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I. INTRODUCTION

The purpose of this investigation has been to improve a finite
element program which performs three dimensional analysis for impul­
sively loaded laminated plates (acronym TIP)l. This TIP program has a
finite element model that uses the quadrilateral to define the shape
of the element in the plane of the plate and then arranges a number of
these elements through the thickness to describe the necessary num.ber
of material layers. Each layer then has its own material properties.
The model is nonlinear since it allows for large plate deflections and
for material yield effects. The original program only allowed for iso­
tropic elastic-perfectly plastic solids. The dynamic equations are
obtained by lumping the mass of the plate into the nodal points of the
finite element model and then solving kinematic equations of motions by
use of a finite difference technique. The improvements to the TIP pro­
gram were to decrease the time that the program ran by use of large
time increments in the finite-difference equations and to develop an
orthotropic elastic-perfectly plastic analysis which was then further
improved to include orthotropic elastic-visco-plastic analysis.

The limitations on the size of the integration time step are a
direct result of the finitecelement model which treats the plate as a
lumped mass system where the individual masses are placed at the nodes.
Consequently, as the numerical integration proceeds the masses move re­
lative to each other, and if the integration time step is too large,
an artificial oscillation was observed by examining the internal forces
acting on each mass for successive time steps. When a relatively large
time step is used these forces will change·sign for each successive
time step. The worst condition occurs in the thickness direction,
since the masses will, in general, be separated by a much smaller dis­
tance in.this direction. In addition to this, it has been observed
from previous numerical results that the two inplane displacements vary
relatively smoothly through the thickness and therefore, they are modi­
fied to vary linearly without restricting any shear deformation.

The orthotropic yield analysis uses the same technique that was
used in the original TIP program with only the yield criterion chang­
ing. For the orthotropic elastic-perfectly plastic analysis, Hill's
Yield Criterion2 is used instead of von Mises Yield Criterion. Addi­
tional orthotropic yield stresses are also needed as additional input.
For the elastic-visco-plastic analysis a strain rate dependence is

lzak, Adam R., "Nonlinear Dynamic Analysis of Flat Laminated
Plates by the Finite Element Method," Final Report, Contract No.
DAAD05-73-C-0197, University of Illinois, February, 1977.

2Hill , R., "The Mathematical Theory of Plasticity," Clarendon
Press, Oxford, 1950.
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introduced by use of an extension of the isotropic Bingham materia1 3

to the orthotropic case.

II. MODIFICATION FOR LARGE TIME INCREMENTS

Analysis

In this analysis the in-plane (u and v) displacements are handled
separately from the displacements through the thickness (w), but, both
utilize the finite difference equation:

{A} = Z{A} - {6}n_ln+l n (1)

+ ~h2 [M]-l ~FI }n+l +(t- Z) {FI}n + {FI}n-J

+ Shz {M]-1 [{FE}n+l + ( t-z) {F} +{F} JEnE n-l

where {A} is the displacement matrix, S is the acceleration parameter,
h is the time interval, {FI} is the internal force matrix, {FE} is the
external force matrix, [M] is the mass matrix, and the subscripts n,
n-l, n+l denotes time intervals.

In analyzing the u and v displacements, it is assumed that they
are linearly dependent through the thickness. This forces plane sec­
tions to remain plane.

This first assumption results in the following equations:

(2)

where qk' k=l, 4, are unknown coefficients called the transformed dis­
placements and z is the distance in the z-direction of the node from
the center of gravity. The importance of having z be the distance from
the center of gravity will be discussed when the transformed mass ma­
trix is discussed. In matrix notation equation (2) becomes:

3
C

.rlStescu,
company, 1967.

No., "Dynamic Plasticity," North Holland Publishing

6



Ull = [TF] {q} (3)

where {q} is the matrix of transformed displacements and [TF] is the
transformation matrix described below. Letting t be the number of
layers of material and i=l, t+l be the nodal location in the thickness
direction, the transformation matrix can be written as:

[TF l ]

[TF2] (4 )

[TF] =

[TF. ]
.1

[TF ]
1+1

where

[TF. ] = [: Z. 0 :i] :', (5)1 1

0 1

and Zi is the distance of node i from the center of gravity. i=l is
the node at the bottom of the plate and i=t+l is the node at the top.

Since the displacements are written in terms of transformed dis­
placements, then the forces should be written in terms transformed
forces. Letting {fE} be the matrix of external forces corresponding to
{q}, and {fI } be internal forces also corresponding to {q}, the theory
of virtual work states:

(6)

Transposing equation (3) yields:

(7)

Substituting equation (7) into (6) yields:

(8)
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Therefore:

(9)

Similarly:

Finding a transformed mass matrix [m] starts with:

(10)

- [M] {ll}

By virtual work:

{P}. .
lnertla (11)

T" T
- d{q} [m]{q} = d{6} {F}inertia

Substituting equations (3) and (7) into (14) yields:

T T .. T"
d{q} [TF] [M][TF]{q} = d{q} [m]{q}

Dividing out the unnecessary terms gives:

[m] = [TF]T[M][TF]

(12)

(13)

(14)

(15)

(16)

Now the reason for zi being the distance from the center of gravity will
become apparent. The calculations are much simplified by the mass ma­
trix being a diagonal matrix as is the case for the original mass ma­
trix. The original mass matrix was:

[M] = {M.}
J

where j varies over the total degrees of freedom.

(17)



Performing the matrix mUltiplication in equation (16) using equations
(17) , (4), and (5) produces

R.+ 1 R.+ 1 (18)l:M. l:M. Z. 0 0
1 1 1

i=l i=l
R.+ 1 R.+l R.+l
l:M.Z. EM.Z~ EM.Z. 0

1 1 1 1 1 1

em] = i=l i=l i=l
R.+ 1 R.+ 1 R.+ 1

0 EM.Z. EM. EM.Z.
1 1 1 1 1

i=l i=l i=l
R.+l R.+l

0 0 EM.Z. EM. Z~
1 1 1 1

i=l i=l

But

R.+ 1

EM.Z. = 0
1 1

i = 1

(19)

by definition of the center of gravity, thus causing em] to be a diag­
onal matrix.

Referring to equation (1) the only element that still must be
transformed is the deflections at past time intervals. From equation
(3) :

(20)

Rather than finding the inverse of the entire transformation matrix, it
is only necessary to get the inverse of two of the submatrices in
equation (4) since it is only necessary to solve for four unknowns.
This is easily done by hand and results in:
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=

1 -

1

o

o

0
Zl

Zl-Z2

0 1

Zl-Z2

1 -
Zl

0
Zl-Z2

1 0

Zl-Z2

o

o

1

(21)

Substituting the transformed quantities into equation (1) yields:

(22)

[mr 1 [{f} +r n

It should be noted that the internal transformed forces are displaced
by one time increment. Because these forces are small, even at large
time increments, this yields accurate results. Equation (22) is thus
solved and equation (3) transforms the results to global displacements.

Although this time lag is acceptable for the in-plane displace­
ments, it is not acceptable for the w displacements. The reason for
this is the external force is being applied in the w direction, thus
making these internal forces more reactive to larger time intervals.
In order to account for the change in the internal force a model was
sought to couple the deflections through the thickness.

In finding a model to represent what happens through the thickness,
it is necessary to see what the unknowns are. From equation (1) the
unknowns are {~}n+l and {Fr}n+l' All the other terms are known. In

10



order to predict what {FI } +1 is, it is necessary to couple the de­
flections through the thic~ness and to assume all strains small when
compared to the strain in the w-direction. This can be done by let­
ting:

(23)

where {~FI}n+l is the change of the internal force between time inter­
vals. The deflection in the w direction is then couPled bY the model
shown'in Figure 1. This model assumes the stiffness·betwe~n the nodal
points in the thickness direction is much greater than the stiffness
between in-plane nodal points. As long as the external force is in
the w direction this is a good assumption.

From Figure 1:

- ~. )- (~. -1,n+l . 1+1,n ~. )]1,n (24)

- k. 1
1- [ (~. 1 - ~. 1 1) - (~. -~. 1 )]1,n+ 1- ,n+ 1,n 1- ,n

where i refers to the nodal location through the thickness and n refers
to the time increment. The predicted stiffness (ki) is gotten from the
orthotropic properties (C .. , i=1,6, j=1,6). In matrix notation:

1J

a Cll C12 C13 a a a £ (25)x x

° C2l C22 C23 a a a £y Y

° C3l C32 C33 a a a £z z=

°xyl
a a a C44 a a £xy

°xzl
a a a a C55 a £xz

lOyzJ La a a a a C66J l£yzJ

Using the assumption that all strains are,small when compared to the
strain in the w-direction yields

°z = C33 £ ' (26)z
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This gives the stiffness for a unit cube equal to C33 •
Therefore:

(27)

where ti is the thickness of layer i, Area i is the area used to com­
pute the mass of the nodal point, and C33i is the orthotropic property
of the quadrilateral that the node lies in.
Letting:

I

~i,h+l = 2 ~i,n + ~i,n-l

Sh2 h. +(i-- 2 ) FI. + F ] (28)+ -- li,n_lM. 1,n 1,n1

Sh2
[F + ( ~ - 21 FE. + F ]+ -- Ei,n+l Ei,n_lM. 1,n1

and substituting equations (23) and (28) into (1) produces:

1'>. 11,n+

,
= 6.. 11,n+

Sh 2

+ --M.
1

- I'> Ii,n+l (29)

- k. 11- 1'>. 1- 1'>. 1 1)1,n+ 1- , n+ - k. (I'>. 1 - 1'>. I1. 1+,n l.,n

+ k. 1 (I'>. - 1'>. 1 TI1- l,n 1- ,nlJ

where the only unknowns are the deflections at time n+l. This pro­
duces i=~+l (~ is the number of layers) number of simultaneous equa­
tions which can be solved for.

Numerical Results and Conclusions

The modified computer program was applied to the dynamic plate
problem for which BRL experimental data is available, and which was
analyzed by the original computer program.
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In the original analysis, before the modifications described here
were incorporated, the maximum time step which could be used without
numerical instability was 0.25 microseconds (vs). In the modified pro­
gram time step as large as 10 VS was used. Figures 2 to4 contain some
typical results. Figure 2 shows the results for a time step of 2.5 VS
and Figure 3 has similar results for 5 vs. Figure 4 contains the re­
sults for a variable time step calculation where 1 VS integration inter­
val was used for time from 0 to 10 vs, followed by a time step of 5 VS
from 10 VS to 60 vs, and finally 10 VS time step for time of 60 vs. to
100 vs. The results show the plate center deflection as a function of
time for the bottom and the top of the plate. These results are com­
pared with the results from the HEMP solution and the experimental data
which are only given for the bottom of the plate. The different time
steps were used in order to compare the effect of these on the accuracy.
It can be observed that the results for the time step of 2.5 vs, Figure
2, compare more closely with the experimental data than the results for
5 vs, Figure 3. The results for a variable time step, Figure 4, seem
to give even more accurate results and compare quite well with the HEMP
calculations and the experimental data. It may be mentioned that the
results for large time steps introduce artificial errors due to large
distortion of the pressure load and, therefore, the errors may not all
be due to numerical integration. However, the main conclusion is that
the method has been made quite stable and large integration steps can
be used.

III. ORTHOTROPIC ELASTIC-PERFECTLY PLASTIC YIELD

Analysis

The orthotropic analysis follows the same idea as in the isotropic
analysis, but it uses Hill's yield criterion and needs more input as
far as yield stresses are concerned.' These yield stresses are in the
six orthotropic directions and are referred to as Y.. (i = 1, 3 and j =
I, 3). Before seeing the yield criterion, the follA*ing constants are
defined as:

1 1 1- (30)Yll =
Y~l

- 2 -
Y~3Y

22
1 1 1-

Y22 =
Y~2

- 2 - 2

\1 Y
33

1 1 1
Y33

- -=
Y~3

-
Y~l

-
Y~2

Then the yield criterion can be written as:

13



f(o .. )
. 1J

2 2°u 022
=--+--+

Y~l Y~2
(31)

The total stress at t n+l is:

T
0 ..

1J n+l
= 0 ..

1Jn

T
+ do ..

1Jn+l
(32)

The strain increment is divided into elastic (E
e

) and plastic (EP)
strain.

e P (33)dE .. = dE .. + dE ..
1J 1J 1J

The flow rule is written in the following manner:

P dA ( °u
Y

22
0

33 : Y33OZZ ) dATU (34)dEU = + =
y2\ -u I

dA (0~2
Y

U
0

33 + Yo)P + 33 U = dATdE22 =
Y

22
2 22

r1~P r1 A(°33 +
YUOZZ + Y220 U \ =

dAT
33=--33 _.. \ Y;3 2 J

14



a
p dA~ dAT12d£12 = =

2
Y12

ap dA --.!l = dAT
l3d£13 =

2Yl3

ap
= dA ..E. = dATnd£23 2Y13

where T.. is defined by Equation (34). This could be written as:
1J

d£P = dA Tij ij
(35)

The orthotropic elastic relation used to evaluate the trail stress is:

Tdo .. =
1J

(36)

This is substituted into Equation (32) and that result is substituted

into Equation (31). Similar to the previous analysis if fro ..T) < 1,
T T 1J -:

then 0iJ.n+l = 0iJo l' but if f(o .. ) > 1 plastic flow has occurred.
n+ 1J

Inserting Equation (33) into (36) and that result into (32). gives:

o ..
1J

(37)

Letting T
ij

= Cijkt Tkt , Equation (37) becomes

o ..
1J

T
= o ..

1J
(38)

Substituting Equation (38) into (31) gives:

etA =
C

B + JB 2 - AC

15
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where:

~l ~2A=--+--+

Y~l Y~2

~3 ~2 ~3--+--+--+

Y~3 Y~2 Y~3

~3--+
2Y
23

(40)

- T - TT
22

0
33

+ T
33

0
22

2

- T - T
Tll022 + T22011 )

2

- T - TT
ll

0
33

+ T
33

0
l1

2

TC = f(o .. ) - 1
1)

This dA is substituted into Equation (38) to give the total stress.
In all cases this breaks down to the isotropic case when using appro­
priate yield stress. After programming, the same results were produced
for an isotropic example as were produced in the isotropic elastic­
plastic analysis.

IV. VISCO-PLASTIC MODEL

Analysis

In this analysis it is assumed that the strain is divided into
elastic (dEe) and visco-plastic (dEvP) strain.

16
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Using Hill's Flow Rules, Equation (35) is modified to be:

dE::'!? = dA T. . (42)
J.J J.J

It should be noted that the visco-plastic strain changes satisfy incom­
pressibility condition

(43)dE::'!? = 0
J.J.

3
l:
i=l

The quantities Tij represent six independent quantities and they can be
arranged in a matrix form and then can be related to a stress matrix as
follows:

,

{T} = [B] {a} (44)

(45)

o

o

o

o

o

o

o

o

o

o

o

1

Y~2

2

o

2

o

where:

1--
2

\1

\'33

2

Y22

[B]= 2

0

o o o o o

,
o o o o o I
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By comparing the flow rule in equation (42) to an isotropic case it can
be noted that the quantities Tij have the same role as the deviatoric
stresses and Ei) strains as the deviatoric strains. In fact, it may be
noted that equation (42) reduces in the limit to the isotropic case.
Consequently, following the procedure developed for isotropic Bin~ham

material, the strain rate dependence is introduced by defining {T }

F 'vP{T } = {T} + n {E } (46)

where n represents viscous coefficient, and {T} is the quantity which
satisfies the yield criterion.

By using Equation (44) we define:

{aF} = [B]-l {TF} (47)

If no plastic yield has occurred the viscoplastic strain increment is
zero. So we begin this analysis with a trial incremental stress where:

(48)

and [C] is the orthotropic relationship between stress and strain.
Equation (48) is inserted into Equation (32) and this is inserted into
the yield criterion in Equation (31). If yield does not occur, the
trial stress is equal to aF. However, if yield does occur then Equa­
tions (46) and (47) must be used to calculate aF as follows: From
Equation (41) and (48):

{da
F

} = [C] {dE} - [C] {dEvp} (49)

Then as in Equation (32):

{/} ={aT } _ [C] {dEVP} (50)

Multiplying Equation (46) by [B]-l and using Equation (47) in (46) one
gets:

(51)

From Equation (50) and

T{a} = {a } -

(51), when solving for {a} one finds:

(52)

By using Equation (42) it is easily sho~TI that:

d vp 1 d>'{evp } = { E } = {dEVP} = 't {T}
dt /':,t "

18
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Substituting (42) and. (53) into (52) produces:

Defining another variable {T):

{T) = [C] {T}

(54)

(55)

We use the inverse of Equation (44) and Equation (55) in (54) which
produces:

(56)

The question in a dynamic problem always arises as to what value of
stress is used for the flow rule. In this formulation the stress used
in the flow rule is approximated by the trail stress. A closer appro­
ximation can be formed by doing an iterative loop on this equation,
but little difference is found in the solution when this is done.

The {cr} stress formed here in Equation (56) is substituted into
the yield condition and dA is solved for.

This gives the relation:

AdA2 - 2BdA + C = 0

where letting:

T.! -T + -..2l crT= T..
1J 1J Llt

T*2 T*2 T*2 T*2 T*2 T*2
A =

11
+ 22 33 12 13 23

+ + + -- +2 2 2 2 2
Y~3Y11 Y22 Y33 Y12 Y13

19
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0~3 + T33 0~2 ) +

2

T* TI 22 all (60)

where f = 1 is the yield function.
Therefore, from Equation (57)

2B ± 1(2B)2 - 4ACdA = ':'::""::""--'..'>':_:..::.L._--.:.:;:.::.

2A

(61)

(62)

Since dA + 0 as C + 0 the minus sign must be used. Multiplying top

and bottom by B +

dA =

JB2
- AC produces:

C (63)

This value of dA is then substituted into Equation (56). By using
Equations (51), (42), and (44)

{oF} = (1 + 2~A) {a} (64)

Equation (64) is used in the modified computer program to calculate
the actual stress state in finite-elements.

20



Numerical Example

The example used to ch~ck out the changes in the program was a
three layer laminated plate. The top and bottom layer was 1020 steel,
1.27 cm and 1.27 cm thick, respectively. The middle layer was 2040
aluminum .635 cm thick. Values for the viscosity for each material
were estimated to be:

298.86 pascal-sec

18.73 pascal-sec

The results for this example are given in Table 1. Table 1 com­
pares with the vertical displacement at the center of the plate of
both for the original elastic-plastic and the new elastic-visco­
plastic models. It can be seen that for short periods of time the
viscous effects are small, but for later times the effect is more pro­
nounced. As expected, the effect of viscosity is to stiffen the
plate.

The effect of the viscous material properties do not appreciably
alter the dynamic response of steel and aluminum materials. However,
this conclusion may not be true for other materials, such as for ex­
ample, composites, which may exhibit larger viscosity.

V. CONCLUSIONS

By certain modifications to the TIP computer program it has been
possible to increase the incremental time step used in the finite
difference time integration. However, even with these modifications,
the stresses still oscillate in the thickness direction. It is quite
feasible that if the oscillations of the stress can be reduced. fur­
ther increase in time interval will be possible with an appropriate
increase in numerical stability.

The inclusion in the analysis and the computer program of the
orthotropic yield criterion and the visco-plastic material response
has been successfullY accomplished. The viscous effects, however,
have been found to be small in the case of one numerical example
which uses aluminum and steel materials.

4Miljerus, J.N., and Knapp, R.R., "Dynamic Behavior of Multi­
Layered Plate Due to an Intense Impulsive Load," Proceedings of the
Second International Conference on Mechanical Behavior of Materials,
Boston, Mass., August, 1976.
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TABLE 1

Comparison of Results from the Elastic-Plastic

and Elastic-Visco-Plastic Models Using Variable

Time Steps (see Figure 4)

Vertical Plate Displacement Vertical Plate Dispiacement
(em) for Elastic-Plastic (em) for Elastic-Visco-

Time Model Plastic Model

10 -.285747 -.3158007

20 -.666216 -.6348882

30 -.9870059 -.898324

40 -1.277305 -1.1402441

50 -1.5436494 -1.3339216

65 -1.9010985 -1.5438323

75 -2.1077580 -1.6701541

85 -2.2934676 -1.8299201

95 -2.4730964 -1.9608596

105 -2.6440384 -1.9884898
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