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INTRODUCTION

The Naval Weapons Center has developed a computer program, often referred to as the NWC
therinochemical program or the propellant evaluation program (PEP), for the calculation of high-
temperature thermodynamic properties and performance characteristics of propellant systems. This
report is a summary of the methods and equations used in the program, which will handle a
maximum of 12 chemical elements and 200 combustion products. Flame temperature, chemical
composition, enthalpy, entropy, specific heat ratio and molecular weight of both the combustion
chamber and exhaust, frozen and shifting equilibrium, specific impulse, boost velocities, thrust
coefficient, characteristic velocity, and exhaust gas velocity can be ccmputed with this program. The
assumptions made, the limitations imposed, and the input data required for the solution of a specific
problem by use of this program are discussed'in detail. The appendices provide a working guide for
those using the program and give examples of computer inputs.

BACKGROUND

NWC Program Development

The NWC thermochemical program did not come suddenly into being. As early as 1951
thermochemical computations were performed at NWC (formerly NOTS) when Dr. W. S. McEwan and
S. Skolnik developed and reported an approach using an analog computer. Dr. D. S. Villars reported
his reaction-adjustment method in 1960. The same year I-1. N. Browne, Jr., completed a program using
a method reported by NASA. Mary Williams and Dr. Howard Shomate contributed toward the
automation and building of in accurate and usable data bank. In 1964 the author combined some of
the ideas of Browne and Villars (who had never collaborated with each other) into the outer skeleton
of the Browne program. At the same time a new method of handling condensed species put an end
to convergence failures. In 1968 some important suggestions were made by Professors W. R. Smith
and R. W. Missen, who had developed their own program at the University of Toronto using the
reaction-adjustment method. (A later section of this report is devoted to a discussion of their work.)
Since that time the NWC program has continued to evolve in the direction of data automation and
new applications.

General Development of Thermochemical Programs

In the past 20 years the computation by high-speed digital computers of' high-temperature
chemical equilibria has become one of the important applications of computers. It is a challenging
application, because of the large sets of nonlinear algebraic equaticns that must be simultaneously
solved and because of the necessity of devising computer codes general enough to handle any
particular chemical systeml. There have been three historic approaches to the probiclm.

lWestern States Section of the Combustion Institute. P'rocteedings of ihe First Conference on Kinetics,
Equilibria and J'erftrnwnce of High Temperature Svstenms. ed. by G. Bahin and E. Zuckowsky. Washington. D.C.,
Butterwortlis Scientific Publications, 1960.

3



NWC TP 6037

One approach, presentedJ by Whitc, et al., is directly motivated by the free-cnergy criterion for
chemical equilibrium2. Tile resulting numerical procedure is the method of steepest descent, which is
a general method for the numerical solution of nonlinear algebraic equations.

The second approach, presented by Brinklcy3, uses equilibrium constants and for purposes of
background will be described in some detail. First, a "basis" is chosen. A basis is a subset of
molecular species (also valled components)4 . It contains as many species as there are chemical
elements, and from it all other species may be formed by chemical reaction. A set of equations then
establishes the equilibrium relationship of each nonbasis species to the basis. Another set of equations
establishes the gram-atom amount of each chemical element. Both sets of equations are solved
simultaneously by the Newton-Raphson method, which is a general method for the numerical solution
of nonlinear algebraic equations.

Interesting variations in the latter method are presented by Huff et al.5 and Browne6 . The
latter, in particular, introduces the concept of the "optimnized" basis, in which the components are
piesent irn the greatest possible molar amounts. Browne's computer code for the equilibrium-constant
approach was successfully used from 1960 to 1964 by the Naval Weapons Center, then known as the
U.S. Naval Ordnance Test Station (NOTS).

The reaction-adjustment method of Villars is the third approach 7'8 . This, too, was a method
suggested early in thle de,ýeloprnent of computer codes but not widely used before the development
of the present program. Its theory is simple: The chemnical system is divided into a number of
subsystems, each relating a nonbasis species to the basis. The subsystem with the greatest discrepancy
in its equilibrium relationship is corrected stoichiometrically. In this way the gram-atom amounts
(chosen correctly at the start) do not change. The reason for convergence is clear: Each iteration is
equivalent to arresting all possible reactions but one and allowing that one to proceed according to
the law of mass action. This possible (though not plausible) kinetic model can only lead in the
direction of equilibrium.

In its computations! aspects the mnethod presented by Villars has both advantages and
disadvantages. Unlike thle former methods, it does not require the inversion of large matrices. This
simplifies the coding and reduces the required computer memory. On the other lland, the speed of
the method is greatly dependent on the choice of' the basis. It is admittedly quite slow when
components are chosen that are present only in smnal molar amounts.

2.B. Whiitw, S. M. Johnson, and G. B3. Dantzig. "Chienical Equilibrium in complex Mixtures." J. C'hewm.
Pln's., Vol. 28 (May 1958). pp. 751-5.

3.R. Brinkley, jr. 'C~alculation of the Lquilibrium11 Composition of systems of Many Constituents," J. Client.
Phvs., Vol. 15 (1947), pp. 107-10.

41l1. J. Kundiner and S. R. Brinkley. 'Calculation of Complex Equilibrium Relations." hId. Eng. Clhenm
Vol. 42 (1950), pp. 850.5.

5National Advisory Committee onl Aeronautics. General Mfethod and Thermnodynanmic Tables .fbr Comnputation
of' Equilibrium C'omnposition and Temperature of* Chemical Reactions. by V. N. H-uff, S. Gordon. and V. E. Morrell.
Washington, D.C., NACA 1951. (NACA Report 1037.)

6 Nava! Ordnance Test Station. The Theoretical Computration of' Equilibrium C'ompositions, Thmermodynamnic
Properties and Perb,,,mance Oicracterastics of' Propellant Systems, by H. N. Browne Jr.. M. M. Wiiilams. and
D). R. Cruise. China Lake, Calif., NOTS, 1960. (NAVWIE*PS Report 7043. NOTS IT 2434, public~ation UNCLASSIFIED.)

71.S. Villars. "A Method of Successive Approximations ror Computing Comnbustion Equilibria oil a iigh
Speed Digital Computer," J. C/acm. Phys., Vol. 63 (1959). pp. 52 1-5.

81. * S. Villars. "Computation of Complicatad Combustion Equilibria onl a high-Speed Digital Computer," in
Proceedipmj.. of' the First Conference on Kinetics, k*-gilibria and Performance of If igla Temperature Systems, ed. by
(G. lBahr and E. Zuckowsky. Washington. D.C.. uutterworths Scientific Publications. 1960.
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It was decided to try Villars' method and to choose an optimum basis by Browne's method.
The automatic choosing of the optimum basis is not difficult to code, and it serves two purposes: It
greatly speeds convergence, and it relieves the user of the burden of choosing the basis himself.

ORGANIZATION OF REPORT

The next three sections of this report describe the combination of Villars' and Browne's
methods for computing a chemical composition at a given pressuie and temperature. The description
is divided into three parts. The first part presents in detail the basis optimization technique used,
which differs only slightly from that reported by Browne. The second part presents the procedures
for determining equilibrium. which follow essentially the method of Villars, except for some suitable
modifications to increase computing speed. The third part presents certain manipulations with
condensed phases that increase the generality of the method. The remaining five sections describe
variou. s aspects of the method. For a concise presentation, the procedures are described in the
notation of linear algebra.

The appendices describe how to run the program on the computer.

BASIS OPTIMIZATION

Consider a system which contains S chemica! elements and N molecular species such that N is
greatei than S. Relating the species to the elements is a molecular composition matrix C. Here the
individual elements Lik state how many atoms of the kth element are contained in a molecule of the
ith species.

Let any arbitrary choice of S molecular species be denoted

i')I ;S

where the subset of i's chosen is considered to be a function of a dummy indexi. A basis is formed
by i(j) if and only if the following relationship exists:

JBI 0 0 (I)

where the vertical bars denote the determinant of the matrix B and where the elements of B are
defined as follows:

I << Sb/k =ci(),k (2)
1 <.k <•S

Equation 2 involves three intdxes, i, j, and k, where i is not independent because of its functional
relationship to j. This equation describes thi forrmation of the square basis matrix B by extracting
some of the rows of the larger, composition matrix C, namely those rows corresponding to the
chosen species.

5
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The optimization problem requires that i(j) be chosen to form a basis ani that the
corresponding molar amounts ni(j) be as large as possible. This can be done by a process of trial and
error. First the molecular species must be so sorted that the molar amounts are in descending order.
Here the specks subscript i becomes itself a function of a subscript in, such that

ni > ,z 2 7 • . . i m ; Ili m~ > i ... > 1 ni N (3 )

The basis is now found as follows. First iI is chosen to be the first basis species and the ilst
row of the C matrix is put into the first row of the B matrix. Next the / and m indexes are set to
the value 2. The third step is to test im as an acceptable basis species. This is done by inserting the
imth row of the C matrix into the jth row of the thus far incomplete B matrix. If there is linear
dependence among the rows of the incomplete B matrix, the test fails, and the rn index is increased
by unity. If there is no linear dependence, im becomes the jth basis species, which is to say, i(f) and
both the j and In indexes are increased by unity. From here the process returns to the third step
until i(S) is determined.

Browne established linear dependence by the following relationship:

I(1ine) (BLinc)T = 0 (4)

where 7' denotes transposition and Bin1c is the incomplete B matrix. However, it was found that the
test could be performed much faster by using the Gram-Schmidt construction. This construction is
expressed as follows:

bk Qk - bpjbnh// bIk _11 (5)

where b~k rmplaces thM element bkk and n and Q are dummy indexes. If all elements of the jth row
are zero after the construction, there is linear dependence, and the test fails. The underlying theory
of linear dependence and the Gram-Schmidt construction are presented in Stoll9 and other texts on
linear algebra.

The complete B matrix is determined at the end of the optimization process, and the P, matrix
of reactiori coefficients is expressed

v = CB'1  (6)

Equilibrium constants may then be computed from the elements of the P matrix as follows:

9W (7)
/=1

where gi is the standard Gibbs free energy of the ,th species at the given temperature T.

R. Stoll. Lihear Algebra and Matrix Theory. New York, McGraw-Hill, 1952. Chapter 8, especially section 8,7.

6
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PROCEDURES FOR DETERMINING EQUILIBRIUM

The equilibrium procedure requires that a first estimate of the equilibrium composition be
given. This estimate need not closely approximate the finai solution, but it must express the dsired
gram-atom amount of each chemical element. This expression can be accomplished in many ways.
One way, easy to code, is to set the molar am-ount of one monatomic species of each chemical
element to the desired gram-atom amount, then set the molar amounts of the rest of the species at
zero (or at negligibly small values). This particular way requires that the monatomnic species appear in
the formulation.

The general iterative procedure assumes that the gram-atom amounts are correct and that the
optimum basis has been chosen for the current estimate of the molar amounts. The reaction
coefficient matrix, v,, and the array of equilibrium constants, Ki, are therefore available from
Equations 6 and 7. A pass is made through the reaction (nonbasis) species to determine whether the
proper equilibrium relationships arn met. If not, the molar amounts, ni, arc stoichiome'rically
corrected. The basis is again optimized whenever the current basis is no longer optimum. The details
are described below using the conventions of Prigoginel°

The chemical reaction which yields the ith reaction species from the basis may be written as

S -- Y• uiiq) + i(8)

therefore, a stoichiometric change in the extent of reaction, At, causes the following alterations in
composition.

"n!= i + A (9)

Iliai) Il"ia) " VilN I <<" s (10o)

where the primed ni denotes the molar amounts after the change. This change, by definition, does
not alter the gram-atom amount of any chemical element.

Basis optimization guarantees that ni is smaller than any of the n /I- in the basis for which
vil 4/ 0. In actuality most reaction species are smaller in molar amount by many orders of magnitude
than the basis species from which they are formed. The gaseous species more thanl two order of
magnitude smaller are arbitrarily classified as minor species, and the rest of the nonbasis species,
including condensed species of any molar amount, are classified as major species.

The correct equilibrium relationship for the ith reaction is expressed as

S

-E -Yi(/) vii n (Anij)) + 7i Vil (Ani) = Qn Ki (11)
j=1

101. Prigogine and R. Defay. Chemical Thermodyntamics, translated by D. Everett. London Longmum., Green

and Co., 1954.

7
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where tile phase parameter -yi takes the value unity if the ith species is a gas and the value ;:ero if it
is condensed, and

p
A =- /N

Ei "int

where P is the given pressure. If tile current molar guesses are incorrect, the terms on the left will
equal some value other than Qn Ki and are denoted VW Qi. The iterative procedure obviously must
adjust the values of ni until the values of Qi approach thosc of Ki within a specified tolerance. The
log of the equilibrium constant may be differentiated with respect to the reaction parameter
(assuming A to be constant), yielding

vti. nj/1iiu) +-ti/, dý = d(.n K) (012)

An estimate of the stoichiometric correction for a major species is obtained by applying
Newton's method of locating roots, which is expressed 1y the following approximate form of
Equation 12:

S 2
A,• tKi.nQi)/(.."i v2'niq(") + yi/ni) (13)

Equations 9 and 10 are then applied. (In practice, Aý is not allowed to take values leading to
negative ni.) All major species are corrected by this method during the iteration pass. This differs
from the method used by Villars, 'who applied the correction only where the discrep-
ancy IQn Ki " V1 Qi I was greatest. The modification is justified for two reasons-(l) little additional
computing time is required to actually make the correction after the discrepancy is determined, and
(2) the basis optimization has minimized the interaction effect that a given correction has on the
other equilibrium relationships.

An estimate of the stoichiomretric correction for minor species is obtained as follows:

n li (Ki/Qi) (14)

za.= . ,i (1S)

Equation 10 is then applied. This approach assumes that the error in Ki is contained entirely in the
value of ai. This is nearly true for minor species, befause a large relative change in n! is
accomplished by a small At, and there is no appreciable change in the basis. This separate analysis of
minor species also differs frcm that of Villars. Again there are advantages. Equations 14 and 15
require less computing time than Equation 13. Then, too, the former equations compute the molar
amounts of tile minor species to a high degree of accuracy (four or more significant decimal places)
even when the relati./e molar amounts are quite small (e.g., 10-10 or 10"20). (This is useful in some
applications involving ionic species.) It was also found that computer time is saved by correcting the
minor species only on every fourth iteration pass, unless convergence is attained among the major
species in the meantime. The variable A, defined above, is computed once at the start of every
iteration pass.
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Convergence was considered to be attained when all binding equilibriumn relationships passed the
following tests:

(major species) (1 17iQi) I < 10 (16)

(minor species) (1 - Ki/Qi) < 10"4 (17)

However, not all equilibrium relationships are binding. This is discussed in the ihext section.

DELETION OF CONDENSED PHASES

The formulation of the chemical equilibrium problem., as usually presented, is not general

encugh to completely describe the behavior of condensed phases. To overcome this weakness special

procedures must be used. Tihe following two procedures are particularly suited to the method of

determining equilibium presented above.

When the computed amount of a condensed species becomes negligibly small (say, 10-6) and

Ur F• - Qn Qi is negative, no corretion is applied, and the equilibrium relationship is no longer

binding. hi this way a phase is deleted and a degree of freedom is gained in accordance with the

phase role 11

When a reaction ,cc,:s entirely among condensed species, the denominator in Equation 13 is

zero. In this situation the phase rule states tiat at least one of the involved species cannot be

present in ary molar amount (if we aic free to specify pressure and temperature). The situation is

handled by ignoring Equation 13 and determining a value of Aý that takes the sign of I.- Qn Qi

and that has a magnitude not leading to negativ,: molar amounts when Equations() and 10 are

aupiied. This is symbolical!3 expressed as

Aý = sign (Qu Ki - Q1 Qi) mi..ll h ,i I Il(2)/ I ii2 .... "li(S)! ls (18)

In this manner the molar amount of at least one condensed species is reduced to zero.

When these procedures were included in the computer code, correct solutions were obtained

even in extreme!y difficult cases. hn fact, correct solutions can be obtained where no gas phase is

present.

1 A. Findlav. Phase Rule. New York, ')over. 1951.

9
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NUMERICAL EXAMPLES OF BASIS AND
EQUILIBRIUM CALCULATIONS

Considei a system coutaining 1 gram-atom of carbon and 2 gram-atoms of oxygen. The
following combustion species may be chosen at.d associated with ihe composition matrix shown
below:

i £

I c 1 0"
2 C3  3 0
3 0 0 1
4 02 0 2 C (composition matrix)
5 CO 1 1
6 Co2 1 2
7 C(graphite) 1 0

One way to choose the ipitial composition guess is to set the monatomnic gases to tile desired
gram-atom amounts and the rest of the species to zero as follows:

Species i 21

C 1 1.0
C3  2 .0
O 3 2.0
02 4 .0
CO 5 .0
CO2  6 .0

C(graphitc) 7 .0

Obviously the best basis for these composition valkies is:

Species i Vi)

C I
0 2 3

for these are die species in greatest concentration from which all other species may be formed. This
is the basis the program would use on the first iteration.

For a more interesting example of a basis calculation, let us say that at a later iteration the current
composition guesses are:

Species £ .i

C 1 0.4874996
C3  2 0.0045000
O 3 0.5005000
02 4 0.5000000
CO 5 0.4985000

CO2  6 0.0005000
C(graphite) 7 0.0000004

10
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(If previous calcula',ons are correct, these values will still reflect the proper gram-atom amounts of C
and 0.)

These may be sorted into the order of decreasing molar cuncentration:

Specis M

0 1 3 0.5005000

02 2 4 0.5000000
CO 3 5 0.4985000
C 4 1 0.4874996
C3  5 2 0.0045000
CO2) 6 6 0.0005000

C(graphite) 7 7 0.0000004

Species iI (0) is immediately chosen as the first basis species and the ilst (here the third) row
is ta!en from the composition matrix to become the first row of the basis matrix.

10 1J = Bn"

Next the ind (here the 4th) row of the C matrix is placed into the B matrix:

[B I (to be tested)

Although linear dependence is obvious in this case, the program actually performs the Gram-Schmidt
construction which transforms the second row as follows;

(Y•b1;h h111•\ 0+2
b2= bbl2 / b]l = 0 - 0+ 0 = 0

b b2h hl, b 0+2b22 =b212 " b11 12 0 l•=

Because both elements of the transformed row are zero, 0, is rejected as a basis species.

Next i3 (CO) is tested as the basis species. The i3 rd row (here the 5th) of the composition
matrix is placed it,to the second row of the basis matrix:

[o ~ I (to be tested)

11

I
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Gram-Schmidt construction transforms the first element of" the second row as follows:

bbh2h bill 0+1
b21 - •,bh2 11 = I -"0+ 0 = 1

This element is non-negative and CO is immediately accepted Fs a basis species without further
calculations. Also, because there are now as many basis species, as there are elements (B is square),
the basis is complete and because of the above technique, "optimized."

The results are summarized thus:

Species j i(j) .. __im

0 1 3 1 3
CO 2 5 3 5

The next step is to find the inverse of the B matrix which is

0

The v matrix of reaction coefficient is now found as follows:

v CB"1' I I .1I

3 0 L -3 3
0 1,] 1 0l 0
0 2• 2 0
I 1 ; " 0 1

1 2-1 1
10 10

The coeffiwunt. may be verified by noting that the following chemical equations balance:

i

I (.1) 0 + (1) CO C
2 (3) 0 + (3) CO- C3
3 (1) 0 + (0)C CO 0
4 (2) 0 + (0) C• 02
5 (0) 0 + (l) CO- CO
6 (1) 0 + (1) CO- C02
7 (-1) 0 + (1) CO o C(g.aphite)

12
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These coefficients may be used to determine the equilibrium constants for each reaction. For instance
for the first reaction

-1
In K1  • [gC " [(-9)0g + (1)] gcol

where g is the given Gibbs free energy at the given temperature T.

Let us say for the sake of an example that T = 5500 K and P 1 atm and that the
equilibrium constants computed by the above method turn out to be

Reaction 2n Ki (5500)
1 -1.4
2 -5.95
3 0
4 ..

5 0
6 ..

7 -3.91

The variable A, which converts molar concentrations to partial pressures, is computed as follows:

6
A = P/•'ti (summation to be taken only over gases)

A = 1/(0.4874996 + 0.0045 + 0.5005 + 0.5 + 0.4985 + 0.0005)

A 1/1.9914996 = 0.5022 (rounded)

Since all products involved are gases, 2n Q for the first reaction is computed thus:

Jn Q -2 vii •n (Aniot)' + Qn Az'i

=[(-) Qin (0.502"2 nCO) + (+1) Qn (0.5022 . no)] + Qn (0.5022 nC)

+ JA,975 (0.5005) (05022) 1.3829
1 0.4985 =

The molar amount of C is not less than one hundreth of that of CO or 0, so t~le formula for
the correction of a maje" species is used:

2
At (9.n KI + Qn QI ) /i( ( jvifnqj) + IIni)

+ +2 (+1)2 +1
A• = (-1.4 + 1.3829)) () +---t2  + c I

A= (-0.0171)/6.055 = -0.0028
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The corrections in composition are now made as follows:

0 nO = 0.5005 - (-1X-0.0028) = 0.4977

CO n,1 = 0.4985 (+1(-0.0028) 0.5013

c n 0.4975 0.0028 = 0.4947

(These new values may be substituted into the expression for Qn Q above yielding -1.4004, which is
a significantly better estimnate of 9W KI.)

Next, we turn to the second reaction

(-3) 0 + (3) CO C3

Because nC 3 = 0,0045 is less than 0.01 of the smallest (n0 = 0.497'/) concentration of the basis
species, C3 is classified as minor.

The equilibrium constant is given as Qn K = -5.95 or K - 0.002605 and Q is evaluated by

= (0.5022 n,)3 (0.5022 nC3 )

(0.5022 nCO) 3

= (0.5022) (0.4977)3 (0.0045) = 0.0002212

(0.5013)3

(Note that the new values of no and rCO are used.) The new concentration of C3 is found by the
formula for minor species.

(0.002510 0
=0.0045 0.002212 = 0.0053

The change in the basis species is then determined

At = 0.0053 - 0.0045 = 0.0008

11 = 0.4977 (.3) 0.0008 = 0.5001

riCO = 0.5014 - (+3) 0.0008 = 0.4990

(Again, a reevaluation of Q shows a greatly improved estimate of K.)

The third reaction

(1) 0 + (0) CO - 0

simply shows the formation of a basis species from itself and so it is ignored.

14
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Reactions four through six fall into the same categories as the first three and so will not be
illustrated here.

The seventh reaction (-1) 0 + (+1) CO - C(graphite) shows the formation of a ccondensed
species, and so it is considered to be major even though its concentration is well under 1/100 of
the smallest basis species. Qn Q is found as follows:

Rn Q3  (-1) Rn (Ano) ', (+!) Rn (Anco)

(- [(.1) n (0.5022)(0.5001) + (+1) 9n (0.5022) (0.4990)]

= 2n 0 - 0.0022
0.4990

(No term involving nc(grapnite) appears in this expression because C(graphite) is a ilongas.)

Normally this species would be corrected as before for a major species. But the following
conditions exist:

nC(graphitc) < 0.000001, and Rn K7 - 9n Q7 is negative

Therefore, no correction is made and the equilibrium relation is not bindilig.

The procedure outlined is repeated for all species until all binding equilibrium relations are
satisfied to a specified tolerance.

THE WORK OF SMITH AND MISSEN

Professors Smith and Missen at the University of Toronto reported further results on the
reaction-adjustment method In 1968,12 Their work points out that a converge,'e forcer is r'equired
for the method. It was an oversight that this had not been reported in the work by the author. 13 A
device to force convergence is indeed required.

The NWC program computes limits on At

'Umin '6 `U < A•Jmax (19)

such that negative concentrations do not occur. It forces convergence by narrowing these limits as
follows:

l/2AP~min < Atj < l/2At-max (20)

Empirically this has been found to work.

Smith and Missen use a more eleganw •chnique, which in effect tests the results of each
reaction adjustment to ensure that the free energy minimum has not been passed over. If' this occurs,
they reduce the extent of the adjostment.

12 W. R. Smith aad R. W. Missen. "calculating Complex Chemical Equilibria by an Improved Reaction-
Adjustment Method," Can. J. Chem. Eng., Vol. 46 (1968), pp. 269-72.

13D. R. Cruise. "Notes on the Rapid Computation of Chemical Equilibria," J. Phys. Chem.. Vol. 68 (1964),
pp. 3797-802.
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Smith and Missen also report that faster convergence can be achieved by obtaining a better
initial estimate of the composition,

Smith and Missen further draw parallels between the reaction-adjustment method and linear
programming. This inspired thl author to update the basis by the tableau method of linear
programming 1 4 instead of the more time consuming Gram-Schmidt construction previously reported
(footnote 13). This updated version works by testing each species after adjustment to determine if it
is now larger than any of the basis species with which it reacts. If so, the two are interchanged, and
the equations are updated as suggested by the tableau format (footnote 14).

NOTES ON THE PROPELLANT MODEL

A theorem by Duhem (see Chaptei XlIl of Chemical Thermodynamics1 0 ) states that "Whatever
the number of phases, of components, or of chemical reactions, the equilibrium state of a closed
system for which we know the initial masses is completely determined by two independent
variables." This determination is made by the NWC thermochemical program in the theoretical
evaluation of propellant performance. In the mathematics of the program the independent variables
chosen are pressure and temperature. Two other variables of interest and possible choices for
independent variables are enthalpy and entropy. These too, however, are computed from •.quilibriurn
compv..,itions and are therefore dependent on pressure and temperature in this program. Desired
value of entropy or enthalpy are achieved by repeating the above determination for various
temperatures, and new temperature guesses are obtained by interpolation.

Theoretical propellant evaluation is based on a straightforward thermodynamic model consisting
of two processes: (I) constant pressure, adiabatic combustion and (2) isentropic, adiabatic expansion.

The assumptions behind the combustion process include

I. Reaction kinetics are fast enough that chemical equilibrium is attained before the products
leave the combustion chamber and enter the nozzle.*

2. No heat exchange occurs between the propellant system and the surroundings.**

3. G6iseous species individually obey the perfect gas law and collectively obey Dalton's law of
partiul pressures.

When su-l1n assumptions are made, the system enthalpy and the system pressure completely
determine the linal state and chemical composition of the system after combustion. The solution to
this state and con~position is found by a computing technique called "enthalpy balance." The method
used by the propellant evaluation program is described below.

The system enthalpy itself is determined by the propellant heat of formation, which (excluding
heats of mixing) is a linear weighting o" the heats of formation of the individual propellant

14G. Hadley. Linear Programming, 2nd ed. Reading, Mass., Addison Wesley, June 1963. Pp. 126 ff.

Real propellants for which this assumption is not valid are said to "burn on the wrong side of the nozzle."
This may be referred to as a Type I inefficiency and is one of the principle reasons for disagreement between the
program and reawity.

**

in ramijets, the stagnation energy of the ii.coming air becomes part of the system. This may simply be
added to the heat of formation of air.

16
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ingredients. The value of enthalpy does not change during combustion, so this is also the value of
the system enthalpy after combustion. By definition, system enthalpy is the heat needed to form the
system in its current state from the elements in their most natural state aft 298K and one
atmosphere.

The assumptions behind the expansion process include: (la) Reaction kinetics fast enough that
chemical equilibrium is maintained throughout expansion, i.e., the shifting hypothesis; (lb) reaction
kinetics so slow that no appreciable change occurs in the chemical composition during expansion, i.e.,
the frozen hypothesis; (2) expansion process is reversible*; (3) no heat exchange between system
and surroundings; and (4) gaseous species individually obey the perfect gas law and collectively obey
Dalton's law and nuingases occupy no volume.

When such assumptions are made, the system entropy and the system pressure completely
determine the final state of tile system, regardless of the path. The solution of this state and
composition is found by a computing technique called entropy balance. Tle latter differs little from
enthalpy balance. (System entropy is referenced to the third law of thermodynamics.)

The need for the techniques described below arise because the chemical equilibrium problem is
formulated to calculate composition and state from given pressure and temperature values. The
calculation ef performance and design parameters, however, demand that the propellant model above
be utilized,

The first problem is to find the value of temperature at which a given cnthalpy and pressure
requirement is satisfied. This provides the "adiabatic flame temperature" and, as a by-product, the
system entropy. The second problem is to find the value of temperature which satisfies the system
entropy at a given exhaust pressure. In both cases, pressure is entered directly into the equilibrium
code and temperature gucsses most be introduced until the enthalpy or entropy conditions are
satisfied.

Enthalpy and entropy are each monotonic functions of temperature: their functional values
always increase with increasing temperature. In ideal cases, they are smooth, nearly linear curves. In
less frequent, but certain to occur, cases the curves are actually discontinuous. This occurs at the
fusion temperatures of condensed species.

Two numerical methods suggest themselves: Newton's method and the interval-halving method.

Newton's method consists of correcting successive temperature guesses by tile following formula"

Ti = Ti.1 ~ f (Ti.1I)If*'I(Ti. 1 (21)

where Ti is the new guess, Ti. 1 is the previous guess, f(T) is 11(T) - H,) in the case of enthalpy
balance, and J(T) is S(T) - So in the case of entropy balance. HIo and So are the desired values of
enthalpy and entropy. The derivative in the case of enthalpy is expressed asf'(T)j=C and in the case
of entropy f(T) = C IT.

Newton's method is very rapid when the curve is fairly straight and when a good guess is given.
There is no guarantee of its convergence, It definitely will not converge in areas where the curve is
discontinuous as mentioned above.

The interval-halving method depends on setting upper and lower temperature limits. That is,
first, a temperature for which the enthalpy (or entropy) is too high; and second, a temperature for
which the enthalpy (or entropy) is too low. The range of much of the JANAF '.iermochemica- data
is 298 to 6,000K. These can be chosen as the limits, because if they do not bound the answer, the
computer effort is futile anyway.

*This covets a multitude of sins such as nt shocking in the nozzle and equal velocities for gas and niongas
phases at each point in the flow. Real systems for which this assumption is not valid have what may be referred to
as the Type If inefficiency.
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The method proceeds as follows: Take the arithmetic mean of the temperature limits
(T) 0.5(TU + Tlj and compute the value of 11(T) or S(T) depending on the process. If H(T) is
greater than 110 (or equivalently for S), T becomes the new upper limit. Otherwise, it becomes the
new lower limit, The process is then repeated. T becomes successively a better estimate of the
desired temperature, gaining one bit in precision for every iteration. Using the original limits of 298
and 6,000K, about 13 iterations are required to achieve a precision of one degree.

The interval-halving method' is the slowest practical ipproach to the problem. However, it has
one overwhelming advantage over other methods; if the answer is contained in the original limits, the
method will always converge.

The propellant program combines the two techniques. Temperature bounds uie established and
modified according to the results of the temperature guesses (a guess too high gives a new upper
bound and vice-versa). Guesses are first chosen by the formula for Newton's method. However, they
are used only if they do not approach one of the bounds by more than halfway; in this case the
halfway point is used.

The program thus uses Newton's method, with an interval-halving "override.' The advantages of
both methods are obtained. When the curve is fairly linear, the convergence is rapid; when the curve
"misbehaves" convergence is at least certain.

ESTIMATION OF NOZZLE DESIGN PARAMETERS

The NWC thermochemical program evaluates theoretical specific impulse by exact
methods: enthalpy balance for the combustion process and entropy balance for the expansion
process. The state of the fluid immediately after combustion is completed may be designated by the
subscript "I" and the state of the gas after isentropic expansion to the exit pressure may be
designated by the subscript "2".

ThL state variables computed during the first process are T1 , V1  andSI given the chamber
pressure, P1 , and the propellant heat of formation,Hi. Thiose computed during the second process
are T2, V, and il2 gven the exit pressure, P2' and entropy, S, = S1.

The state of the gas after the expansion may be computed under either a shifting or frozen
hypothe i;: In the latter case the chamber composition is retained rather than computing new
equilibri.,,n conditions at the exit conditions. Obviously, the values of T2, V2 and H, differ under
the two hypotheses, but the design equations presented below (which use these values as input) are
identical for both hypotheses.

Tile computation of optimum impulse assumes that the expansion ratio of the nozzle is
optimum; i.e., the value of pressure predicted at the exit by the continuity equation is the same as
the given ambient pressure. In this case, impulse is simply evaluated as follows:

I -2J(H H - 2)
I -\/(22)

where gMKS 9.80665 m/s 2 , .1 = 4186 (g-joules)/(kg-calories), m = 160 g and H is system enthalpy
in calories. (The program does not actually require a 100 g reference mass; it is merely a
jinie-honored convention.)

A
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The questions arise: Flow does one correct the impulse for conditions other than the chamber
and exit pressures given? Al"o, how does one correct for a nozzle that does not have an optimum
expansion ratio? Furthermore, how does one determine design parameters such as the thrust
coefficient and the optimum expansion ratio itself?

Two comments can be made immediately: (1) As far as the first questiorn is ,oncerned, there is
no better way to Jetermine the correction than rerunning the program at the desired pressure
conditions, (2) The gamma equations given in textbooks are inaccurate and misleading. especially
when applied to shifting flow and when the conventional definition of gamma is used:

" = CpCV (23)

However, equations of a gauiima form may be used effectively, if the values for gamma are
fitted to the exact solution of the state variables yielded by the program.

This approach assumes that the equations of state for enthalpy and entropy may be written:

H = I1o + 1 nRT (24)

7c'I

S = so • 1.nR Qn T nR Qn P (25)

where 11o and S) are arbitrary constants and y, and y,, are the parameters to be fitted.

The perfect gas law, PV = nRT, may be substituted into Equations 24 and 25 yielding:

H 1 ,+ PH1 V (26)

"^V (27)5o + v nR n (PV)-nR nP"0 v 1 Rý

where So) is a new arbitrary constant, and L. = 24.218 calories/liter-atm. is introduced so as to
consistently express enthalpy in calories.

The constants -f. and 1. are to be determined as that H2 and V2 are correctly predicted from
H1I and V1 by Equations 26 and 27. The solution may be shown to be

__"- I PI VIP21V2 L (28)

YV 1 (29)

£n V1 .Qn V2

where I0 and So' cancel out. 7c may be called the calorimetric gamma because it predicts the heat
content during the expansion. -'t, may be called the volumetric gamma because it predicts the changes
in volume during the expansion. In fact the familiar relation

PIV = P2 V2
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may be derived from Equation 29, assuming &S = 0. The two gammas will not, in general, be equal,
due to nonuniform Neat capacity and changes in composition in real systems.

Design calculations may be based on the continuity equation for one-dimensional flow:

t kpi'A (30)

where t;i = mass flux (g/s), k = 1,000 (liters/i3), p density (g/liter), v = velocity (mi/s) and
A = duct ;ross-sectional area (in 2 ).

Equation 30 may be rewritten in terms of state variables.

A/i; V/k (31)
V2mJ (IH1-1-)

using the relationships III - H = 1/2 n v. and p =

Equadions 26 and 27 may be substituted into this expression3 givii,,.

____ _____I "PI(32)

A/li = .fP) - Y (32)

P k 2rv' )L/ ,

The pressure at the nozzle throat is found by minimizing this expiession with respect to PA The
solution is

Ft  =2 ( 1 Y v! (7v 'l) (33)

The thomat area for unit mass flow is found by subs~ituting P* back into Equation 32.

/A.*/,; = ViP*) (34)

The optimum ixpansion ratio tor the given exit pressure may now be found

(A//t")opt = j(P2)/f-(l'*) (3 5)

If the noiizle exiansion ratio is riot optimum, then the true exit pressure (P2) is not the same
as the given ext pressure (P 2 ). P' may be found implicitly from the given value of the expansion
ratio.

(A/A *) given = f(P')/f(P*) (36)

The energy of propulsion is then given by:

Al l ( (37)
A C I =. (LPIVI) 2 0
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(In the special (optimum) case where Pi "2 P2 , then H = -111 - 112.)

In both optimum and nonoptimrnum cases, the specific impulse is given by

S- + JKI.f(P,)(P.. P2 ) (38)
SP' 9MKS 2 2 2

The vacuum specific impulse follows easily:

(IP)vacuum gMKs r + JKLJ(P•) P1 (39)

Finally, the thrust m'oefficient and the characteristic velocities are found by conventional relationships.

Cf' gMKS lsp/['IKLJ(P*) P1 ] (40)

C*= I"PS I sp/ q' (41)

where gFPS - 32.16 ft/s 2 .

The program currently outputs (lsp)opt, *y3,, (A/A), and Cf. under both frozen and shifting
hypotheses. Corrections for nonoptimum expansion may be obtained under one of the program
options.

The program was modified in 1965 so that the computation of y, and -t,, is applied to several
regimes. These are separated at points where condensed phases appear and disappear from the system.
The values of -t, and 1. vary from regime to regime. Each regime is scrutinized for minimum throat
area. If more than one occurs, the smallest is the one chosen.

BOOST VELOCITY

The formula for boost velocity of an idealized missile (one free of gravity and drag) is

AU =(Q SP) g Q/1 +(I *

where the switch density, p*, is given by

* = Mass of missile - Mass of propellant (42)
Volume of propellant

and p is the density of the propellant.

We use lb-mass/in 3 to measure p and lb-mass/ft 3 to measure p*, as input to the computer, in
abject submission to the illogical common usage. The units are made the same before computing the
ratio.
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