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Hilbert Transform by Numerical Integration

i

1. INTRODUCTION

The Fortran subroutine HTRAN computes the Hilbert Transform of a tabular
functicn of frequency by numerical integration. The determination of the Hilbert
Transform is particularly useful in engineering applications such as the computa-
tion of the complex impedance when the real or imaginary part is known. In such
instances, the real and imaginary parts are related by the Hilbert Transform.

1a the physical problems under consideration we can consider the tabular

function of frequency as arising from a Fourier Transform of a causal time sys-
i tem, that is, a function of time which is zero for t < 0. Such a system gives rise
{ to a complex Fourier Transform with a real part that is an even function of fre-

quency and an imaginary part that ic an odd function of frequency.

parts are then related by the Hilbert Transform.

These two
Qur tabular function i3 consid-
ered the even function of frequency, its Hilbert Transform is considered the odd

function of frequency, and the complex combination of the two are considered the
Fourier Transform of a causal system.

(Received for publication 23 January 1979)
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2. MATHEMATICAL ANALYSIS

For a function of angular frequency, R{w), the Hilbert Transform is defined
as

@ - ' . (1)

[
X = 1 [ B
«©

The integral is to be interpreted as the Cauchy Principal Value so that the singu-
larity arising in the denominator may be eliminated, that is

w-€ ©
_ lim R{w") R(w!)
Xlw) = €—~0 f - o dw! + U deo! . (2)
~00 wte

When the given function is a function of frequency, R(f), we have

o
1 R(f)
== f -f—'(T-r— ar 3)
-0
which is interpreted as
. f-e
xm - 1 L ar + f RO ap | . @)
-00 f+e

We seek to evaluate (3) when R(f) is in tabular form and is an even function of

frequency. It is also assumed that R(f) is described tabularly with equal spacing
in the frequency axis.

Since we will employ numerical Integration, we first modify expression (3)
in order to eliminate the singularity. We note, that

-

f f'df-'f =0 )
-0




s s T

in the sense of the Cauchy Principle Value since

« w——

f-e 00
lim dft dft
: o | [ s R ol R (6)
-0 f+e

-

Thus any multiple of {5) may be added to (3). In particular, we may write

0
R =00

thus making the singularity in the integrand apparent. The integrand does not
become arbitrarily large anywhere and is now suitable for : ‘merical integration,
E Since R(f) is an even function we have

. R(-D) = R(D . (8)

We assume R{[) to be zero outside the range of its tabular description. Denoting
f1 as the first frequency and fN as the last frequency in the table we have

; 0<f< £ z
¢ R =0 , (9)
: <t )
i
i We may now write (7) as
5 "fN ‘rl fl
. _ " L _
| x =L f [ B, f RO =BD gp 4 [ ZBA 4
-00 —fw -f

(10)

ft -f
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where our interest in f values is the range r1 << I‘N. Employing the evenness

property, we are able to obtain

1 N ]
X(f) = .:.f. f ‘sz dar + ..ILI'Z)'_R_(_D_dfu + f -2R(f)2 dr .
0 Y {oe?oy
1 N
(11)
The first and last integrals can be accomplished directly. Thus
(1 - 'f—)(f - fl)
J 1) -
x(n <80y N + 2L f R” Rf’ ar . (12)
1 +T_ (f - fl)
N
We are henceforth interested in the evaluation of ihe integral in (12), namely
In
v - [ BEL-RD gp (13)
ol f?
f1

where the [ values are in the range [1 < fg fl\."

3. NUMERICAL ANALYSIS

Although the integrand in (13) does not become arbitrarily large anywhere,
we are faced with an indeterminacy when [' equals . The integration technique
presently described has the feature that f! never attains any of thz [ values at
which Y is beaing calculated, thus avoiding the indeterminacy in the integrand.

Consider R{f) defined tabularly as pictured by the solid lines in Figure 1.
(fi, Ri) i=1,2,...,N are given with the f values equally spaced, The subroutine
computes the Hilbert Transform at these same f values,

Now consider another set of [ values, denoted by f; ,121,2,...,N~1, each
of which is midway between two f values, Thus

£+
. --l—z—‘-ﬂ— i=1,2...,N~1 (14)

™|
!

as pictured by the broken lines in Figure 1. We [irst apply (12) to obtain the
Hilbert Transform, X, at these T values where, in the numerical integration, f
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Figure 1. Values of the Independent and Dependent Variables Employed in the
Numerical Integration Scheme

ranges over the [ values. Thus the indeterminancy will be avuided since f will

never equal one of the T values.

To maintain sufficient accuracy in the numerical results, we emnploy accurate

cubic interpolation formulas as part of the numerical scheme,

¥irst, we need to obtain the values R(fi) i=1,2,...,N-1 which we denote as

Ei i=1,2,..., N-1, Employing cubic interpoletion for the interior values and

parabolic interpolation for the end values we obtain

R, = BR, + 6R, - R,)/8
R; = (-R;_; *9R, + 9R;,; - R, ,)/16 i=23,...,N-2

1

Ry.p = (-Ry_g + 6Ry_; +3Ry)/8 . (15)




We now write {(13) as

£
- - R(f") - R(E)
. . —_— i an - .
Y, = ¥ f T Gt i=1,2,...,N-1 (16)
) i

which we write as, employing numerical integration,

h.(R

r Z—JTLT i=1,2...,N-1 (17)

where, when N is odd, Simpson's Rule gives

Wi
)

hy = hy = Af/3

h. = 4Af/3 i

2,4,...,N-1 (j even) (18)

by = 24f/3 j=3,5...,N-2 (j odd)

and Af is the spacing n the frequency axis. '
When N is even the Trapezoidal Rule is used to include the last interval.

Thus
* hy = Af/3
;‘ : hj = 4Af/3 j=2,4,...,N-2 (jeven)
hj = 2A[/3 i=3,5...,N-3 (j odd) (19)
i hy_p = 5A1/6
‘l hy = 81/2 . ;

The Hilbert Transform at the ?i i=1,2,...,N-1 are obtained from (12) as

o
Rl
Ay

I
. _ R (1 ?g)‘“f’ iF 7.
X. = X(f) =~ in +— ., i=1,2,.,.,N-1
t i n -E n
(1 _>(f - £,)
fn (20)
12
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To obtain the Hilbert Transform, Xi’ at the fi i=12,...,N we again per-
form an accurate interpolation; cubic interpolation for the interior values and
parabolic interpolation for two values at each end. Thus

N s o

PRI

X, = (15X, - 10X, + 3%,)/8

Xy = (B3X; +6X, - X,)/8

s MoemTo vl

Xy = (X[ o +9X; | +9X, - X;,,)/16 i=3,4,...,N-2 (21)
Bnop = (Kyog + 6%y 3%y {)/8
N = BXy g - 10Xy o+ 15Xy )/8

We thus obtain the tabular results (fi, Xl) i=1,2, ..., N as the Hilbert
Transform values for the given (fi, Ri) i=1,2,...,N. The only assumption
made concerning the function R(f) is that it is an even function of frequency,
complying with physi al reality. It is also assumed that the function R{(f) is
described tabularly with equal spacing in f. To insure sufficient accuracy in the
numerical integrations and interpolations, one should make the frequency interval
1 adequately small or, correspondingly, N sufficiently large.

4. SUBROUTINE DESCRIPTION

The user employs the Hilbert Transforms subroutine HTRAN by the state-
ment

i xwﬂmvm R L

CALL HTRAN (R, X, N, FBEG, FEND)

m
hhEpelaf

The arguments in the subroutine are described as follows:

1 R - a dimensioned array containing the tabular values of R,
3 » X - a dimensioned avrray containing the Hilbert Transform values of X
returned by the subroutine HTRAN.
N ~ the number of values contained in the table of R (and X).

FBEG - the first frequency, fl, for the R array.

FEND - the last frequency, fN’ for the R array.

Since equal spacing in the frequency axis is assumed, the items N, FBEG
and FEND permit the subroutine to determine the values fi i=1,2,...,N.

13
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5. PROGRAM LISTING

The following is the Fortran listing of the subroutine HTRAN as written for
the CDC 6600 at Hanscom Field, Massachusetts.

SUBROUTINE HTRAN(R, X, N, FBEG, FEND)
DIMENSION R(3), X(3)
PI=3. 14159265359
FDEL=(FEND-FBEG)/(N-1)
F=FBEG+. 5*FDEL
INC=MOD(N, 2)
NI=N+INC-1
NM1=N-1
NIM2=NI-2
DO 33 1=1, NM1
X(1)=0.
IF (I .EQ. 1) RX=(3. *R(1)+6. *R(2)-R(3)}/8.
IF (I . EQ. NM1) RX=(-R(N-2)+6, *R(NM1)+3. *R (N))/8.
IF(I.EQ. 1.0OR. I.EQ., NM1) GO TO 20
RX=(-R(I-1)+9. *R(I}+9. *R(I+1)-R(1+2))/186.
CONTINUE
F1=FBEG
DO 28 IP=1, NIM2, 2
XD =X(1)+4. #(R(IP+1)-RX) /({ FI+FDEL)**2-F%*2)
X +2, *(R(IP )-RX)/( FI #%2 - F%2)
FI=FI+2, *FDEL
CONTINUE
FEN=FEND
1IF(INC . EQ. 0) FEN:FEND-FDEL
X () =X(I)+(R(NI)-RX) /(FEN#%2-F*32)
X -(R(1 }-RX)/(FBEG**2-F**2)
X(1)=FDEL/3. *X(I)
IF(INC . EQ. 1) GO TO 30
X(I)=X(D)+. 5*FDEL*((R(NI)-RX) /(FEN#%2 -F#2)
X +{R(N)-RX)/(FEND**2 -F#*%2j)
X(D=2. [PI*F*X(1)+RX /PI*ALOG
X ((1.-F/FEND)/(1.+F/FEND)*(F+FBEG)/(F-FBEG))
F=F+FDEL
CONTINUE
NM2=N-2
X1=(15. *¥X(1)-10. *X(2)+3. *X(3)))/8.
X2=(3. *X(1)+6. *X(2)-X(3))/8.
DO 31 1=3, NM2
XT =(=-X(I-2)+9, *X(1~1)4 9. *X([)-X(I+1))/16.
X(1-2)=X1
X1=X2
X2=XT
CONTINUE
X(N)=(15, *X(NM1)-10. ¥X(NM2)+3. *X(N-3))/8.
X(N-1)=(3., *X(NM1)+6. *X(NM2)-X(N-3))/8.
X(N-2)=X2
X(N-3)=X1
RETURN
END

14
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6. NUMERICAL EXAMPLES

6.1 Example 1

For the function

0<fg1

(22)

1
R(f) =
0 1<f

with R(f) an even function, the exact expression for the Hilbert Transform in the
range 0 < f < 1 is known to be

1-f

| - 0<fg<1 (23)

X(f) =--tn

This example reduces to the trivial case since the integral in (12) vanishes and
the first term in (12) is identical with (23).

However, exact agreement with (23) may not be attained by the subroutine
since interpolations and extrapolations are employed to find the Hilbert Trans-
form at the specified f values, Using an N value of 501, exact agreement was
obtained in the range 0 - f < 1 except for values of f near f = 1,

6.2 Example 2

For the function

1/2
(1 -7 0<rgl
R(D = (24)
0 1<t

with R(f) an even function, the exact expression fo, the Hilbert Transfyrm in the
range 0 < f< 1 is known to be

X = -f . 0<fg1 (25)

Two cases were examined to illustrate the accuracy of the numerical integra-
tions. Table 1 depicts the comparison of the two cases with the exact results
from (25).

We first note an overall increase in accuracy for the case with the smaller
spacing along the f axis. This behavior is to be expected with a numerical inte-
gration scheme such as the one employed.

15




Table 1. Comparison of Example 2 With Exact Results for Two
Different Spacirgs in the f Direction

f exact Af = ,005 Af =, 002

0 0 -.9395268 x 10710 -.2351980 x 10”11
0.1 -1 -. 1000026 -. 1000007
0.2 -2 -. 2000054 -. 2000014
0.3 -3 -. 3000085 -.3000022
0.4 -4 -. 4000123 -. 4000031
0.5 -5 -. 5000172 -. 5000044
0.6 -6 -. 6000242 -. 6000061
0.7 -7 -.7000354 -. 7000090
0.8 -.8 -. 8000572 -. 8000145
0.9 -9 -. 9001214 -. 9000309
1.0 | -1.0 -1.014396 -1.009106

We also note a decrease in accuracy in both cases as f increases from 0 to 1,
This may be explained by the nature of the R(f) function (24), The magnitude of
the slope of R(f}, and consequently also for the integrand in (12), increases
greatly as f goes from 0 to 1. This could well affect the accuracy of the numer-
ical integrat{ons.

6.3 Example 3

For the function

sin2rl o<t (26)

R(f) =
with R(f) an even function, the exact expressicn for the Hilbert Transform valid
in the range 0 < f is known to be

X -2 22lol 0<s (27

Two cases were examined here to illustrate the effect of the numerical
approximation for . In one case the upper limit of f, [,,, was chosen as 10 with
an N of 641 making a spacing Af = 1/64. In the second case fN was chosen as 20
with an N of 1281 thus keeping the same spacing Af = 1/64. Table 2 shows the
comparison of the two cases with exact results (27) for the upper limit of f being .

16

LR

o

%
g
=
2




eEa o

Table 2, Comparison of Example 3 With Exact Results for Two Different
Approximations for fN =

f exact fN = 10 [N =20

0 . 7444819 x 1074 .7444819 x 1074
0.25 -. 6366198 -. 6366234 -. 6366199
0.50 -. 6366198 -. 6366276 -. 6366206
0.75 -. 2122066 -. 2122190 -. 2122084
1.0 0 -. 1647500 x 1074 -. 2255452 X 10”2
1.25 -. 1273240 -. 1273442 -. 1273264
1.50 -. 2122066 - 2122311 -. 2122094
1.75 -. 09094568 -. 09097477 -. 09094930
2.00 0 -.3364389 x 1074 -.4225282 X 1072

As was to be expected, the case with the larger value for fN produces more
accurate results.

7. SUMMARY

The subrcoutine HTRAN obtains accurate values of the Hilbert Transform of
a tabular function of frequency, which is equally spaced in the frequency axis, is
an even function of frequency and is zero outside its range of tabular derinition.
Numerical integrations based on Simpsons Rule in which singularities and
indeterminacies are eliminated and cubic polynomial interpolations are employed,
Values of the Hilbert Transform are obtained for the same frequency values as
are specified in the tabular definition of the function. As is demonstrated in the
examples, the [requenicy spacing needs to be small in order that the numerical
integrations and interpolations produce accurate results.
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