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FOREWORD

The Human Factors Technical Area of the Army Research Institute (ARI) is
concerned with the demands of increasingly complex battlefield systems
which are used to acquire, transmit, process, disseminate, and utilize
information. This increased complexity places greater demands upon the
operator interacting with the machine system, Research in this area is
focused on human performance problems related to interactions within
command and control centers as well as issues of system development. It
is concerned with such areas as software development, topographic products
and procedures, tactical symbology, user-oriented systems, information
management, staff operations and procedures, decision support, and sensor
systems integration and utilization.

An issue of special concern within the area of decision support has been
to improve the use of information in forming intelligence estimates and
making subsequent tactical decisions, Previous ARI research has con-
firmed the intuitive impressions of military personnel that serious
deficiencies exist in current methods for integrating and evaluating
information (ARI Technical Papers 200, 250 and 260), Once problem areas
are localized, two general approaches can be taken: (1) judgment and
decision-making aids can be developed; or (2) procedures for training
analysts to overcome the difficulties can be developed.

The current effort concentrated on developing training techniques to help
analysts to more accurately use numerical probabilities to indicate their
degree of confidence in their decisions. For the intelligence analyst,
the probability could represent how certain the analyst feels the infor-
mation or subsequent decision will, in fact, turn out to be true. A
computerized training procedure was developed and experimentally shown
to be effective in substantially improving the accuracy of the proba-
bility estimates within a relatively short period of time.

Research in the area of decision support is conducted as an ARI in-house
effort augmented by contracts with organizations selected for their
specialized capabilities and unique facilities, The present research was
conducted by personnel from Decision Research, a Branch of Perceptronics,
under contract DAHC 19-77-C-0019, Research in this area is responsive to
general requirements of Army project 2Q162722A765, and to special require-
ments of the US Army Combined Army Combat Development Activities, Ft,
Leavenworth, Kans., and the US Army Intelligence Center and School, Ft.
Huachuca, Ariz, This special effort was conducted under Army project
2Q161102B74F as basic research responsive to the above requirements.
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Introduction

An intensive training program was developed to improve the use of
probability judgments. It proved to be moderately effective with
almost all participants. In addition, the learning generalized
somewhat to some, but not all, of a number of related tasks.
Drastically abbreviating the training period had no effect on
performance, indicating that the present procedure may achieve
measurable improvement with but a modest investment of resources.

Background

A vital part of much decision making in military and intelligence
contexts is assessing the probability that a particular piece of
information is correct. Earlier research has shown that people

have considerable difficulty making appropriate probability
assessments. Thelr judgments are often sufficiently in error to
prejudice the validity of decisions based upon them. In addition,

the nature of the error in probability assessments varies from context
to context so that it is difficult to improve them by simply applying
an error correction factor. As consequence, training that generalizes
to various contexts seems the only way to improve probability
assessments. Several investigators have attempted such training with
mixed results and modest generalization to other tasks (if generalization
was tested at all).

Approach

The present investigations were an attempt to provide a definitive
answer to the question '"Can people be trained to use probabilities

more appropriately?” An intensive training procedure was developed

in which participants went through 11 sessions requiring 200 probability
assessments each. After each session they received detailed verbal and
quantitative feedback on their performance and how to improve it. The
11 training sessions were preceded and followed by six other probability
assessment tasks that differed from the training tasks in content and/or
response mode. These pretests and posttests were designed to test the
generalizability of whatever was learned in the training sessions.

Findings and Implications

The 1l-session training program proved to be quite effective. At its
conclusion, all participants who were not using probabilities appropriately
to begin with showed marked improvement. Somewhat surprisingly, almost all
improvement came after the first round of detailed feedback. This
improvement generalized to some, but not all, of the training tasks. A
second study reduced the training program from 11 to 3 sessions. Similar
results were observed: some improvement wherever possible, all

improvement after the first session, considerable generalization.
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These results are reason for optimism that people can be taught to use
probabilities more effectively in a cost-effective manner. The fact
that generalization was not universal suggests that some caution be
used before assuming that people who have been trained in one context
will retain their improvement in others.

Aside from being an intensive training study, this investigation also
provided one of the first in-depth studies of individual differences
in the use of probabilities. An unanticipated subsidiary result was
the discovery that some people used probabilities well to begin with
(and were unaffected by the training rpogram). This reflects some
natural ability and/or the careful instruction in the meaning of

probabilities given to all participants before they began the various
tasks.
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Introduction

According to the subjectivist, or Bayesian, position, all
probability assessments are expressions of coniidence in the state
of one's knowledge (deFinetti, 1937; Phillips, 1973). All may be
cast in the form "The probability that proposition A is true is
.XX." While all such probability statements are expressions of an
internal state~-a degree of belief--they can be evaluated by
external measures of goodness. For example, sets of probabilities
must conform with the axioms of probability theory. The aspect of
goodness examined in the present report is the correspondence,
across a set of probability statements, between the probabilities
and the truth of the propositions. If probability assessments are
appropriate reflections of how much one knows, higher probabilities
should be associated with correct propositions more often than should
low probabilities. The formalization of this property is called
"calibration." An assessor is considered to be well calibrated if,
over the long run, for all propositions assigned a given probability,
the proportion that is trué is equal to the probability assigned.
Thus, across all the occasions that the assessor assigns the
probability .7, just 70% should be true; for all propositions to
which .8 has been assigned, 807 should be true, and so forth.

A great deal of empirical research (reviewed by Lichtenstein,
Fischhoff & Phillips, 1977) has shown that people's calibration is
usually poor. Typically, people are overconfident: they believe they
know more than they actually know. Thus it is not unusual for only
about 607 of all the propostions to which a probability of .8 was
assigned to be true in fact. However, people are not always over-
confident in their probability assessments. When given very easy tasks,
they are underconfident: the proportions true tend to be larger than
the assessed probabilities. 1In short, severely biased calibration has
been frequently observed. The direction of this bias depends primarily
on the difficulty of the task (Lichtenstein & Fischhoff, 1977).

Since probability assessments so often play a key role in
important decisions, eliminating the strong and systematic calibration
bias is necessary. One approach to correcting the bias is for someone
to adjust the probabilities after the assessor has produced them.
This solution will not be generally applicable. Since the direction
of the bias is a function of the difficulty of the task, one needs to
know difficulty before knowing what correction to apply. But in real
decigion situations (as opposed to laboratory studies of decision making),
there is usually no way to establish the difficulty of the task facing
the .assessor.

Since correction of probabilities is usually impossible, one
would like to have probability assessors whose probabilities are
unbiased to begin with. Since untrained people seem to be quite badly
calibrated, the only reliable way to identify well-calibrated individuals
may be to have people specifically trained for that skill. The National




Weather Service has been training and eliciting probability forecasts
for over 10 years with excellent results (Murphy & Winkler, 1977a, 1977b)
for rain and temperature predictions, and somewhat poorer results for
tornado forecasts (Murphy & Winkler, 1977c¢). These were highly trained
(and talented) individuals making assessments for what, in some senses,
were quite homogeneous tasks. In addition, weather forecasters typically
have extensive background data on the base rates of various weather
phenomena; often they have access to computer-generated forecasts upon
which to base their own predictions.

The results of laboratory training research are, however, sketchy,
inconsistent and much less promising. Adams and Adams (1958) showed
modest improvement in calibration after five training sessions, and in
a later study (1961) they found some generalization of improvement in
calibration across several different types of items. Pickhardt and
Wallace (1974) reported slight improvement over five or six sessions
of one task, but in another experiment employing a more realistic
game setting, they found no improvement in calibration over 17 sessions.
Choo (Note 1), using only one training session of 75 items, found
little learning and no generalizationm.

No one has yet performed a thorough training study in which
assessors receive intensive instruction and are trained for many sessions,
with enough responses per session to ensure accurate feedback, and with
sufficient tests of generalization. The present report describes two
such training experiments. These experiments were an attempt to train
"ordinary" individuals to be well calibrated. The focus of the training
program was computerized feedback provided after each session of 200
assessments. Such long sessions were used in order to obtain relatively
stable estimates of people's calibration, and thereby to avoid providing
false or misleading feedback (for example, an individual whose assess-
ments actually tend to be too high might in a small sample provide
assessments that are too low). A large number of sessions (11) was
used in Experiment 1 in order to rule out the possibility that the modest
or negligible success of earlier training experiments was due to
insufficient intensity of training. 1In order to evaluate the
generalizability of whatever skills might be acquired in the training
sessions, subjects completed identical pre-test and post-test tasks
that differed from the training tasks in content and/or response mode.

Measurement of Calibration

One of the easiest ways to conceptualize good calibration is to
plot it. Suppose you have been given a set of two-alternative factual
items, such as "which is longer, the Suez Canal or the Panama Canal?"
Your task is twofold: first, state which of the two alternatives is,
in your belief, the correct answer, and second, state the probability
that you are right. Your responses, then, are constrained to the range
.5 s ry s$1.0. Measuring the calibration of your probability assessment
first involves comparing each of your answers with the truth. For
example, given that you said ".8" for a large number of items, what
proportion of those times did you pick the correct alternative? These
proportions are plotted as in Figure 1,

diauiie
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1f you are perfectly calibrated, the chosen alternative will be
correct for 80%Z of the times you said .8, for 70% of your .7 assessments,
and so on. Thus, your data w’'l fall along the diagonal. Data below

the diagonal indicate overconfidence; for example, of all the times

you said .9, you were right on only 80% of them. Data above the

diagonal indicate underconfidence; you knew more than your responses
indicated.

Numerous measures of the adequacy of calibration have been suggested;
for a review see Lichtenstein, Fischhoff and Phillips (1977). The
measures chosen for the present study are the partitions of the Brier
score proposed by Murphy (1973), a simple measure of over- or under-
confidence, and a two-parameter model fitted to the data.

The Brier partitions. The Brier score (Brier, 1950) is a proper
scoring rule, i.e., it reaches its best value only when the assessor
responds with his or her true beliefs. It runs from O to 1 with 0 being
the best. It can be calculated for either a single response or a set
of responses. For the latter case, Murphy (1973) has shown that the
Brier score can be partitioned into three additive parts. 1In the two-
alternative task described above, Murphy's partition (which he calls
the "special scalar partition," 1972a) is as follows:

T
) n, (rt - ct) - %—Z nt((_‘.t - E)Z 1)
t=

2|
I o~

2=
0o~z

(r,c)2 =2 (@1-0 +
=1 * 1 t
To calculate all of this, one takes responses to N two-alternative items
for which the correct answer is known, and sorts them into T categories,
such that all the numerically equal responses are in the same category.
Then N is the total number of responses,
ri{ is any particular response {there are N of them),
ey is 1 if the response rj was given to the correct alternative,
0 otherwise,
¢ is the proportion of the N responses that were attached to
the correct alternative,
T is the number of categories into which one sorts the responses;
1, ... t, ... T,
n, is the number of responses in the t'th category,
r, is the numerical value of the responses in the t'th category, and
€y is the proportion of responses in the t'th category which were
attached to the correct alternative.

The term on the left of Equation 1 is the total Brier score, which
is a general measure of goodness of probability assessment. The first
term on the right is a measure of knowledge. If the correct alternative
were always chosen, this component would have a value of zero. The
maximum (worst) value is for total ignorance (or random guessing) .25.

The second term on the right of Equation 1 measures calibration
(which Murphy calls "reliability"). Essentially, it is the weighted
mean squared distance between the data points in Figure 1 and the
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diagonal line indicating perfect calibration. Thus its Ideal value
is 0. The thi.d term is called resolution. It measures .he assessor's

ability to sort the items into categories whose proportions of correct
answers are maximally different. [t is the variance of the % 's across
T. This term is subtracted from the others; it should be as large as
possible.

As a proper scoring rule, the Brier rewards people for responding
with their own true beliefs. Individuals who try to respond strategically
so as to improve their scores often encounter a tradeoff between
calibration and resolution. Some simple strategies to improve the
calibration score (e.g., always respond with ¢©) will degrade the
resolution score, and vice versa. Murphy (1974) has shown that the
"sample skill score," the resolution score minus the calibration score,
is itself a proper scoring rule. This score can be used to test the
hypothesis that advantages gained in training people to be well calibrated
are offset by losses in resolution.

The partitions of the Brier score are sensitive to sample size.
At the extreme, it would be impossible to have perfect calibratics if
one used a particular response, say .8, only once. As the sample size
increases, variability due to chance decreases, but our impression
from using the partitions is that even with a sample of 200 items
chance variations can be large relative to the size of the scores.

In addition, when the number of items remains constant, the number
of categories, T, will affect the size of the calibration and resolution
components, particularly when, as often happens, the assessor uses
one-digit responses (.5, .6, ... , 1.0) for the vast majority of
responses, but uses two-digit responses (.55, .75, .99, etc.) occasionally.
These occasional responses artificially inflate both the calibration
and resolution scores since ¢, for these rarely used categories suffers
greatly from random variation. Accordingly, in this report all data
were converted to six grouped categories: .50 to .59, .60 to .69, ... ,
.90 to .99, and 1.0 before partition scores were calculated. The
mean response in each grouped category was taken as ry, and the
proportion correct across the whole category was used for c;. This
reduced the noise in some subjects' data.

In practice, variations in the knowledge component tend to be
larger than variations in calibration or resolution. Thus the total
Brier score is relatively insensitive to the latter two. For example,
an increase of just .05 in the proportion of correct responses can
improve the Brier score by more than most of our subjects could have
accomplished by becoming perfectly calibrated. Since the difficulty
of the test sets was not of primary concern in the present study, the
focus of most of our analyses was on the calibration and resolution
scores.

The Brier partitions for four-alternative items. When the
assessor has not two but four mutually exclusive and exhaustive
alternatives to assess, there are two ways of computing the Brier

{
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partition scores, a vector method and a scalar method, as has been
discussed by Murphy (1972a, b). In the scalar method, the probabilities
assigned to the four alternatives are tallied separately, as if each
had been given in response to a one-alternative true/false item,
disregarding the fact that the four responses are constrained to sum
to 1.00. 1In the vector method the four probabilities are kept
together and retained as a vector throughout the calculations. These
vectors are sorted into categories, with the vector (.1, .2, .3, .4)
considered as different from (.4, .3, .2, .1). As Murphy (1972b)
points out, the Brier score itself is numerically the same under the
two methods, but the partition scores differ.

One of the tasks in the present study involved general-knowledge
questions with four possible answers. The participants were asked to
state the probability that each alternative was correct. For this
task, there are two reasons for using the scalar rather than the vector
method.

(a) The advantage of using the vector method is that it differentiates
the response vector (.1, .2, .3, .4) from (.4, .3, .2, .1). This
distinction is useful whenever the ordering of alternatives is
consistent and meaningful, e.g., {rain, snow, sleet, no precipitation}
in a weather forecasting context or {stock price goes up, stays the
same, goes down} in a stock-market forecasting context. However, there
was no such ordering for the items used here. Each of our items had
entirely different alternatives. Thus there would be no valid
distinction between the vectors (.1, .2, .3, .4) and (.4, .3, .2, .1).

(b) The vector method requires more data for stable measurement
of the partition scores, because the data are separated into a much
larger number of categories, so that the effect of random variation
in each category is greatly increased. If subjects limit themselves to
using only the 11 responses 0, .1, ... , .9, 1.0, there are 286 different
categories for the vector method but only 11 for the scalar method
(see Murphy, 1972b, p. 1184).

For these reasons the scalar method was used to analyze the four-
alternative data in this report, despite its disregard of the
interdependencies in the data. Only the calibration and resolution
components were computed. These scores are not comparable to
calibration and resolution scores calculated on sets of data from
two-alternative items. The knowledge score is not reported, because
it is a constant when the scalar method is used.

Over/underconfidence. Since the calibration score, a squared

measure, is insensitive to whether an individual is over- or underconfident,
a measure of overall over/underconfidence was also calculated: the

mean response minus the proportion correct over all items. A positive
difference indicates overconfidence; a negative difference means
underconfidence.




Two-parameter model. A quite different approach to the
measurement of calibration is to fit a smooth curve to the data as
represented in Figure 1, and to use the parameters of the curve as
an indication of the assessor's calibration. Shuford and Brown
(1975) took this approach using a straight-line model with least

4 squares estimates of the slope and intercept for each subject. The
model chosen for the present study is astraight line if the data,
both r; and €., are transformed to log odds:

r
= log A + B log 1_; . (2)
t

t
log =

1-¢

t

This model is an expansion (with the addition of the parameter B) of !
a model proposed by Schlaifer (1971). It will indicate perfect
calibration when A = B = 1.

The parameter A indicates where the curve crosses ry = .5 in the j
ry x ¢, plot. When ry = .5, Cg= A/(1+A). Thus values of A greater than
1 indicate that 6.5 is greater than .5. B is a curvature parameter;
the curve is convex when B is greater than 1.0 and is concave when B is
less than 1.0. Thus when both A and B are greater than 1.0, under-
confidence across the entire scale is indicated; when A and B are both
less than 1.0, overconfidence is indicated. When A and B are on opposite
sides of 1.0, the curve will be partly overconfident and partly under-
confident. Examples of these curves are shown in Figure 2.

The best~fitting parameters, A and B, to each set of data were
: found using Bayes' Theorem with flat priors on A and B to compute the ]
ﬁ most likely values of A and B given the data. The computer program
f searched 2500 different (A, B) pairs, with A ranging from .25 to 4.00 and
g B ranging from .0l to 5.00. Since the analysis was based on the raw rj,
! ‘ ¢y data, no grouping was necessary. Since the response of 1.0 cannot
9 be converted into odds, these responses were excluded from the calculations.

Experiment 1

Method
Design. The participants attended 23 sessions, each lasting
) approximately one hour, spread over a four to five week period, with

no more than two sessions on any one day. The first six sessions

were pre-test tasks designed to test the generalizability of the
training. No feedback was given for any of these pre-test tasks. All
pre~test tasks were paper and pencil tasks. The first session began
with approximately 45 minutes of instruction about probability
assessment in general and calibration in particular.

The next 11 sessions were training sessions, each involving 200
two-alternative general-knowledge items. Training sessions 1 and 11
! used the same items, in the same order; otherwise no items were
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Figure 2

Exemplars of the Fitted Curves
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repeated. The participants worked at a computer terminal which
presented each item; they typed their responses on the keyboard.

The were asked (a) to indicate by typing either "A" or "B" which
alternative was the one they believed more likely to be correct and
(b) to assign a probability from .5 to 1.0 that the chosen alternative
was in fact correct. The participants were allowed to use as many
decimal digit: as they wished; none ever used more than two (e.g.,
".99"). After a participant completed a session of 200 items, the
conputer printed performance summaries; these summaries were discussed
with the participant in a tape-recorded debriefing.

In the '3st six sessions, the pre-test tasks were repeated as
E post-tests. The items were fidentical to those used in the pre-tests.
Again, the participants used paper and pencil to respond, and were
l given no feedback.
! Never during the experiment were the subjects told the correct
; answer to any item. Table 1 summarizes this design.
4

Instructions. Full instructions are given in the Appendix. The
3 general introduction was read to three groups of four participants. It
i emphasized the properties that well-calibrated judgments should have,
both in general and through extended examples of a wéll-calibrated and

a poorly-calibrated assessor. No hint was given of the type of
calibration typically observed.

Instructions for the various parts of the experiment were given
individually. In particular, the fractile method for pre-~test 6,
uncertain quantities, was presented with individual tutoring.

Pre~-test items. Examples of each task are given in the Appendix.
These tasks, in order of completion, were:

Task 1: Handwriting samples. The participants were given 100
different cards each bearing the handwritten inscription "Mensa mea
bona est." Their task was to determine whether each specimen had been
written by an American or a European and then to assess the probability

. of their answer being correct. Thus, although the content of this
task was homogeneous and different from that of the training sessions,
it did use the same two-alternative format, with probabilities ranging j
from .5 to 1.0.

o gt

Task 2: Shapes. The participants saw 200 21.6 x 27.9 cm (8% x 11")
pieces of paper each of which presented two very irregularly shaped
polygons. Their task was to determine which was larger by visual
ingpection (that is, without physically measuring). This set, too, ]
uged the two-alternative, half-range response mode.

Task 3: General-knowledge items. These items were similar to the
items used for the training sessions (described below). On the basis
of earlier administrations, the first 100 items were known to be
expecially hard while the second 100 were known to be easy.
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Task 4: Four-alternative items. These items were drawn from the
same universe of content as the training items, but used a different
response mode. Two additional possible answers were appended to each
of 199 two-alternative general knowledge questions. The participants’
task was to assess the probability (from .00 to 1.00) that each of
these four alternatives was the correct one. They were promised that
one and only one was correct and were constrained to make their four
assessments total 1.00.

Task 5: General-knowledge items. The first 100 were easy and the
second 100 were hard. The items were similar to those used in Task 3
and in the training sessions, but no items were duplicated.

Task 6: Uncertain quantities. The participants received 77
questions having numerical answers (e.g., How many miles long is the
Nile River? How many vertebrae does an adult human have?). They
used the fractile method to represent their confidence that the true
answer lay in various ranges of possible values. Specifically, they
assessed five fractile values: (a) Pg;, a value such that there was
.0l chance that the true value was lower than the value they specified;
(b) P25, a value such that there was a .25 chance that the true value
was lower; (c) Psg; (d) P75 and (e) Pgg. The last three were values
such that there was a .50, .25 or .01l chance of the true value being
higher. For a well-calibrated individual 1% of all true answers should
fall below Pgy1, 25% below P35, etc. One common way of scoring
calibration with such assessments is to look at the proportion of
correct answers falling between Py; and Pgg. If one were well calibrated,
2% of all answers should fall outside this range. The "surprise index,"”
the percentage actually lying outside has ranged from 7% to 502 in a
variety of experimental tests, with 357 being a representative value
(Lichtenstein, Fischhoff & Phillips, 1977). Such a large surprise
index indicates considerable overconfidence, that is, the belief that
one can set much narrower confidence intervals than one should. A
second measure is the interquartile index or percentage of true answer
falling between Pjs and Py5. As might be expected from the surprise
index results, less than 50% of the true answers typically fall in the
center of the distribution. Both understanding and performing this
task appeared to be quite difficult relative to the other tasks.

All the pre-test tasks were repeated in the post-test. Task 6,
uncertain quantities, was given first in the post-test because the
participants disliked it (assigning fractiles was unfamiliar and
difficult) and we did not want to end the experiment with an unpleasant
task.

Training items. All training items were two-alternative questions
requiring a probability response between .5 and 1.0. This particular
format was chosen because the properties of responses to such items are
fairly well known (Fischhoff, Slovic & Lichtenstein, 1977; Lichtenstein
& Fischhoff, 1977; Lichtenstein, Fischhoff & Phillips, 1977). A pool
of over 2000 such items was created with the help of reference books
ranging over a variety of content areas including geography, history,

R



literature, science and music. Several hundred of this set had

been used in earlier experiments that provided estimates of item
difficulty (i.e., the percentage of individuals answering the item
correctly). Using these estimates, one set of 400 unusually hard
items and one set of 400 unusually easy items were constructed. The
mean percentages correct for these sets were approximately 10% lower
and higher than for the remaining sets (for which the means were roughly
65%). Half of the hard set and half of the easy set were used in
pre~-test and post-test tasks 3 and 5. The remaining 200 easy items
were designated as training set 5; the remaining 200 hard items became
set 7. The other 1600 items were divided randomly into 8 additional
set of 200 to be used in training.

Feedback. Immediately after the participant responded to the two
: hundredth item of any training session, the computer printed out
{ summary information about the session. For example, Figure 3 shows
3 the feedback shown to Participant 6 after completing the fourth
training session. This individual was moderately overconfident.

3 The first kind of feedback information was the number of correct

: and incorrect responses (HITS and MISSES) and corresponding percentages

i correct (P HIT) for each probability response used by the participant.

! This person used an unusually large number of different responses.

In order to provide reasonably stable feedback, responses were grouped
into the 6 categories appearing in the second table of Figure 3. The
second column reports the mean of all probability responses grouped in
each interval. Following the categorized data are a number of summary
statistics: (a) the overall proportion correct (here, .685), (b) the
overall degree of over- or underconfidence, equal to the mean probability
minus the proportion correct (+.054), (c) the calibration score according
to Equation 1 (.012), (d) knowledge, calculated according to Equation 1
(.216), (e) resolution, according to Equation 1 (.027), and (f) the

Brier score, according to Equation 1 (.201).

ol i bodniod i it

| The next line gives the most likely values of A and B (see

f Equation 2). The two following lines give information for the

X programmer. The participants were instructed to disregard these three
lines of output.

The plot in Figure 3 shows the calibration curve for the categorized
! data. The number of responses was handwritten by each point to keep

both participant and experimenter from overinterpreting unstable
estimates of percentage correct. The smoothed curve was fit to the

) data according to the model given in Equation 2.

i The results were discussed for five to twenty minutes with each
participant; these discussions were loosely structured and tape
recorded. Emphasis was placed on making the graphed data fit as closely
as possible to the diagonal line of perfect calibration and getting all
the 1.0 responses correct. The participants were warned not to
overinterpret discrepant points based on few data.
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Figure 3. Exemplary feedback for training sessions

SUBJECT & DAY 4
ITEM FILE: SIX. SCORE FILE: B504D0OA

NUMBER OF PROBABILITY CATEGORIES USED = 11

PROB P W17 HITS HISSES TOTAL
0.50 0.538 7 6 13
0.33 0.517 15 14 29
0.60 0.519 11 7 18
0.65 0.687 22 10 32
0.70 0.471 8 9 17
0.75 0.430 13 7 20
0.80 0.447 2 1 3
0.85 0.833 10 2 12
0.90 0.571 4 3 7
0.95 0.810 17 4 21
1.09 1.000 28 0 28
TOTALS
0.73% 0.685 137 63 200

SUNNARY BY PROBABILITY RESPONSE INTERVALS:

PROBABILITY AV EST PROB PROPORTION NUMBER NUNBER NUMBER

ESTIMATE OF CORRECT CORRECT IN OF oF oF
INTERVAL RESPONSE INTERVAL NITS NISSES RESPS
0.50~0.5%9 0.535 0.524 22 20 42
0.60~0.49 0.632 0.6860 33 17 30
0.70~0.79 0.727 0.548 21 16 k¥4
0.80~0,.89 0.840 0.800 12 3 13
0.90-0.99 0.937 0.750 21 7 28
1.00~1,00 1.000 1.000 28 0 28 ‘T
0.30~1.00 0.739 0.685 137 é3 200
0
SuBJ PROP OVER/ CALIB KNDW RESOL PRIER 7
] CRRCT UNDER ;
&
é 0.483 0.054 0.012 0.216 0.027 0.201 g
0i

As = 1.1500 Be = 00,4147
FIRST LOGP = -188.4 LOGP AT MODE = ~110.5 PARD USED =133.
ACCEPTABLE PADD RANGE FOR THIS DATA: 101.6 T0 192.5
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Participants. Twelve individuals, 7 females and 5 males, were
recruited by personal contact. They were paid $2.35 per hour for
participanting, with a $1 per hour bonus if they completed the full
experiment, lasting 20 to 25 hours.

The participants' ages ranged from 17 to 33. Two were high school
students known to the experimenters to be exceptionally bright (#5, #6).
Seven were college students (#1, #2, #3, #4, #7, #11, #12). The other
three participants were not in school. One had completed high school
(#6), one had finished one year of college (#8), and one had a Ph.D.
in experimental psychology (#9).

Results

Training sessions. Table 2 shows the calibration scores for each
of the eleven training sessions.l For ease of reading, each
calibration score in Table 2 is multiplied by 1000, e.g., "7"
represents ".007." Since the calibration score is not a familiar
measure, we show in Figure 4 examples of actual data for several
different values of the measure. Each line in Figure 4 is the
calibration of one participant for one 200-item training session.

All these examples contain at least 14 responses at every point (often
our participants used - particular response less than 10 times in

200 trials; such curves tended to show greater irregularity). Our
intuitive feeling, after seeing hundreds of calibration scores computed
on real data, is that when a calibration score based on 200 responses
is .007 or less, one should not reject the hypothesis that the assessor
is perfectly calibrated.

Table 2
Calibration Scores (x 1000)
Experiment 1

Subj

Sess
1

AV-TR - TR I - AL T - N V- I )

[
- O

ect # 4 12 1 11 8 10 3 2 5 7 9 6 Mean
ion

57 27 22 20 14 12 10 8 5 4 4 15.4

12 4 1 10 3 2 2 8 7 5 5.5

11 2 14 3 4 2 20 6 1 10 6.5

12 7 3 3 2 3 3 2 4 10 5.4

2 12 1 6 8 6 5 16 7 6.8

15 7 2 4 4 6 1 4 6 3 5.3

52 8 19 3 3 4 25 4 8 7 4 11.8

1 4 2 6 14 5 2 6 9 5.8

14 4 2 4 1 4 7 6 1 4.8

3 2 6 1 6 4 5 4 4.5

18 4 10 4 7 3 2 2 3 2 5.4
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The data in Table 2 show improvement, with the mean calibration
score shifting from .015 for Training Session 1 to .005 for Training
Session 11. Calibration on Session 11 was superior to that on Session
1 for 11 participants and equal for the twelfth.

All the improvement came between the first and the second round of
feedback. If an assessor improves, one would expect calibration
scores on subsequent sessions to be better (lower). This is true for
the first session: we calculated, for each participant, the proportion
of sessions after the first session on which the calibration was
better than the first session. Across the 12 participants, this
proportion was .72. Indeed, the seven participants who scored .010 or
more never did as badly again, so for them the proportion was 1.00.
But this was not true for the second session. The proportion of
later scores better than the participant's second score was .49; for
the seven participants who had scored .010 or worse on the first
session, this "improvement proportion'" after the second session was
.44, Similar "improvement proportions' of around .50 were found for
all other sessions except Session 7, discussed below.

The interpolation of a particularly easy set of items (Session 5)
had no effect on calibration. The mean percentage correct on Sessions
1-4 was 65.5; on Session 5 it was 75.0; this set was the easiest set
for all 12 participants. Although the mean calibration score shifted
slightly upward (i.e., worsened) on Session 5, individual participants
were as likely to have higher scores as lower scores on Session 5
compared either with Session 4 or with Sessions 2 through 4. The
interpolation of a particularly hard set (Session 7) did produce a
decrement in calibration. The mean percentage correct on Session 7
was 57.8%; this round was the hardest for all 12 participants.
Calibration was worse on Session 7 than on Session 6 for ten participants
and equal for the other two participants.

One participant (#4) was terribly calibrated to begin with,
made considerable improvement after Session 1, but remained worse
than the rest of the graoup. The next six participants shown in
Table 2 learned all they were going to learn during the first session.
The other five subjects appeared to be well calibrated to begin with
and contributed only random variation to the group results.

Nine of the 12 participants were overconfident on the first
session, with overconfidence scores ranging from +.03 to +.21 (the
latter was Participant 4), while 3 were slightly underconfident (-.01
to -.03). Mean overconfidence was +.063. Mean over/underconfidence
across the 12 participants was close to zero on all other sessions
except for Session 5, the easy session (mean, -.026; 9 participants
underconfident, ranging from -.0l1 to -.10; 3 participants overconfident,
+.01 to +.03) and Session 7, the hard session (mean, +.038; 8
participants overconfident, ranging from +.02 to +.16; 3 participants
underconfident from -.0l1 to -.03). Participant 4 was overconfident
on all sessions (range +.03 to +.21), while Participant 7 was
underconfident on all sessions, but only slightly (range -.0l1 to -.04).
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The resolution scores showed no trends across sessions. There
was definitely no tendency for resolution to go down (worsen) as
calibration went down (improved). The overall mean resolution score
was .028. The session with the highest resolution was the easy
session, 5 (mean, .034; 5 participants earned their best resolution
on this session; none earned their worst), while the hard session, 7,
had the lowest resolution (mean .018; 7 participants earned their
worst resolution on this session; none earned their best).

One aspect of the participants' task that was emphasized by the
experimenters was that they should get all of their 1.0 responses
correct. Participants were unable to attain this goal consistently,
although all attained it at least once in the eleven sessions, and one
participant attained it seven times. By reducing the number of 1.0
responses from 227 of all responses on Session 1 (range: 9% to 48%)
to 10% of all responses on Session 11 (range: 0% to 18%), the
participants effected a modest increase in percentage of 1.0 responses
correct from 91% (range: 74% to 98%) in Session 1 to 97% (range: 91%
to 100%) in Session 11. Again, it appeared that most of the change
occurred between the first and second sessions.

Participants' insights. During the feedback and discussion after
every training session, we questioned the participants about what
they were learning. They were rarely able to describe their cognitions;
the most insightful was this comment:

"I don't know how to verbalize it, but there's some kind
of a compartmentalization trip that's happening in my head about
those categories. I'm beginning to feel the categories more
than I did before, rather than just a blur from .5 on."

Often participants reported what they concentrated on during that
session. For example, "I was more careful on my 1.0's and .9's" or
"I tried to pay attention to my .6's and .7's."

Difficulties in using the intermediate responses of .6, .7 and .8
were frequently remarked upon:

"I think I'm still kind of unsure on how to use .7 and how
to use .8 because I either feel I don't know it or I know it,
and it's sort of hard to say how much I don't know something,"

"I think I'm judging a little bit better between my .5's
and .6's--just what is a .6--but I.don't think I really know
what a .7 is yet," and

"I think probably the most significant thing to me that I
did was kind of experimenting with the .7's and .8's and seeing
that I really did need them, that I really had a use for them,
that I wasn't just sticking a number in there when I felt it."

Occasionally a participant summarized what the different responses
meant to them. For example:




".7's and .8's; I wonder why I even used them when I think
about it because .5's to me represent no knowledge at all,
one way or another, .6's represent a preference, and then .9's
and 1.0's represent knowledge. .7's and .8's, I don't know why
I'm using them," and

".5's, I had no idea, okay? I kind of had a little feeling
but I decided that I really . . . didn't know after all. .6's
I had a little bit stronger feeling so I thought well, maybe
I'11l go with it. .7's and .8's are kind of wishy-washy, or . . .
1 can't talk about why I did that, but I just felt 'kind of'
but I absolutely wasn't certain. A lot of my .99's I was really
certain but I was blown away yesterday when I got two of them
wrong as 1.0's, so I figured I don't know everything; I'll use
a .99 instead of a 1.0."

Generalization tasks. Did the participants' improvement on the
training tasks lead to improvement on the post-test tasks? Table 3
contrasts pre-test and post-test statistics on the four two-alternative,
half-range tasks: shapes, handwriting samples and the general knowledge
items in Tasks 3 and 5. There was marked improvement on the shapes
and general knowledge tasks, but none on the handwriting task. Note
that as calibration scores improved (decreased) from pre-test to
post-test, resolution scores did not fall. The gain from decreased
calibration scores was not offset by a decrease in resolution scores.

Table 3
Pre- and Post-Test Results for Two-Alternative Items
Experiment 1

Pre- Post- #Ss im- Pre- Post- #Ss im-
test test proved test test proved
Task 1 Task 2
Handwriting ‘ Shapes
Mean Calibration .023 .026 7 .013 .005 8
Mean Resolution .011 .013 7 .017 .020 7
Mean Brier .252 .254 7 .223  .217 6
Proportion Correct .576 .556 5 .648 .634 5
Mean Response .629 587 - 715 .627 -
Over/underconfidence .054 .032 7 .066 -.007 8
Task 3 Task S
General Knowledge General Knowledge
Mean Calibration .025 .010 10 .023 .010 11
Mean Resolution .024 .029 7 .027 .032 7
Mean Brier .232 .209 10 .224 .209 9
Proportion Correct .636 .639 7 .642 .629 5
Mean Response 744 671 - .732 .665 -
Over/underconfidence .107 .032 10 .090 .036 8
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Table 4 contrasts pre-test and post-test for the four-alternative,
general-knowledge questions, Task 4. Substantial improvement in
calibration is observed here. This improvement was attained by decreasing
the use of the extreme responses of 0.0 and 1.0, as can be seen in
the distributions presented at the bottom of the table.
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Table 4
Four-Alternative Questions
Experiment 1

Pre-test Post-test # Ss Improved
Mean Calibration: .017 .007 11
Mean Resolution: .029 .033 9

Distribution of Responses

Response Category

0 .01-.19 .20-.29 .30-.49 .50-.99 1.00
Pre-test .33 .09 .28 13 .11 .06
Post-test .24 .09 .39 .14 .09 .05
# of Subjects 9 5 3 5 9 10
decreasing usage
(of 12 Ss)
Table 5 contrasts pre-test and post-test results on the uncertain L

quantities task. Although this task also involved general knowledge
items, there was no improvement by any measure. The surprise index
remained at a discouragingly high 40% (instead of the appropriate 2%).
This percentage is typical of previous findings (Lichtenstein,

Fischhoff & Phillips, 1977). At both times, the interquartile range
included only about 35% of responses. Nor was there any general shift

of values upward or downward from pre-test to post-test. The participants
tended to suppose that the true answer was smaller than it really was,

so that the majority of surprise answers fell above the .99 fractile.

Table 5
Uncertain Quantities:
Percentages of Responses

Pre-test Post-test
Surprises 41.1 40.0
Within Interquartile Range 32.3 36.6
True higher than .99 fractile:
As percentage of all responses 27.4 25.3

As percentage of surprises 66.6 63.2
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Discussion

The training sessions improved the calibration of most participants
on subsequent sessions; the only participants who showed no learning
were those who were apparently well calibrated to start with. However,
all measurable improvement came with the first round of training.
Training also improved performance on some of the generalization tasks,
although none was noted on the uncertain quantities or handwriting tasks.

The dissimilarity of response modes between the uncertain quantities
task and the training task coupled with the absence of any discussion
of the relationship between calibration in the two contexts may account
for this failure to generalize. The failure to generalize with the
handwriting samples is more difficult to explain, both because it used
the same two-alternative, half-range format and because generalization
was found with the (perhaps more dissimilar) shapes task.

Although effective, the present training procedure is both arduous
and expensive. The fact that all measurable improvement came after
the first round suggests that it may also be unduly long. Experiment 2
tested this hypothesis by using an abbreviated test procedure that deleted
Training Sessions 3-10. The participants were given the first set of
items, the second set and then the first set again, along with pre-tests
and post-tests. It need not be a foregone conclusion that a shortened
sequence will prove equally successful. Although Sessions 3-11 showed
no noticeable improvement, they may have provided valuable practice
and the opportunity to explore subjective feelings of certainty. The
interpolated easy and hard sets (Sessions 5 and 7, respectively) may
have brought home principles of probability assessment that might not
have been otherwise understood.

Experiment 2

Method

Experiment 2 differed from Experiment 1 only in the deletion of
training Sessions 3-10 and the uncertain quantities and handwriting
analysis tasks. Since the participants showed no improvement on these
two generalization tasks with the extended training series of Experiment 1,
there was no reason to expect any improvement in Experiment 2.

All instructions were the same as in Experiment 1. The feedback
after the training sessions was mostly the same, but the discussion
of the Brier score and its partitions was abbreviated because the
participants would not have sufficient opportunity to see how these
scores varied over time; we were concerned that they might place undue
emphasis on what were really random variations of these scores. Most
of the discussion focused on the calibration plot and the need to get
all data points falling on the diagonal.

Participants. Twelve participants were recruited as before. Their
ages ranged from 17 to 37. Three were exceptionally bright high school

i
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students (#13, #14, #18), 4 were college students (#15, #17, #21, #23),
and 3 were graduate students (#19, #20, #22). The two participants
who were not in school had a high school education (#24) and a masters
degree (#16) respectively.

Results

Training sessions. Table 6 gives the calibration scores for the
training sessions. All seven participants scoring .007 or higher on
the first session improved their scores when they repeated this set
of items as Session 3. The mean calibration scores across all 12
participants for the three sessions were .010, .005 and .007. Again,
it appears that all learning took place between Sessions 1 and 2.

Table 6
Calibration Scores (x 1000)
Experiment 2

Subject # 18 15 21 13 23 24 17 16 14 19 20 22 Mean

Session
1 26 19 18 12 11 8 7 6 5 3 3 3 10.1
2 5 6 2 5 5 4 4 5 3 10 5 6 5.0
3 6 9 12 3 2 4 6 17 6 7 6 5 6.9

All 12 participants were overconfident on Session 1 (mean = +.05;
range +.01 to +.13), while 9 were overconfident on Session 3 (mean across
12 participants was +.03, range -.01 to +.09).

Resolution scores did not significantly change during the three
training sessions., The mean resolution for Session 1 was .031 (range .018
to .042); for Session 3 it was .035 (range .027 to .053).

Improvement via using fewer 1.0 responses was modest. In Session
1, 24% of all responses were 1.0 (range 9% to 48%); in Session 3, 182 were
1.0 (range 6% to 52%). The overall percentage correct for 1.0 responses
was .94 (range .89 to 1.00) on Session 1 and .97 for both Sessions 2
(range .90 to 1.00) and 3 (range .91 to 1.00). Ten participants used
fewer 1.0's on the last session than the first; 8 participants got a
higher percentage correct.

statistics for the three two-alternative tasks: shapes and the general
knowledge items in Tasks 3 and 5 (these participants were not given the
handwriting task). These data are highly similar to the parallel data
. from Experiment 1 shown in Table 1. Generalized improvement in
] calibration did occur, with no decrement in resolution. Table 8 shows
performance on the four-alternative task. The results are again highly
similar to Experiment 1 (see Table 4).

Generalization tasks. Table 7 shows pre-test and post-test '
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Table 7
Pre- and Post-Test Results for Two-Alternative Items 4
Experiment 2

Task 2 Task 3 Task 5
Shapes General Knowledge General Knowledge
Pre- Post- #Ss im- Pre- Post- #Ss im— Pre- Post- #Ss im~
test test proved test test proved test test proved
Mean Calibration .019 .005 8 .020 .007 10 .014 .006 9
Mean Resolution .015 .018 9 .023 .026 7 .028 .030 6
Mean Brier .230 .215 10 .216 .198 12 .207 .195 10
Proportion Correct .650 .633 5 .660 .666 7 .651 ,659 7
Mean Response .703 .635 - .748 .696 - .716 .675 -
Over/underconfidence .053 .002 8 .088 .031 11 .065 .0l16 9
Table 8

Four-Alternative Questions
Experiment 2

Pre-~test Post-test # Ss Improved
Mean Calibration: .017 .008 11
Mean Resolution: .037 . 040 11

Distribution of Responses

Response Category

0 .01~.19 .20-.29 .30-.49 .50-.99 1.00
Pre-test .36 .08 .27 .12 .10 .07
X Post~-test .30 .08 .36 .12 .08 .06
# of Subjects 11 7 3 7 9 10
decreasing usage
(of 12 Ss)
Discussion

These two experiments have shown that people who are not well
calibrated to begin with can be taught to be well calibrated with
intensive performance feedback after a single session of 200 items.
This improvement occurred without the participants ever learning the
true answers to any items.
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However, this training resulted in improvement on only some of the
tasks on which the participants were not trained. Generalization of
training failed completely for the most dissimilar task, the assessment
of probability distributions for a series of uncertain numerical quantities.
Generalization of training also failed for a task we had supposed was
not terribly different from the training task: discriminating European
from American handwriting. This failure should serve to warn calibration
trainers that generalization of training cannot be assumed.

Almost half of our 24 participants appeared to be well calibrated
on their first training session. We know of no other experiment in
which individual differences in calibration have been studied, so we
cannot say whether this was due to the extensive instruction and
experience (albeit without feedback) that these participants received
before the first training session, whether this unexpectedly high proportion
of good probability assessors exists in the population at large, or
whether the individuals in this study were unusual.

We did not explore the use of item~by-item feedback using a proper
scoring rule, as recommended by Shuford and Brown (1975). While this
technique might improve the efficiency of the training, the additional
information provided (specifically, knowledge of the correct answer)

might only confuse the participant and retard learning. Further research
can resolve this issue.

Before recommending adoption of the present training procedure, two
questions need answers. One 1s: To what extent will learning generalize
from the items used in the training sessions to the questions encountered
in the trainee's professional activities? On the one hand, we are
moderately encouraged by the substantial gemeralization found here. On
the other hand, we do not fully understand the reasons for the utter
failure of generalization with handwriting samples or uncertain quantities.
What other tasks would encounter similar difficulties?

The second question is whether the training program can be abbreviated
further, making it less arduous and more cost effective. For example,
one could explore the following possibility: Have trainees complete one
session in a non-computerized group administration. Instead of scoring
them individually, present the typical Session 1 result from the many
similar assessors who have completed it earlier, saying "This is a very
good guess at how your curve will look and this is what you have to do
to improve." Will such short training be effective or will the feedback

be rejected with the claim "I'm not like that"?
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Footnotes

Our deepest thanks to Gerry Hanson for conducting this experiment,
to Barbara Combs and Peggy Roecker for compiling the enormous item
pool needed, and to Ruth Phelps, Stanley Halpin, Edgar Johnson and
Paul Slovic for their comments on this project.

1. These calibration scores, and all subsequent analyses, are based

on data grouped into six categories (.5-.59, .6-.69, ... , .9-.99, 1.00).
In addition, all responses of .5 were rescored so that exactly half of
them were correct. Many of our subjects chose the correct alternative
randomly when they assigned a probability of .5. Since there was often

a substantial number of such responses, the proportion correct had a
large effect on the overall calibration score. When subjects chose

their responses randomly, variations in this proportion correct reflected
random fluctuations. In order to keep such fluctuations from exerting
too large an influence on results, .5 responses were treated as being
half correct in all reported analyses. This has the effect of improving
calibration scores in almost all cases. Analyses done with the unaltered
data produce the same general conclusions as stated in the text, but

are somewhat messier.
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Appendix

Instructions and Sample Items for Experiment 1

Preliminary Instructions J

I am Gerry Hanson and I will be the experimenter during this experiment.

To start with, I'm going to explain why you're here and what we are
trying to do in this experiment. Then I'll explain the task in greater
detail, and finally today you'll be trying your hand at it. Feel free
to interrupt me at any time for questions.

The overall goal of the experiment is this: We are going to train
you, to see if you can become more accurate in your probability judgments,
and, in the process, become "well calibrated."” I will explain what that
means later on in this session. Your task won't involve any mathematical
skills; we want to train you to express your own intuitions and judgments
in assessing probabilities.

There are three main parts to this experiment. In part one, you
will be making probability. judgments without any training. We want
to get a measure of how well you do without training. This will be
a paper and pencil task, so we can schedule more than one person at a
time. In part two, you will be trained in probability judgments. We'll
give you feedback about how you're doing, and try to get you to do better.
This task will be done on the computer terminal, so we can schedule only
one person at a time. In part three, you will be tested again without
training to see if you have learned what we've tried to teach you. Again,
this will be a paper and pencil task for which we can schedule more than
one person at a time.

The length of time for the whole experiment will be approximately
11 sessions of about one hour each, depending on your individual speed.
At first you will no doubt be somewhat slow, but as time goes on, you
will find that your speed will increase. We'd like you to schedule a
session every day, or almost every day.

It is extremely important to us that you complete the experiment.
Otherwise, we can't use your data. It may become very tedious work, so
if you have any doubts, it would be better for us if you drop out early
rather than late in the experiment. Quite frankly, we need subjects
who are careful and hard working.

Payment will be made once a week at $2.65 per hour. All those who
complete the experiment will have their pay re-computed at $3.65 per i
hour as a bonus for finishing the whole experiment. Thus for every hour
you work we'll put $1 "into escrow" for you, to be given to you if you
complete the experiment. The longer you stay in, the more you stand to
lose by quitting.

Individual appcintments will be set up for subsequent sessions and
you will be given an appointment card like this (show card) to help -~}
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remind you of the day and time of your next appointment. Feel free to
call me to reschedule appointments whenever necessary.

We will ask you to sign a consent form, agreeing to participate in
this experiment. Also, we may decide to tape record some of the sessions,
in which we ask you for your reactions to the task. We'll want to
remember what questions you had, and check to make sure we said the same
thing to every person. These tapes, and indeed, all of your data, will
be held in confidence. When we publish a report of the experiment, your
names will not be included. Do you have any objection to being tape re-
corded?

I assure you there are no tricks in this experiment. It will all

- unfold as it happens, so that you will know all by the end of the experi-

ment. If you wish, you will be able to get a report on the experiment,
but it may take a year before it's finished. Do ask questions whenever
you want. When you ask questions and we sound vague, it is because we

don't know yet, or we know and we don't want to tell you yet. In that

case, we will be honest and tell you just that. We ask that you please
limit your talking with others about the experiment, especially fellow

subjects. Also, do not look things up in reference books of any kind,

because we want your true ''gut feeling" in response to the questions.

Speaking of questions, I'll stop now to see if you have any up to
this point.

During the middle part of the experiment, you'll be seeing a huge
number of "items'--questions with two possible answers, like:

Crater Lake was formed by
(a) the impact of a meteorite
(b) a volcanic eruption

One of the two possible answers is always correct; the other is always
wrong. Your task is to decide which answer is correct and state the
probability that you have chosen the right answer.

In the first and last parts of the experiment, you'll see some
variation-~slightly different tasks. We'll explain these when we come
to them.

Now I would like to explain what probability assessment is. Because
we have found these judgments are not always easy to make, I'd first like
to spend some time discussing the concepts of probability judgment with
you. Then I'll explain what you have to do to be "well calibrated."

Probabilities are numbers between 0 and 1 that express uncertainty.
Let's take the above example: Crater Lake was formed by (a) the impact
of a meteorite or (b) a volcanic eruption. Suppose you are not sure of
the answer. You think the answer you have chosen is correct, but you are
not certain. The question is, how certain are you? You will have to
make a probability assessment that expresses your degree of certainty.
If you give a probability of .8, you're saying there are about 8 chances
out of 10 that your answer is correct. If you give a probability of 1.00,
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you know for certain you have chosen the correct answer; if you say

.5, that indicates you're completely unsure whether your answer was
correct. The more certain you are that you are right, the larger the
number you should choose. But what number should you choose? This is

the nub of the problem. We are asking you to do a very difficult task.

We want you to examine your own ''gut feelings' of certainty and uncertainty
and translate those feelings into a probability number.

During the main part of the experiment, on the computer terminal,
you will be shown a number of statement of fact with two possible
answers, one of which is right and one wrong. First, you will decide which
alternative you think is correct (please select one answer even when you
are completely unsure which is correct; the computer is fussy about these
things). Next, decide what the probability is that your answer is correct.
This probability can be any number from .5 to 1. It is your degree of
certainty about the correctness of your answer.

Why are we forbidding you to use a probability less than .5? Because
your first task was to choose the alternative from the two given that is
most likely to be correct. If, after doing that, you assign a probability
of, say, .3 to your chosen alternative, that would logi~ally imply that
you believe there's a .7 chance the one you didn't choose is the correct
one. That means that one, the one you didn't choose,is more likely to
be the correct answer. So a probability of less than .5 suggests that
you goofed the first ;tep, by not choosing the alternative which is most
likely correct.

Technically speaking, you can use any number you want, like .703
or .832319 (providing it is in the range .5 to 1.0), but you will find
out very soon that you are not capable of making subtle discriminations
such as deciding whether to give a .703 or a .704. You probably won't
want to use numbers with a lot of fancy extra digits.

If you respond that the probability is .6, it means that you believe
that there are about 6 crances out of 10 that your answer is correct.
A response of 1.00 means that you are absolutely certain that your
answer is correct. A response of .5 means that your best guess is as
likely to be wrong as right. And tow do you decide whether to say
.6 or .77 You have to review all the information you have in your head
about the item in question, and guage how confident you are about the
correctness of your choice.

The key thing we want you to learn in this experiment, which we
call being "well calibrated,” is to learn how to translate your own
internal feelings of certainty, uncertainty, and partial certainty
into the precise language of probabilitv numbers. We want you to be
well calibrated in the same sense that a thermometer is well calibrated.
When a calibrated instrument says 32° F, it means the same thing every
time, and it means something very specific: The temperature at which
water freezes.

Likewise, you should mean the same thing every time you say .5.
That means (a) I'm completely uncertain between the two possible answers

Prr SR
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and (b) on average, I have a 507 chance of getting this one right.

We can find out whether you are well calibrated. Suppose we have
a subject, Paul, who responds to 100 different items. Over that set of
100 responses, he said ".5" 30 times, and ".6" 10 times, and so forth,
as shown below:

Paul said How many times

.5 30
.6 10
.7 10
.75 20
.8 0
.9 10
1.0 20
Total 100

(That .8, which Paul never used, was thrown in to remind you that you
don't have to use all the one-digit numbers if you don't want to. That
.75 was included to remind you that you don't have to limit your responses
to one-digit numbers. You can use .54 or .99 if you want to.)

Now suppose we look at how many times that Paul said ".5" and was
right (that is, selected the correct answer), and how many times Paul
said ".5" and was wrong, and so forth for each of the different
probabilities he used, as shown below:

Paul How Many Times Times Percent

Said Times Right Wrong Correct
.5 30 15 15 50
.6 10 6 4 60
.7 10 7 3 70
.75 20 15 5 75
.9 10 9 1 90
1.0 _20 20 Y 100
Totals 100 72 28 72%

We can calculate, as shown above, the percent correct for each
different response. If Paul's data looks like this, he is perfectly
calibrated, because his response is always equal to the percent correct.
For exactly 70% of all the times he said ".7," he was right, and 30% of
the time, he was wrong. He got half of his ".5" responses right, and all
of his "1.0" responses right, and so on.

Now let's look at another subject, Baruch, who, by incredible
coincidence, gave the same number of different responses as Paul did.
But Baruch's calibration data looks like this:
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Baruch How Many Times Times Percent

Said Times Right Wrong Correct
.5 30 18 12 60
.6 10 8 2 80
.7 10 8 2 80
.75 20 13 7 65
.9 10 9 1 90
1.0 20 16 4 80
Totals 100 72 28 72%

Baruch was not well calibrated. For only one class of his responses was
he "right on": he did get exactly 90% of his ".9" responses correct.
But otherwise, he didn't use the probabilitiss the way he should have.
Across the 30 times he said ".5," he got 60% of them right, instead of
the desired 507%. This is a kind of underconfidence; he knew more than
he thought he knew. At the other extreme, he was wrong too often when
he said "1.0"--he got only 80% right (to be perfectly calibrated, you
can never be wrong when you say "1.0"). This is overconfidence; he
knew less than he thought he knew.

Notice that Paul and Baruch both got, overall, 72% of their answers

correct. They both have the same degree of knowledge. But knowledge

is independent of calibration. So don't worry about how much you know
and don't know in this experiment--we don't care much about that. The
items we have chosen for this experiment will surely include some items
you know very well, and some items you just don't know at all. We hope
we've selected a lot of items you're not completely sure about, because
those are the items on which you'll get a chance to practice your skill
at assigning probabilities.

By the way, I ought to warn you that we will never at any time
during the experiment be telling you the right answer to any item. I
hope that won't frustrate you. After you've completed the experiment,
you're free to find that out. 1In all these sessions, you'll be showm
at least 3,000 different items, so perhaps after a while, you'll get
used to not learning the correct answers to the items as you respond
to them.

Don't worry if you don't know the answers to some items. We're
not so much interested in how much you know as we are interested in
how well you can express your own feelings of knowing or not knowing.
Complete every item; try not to miss any. If you have a change of
heart, you can, and should, go back and change an answer. This is
about all I have to tell you about the experiment. So we'll stop again
to answer questions and sign the consent form (on the next page). Then
the session will end with you trying your hand at the first 100 items.

Consent Form

Experiment: Calibration Study I
Experimenters: Gerry Hanson and Sarah Lichtenstein
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I have been informed of the nature of this experiment and have agreed
to participate. I understand that, if I so desire, I can leave the
experiment at any time. I will be paid $2.65 per hour at the end of
each week. If I complete the experiment, my wages will be re-computed
at $3.65 per hour. I also agree to be tape recorded.

Signed
Date

Task 1

Task 1 Instructions

In this task you will see 100 samples of a simple handwritten
sentence (in Latin):

MENSA MEA BONA EST

Your job is to judge whether each sentence was written by an
American or a European.

First indicate whether you think the person who wrote the sample
is an American or a European, by circling A or E on the answer sheet.

Then give a probability response from .5 to 1.0 that expresses your
degree of belief in the correctness of your answer. Please try to be
well calibrated. Feel free to refer to the instructions we have just
gone through if you wish. Have you any questions? If not, go ahead
and start. Since we have only one copy of each sample, you'll have to
pass them around. Please BE SURE you match the item number in the
upper right corner with the item number on the answer sheet.

Task 1 Sample Items

2. Wqu, Mea _BM %//

3%%/4&«,/9’”«_51——

Task 1 Answer Sheet [correct answers for the three sample items are shown]

Circle E for European or A for American and write the probability
that you are correct in the space provided.

7.
8.
9

t1 =1
> > >

1. (&) a A
2. (E) A . 5. E A
3.E® E A

|
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Task 2

Task 2 Instructions

1 This task is composed of 200 items. Each item shows two irregular
shapes on the same page, labeled A and B. One of the shapes is larger
than the other. First, decide which item is LARGEST and mark your

answer on the answer sheet. Second, decide what the probability is that
your answer is correct. This probability can be any number from .50 to
1.00. It can be interpreted as your degree of certainty about the
correctness of your answer. For example, if you respond that the
probability is .60, it means that you believe that there are about

6 chances out of 10 that your answer is correct. A response of 1.00

means that you are absolutely certain that your answer is correct.

A response of .50 means that your best guess is as likely to be right

as wrong. Don't estimate anv probability below .50, because you

should always be picking the alternative that you think is more likely to be
correct. Write your probability in the space provided on the answer sheet.

Try to be well calibrated in your responses.

Task 2 Sample Items
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Task 2 Answer Sheet [answers to the two sample items are shown]

i n i onivaridasiybe Al vma ok

Please decide which figure (A) or (B) has the greater area, and then ‘
mark the probability (between .5 and 1.00) that you are correct. !
1 !
| 1. B 4. A B 7. A B
3 2. B 5. A B 8. A B ___
3. B 6. A B 9. A B

W —
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Task 3

Task 3 Instructions

This task is composed of 200 items. Each item is a brief phrase
followed by two alternatives, labeled A and B. Only one of the
alternatives is correct. Read each item and the two alternatives
carefully. First, decide which alternative you think is correct, and
mark your answer on the answer sheet. Please indicate an answer,
either A or B, even when you are completely unsure which is correct.
Second, decide what the probability is that your answer is correct.
This probability can be any number from .50 to 1.00. It can be inter-
preted as your degree of certainty about the correctness of your
answer. For example, if you respond that the probability is .60, it
means that you believe that there are about 6 chances out of 10 that
your answer 1s correct. A response of .50 means that your best
guess is as likely to be right as wrong. Don't estimate any probabi-
lity below .50, because you should always be picking the alternative
that you think is more likely to be correct. Write your probability
in the space provided on the answer sheet,

Try to be well calibrated in your responses.

Task 3 Sample Items

1. The only bachelor United States president was
A. James Madison
B. James Buchanan

2. A rudder is located on an airplane's
A. Tail
B. Wings

Task 3 Answer Sheet [answers to the two sample items are shown]

Please circle the answer (A or B) you think is correct and write
the probability that you are right in the space provided.

1. B 4. A B 7. AB
2. B 5. A B 8. AB
3. AB 6. AB 9. AB

Task &4
Task 4 Instructions

In this task you will find 200 statements, each with four
possible answers. This time, we want you to give a probabilify
response expressing your sense of certainty or uncertainty for
all four alternatives.
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You may use any number from .0 to 1.00 but the total of all four
responses must sum 1.00. If you are completely sure one of the alter-
natives is correct, you would use 1.00 for that alternative and O for
the other three. If you are completely unsure, your response should
be .25 for each of the four answers. Assign a 0 to any alternative you
are sure is wrong. If you can surely eliminate one alternative but feel
entirely uncertain about all the other three, assign 0, .33 1/3, .33 1/3
and .33 1/3.

Here's an example:

Which is the greatest distance from Chicago?

Paul Said Baruch Said
a. Melbourne .45 .8
b. Mexico City Q 0
c. Capetown .2 .05
d. Singapore .35 .15
1.00 1.00

Paul felt certain the answer is not Mexico City. Capetown seemed
unlikely, Melbourne and Singapore seemed like the best bets, with
Melbourne getting a slight edge. Baruch also eliminated Mexico
City and thought Melbourne was the most likely to be correct. He
differed from Paul in that he felt more sure about Melbourne being
right.

Again, try to be well calibrated. All the alternatives to which
you assign 0 should be wrong answers, and all your 1.0's should be
right answers. Twenty percent of your .2's should be right, and 80%
wrong . . . and so on.

Task 4 Sample Items

1. Mammoths died out about

a. 10,000 years ago
b. 75,000 years ago
c. 5,000,000 years ago
d. 150,000 years ago

2. About how tall (at the shoulder) is an adult male Afghan hound?
a. 27 inches
b. 20 inches
¢. 17 inches
d. 30 inches

Task 4 Answer Sheet [answers to the two sample items are shown]

State the probability that each of the four alternatives is the
correct answer. Make sure that the four probabilities you give sum
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to 1.
; 1. a / 2. a / 3. a
b © b [o) b
c (»] c O c
’ d 0 d 0 d
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Task 5 Instructions

] ' The Instructions for Task 5 were identical to those for Task 3.

Task 5 Sample Items

é The items for Task 5 were similar to those for Task 3, although no
f items were repeated.

Task 5 Answer Sheet

The answer sheet for Task 5 was identical to that for Task 3.
Task 6

Task 6 Instructions

This task 1s somewhat different from the others. Instead of responding
with a probability, you're going to respond with a guess (actually, 5
guesses) at the answer.

Each item asks about a quantity, a number. For example, suppose I 1
show you a bottle full of beans, and ask how many beans are in this bottle?
You won't know exactly how many, but you can make a guess.

Now, here's where probabilities come in. We want you to give an
estimate of how many beans, such that the probability is .50 that the
true number of beans is above your guess, and .50 that the true number
of beans is below your guess. We'll call this first estimate the ‘
"S50th percentile." 1

b Next, state a number such that the probability that the true number

t is smaller than your estimate is just .25, while the probability that

] the true number is larger than your estimate is .75. This second response
{ you make is called the "25th percentile." i

Next, state a number such that the probability that the true number
is smaller than your estimate is .75, while the probability that it's
larger is .25. This is the "75th percentile."

\ Next, the lst percentile: This is a low number, such that there's
just a 1% chance the true number is lower than the number you state.
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Last, the 99th percentile: This is a high number, such that there's
a 99% chance the true number is lower than the number you state.

The answer sheet for this uncertain quantities task will provide
spaces for your answers in ascending order:

1st percentile
25th percentile
50th percentile
75th percentile
99th percentile

1T

We don't really care in what order you fill in the five percentiles.
But, of course, the lst percentile should be the smallest number, with
each answer larger than the one before, and the 99th percentile should be
the largest number.

The responses you give need not be evenly spaced or symmetric. For
example, the following is a perfectly acceptable set of answers to the
number of beans:

1st percentile 200
25th percentile 400
S0th percentile 500

75th percentile 1,000
99th percentile 1,500

Notice that there's a 300 bean difference between the 1lst and 50th
percentiles, and a 1,000 bean difference between the 50th and 99th
percentiles. That's okay.

The answerer, Sarah, is almost (98%) certain the number of beans
lies between 200 and 1,500, and she'd be willing to bet even money that
number is over 500. Her subjective odds are 3 to 1 that the number is
over 400 (75% chance versus 25% chance), and 3 : 1 that it is under 1,000.

An explanation of how the concept of calibration applies to this
task may help you perform the task. For every item, we know the true
answer. We will make a tally for each item in one of six categories,
depending on the value of the true answer compared with the values you
agssigned to the five percentiles. The categories are:

Lower than the 1lst percentile
Between the 1st and 25th percentiles
Between the 25th and 50th percentiles
. Between the 50th and 75th percentiles
. Between the 75th and 99th percentiles
. Higher than the 99th percentile

[+ SV B RV K

So if we were tallying Sarah's responses, if the number of beans is really
157, we'd put a tally in category #l1. If it's really 327, we'd put a
tally in category #2, and so on. Each item gets just one tally.
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In this task calibration means: over many such items, exactly 1%
of the tallies should fall in the first category (i.e., below the lst
percentile), exactly 24%Z in the second category (between the lst and 25th
percentiles), and so forth:

Perfect Calibration:
Category 7% of Tallies

1 1
2 24
3 25
4 25
5 24
6 1

These percentages follow directly from the definitions of the
percentiles. The 99th percentile is a number such that there's a .99
probability that the true answer falls below the number you state.
That means, in the long run, just 1% of the true answers will fall in
category #6.

This whole task is another way of expressing your own subjective
feelings of uncertainty. If you are very uncertain about the true answer,
spread your estimates over a wide range. If you are able to narrow the
answer down quite precisely, your estimates should be close together.

For each item, after you have writtem your answers, review them with
the following bets in mind:

First, if you had a $1 bet on the true answer being either above
or below the 50th percentile, would you care which side of the percentile
paid off for you? If you have a preference, it means your 50th percentile
is wrong. Adjust it until you are indifferent between betting on the
interval above the 50th percentile and betting on the interval below.
the 50th percentile.

Second, the 25th, 50th, and 75th percentiles should split the
whole range into four equally likely segments. Would you rather bet
on one of the segments rather than any of the others? If so, something's
wrong. Adjust your answers until you are indifferent to which one of
the following four bets you might play:

1. Win $1 if true answer is below the 25th percentile, otherwise
win nothing.

2. Win $1 1if true answer is between the 25th and 50th percentiles,
otherwise win nothing.

3. Win $1 if true answer is between the 50th and 75th percentiles,
otherwise win nothing.

4. Win $1 if true answer is above the 75th percentile, otherwise
win nothing.

Third, check your 1lst percentile and 99th percentile answers. Try
to think about being well calibrated on these: 1% of the true answers
should fall below your lowest number, and 1% above your highest number.
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We can't tell you exactly how to pick your estimates--that all depends
on how much you know about each uncertain quantity. But we can warn
you about two (contradictory!) pitfalls. On the one hand, please don't
give us ludicrously high or low estimates. For example, if we ask you
how many Polaroid cameras were sold last year in the United States, please
don't give as your 1lst percentile answer "6"--you know that's a silly
answer. And don't give as your 99th percentile answer "2 billion'"--that's
almost ten cameras for every man, woman and child in the United States.

On the other hand, try to avoid being too sure of your knowledge,
thus making your estimates too close to each other. Remember, there's
supposed to be only a 2% chance that the true answer will fall outside
the range you give us--one percent below the lowest, and one percent above
the highest.

One more warning: Some of the questions are questions about
percents. Don't confuse your assessments, which will all be percents,
with the percentiles. For example, what is the percent of U.S. citi-
zens who are Roman Catholics? For an item like this, you may be giving
a low percent as an answer to a high percentile. Try this one below:

1st percentile
25th percentile
50th percentile
75th percentile
99th percentile

i

We apologize for that confusing word, "percentile."

Okay, now try another example. How old is the man in the attached
plcture?

1st percentile
25th percentile
50th percentile
75th percentile
99th percentile

Since this task takes longer per item than the others, we are giving
you only 77 items. Take your time on each item. Your goal is to be well
calibrated.

As usual,feel free to ask any questions you wish.

Task 6 Sample Items [with answers]

1. 1In what year did the Peoples' Republic of China join the UN? [1971]

2. How many cubic inches are there in a liquid quart? {[57.75 cu. in.]}
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Task 6 Answer Sheet

1'lst: percentile 2o 1st percentile
25th percentile 25th percentile
50th percentile 50th percentile
75th percentile 75th percentile
99th percentile 99th percentile

1]

Training Sessions
Instructions

No written instructions were provided for the computerized training
sessions. Each participant was shown how to use the computer: Type
the letter A or the letter B, followed by either a decimal point (period)
and a number, or the number 1 without a decimal point. Finish by typing j
"Return." Participants were shown how to correct an error, either before ;
or after typing "Return.”

Sample Items

The items appeared in the following format (underlined letters and
numbers indicate the participant's responses):

A e i

1. WHICH EVENT HAPPENED FIRST?
A. STALIN'S FIRST FIVE-YEAR PLAN
B. WILL ROGERS DIES
[correct answer: Al
?
B.6
2. THE POTSDAM CONFERENCE WAS HELD AT THE END OF u
A WORLD WAR II

B. WORLD WAR I
[correct answer: A}

3. WHICH IS THE CORRECT SPELLING?
A. BOOMERANG
B

BOOMARANG
[correct answer: A]

Feedback

No written instructions were provided for the discussions between
experimenters and participants that occurred after every training session.
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Post~Test Instructions

Now that you have finished the training portion of the experiment,
we're going to ask you to do six post-tests, the same tasks you did as
pre-tests.

Since most subjects found the Uncertain Quantities task (the one
where you gave the .01, .25, .50, .75 and .99 percentiles) most noxious,
we are going to have you do it first. That way, when you finish it,
you'll know you're over the worst.

Please RE-READ the instructions for each task.

Your goal in this post-testing section is to apply whatever you
learned in the training to all these other tasks on which you've gotten
no feedback. TRY TO BE PERFECTLY CALIBRATED on each task. Don't
concentrate on remembering what you answered to these items before.
Instead, try to approach these items anew, to show us that you have
learned to be well calibrated.




