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X SUMMARY

The effect of fine (5u) and coarse (95u) Al on the deflagration-
to-detonation (DDT) behavior of HMX, in charges pressed to 90%
theoretical maximum density (TMD), was studied. It was found
that Al slows down the DDT process increasingly as the content of
Al increases; that is, it increases predetonation column length
and the relative times to detonation. Fine Al is more effective
than coarse in delaying DDT, at a given content, but both are
inferior to wax in this respect.

This report was prepared under Task 2ZR013090), IR-159. The
present results and conclusions on the transition from burning
to detonation of aluminized HMX explosives should be of interest
in the areas of explosive sensitivity, and safety and reliability
of weapons. The writers would like to acknowledge the assistance
of Dr, R. R. Bernecker in this work.

XJ@W. Ewig

JULIUS W. ENIG
By direction
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INTRODUCTION

Although studies of deflagration-to~detonation transition
(DDT) have been underway for some years, the transitional behavior
in aluminized explosives has been very little studied. Moreover,
relatively few pressed explosives have been examined for DDT
at por031t1es as low as 10%. Those reported are PETN,1 possibly
HMX,2 and several pure and waxed HE studied in our Laboratory.

It is the purpose of this report to present the results of a
study of aluminized HMX at 90% theoretical maximum density (TMD).
Hence this work supplies much needed data on both aluminized
and highly compacted HE,

The composition range was 10-408% Al. Series were prepared
with two different particle sizes of Al (5 and 95u) to study the
effect of that parameter on the transitional behavior. All mixtures
which exhibited transition followed the DDT mechanism of Reference 3
with the exception of the convective flame front. This front
was not detected in most mixtures at 90% TMD; however, the mixtures
of 75/25 and 70/30 HBMX/5u-Al did show initial front velocities
as low as l.1 mw/us.

EXPERIMENTAL ARRANGEMENT AND PROCEDURE

The experimental sgsetup and procedures have been described
in detail elsewhere.3+4 The apparatus consists of a seamless steel

lxorotkov, A. I., Sulimov, A. A., Obmenin, A. V.,
Dubovitskii, V. F., and Kurkin, A, X., "Transition from Combustion
to Detonation in Porous Explosives," Combustion, Explosion, and
Shock Waves 5, 317 (1969).

ZGriftiths, N. and Groocock, J. M., “The Burning to Detonation
of Solid Explosives,* J. Chen. Scc., 4154, 1960.

3gernecker, R. R. ang Prxce, D., "Studies in the Transition
from Deflagration to Detonation in Granular Explosives," Combust.
Flame 22, 111-117, 119-129, and 161-170 (1974). Sce also Naval
Ordnance Laboratory TR 72-202.

iprice, D. and Bernecker, R. R., “Sensitivity of Porous
Explosives to Transition from Deflagration to Detonation,“ Combust.

Flame 25, 91~100 (1975). See also Naval Ordnance Laboratory
TR 74-186.
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tube with heavy end closures. The column length of the 0.35 g of
25/75 B/KNO3 ignitor is 6.3 mm; the length of the explosive column
is 295.4 mm. Each charge is examined by x-ray prior to its
instrumentation.

The DDT tube is instrumented with ionization probes (IP) and
strain gages (SG) to monitor ionization fronts and internal pressure,
respectively. For brevity, henceforth ionization probes will3
be referred to as probes; strain gages, as gages. As before,
both custom-made and commercial probes are used; distance-time (x-t)
data from each are distinguished on the graphs. The number of
gage locations for monitoring internal pressure is generally
four or five per tube. The gage output is reported in strain (e)
or microstrain (pe). In a static calibration of the tube,
the gradient is 112 ue/kbar up to the elastic limit at 2.2 kbar.
From 2 to 4.7 kbar, the microstrain increases from 225 to 788.

One difference in procedure from that reported in Reference 3
is in the determination of the predetonation column length, 2. 1In
the case of 91/9 RDX/wax, it was possible to use the intersection
of the postconvective wave front with the extrapolated detonation
front to locate & in the x~t plane; the value was confirmed by that
obtained from tube fragments. Here, and in general for HE other
than 91/9 KDX/wax, £ is more reliably determined from markings
on the tube fragments; it is checked for consistency with the
probe and gage records in the x-t plane., Unless otherwise indicated,
£ values are measured to + 3 mm.

The HMX used was Class A (8~200u); it satisfied the relevant
military specification and had the identification number X906.
Spherical aluminum powder was obtained from the Valley Metallurgical
Processing Company and the Naval Ordnance Station, Indian Head,
Maryland, The two batches, designated H5 and H95, had the respective
nominal particle sizes of 5 and 95u. The mixing procedure was that
used in Reference 4 for one kg batches.

EXPERIMENTAL RESULTS AND DISCUSSION

Eleven shots were made: one on 708 TMD HMX, five on the
coarse Al mixtures, and five on the fine Al mixtures. Detalled
tables, records for each shot, and discussions of them appear
in the Appendix. Table 1l contains a summary of these data.

SG records of these shots were examined carefully for any
features which consistently differed from those of records from
more porous charges. Because of the lower porosity we thought
it possible that these charges might transmit more stress to
the tube walls through the solid explosive rather than from gas
pressure on the walls, However, no distipnctive Jdifference was
found in these $G records as compared to those obtained on charges
of $TMD < 70.

Rt ke e
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In 90% TMD 91/9 RDX/wax, the first compressive front, as
outlined by SG data, occurred behind the first_ionized front (IP
detection) which travelled at about 0.6 mm/us.3 In 90% TMD 94/6
RDX/wax, the first compressive front occurred ahead of the IP front
which travelled at about 1 mm/us.>® The 90% TMD aluminized HMX
mixtures gave space-time diagrams resembling those of the correspond-
ing 94/6 RDX/wax mixture. The first front detected by the IPs
had velocities ranging from 1.1 (at high Al contents) to about
3 mm/us. These values are too high for convective fronts;
they are probably associated with pressure induced reactions.

Figure 1 shows the space-time diagram for 75/25 HMX/5u-Al.
It is probably the best record of the series because the high
aluminum content has spread out the pbrocess so that more features
can be resolved. We believe it shows the typical DDT behavior
in all the aluminized mixtures although the features are not
as well resolved in other records. Note that the rate of discharge
of the IPs is accelerating from a velocity of 1.1 mm/us. The
first detected compression front starts slightly latev and in
the region near the ignitor; it travels at 2.2 mm/us (a reasonable
sound speed for this matcsial), rapidly overtakes and passes
the IP front which then speeds up to travel at about 2.1 mm/us.
The reaction responsible for the initial acceleration of the
IP front has evidently occurred before the first IP responds.
Although a convective flame front was not detected, the transition
seems to follow the DDT model originally pro;gosed,ﬁ i.e., accelerated
burning leading to a series of compressive waves which coalesce
to form a shock of sufficient strength to initiate detenation,

Figures 2~4 show the effect of aluminunm particle size and
content on the DDT parameters, predetonation column length (&),
relative time to detonation (Atp), and the interval between the
formation of the first compresgive front and the onset of detonation
(Atg).* The relative times (See Table 1) bave been taken for a
probe positioned at x = 29 mm; the first prohe was located at
22 or 29 mm for these shots rather than at the more customary
41 mm. These figures show guite clearly that all three DDT parameters
increase with increasing %A1 and that the fine Al is much more
effective in causing the increase than is the coarse.

Sprice, D. and Rernecker, R. R., “DDT Behavior of Waxed
Mixtures Of RDX, HMX, and Tetryl," NSWC/WOL TR 77-96, 18 Oct 1977,

*Note that Atp is determined entirely by IP measutements
whereas Aty is determined chiefly by SG data.
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The estimated value for the mixture containing 30% fine
Al is a lower limit. In other words, the experimental result
was L > 295 mm. Hence all data points marked with an asterisk are
estimates that might well be lower than the actual value. The
Appendix discusses this and the scatter of the data for the mixtures
containing coarse Al. In the latter case, two obvicus factors
might contribute: (1) the mixing procedure seemed less effective
with the coarse Al than the fine, i.e., the final mixtures appeared
less uniform; and (2) the compaction process during charge preparation
had produced a number of demonstrably poor charges. X-ray
examination through a thick-walled, steel tube is, however, an
insensitive measure of charge uniformity, and might easily fail
to detect flaws which could influence DDT. Thus data from one
of the charges containing 10% 95u Al (No. 102C) were omitted
when fitting the curves of Figures 2-4 because they contradict
the trend for the effect of increasing Al shown by both coarse
and fine Al, We believe that the result for 40% Al is low and
that for 30% Al about right. However, since the curves can be,
and have been, drawn between these two points without changing
the qualitative trend, repeat shots did not seem justified.

In a recent reports it was shown that waxed Class A RDX
and waxed Class A HMX fall on the same curve, £ vs %wax, when
both charges are at 70% TMD. Assuming that eguivalent behavior
is also evident at 90% TMD, we can use the data for 81/9 RDX/wax
and 94/6 RDX/wax at 90% TMDS to compare the effects of Al and
wax on HMX. In this way we find that 20~21% 5u-Al and > 308 95u-Al
in HMX have about the same values of &, Atp, and Aty as 68 wax in
HMX. Similarly, 25% (or more) Sp-Al results in £ and At values close
to those for 9% wax. In other words, on a weight basis, wax
is far more effective in slowing down the transition than is Al,
It is also more effective on a volune basis although the difference
is not great.

In Figures 2-4, curves for both fine and coarse Al extrapolate
to about the same value for 0% Al, or for 90% TMD HMX, as they
should, A 90% TMD charge of HMX was not run because we d.d not
want it prepared on the hydraulic press at this time. The extra-
polated values were not very different from the experimental value
of 70% THMD HMX which was run to check the new batch of HMX. The
latter value is shown on the figures,

Both from the shape of the curves and parallel knowledge of
waxed RDX, a good correlation between Aty and & would be expected.
This is indeed the case as Figure 5 shows; moreover the scatter of
Figures 2-4 has becen eliminated. If the one estimated point
is too low, the curve may be linear as was the case for a smaller
tange in the wased RDX.>
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The curve of Figure 5 suggests that Atg is a function of %
and independent of both Al particle size § and aluminum concentration.
For the waxed RDX and the waxed HMX series at 70% TMD, over the
range of & < 140 mm, Class A RDX. Class A HMX, and 115u-HMX all fell
on the same curve, Atg vs £, within experimental error.> However,
data at f > 140 mm indicated separate curves for the two HMXs and
possibly for the RDX as well; the difference was small and became
smaller as £ decreased.* Hence the HMX particle size effect on the
relation is negligible at & < 140 and small (if significant) at
2 > 140. It is not inconsistent with a negligible effect of Al
particle size, in aluminized series, as shown in Figure 5.

In all of the waxed HE,5 data points appeared on the Atp vs %
curve in order of increasing & which corresponded to the order of
increasing diluent, This is also true of the fine Al series
shown in Figure 5. PFor the coarse Al series, there was much scatter
(Figures 2-4). Hence these points (squares in Figure 5) do not
appear in the order of increasing %Al, but are in a random order.
Their location near the curve might be fortuitous,

At 90% TMD, aluminum would not be expected to have much
effect on the detonation velocity.5r7 For about 30% A} in RDX,
the decrease in D should be about 5% or 0.4 mm/us. Table 1 shows
a decrease of 0.3 mm/us for this concentration of coarse Al and
none (or an increase) for the fine. The size of the effect is
just about that to be expected from experimental error so that
it cannot be considered of much significance.

Finally, it is of interest that the mixtures with coarse
aluminum caused greater fragmentation damage (smaller fragments
and more of them) than did mixtures with fine aluminum. The former
behaved more like the pure explosive than the latter in both
DDT and fragmentation,

6price, D., “Aluminized Organic Explosives,” NOLTR 72-62,
8 June 1972,

Tpyice, D., Clairmont, Jr., A. R., and Erkman, J. 0.,
“Explosive Behavior of Aluminized AP," NOLTR 72-15, App. B & C,
2 May 1972,

*On the other hand, waxed RDX had distinctly different Atg
vs ¢ curves at 70% and 858 TMD;7 this difference is large
and it is also one reason that series of constant composition
HE with varying degrees of compaction fail to show a correlation
between Atp and L.

12
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SUMMARY AND CONCLUSIONS

1, Addition of fine (5u) and coarse (95u) aluminum to HMX, in
charges at 90% TMD, increases predetonation column length () and
the relative times to detonation (AtD, AtE).

2. All three DDT parameters increase with increasing %Al. They
: are interdependent and a good correlation exists between AtE and .

3. Al causes only a small decrease in detonation velocity D at
90% TMD.

4, Strain gage records from the 90% TMD charges showed no features
different from those previously obtained on charges of higher
porosity.

13
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APPENDIX A

DETAILED DATA FOR ALL SHOTS

Measurements for all shots are given in Table Al, The
distance-time plot and the strain-time plot, where available,
are displayed in Figs. Al-AlQ as parts a and b, respectively.
Fig. All shows the effect of Al concentration on tube fragmenta-
tion, and supplements Figs. A7-al10 for 5u Al.

HMX

Fig. Al displays the data for the current batch of HMX of
70% TMD. 1Its short accelerating convective flame front (0.5 mm/us)
followed and then preceded by a compressive front (at 1.6 mm/us)
compares very well, i.e., almost reproduces, the data for 70% TMD
RDX and HMX given in reference 5. There RDX had an initial front
velocity of 0.5 mm/us followed by PC front at 1.3-1.5 mm/us (see
Ref. 5, Fig. 4). Similarly HMX (Ref. 5, Fig. Dll) exhibited
analogous velocities of 0.4 mm/ps and 1.3 mm/us. In each case,
the compressive wave originated behind the convective front and
near the ignitor/explosive interface. It then overtook and passed
the convective front, The apparent DDT mechanism was in each case
that proposed in Reference 3. Evidently Batch X906 shows behavior
equivalent to that of previous batches of Class A RDX and HMX.

Mixtures with 95p-Al

Mixtures with the coarser aluminum were harder to prepare,
i.e., they seemed less uniform, than those made with the finer
aluminum. Their records were also somewhat more difficult to
read and interpet.

Fig. A2 shows data from the first shot on 90/10 HMX/Al.
Although much of the SG records was obscured by intexraction between
the IP discharges and the 8G, two compression fronts were observed:
one preceding the front detected by IPs (the common order found in
this study) and one almost coincident with it. See Fig. A2a. The
velocities of all three fronts were much the same, and, at 3 mw/us,
higher than the estimated sound velocity of the original charge.

Fig. A3 displays data from the shot of a second 90/10 HMX/Al
charge. The SG records are cleaner, but because of the very short
predetonation column length, only two pressure excursions were
detected: one ahead of the front outlined by IPs (the usual
location) and one obviously responding to the detonation. See Fig.
3Aa. Again the initial IP front has a velocity (2.7 mm/us) to be
expected of a compressive wave, and the discharge of the IPs is
attributed to a pressure induced reaction.

Although these charges show satisfactory replication in the
detonation region, they are thoroughly unsatisfactory in repro-
ducing the predetonation column length 2. The cause of the different
predetonation behavior is attributed to differences in charge
preparation not detectable by x-ray examination and possibly to
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differences in uniformity of the mixture as well. Predetonation
phenomena of non-steady combustion would be far more sensitive to
small physical differences in the charge than would detonation.

Data from the 80/20 HMX/Al charge are shown in Fig. A4. This
is the first case in which the pressure excursion is shown as
squares connected by a line. Here the squares indicate the boundary
of a region within which the excursion occurred. As Fig. A4b shows,
limits rather than a single point are required here because (1)
interaction of IPs with SG obscures portions of the record and (2)
irregularities appear in the record of SGs located at or near the
point of detonation onset. The last two excursions are the result
of the detonation; in fact, the next to the last SG (x=56.8 mm) is
at the point of onset of detonation (2£=56.6 mm). The first two
excursions sho. a pattern of the compression wave originating
behind the front outlined by IP response; this front is accelerating
and travelling at a higher velocity so that it overtakes the IP
front. A similar pattern was observed in the higher % TMD waxed
explosives (5), and is probably not detected in most of the aluminized
HE because the triggering IP responds too late. The presense of Al
probably lowers the temperature and hence the concentration of charged
particles below the level necessary for probe response.

The Fig. A5 for 70/30 HMX/Al, the compression wave (3 mm/us)
has been drawn in a pattern similar to that of Fig. A4. However,
two parallel compression fronts sandwiching the IP front could have
been drawn through the data from the first three S$Gs. The recoxrd
for the last,which happened to be at the point of detonation onset,
clearly shows the dip in the strain-time record associated with the
passage of a strong shock (See Fig. AS5b). The corresponding
pressure excursion therefore belongs where it falls in Fig. ASa at
the beginning of the detonation region,

In Shot 108C on 60/40 HMX/Al, the 8G records were lost. Hence
Fig. A6 consists of only the distance-time diagram with no compression
fronts shown. The initial velocity, obtained from the IPs is 1.4
mn/us, the lowest observed in this series.

Mixtures with 5Sual

From Fig. A7 on, the data displayed are those obtained from
mixtures of HMX with fine aluminum. Very few new features appear
in these shots, but their results do permit some generalizations.
For example, all the IP fronts are of somewhat lower velocity than
those of the comparable mixture with coarse Al.

Fig. A7 for 90/10 HMX/Al needs no special comment except that
the response of the SG at xv8 is exactly what might be expected for
the passage of a shock {in this case, a detonation): a rapid rise
»n strain followed by a fairly rapid decay and gage destruction.

; . was pointed out in several earlier records, more often we observe
a sharp dip rather than a sharp rise in the presence of a shock.

A-2
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Thus Fig. A8b at the SG just ahead of x={ shows a sharp dip
in the data from 80/20 HMX/Al. However the SG just beyond x=4
shows two dips followed by a very large and rapid rise.

Fig. A9a for 75/25 HMX/Al shows a better example of the same
pattern noted in Fig. Ada, that which every charge might show with
earlier IP response. Here 2=149 mm and the SG at 118 mm shows a
very sharp rise, followed by decay; that at 143 mm shows only minor
disturbances until its final rapid rise.

Fig. Al0 for 70/30 HMX/Al shows that this charge may not have
detonated before the end of the tube. However, the displacement of
the IP datum at 117 mm and the monotonic increase in front velocity
thereafter indicate that the detonation velocity (v8 mm/us) might
have been achieved just at the end of the tube. That plus the fact
that the closure bolt was heavily dented seem to justify an estimate
of 2v295 mm. This cannot, of course, be justified by tube markings.

All records were lost for the shot on 60/40 HMX/Al, but from
data on the previous shot, lack of tube marking, and type of
fragments, this shot certainly did not reach detonation although
there was a dent in the closure bolt. Fig. All shows fragments
from Shots on 90/10 and 75/25 HMX/Al (which detonated) as well as
for 70/30 which may just have reached detonation and for 60/40
HMX/Al which failed. It is quite evident that fragmentation
efficiency decreased as aluminum content increased whether or not
a detonation occurred,
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TABLE Al
DETAILED DATA FOR SHOTS

Shot No. 109¢ 102¢ 113¢
HE HMXa 90/10 HMX/A1© 90/10 HMX/A1®
oolpy)s g/em®  1.322(1.900) 1.756(1.958) 1.771(1.958)
% TMD 69.6 89.7 90.4
IP Data Xt Xt Xt
3.30 0.0+ 22.35  0.0% 22.35  0.0*
16.00  23.4* 35,05  5.4% 35.05 4.6
28.70  28.9*  47.75 8.5+ 47.75  9.5*
41.40  30.8*  60.45 12.8* 60.45  11.3*
54.10  32.5%  73.15  18.5% 73.15  12.6*
66.80  34.0%  92.2  27.5 85.85  14.0*
79.50  35.8% 117.6  30.6 104.9  16.2
130.30  43.1  143.0  33.8 43,5 20.7
181.1  50.6  181.1 38.4 181.1  25.5
231.  57.8  257.3 47.4 231.9 3.6
6 Data x 2 x ot x b
i 20.4 13.2,37.4 20.3 0.6 20.3 -f
; 40.3 26.0,35.2 40.3 6.2 40.2 3.5
3 59.2 32.5 59.3 7.3,13.3 59.3 .
78.2 35.2  78.4 14.5,20.5  78.2 -
97.4 36.7 97.4  15.2f
1. () M 104.9 47.8
- Dntylus) 2 25.6 8.5
) 29t (us) 12 42.6 9.5
| D(am/us ) 7.0 8.3 8.3
pre D(m/us) 0.54, 1.55 2.98 2.7
3

* Custom-made probe.

. A1l HMX s Class 1(A) from Batch X-906.

. Increase in (dp/dt) or abrupt termination of record.
. H95 Al

. H-5 Al

. F is failure to achieve steady state detonation.

. Uncorrected baseline shift on these recovds.

-+ QA oo

Units of x are mm, of t, ps.
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Shot No.

HE
Po(p,)s g/cm
% TMD

IP Data

3

SG Data

£(nm)

agAtD(US )

Pbte(us)

D{nm/us)
pre D(mn/us)

NSWC TR 79-119

TABLE Al (Cont'd)
DETAILED DATA FOR SHOTS

101C 103C

80/20 HMX/ATC 70/30 HMX/A1€
1.823(2.020) 1.859(2.086)

90.2 89.1
X bt X L
22.35 0.0% 28.7 0.0%
35.05 6.9% 47.75 12.7*
47.75  11.2* 66.8 22,2%
60.45  15.1% 85.85  27.9%
73.15  15.7% 98,55  29.5%
92.20  18.5 117.6 31.5
117.6 21.8 143.0 34,5
143.0 24.8 168.4 37.6
181.1 28.9 193.8 41.0
257.3 38.5 257.3 49,0
X L X L
20.3 1.8 20.5 4.3f
40.3  5.7-8.6 40.1  6.4,13.4
56,8 12.6~16.2 59.2 16.8,23.7
97.4 18.0-20.1 78.4 24,8-28.5
97;& -
56.6 78.2
9.4 25.3
9.4 26.)
8.3 8.0
1-8.3;] ].7.2¢0

* Custom-made probe

¥ Estimated
¢. H95 A)

f. Uncorrected baseline shift on these records.

A-5

108C

60/40 HMX/A1°C
1.940(2.155)

90.0
X Lt
28.7 0.0*
47.75 13.7%
60.45 18.0*
73.15 20.1*
85.85 21.5*
98.55 23.0%
111.25 24, 35%
162.05 31
206.5 37.2
257.3 43.6
X "
40.3 Failed
59.2 to
78,5 Trigger
97.3
116.3
59.2
17.8
N7 B
7.7
104. -
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TABLE A1 (Cont'd)
DETAILED DATA FOR SHOTS

Shot No. 111¢ 107C 112C

HE 3 90/10 HMX/A1d 80/20 HMX/A19 75/25 HMX/A1Y

po(p,)s afc 1.779(1.958) 1.828(2.020) 1.854(2,052)

%TMD 90.9 90.5 90.4

IP Data X o X t X o
22.35 0.0% 28.7 0.0% 28.7 0.0%
35.05 5. 6 4.4 8.1% 54.1 22.1%
47.75 1.5 54.1 13.8% 79.5 39.0%
60.45  14.9% 66.8 10.8%  104.9 52. 6%
73.15  16.4% 79.5 26.0%  123.95  62.5%

3t 92.2

155.7  26.15  155.7  38.8  181.1  77.3
206.5  32.35  206.5  45.6  219.2  82.]
251.3 3.7 257.3 5.6  250.3  86.9
SG Data X L X L X 2
20.5 - 20.4 -f 20.7 10.0f
40.1 2.7 40.3 3.0 66.7  24.2-30.8
5.2 9.-15.7 5.6  7.5-15.7 92.1  42.0
78.5 11.9-20.0  78.2 15.7-26.5 17.7  48.7-57,7F
97.3 - 97.3  27.4-33.2 143.0  65.2
) 56.4 92.2 149.4
E Bnty(us) 10.8 31.0 74.0
4 Bt (us) 16.0 35.8 60.5
a
: D(mn/us ) 8.0 8.0 8.2
pre D(mm/us) 2.2 1.6,2.1 1.1-2.0,2.2
3 ﬁf * (Gustom-made probe

d. H-5 A).
f. Uncorrected baseline shift on these records.

il s AL
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Shot No.

HE 3
pO(pV) (1 g/cm
% TMD

IP Data

SG Data

£{rm)

Baty(us)

Datg(us)

D(m/ps )

pre D{mm/us)

*  Custom-made probe

** Estimated

d. H-5 Al,
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TABLE A1 (Cont'd)
DETAILED DATA FOR SHOTS

110C

70/30 HMx/A19
1.885(2.086

90.4

X t
28.7 0.0%
47.75 16, 4%
66.8 34.0%
85.85 50. 7%
95,55 59, 5%
117.60 68.2%
143.0 84.6
168.4 97.1
206.5 107.1
257.3 114.0

X L
40.1 8
59.1 16.6,22.5
78.1 40.4
97.3 47-55.4F
116.5 Poor Recordf

> 249(295%+)
> 114(120%*)
(120%%)

Fe

1.1

e. F is failure to achieve steady state detonation.
f. Uncorrected baseline shift on these records.

A-7

106C

60740 HMX/A1¢
1.956(2.155)

90.8

Instrumentation
Failed

. B
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. FIGURE A6 DISTANCE-TIME DATA FOR SHOT 108C ON 89.9% TMD 60/40 HMX/95u-Al,
P, = 1.94 g/em3. (KEVS OF FIGURE A1)
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