

T n
. {-J\Ao T+ Q+2u)c, + 2 [0 T + 2(k+2u)c3]

- zz)‘A2 %-23M3 %}sin (-1%) i (1)

and

T, = {u[AI +C, L) +zu (28, + G, Tl 2%u (385 + ¢4 %]}cos = (2)

tyz-o

64 | |




These stresses are of course those deduced directly from the theory, and

the ratio of the thickness of the plate to the characteristic length of
the loading pattern. First of all, however, these same stress components

{ they will be displayed graphically for particular values of h/L, i.e.
1 will be evaluated by the alternate method mentioned in the introduction. %

The in-plane stress components for the probiem under consideration
are given in Reference [1]. These in-plane stresses are substituted into

the equilibrium equations

%" . (13)

to yield, after integration;mzﬁe out of plane/transverse stress

[ components:

l o - %*%[22-#][@4;:)%:“33--162%]

| P 8] e, 5

1 +1 [%’_ -ll‘_:.](x-»zu)A}-':—:- sin (59 e
and

‘[ Ty ™ 48 [(MZu)Aol:; Rl %]

| 2 2
: 11.2 h . L
‘ + 7 [:z - ].—'] [(X*'ZH)A‘ '—Lz 2XC3 t]

3 2 L 2
z ™ 1 b _h w ™
+ I (M2u)A, -F+-4- [z TZ,'] (A+2u)A; " S e = s
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where the top and bottom surface traction conditions (6) and (7) have

been used to evaluate the constants of integration.

The corresponding exact elasticity solution for this problem is
given in Reference [5], among many other sources. Before comparing
the two alternate means of deriving the stresses, first the corresponding

results for a particular laminated plate will be stated.

LAMINATED PLATE

The laminate to be considered is that of symmetric cross-ply
geometry with each lamina being orthotropic. Using relations (5),

(8), and (13), the transverse stress components are found to be

B 2
e o [ k), = (). =7 _ _z_[_ k), = .
Txz b ik T 12 &y T R g e :z' * 2C, .64 |

A BN Ty
+E-3,-[c” AZ{T]-»{.—[CH( A3%J cos ()

+ f(k)(x).

(k 2 K, ™ _. (k). 7°
o, E'z'[c ; %3 13 cz'z‘]“

L 3




I

e —

where tﬁe index k refers to the k" layer and where f(k)(x) and g(k)(x)
are determined from the boundary and continuity conditions. These
transverse stresses are those found by the method involved in using the
in-plane stresses in the equations of equilibrium which are then
integrated to find the three remaining transverse stress components.

Further consideration will be limited to the case of a three layer
laminate arranged with the fiber directions designated by [0°/90°/0°]
and with the laminae having equal thickness of h/3. The following

expressions are obtained for f(k)(x) and gk(x).

r 2 e n
¢V () = %L-Cnm*\o?*c] o € L] "8'[ € Tl U I]

3 e
h (N, = _h m, =
"l Mt A 2

L
; 5 :
@0 = f o + %[- [cn(z)'cn(l?]"‘o:_2+ te,y® - c13(”]‘:21'51

‘cos (——0 e (18)

h2 1 - (2) (. =
[c”( ) - cn( )]Al :—z* 2[e)37 " - G371 ¢

37
- AL N ¥ Ln @ ¢ My, =, @
% 3%5 [CII(Z) e C]]( )]Az %i - ey (o iy 1A 7 cos ()
' (19
2 "2 1y,
£3) () = { B, (D, 1:2 63 e, T i 1, (M, =
' 3 2 A 2
h 1 h M, = bt
+zc|3(‘) Ty« n()Az:_z"ZTi C Ay } cos (=) (20)
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D0 =8 [0 -t ] + oMy

M_. (2,, o3 1 2
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where the subscripts 1, 2, and 3 refer to the 0°, 90°, and 0° layers,

respectively.
The stress distributions will be displayed for lamina of the

following properties which are typical of high modulus graphite/epoxy

composites
6 : S Y s
'Ez = 26 x 10" psi; ET 107 psi
G . =0.5x 105 psi; G = 0.2 x 10 psi (24)
T kg B gk P
v

LT Vor ™ 0.25

where L and T refer to the properties alone and transverse to the fiber
directions, respectively, and vLT is the Poisson's ratio measuring

transverse strain under normal stress parallel to the fibers.

DISCUSS ION

The transverse normal stress and transverse shear stress for the
homogeneous isotropic plate case are given in Figures 1-3. The
difference in these figures is due to the variation in the ratio of
h/L, i.e. the ratio of thickness to half wave length of the sinusoidal
load. In Figure 1, for h/L = 1/4, the normal stresses calculated by
the two different means are compared with the exact solutions. For
this small value of h/L, the transverse shear stresses calculated by
the two methods are so close to the exact solutions as to make them
look identically equal graphically. Clearly the transverse normal
stresses found by the integration of the equations of equilibrium are

far more accurate than those obtained directly from the displacement
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solution through the strain displacement and the stress strain relations.

The results 3Shown in these figures reveal that the transverse stresses
found by equilibrium equation integration to be more accurate than those
found directly from the displacement solution, with these results being
under stringent short wave length load conditions. As discussed in
Reference [1] the maximum ratio of h/L for which the theory has
reasonable validity is about h/L = | and the results shown here
collaborate this conclusion.

It is of interest to note from Figures 1-3 that the transverse
stresses obtained directly from the displacement solution violate the
top and bottom traction conditions. An examination of the derivation
in Reference [1] reveals this to be a consistent aspect of the method.
Thus even though the tractions enter the theory as boundary conditions,
this process actually occurs through an equilibrium weighting method,
thus the theory does not provide exact satisfaction of these boundary
conditions. ‘Consider however, the alternate method of obtaining the
transverse stresses from integrating the equilibrium equations
utilizing the in-plane stresses found directly from the displacement
solution. In this case the boundary tractions are automatically
satisfied through the evaluation of the constants of integration. A
similar situation exists in the case of laminated plates. Transverse
stresses evaluated directly from the displacement solution would in
general not be continuous across the interfaces between lamina,
however the transverse stresses found by the equilibrium method
proposed herein provide continuous stress with exact satisfaction of

top and bottom surface conditions.
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The results for a three layer laminate are shown in Figures &
and. 5, for the value of h/L = 1/4. The exact elasticity solution is
taken from Pagano [6]. It is apparent that the case of the laminate
provides much more strenuous conditions against which to test a plate
theory than does homogeneous conditions. Nevertheless, as seen in
these figures the equilibrium equation method of generating
transverse stresses provides a reasonable approximation to the exact

solution.

CONCLUSIONS

The present high order theory of plate deformation appears to
provide reasonably accurate predictions of behavior under short wave
length conditions. This conclusion is valid for both homogeneous
plates and for laminates; also as shown by the results, laminates are
much more demanding of high order effect representation than are
homogeneous plates. In problems where displacements are the quantity
of prime interest the present displacement type theory appears to provide
a reasonable and high order effect solution. In problems where the
stresses are the quantity sought it has been shown that the present
theory still provides highly accurate stress information. It has
been demonstrated that the best method for determining the stresses
involves determining the in-plane stresses directly from the displacement
solution and thence determining the transverse stresses through the
integration of the equations of equilibrium, utilizing the in-plane
solution therein. This method is of course applicable to a theory

of any order not just the present high order theory. The success of
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the method wu; virtually assured by the fact that it is the only

pdssible procedure for use at the level of the classical theory

assumptions.
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FIGURE CAPTIONS

Figure 1. Transverse normal stress distributions for a homogeneous

isotropic plate at h/L = 0.25.
Figure 2. Transverse normal stress distributions for a homogeneous

isotropic plate at h/L = [.0.

! Figure 3. Transverse shear stress distributions for a homogeneous

F isotropic plate at h/L = 1.0.

Figure 4. Transverse normal stress distributions for a [0°, 90°, 0°]
laminate at h/L = 0.25.
Figure 5. Transverse shear stress distributions for a [0°, 90°, 0°]

laminate at h/L = 0.25.
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Chapter 4

THREE DIMENSIONAL FAILURE CRITERION

E. M. Wu, R. M. Christensen and K. H. Lo




Strength of Thick Laminates

The strength of thick laminates can be cast in terms of the
characterization of the criticality of three-dimensional stress states,
which can lead to rupture. Due to the complexity of this characterization,
the following simplified assumptions are required: 1) all combined
loadings are proportional and monotonic thus precluding the effects of
fatigue and loading path dependency, 2) the thick composite is planar
laminated thus precluding 3-D woven structures. Within these constraints,
significant flexibility is retained, e.g. the lamination sequence and
angle can be arbitrarily varied utilizing a single set of basic data,
or if basic data are available for several generically different laminae,
thick hybrid composite laminate strengths can also be estimated.

The flexibility of this characterization lies in the inclusion of
three-dimensional stresses in the tensor polynomial failure criterion
for the lamina. Since the coefficinets of the tensor polynomial
failure criterion obey tensor transformation laws, computational methods
for predicting the strength of thick laminae of any layup can be

established.

The principle steps of this characterization are:
1) Evaluation of the 3-D failure criterion for a unidirectional
lamina,
2) Establishment of the transformational properties of the strength
coefficients,
3) 3-D analysis of thick laminated structure.
These steps are illustrated in Figures la, b, ¢ respectively. The last

step has already been addressed in Chapters 1, 2, and 3. The first and t
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second steps will now be examined. In Step | (Figure la) we seek the
strength response of the lamina (along its principal directions) which

can be expressed in terms of the tensor failure polynomial criterion as (1]:

F‘oi * Fijcicj +oooml i'-j " It203|h|5)6 (]!)

The faiilure tensors which characterize the strength of the laminate can

be written in matrix form, while accounting for orthotropy, as

Fol SRR e O
F, N
i 3 :3 412 b : : Z (1b)
"
0 Fog 0
Lt o L o8]

It is seen from Equation (1b) that the failure tensors associated with
the 3 axis (F3, F]3, F23, F33, Fugs FSS) control the strength related
to the stresses assocated with the 3 axis. These coefficients are not
required if the laminate is thin but must be included if the laminate
is thick. The remaining coefficinets are well known and they may be
measured by a total of six independent experiments. [t appears that
measurement of the failure tensors, associated with the inclusion of the
3 axis requires six additional tests. However symmetry conditions will
be explored to reduce the number of tests.

A unidirectional lamina (oriented as shown in Figure 1(a)) possesses

the symmetry condition that properties associated with the X2 are
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interchangeable with properties associated with the X, axis. Thus, the

3
following table of symmetry for the strength coefficients can be const;ucted.

Table |
Tensor Notation Contracted Notation
Faa = Fy3 By = le
Flizz = Fliss Fig # Fyq
F2222 = F3333 Fa2 = Fi3
Fi313 = Fla12 Fas * Fgg

By virtue of these symmetries, we can assess the necessary experiments
required to evaluate the coefficinets for a 3-D failure criterion.

These experiments can be determined by evaluation of Equation (1a)
following the procedure outlined by Wu in Reference [2]. By substitution
of different stress states in Equation (la), we can evaulate the

coefficients of the strength tensors:




Evaluation of Component State of Stress
of Strength Tensor* Required |
- L |
F,, F ¥ t
s [ f
(M (2) ; :
Far Fap» (F3» Fy3)
* {0 I
"e6 (Fs5) o’ X o
(I
F12' (F13) (5) * BI
‘*l”“"’ %
F - :
) 3@
“— 3;1':’5“ 5,
Fub 7 = X
[l

(8)

* Bracketed terms, by symmetry




Here, we adopt the same notation as in Reference [2] where X;
represents the uniaxial strength induced by the uniaxial stress o,

and 61 are the biaxial strengths induced by.comblned stress conditions.
The strength tensor is computatable from the strengths by solution

of Eq. (1). The necessary relations are: for experiments No. 1, 2, 3,

4, 5, and 8,

no sum
1 w2, 03, &, 8, 6. (2)
i | B 2 o
for experiments No. 6,
- & ~ 2 ~ 2 |
Fla = (1 = FyGy = F)9, = Fy10)7 = Fyudy") g 3)
i b
For experiment No. 7,
5 & - 2 1
= - . = J. - - B 4
F23 (1 F,3, F3o3 Fy00, 3393 ) oy (4)
273

We note that tests No. (1) through (6) are those required for a
two-dimensional failure criterion; the procedure for determining

them has been thoroughly described in Reference [2]. In addition, we
uncovered a rather surprising and convenient fact that a three-
dimensional failure criterion (in 2nd-order form) only required two
additional experiments i.e., tests No. 7 and No. 8. In fact, we note

that experiemnts No. 7 and No. 8 are measuring the strength response of
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essentially isotropic properties. Thus, a not unreasonable estimate
of these strengths may be arrived at by degrading the corresponding
resin matrix strengths by a suitable factor to reflect the stress
concentration due to the presence of fibers. |f such a comprise is
deemed acceptable; no additional tests are required to extend a

2-D failure criterion to a 3-D failure criterion! Such is the
remuneration for the tensor polynomial failure criterion formulation.
In this program these coefficients are experimentally measured rather

than estimated.

Experimental Measurements

The failure criteria outlined here are evaluated for a
ultra-high stiffness graphite epoxy composite=-GY 70 manufactured by
Celanese Corporation with Fiberite 934 Resin. Samples for this
program was fabricated by General Dynamics Cooperation, Convair
Division.

The eight characteristic experiments described previously were

carried out. The sample configurations of these tests are as follows.

Experiment No. 1 (longitudinal tensile test) was performed on
parallel-edged samples with end-tabs of the configuration referred
to as |ITRI samples recommended by the Air Force Design Guide.

End tabs were not tapered and were fully loaded by wedge grips over
its entire length to eliminate peeling by tensile stress.

Experiment No. 2 (longitudinal compression) was performed on a

sandwich specimen. The configuration is shown in Fig. 2a and b.

This compression sample is similar to the honeycomb sandwich sample
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suggested in the Air Force Design Guide (MIL=-STD-401A) with the
difference that low density rigid foam is used in lieu of the usual
honeycomb for expediency of sample preparation. Test results are
consistent with those produced by the honeycomb sandwich samples.

Experiment No. 3 (Transverse tension) samples were identical
to experiment No. | with the exception that end tabs were not used.

Experiment No. 4 (Transverse compression) samples were identical
to those used in experiment no. 2.

Experiment No. 5 (Longitudinal shear) was performed by a beam
bending configuration as shown in Fig. 3a and 3b. This shear
test was originally suggested by Messmer [ 3] in photoelasticity
experiments and subsequently rediscovered by Losipescu [4] to test
shear strength of isotropic metals. The salient features of this
configuration are that:

i) The one dimensional nature of the configuration lends itself
to analysis which is accurate to the beam theory level.

ii) In beam bending theory, longitudinal shear is proportional
to the gradient of the bending moment; in this configuration the bending
moment gradient is uniform over the length of the beam and the
magnitude of the moment is zero at the center. Thus if failure is
induced to occur at the center, the strength measurement reflects the
pure shear strength. For the purpose of inducing shear failure at
the center and for the purpose of converting the parabolic distribution
of shear stress to uniform shear stress, Losipesu [4] introduced 90°
notches to the sample. While this technique was reported to work

satisfactorily for metals, it proved to be unsuccessful for
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unidirectional lamina because machining of the 90° notch inevitably
induced cracking. We overcame this difficulty by introducing

bonding flanges to the composite web to form the shape of an | beam.
The flanges (top and bottom) are discontinuous at the center (see
Figure 4); since the moment is zero in the center with no normal stress
due to bending, no stress singularity {s induced by the slit. At the
same time, shear failure can propagate through the slit. The absence
of singularity is valid to the level of the strength of material
analysis but probably not in the theory-of-elasticity level. However,
verification was carried out to the extent that literature values on
known composites (Scotch=-ply-1002) were recovered by this test.

It appears this test might merit more extensive development under a
different scope. Suggested studies are finite element and photo-
elastic analysis and optimization of the flange material.

Test No. 6 involved internal pressurization and compression of a
thin-walled tube. The stress ratio induced was B = ol/o2 = -10.
Experimental details are as described in Reference (5).

Test No. 7 was similar to a constrained compression test
reported by T. C. Collings [5] and is schematically illustrated in
Figure 5. The sample is a 3/4-inch cube cut from a thick lamina. For

the measured Poisson ratio, v23 = 0.62, the stress ratios are

%, _
03 -0.62

Test No. 8 was performed in the same fixture as in Test No. 5

(the longitudinal shear test), the exception being that in this case the
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fiber orientation is perpendicular to the web (See Figure 6). These

samples are sliced from a 0.75'"-thick laminate with a diamond circular

cutter.

All of the above experiments were performed on an electro-hydraulic

servo-controlled testing machine.

and the loading function is constant loading rate to failure.

Load is used as the feedback control

Loading

rates for each type of tests were adjusted (by trial) such that starting

from no load, the time to fail was approximately 10 minutes.

experimental results are:

Test

Strength (ksi)

1. Longitudinal Tension

2. Longitudinal Compression

3. Transverse Tension

4. Transverse Compression

5. Longitudinal Shear

6. Biaxial Strength 1, 2 plane

7. Biaxial Strength 2, 3 plane

8. Transverse Shear

81.6 (1st Batch)
80.9 (2nd Batch)
X! = 82.3

>
[ ]

2 5-]

8.6 (1st Batch)
7.9 (2nd Batch)
X6 = 8.2

5, = 92.4

0, = =9.2

G, = -85.6

= (1st Batch)

Gy = =53

g, = -87.9

(2nd Batch)

G, = -42.3

Xb = 4.5

The

Range
§5.5 - 101
60.9 - 98.6

69.3
k.2 - 5.6

91.2

8.1 = 9.0

7.3 - 8.4
13 = 8.5

3.9 - 4.8

——

et



Two batches of samples were tested to assure consistency of material
and instrumentation reproducibility. Stress-strain relations were
recorded and are shown in Figures 7 to 11. In Figure 7, the individual
stress-strain curves for longitudinal tension are presented. In
Figure 8, these tests are statistically averaged; the curves shown
are the averaged stress-strain curve and the + Due Standard deviation
of the stress-strain curves; 'X'" are the ultimate values for each
individual samples. |In similar forms, Figures 9 and 10 depict results
of transverse compression tests. Figures 1la and l1b are respectively
the stress-strain components in the 2 and 3 directions for biaxial
compression.

Based on these measured strengths the strength tensor is computed
in accordance with equations 2, 3 and 4; together with the symmetry

conditions, we deduced the strength tensor for GY 70/934 to be:

N
Fl = 0.157 x il Fp = 0-150 x 1073
=3 -3
F2 = 74.8 x 10 F22 = 23.8 x 10
Fy= (76.8 x 1073) ; Py~ EE ) |
> ——— >
F, = (0) ik F..= 0.95% x 1073 [ ksi?
4 12 '
o =
FS = (0) rl3 (0.954 x 10 ?)
Fo = (0) J Fpy = -0.027 4

The bracketed values are inferred from symmetry conditions.

Discussion and Conclusion

With these strength tensor components, we have a full characterization

of the 3-D strength of the GY 70/934 composite. This 3-D failure criterion
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may be used to assess the criticality of a three-dimensional state of
stress either computed_from 3-dimensional analysis or the aforepresented

high-order plate analysis. Furthermore we note that biaxial compressive

stress tends to increase the strength of the composite. For example both

the biaxial tests No. 6 and 7 produced strength greater than the uniaxial
strength x‘ and xi respectively. This is reflected in positiveness of
the coefficiént of strength tensor FIZ’ FI3’ F23. Physically this
suggests that the composite test is probably microflaw sensitive in the
transverse direction; application of transverse compression tends to
retard flaw growth and lead to a strength increase in the longitudinal
direction. This may be the reason for the large range in strength
variability measured. Constraints in the program preclude further
in-depth experimental measurement. Another effort has been initiated to
check the experimental technique and provide further measurements.
Nevertheless, the methodology and analysis remain well founded and may

be applied with confidence.
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Figure

Figure
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Composite Laminates

Compression Sample Configuration (Test No. 2 and 4)
Shear Fixture Configuration (Test No. §)

Shear Sample Configuration (Test No. 5)

Biaxial Compression Configuration (Test No. 7)
Shear Test Configuration (Test No. 8)

Individual Stress-Strain Curves of Longitudinal Tension
Tests of GY-70/934 (1 ksi = 0.145 MPa)

Averaged Stress-Strain Curves of Longitudinal Tests of
GY=70/934 (1 ksi = 0.145 MPa)

Individual Stress-Strain Curves for Transverse Compression
Tests of GY=70/934 (! ksi = 0.145 MPa)

Average Stress-Strain Curves of Transverse Compression
Tests of GY-70/934 (1 ksi = 0.145 MPa)

Individual 0; vs €3 Curves for Biaxial Compression in
2-3 plane for GY-70/934 (1 ksi = 0.145 MPa)

Individual 03 vs €3 Curves for Biaxial Compression in
2-3 Plane for GY-70/934 (1 ksi = 0.145 MPa)
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Compression Sample Configuration (Test No. 2 and 4).

Figure 2.
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Sample
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direction
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(a)

Figure 3. Shear Fixture Configuration (Test No. 5).
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Steel Flange

Tabs

Specimen Fiber Direction

(a) (b)

Figure 4, Shear Sample Configuration (Test No. §).

97

vy . T i v NG I S A




Figure §S.

T Steel Blocks

Fiber Direction

Biaxial Compression Configuration (Test No. 7).
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