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FOREWORD

The stochastic duel wes first formulated and analyzed by G.
Trevor Williams and the author, in a paper presented on 11 May 1966
at the 4-th Annual ORSA meeting in Washin;;;;:“b.c. Since then,
about fifty research papers have been written by authors scattered
in many parts of the world. This fairly substantial body of results
has proven of value to many mllitary OR analysts, both in and out of
the services. However, much of it is inaccessible, or mathematically

obtuse. Consequently, we have set out to remedy this situation, with

the support of the U. S. Army Research Office.

This report is approximately one-half of the total ocutput of
the project. The material prepared so far is sufficiently self-
contained as to warrant issuance at this time. The remainder of the
report will be forthcoming within the next year, at which time, the

entire manuscript will be updated and brought together as one entity.

The present work consists, primarily, of two parts. In Part
I an exposition of the two principal methods of deriving results is
given. These are the mixture teéhnique and the semi-Markov terminat-
ing renewal process technique. For the first time, to the best of
the author's knowledge, it is carefully and explicitly shown that,
in fact, these are the techniques being used and precisely how they
are being used; and, finally, how they are reiated. We hope to
clear up much of the obscurity and mystery surrounding the utility

of the techniques and also to i licate when there is (or is not) an
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’ advantage to using one or the other. This is done, primarily, by carry-

ing an example through each technigue.

i Part II is a comprehensive, exhaustive and fully annotated bib-
liography of all research papers on the topic, known to the author.
It has been formatted to uniformly display, in detail, what has been

P Ty e

accomplished in each paper.

The additional work, to be done later, will include:

e o

(1) an historical and expository introduction;
(2) possivly, some further exposition on techniques, and, i
] most importantly, i
(3) a comprehensive compendium of all known results reduced 1
1 to a common notation and organized to facilitate the E

location of any desired result.

et i

3 It is believed that this project will

k ’ (1) make all results easily and conveniently available to the

analyst, and

E

F (2) will aid the research worker in identifying what has been
done (to prevent reinventing the wheel) and what has not

E been done, so that he may direct his efforts in a produc-

F ‘

tive direction.

3 i The author would be grateful to learn of any inadvertant mis-

takes, omissions, or other errors vwhich pay have occurred.

L e

111

- . A » o e s

- - [ O NREED S VORI S




FORWORD e @ & & o & & & & & o S s 8 2 & 2 & & 2B & O & & o & s o

TABLE OF Cms s o a & 8 & & & & 5 e & 6 ¢ O & 9 6 2 8 & & e+ .

1.

2.

TABLE OF CONTENTS

PART I - AN EXPOSITION ON TECHNIQUES

INTRODUCTION o o o » o o « o o o ¢ o o o o ¢ 8 2 s s o s s o
SOLUTION METHODS « . ¢ o o o o s ¢ o o o ¢ o o o s o o o o o s
A. THE MIXTURE AND CHARACTERISTIC FUNCTION TECHNIQUE . . . . 8
B. THE SEMI-MARKOV PROCESS TECHNIQUE + « « ¢« o« o« s o ¢ ¢ o« « 10
C. RENEWAL THEORY INTEGRAL EQUATIONS TECTHNIQUE . . « « « « « 13

D. RENEWAL THECRY INTEGRO-DIFFERENTIAL-DI¥FERENCE EQUATION
TEC}mIQUE . L] L] L L Ld L] L ] L] . L ] * L] o . . L d L] L] L] . * . L] 20

mm........-.......... ..... . o 57
BIBLIOGRAPHY CF EXPOSITORY PAPERS . « ¢ o « + s o o ¢« s « o « 38
APPENDIX - SOME USEFUL RESULTS IN THE THEORY OF CHARACTERISTIC
FUNCTIONS----........o....-...A-l
PART II

ANNOTATED BIBLIOGRAPHY OF RESEARCH PAPERS « . « . « o ¢ ¢ » + Bl

iv

e e AL e D S o1, ek e = 8

o i o e o

TR RN ST T W i eI




T P e i g

ey

L

wh

PART I
AN _EXPOSITION ON TECHNIQUES

1. INTRODUCTION

In the fundmmental duel (FD), two contestants, A and B, fire
at each other at certain intervals and either hit or miss on each round
fired. The duel terninates when either, or both, are hit. The hit
probabilities for each are constant from round to round and, in general,
are di?ferent for sach. The time hetween rounds may be & continuous random
variable or may be a constant, and, in general, is different for each. The
contestants both start at time zero with unloaded weapons and fire their
first rounds sometime later. They both have unlimited ammnition and un-

limited time.

The analysis begins by first considering a marksman firing at a
passive target, under the same comditions given above, until ne hits it.
This is callsd the fundamental marksman problem (FN). From this we may
solve the duel problem by considering each marksman to be firing independ-
ently »f the otber. The first to hit his passive target wins. This is
entirely equivalent to the fundamental duvel, ac the model described above
in no way links the acticns of one duelist to those of the other.

Consequently, let us first consider the case of the marksman versus
a passive target, and further, let vs confine ourselves here to the situa-
tion where his interfiring time is a contimuous random variabie. It is
clear that he might hit on his first round fired, or possibly on the
second, or, in fact, on any round, providing he has failed to hit on all
precedirg rounds. That is, if his hit probability 48 p, (q = 1-p), then
the probability that his first (and fatal) hit is on the n'" round and s

pa® L. If nis interfiring time bas a probability density function (par)
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given by £(t), then £(t) is also his pdf ¢o a hit on the first round.
If be hits on the second round after failing on the first, his pidf to a
hit is the comvolution of £(t) 3ith itself, denoted by £« £(t). This is
because if he has fired twice, he has made two selections (st random) fram
£(t) and added them together to determin: his time to fire the second
round. Continuing, his pdf of time to fire the n‘® round is given

by fafute ... wf{t) » £™(t), i.e., n convolutions of f£(t) with

itself.

The stochastic proceas described above iz called a mixture and may be
described as follows. let T bde the contimuous random variable, time to a
hit, and let X,, 1= 1,2,3,..., be the contimuous random varisdbles, time
between firing epoche, where the xi are known, independent and identically

distributed (iid) as X with pdf £(t). Then

T =X with probahility P \
-X, + X " Pq
: s N
-x1+x,z+x5+...+xn " pqn-l
. . : /

where all the rows above are the mtually exclusive and exhaustive ways of
obtaining & hit. Now, let h(t) be the pdf of T and f£(t) be the paf
of each Xi, then by the basic property of mixtures:
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Pt <T < ¢+ at)
= n(t)at = pe(t)at + paf™ (¢ )dt
+ pqzr,(t)dt “ see & mn-ltn'(t)dt + san
or
-
n(t) = Z i I (2)
n=1
This expression can be greatly simplified by converting each side to a
characteristic function (Fourier transform) as follows:
[ _J 1 [ _]
¢(u) = f et n(t)at and ®(u) = f it o(t)at . (3)
0 0
Using the definitions (3) in Equation (2), and the coanvolution property of
characteristic functions (cf):
- -"»
oW = 3 ) M - pel) ) Ceei™?
n=) n=1
« —Dou)
l-qolu) ()
vhere the indicated sum 1s valid because q®(u) <1, for all u. Equation
(k) can now be inverted to give
* 1 [" <qut A 1O
- e u)du
h(t)-mI.e '(u)du-E-EII- Tosla) - (5)
«3=

.
i
r
£
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We should note, in passing, that the result in Equation (4) can be written

down st once after imspecting Equation (1). This comes about because in

(1), the sequence of probabilities P, pa, -+, P>, ... is the proda=

Ty e e

bility wass function (paf) of the rendom variable K, the round number

on which a hit occurs. It is geometric and given by

| pn) = L, ne1,2,...,

= 0 ,» elsevhere ,

F vwhich has a gecmetric transform

i Gylz) = Z pn(n)ztl = p Z Tl ;

é NnNese® n-l ,:

. = p2 Z (az )n'l = l_;?Ld.; . (6) i
n=)

There is a theorem (see, Giffin, 1975, Eqn. 4=28) which says that for a

mixture of 1iid random variables:

| o) = Gyle)l . 33

Therefore, fram (3) and {6), we have immediately ¢(u) = I »q: ~ » a8 (
before. ’

The solution to the duel may now be written down. If TA and 'I‘B

4 WEN AT

are the random variablea, times for A and B to hit a passive target,

with pdf's hA(t) and hB(t), respectively, then the probability that

A wins the duel, P[{A], is

ol




P(A)

Pl:'l‘A < '.I.‘B]

[_]
f Plt <T, <t+dt,T > tldt
0 A B

fo. hA(t)< f: hn(t)dt)dt

‘fo hA(t)Hg(t)dt , (8)

where the third line is justified by the independence of TA and TB'

This may be put in more tractable form using characteristic func-

tions by a theorem of Parseval which states,

[T ne gt - & [ otw g . 9)

Using (9) in (8),

- (& (u) - 1]
P(A] = glif ¢, (-u) —B—ui“—-— u . (20)

It is easily shown that the ®(-u) function has no poles in the complex
lover half-plane and that it vanishes on a large semicircle, C, in the

lower half-plane as R = * (see Fig. 1).

Thus, if we go to complex u, by analytic continuation, the second

term in the integrand is zero and we have
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w.4e ¢ (-u) 9 (u)a
P(A] __i{f A'\"w/ Yglujdu

LR

vhere € 18 less than the distance to the nearest pole in the lower half

of the camplex u plane. Since a draw is impossible with continuous

firing times, P(B] =1 - P[A].

u ?

——

-R-ie

(a)

FIGURE 1

Path of Integration for P[A] 4n Equation (11);

(1)

B e T T T

also, frequently given as }'L.
-6-
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Mach of the literature uses the Laplace transform (LT) of the time
functions involved, but we shall always use the charecteristic function for
two reasons:

(1) the cf always exists, whereas the LT may not, and

(2) the mumerical integration of the Fourier transform (cf)

has received extensive attention and many efficient
algorithms are availeble (see, for example, Brigham, 1974).

Finally, let us emphasize the efficiency and economy of using charac—
teristic functions by camparing Equation (1) with the solution to the duel
without their use. Putting (2) with appropriate subscripts for A and B

into (8), we have

P = fo. R fz*(t)<f: ) matEat Jer,  G2)

n=1 n=l
and from (11),

“.4e p, 9, (-u) @ (u)
1 A YA P '3 du
PIA) = 5 j_._ie -q, o] T-g 6wl uw ' 0%

We see that in (13) we have one integration to perform, whereas in (12), we
have two integrations of two infinite sums, each term of which involves

iterated convolutions. This is indeed an enormous simplification.

L, e o R e Sl Sl . < o R sid X
RTINS DT frny i ciineiasnis i
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; 2. SOLUTION METHODS

‘ In this section we shall examine gseveral solution techniques commonly h
used in the literature. For this purpose, let us solve the FM problem, ‘
| * slightly modified as follows. A marksman fires with constant hit probabil- <

ity, p, at & passive target. His target is destroyed when he hits it

twice. His interfiring times are continuous, 4id, and have a general

Bt s AL L L L

(unspecified) paf.

A. The Mixture and Characteristic Function Technique

T TRRTRTE T R L T e

Using the notation given above and proceeding as before,

pN(n)

3
; T = x1+ x,z with probability P
A = "

X+ X+ Xy Pap + QPP
9 [ 1]
| =X+ X+ Kge X, PQAP+ QPP+ QPP . (%)
) . nel, 2 n-2 i

Note that, in general, the p'®  term has & coefficient ( n-ll ) because
; we can have the first hit anywhere in the first¢ n-1 positions, while the

second hit must be on the n'® firing.

Contimiing as before,

ne) = ) (P11) 6 T M) -
n=

-8-
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= Z (n:% )pz qn-a f“(t) ,

and taking the cf of both sides

oW = F@F ) (211 )qew)™?
n=
- [powP ) (M2 1)(qei® . 15)
n=0

Recognizing the sum as the negative binomial series with parameter 2, we

may immediately write

2
o) = ¥ Wi -qe@)? = [TL:J;J({D] : (26)

Two comments are in order here. First, the pmf for the round nmumber (N)
on which the process terminates is given by the right-hand column of (1k)
and is, of course, a negative binomial with parumeter 2, identical to the

one above. Its geometric transform is

2
Gllu).[l_?z-q—z.:l ’

e
o) - [rﬁ’%}'] ‘
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which is the same as (16). Secondly, we ncte that this result is obvious
because the time to a second hit is simply the time to a first hit plus the
independent time to a second hit, both of which are identically distributed
as the time to a first hit whose cf is given by (4), and therefore, our
result follows immediately. Although the result is obvious, it is still

ingtructive to derive it by several different techniques.

B. The Semi-Markcv Procesg Technigue

In this technique, Markov chain theory is used to establish the pmf
of N, the round number on which the contest terminates. This is, of
course, the right-hand column of (14) and one might wonder why it would be
advantageous to use a relatively complicated techrique such ar this to

egtablish what appears to be rather obvious. The answer is two-fold:

(1) to demonstrate the technique, and

(2) when the state space is more complicated than in our example,
the derivation can become very difficult as there will be so
many branches in the ocutcome tree that keeping track of all
the paths through it may become neearly impossible. The

Markov chain does this automatically.

The first step is to establish the state spece, which in our cese,
has three states: (1) not hit (H), (2) hit but not killed (HE), di.e.,
one hit only, and finally, (3) hit and killed, or simply killed (k),

i.e., a second hit.

We notice that in the language of Markov chains, two states are

transient (HK, i) and one (X) 4is absorbing (once entered, it may

=10~

i e i
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never be left). Next, the initial state probsbility vector (I) and the
transition probability matrix on the state space (5) are determined. In

our example we have

R T AR e e

K K |
E = (0:0’1)

and

B T D e gl

n

]
i £y
o K+ =
wo o B
Qo 00
N
r

which are now partitioned as follows:

Rl aaantc
e Wt ke G b e+ | e,

; I =(,:01) = (0,M)

é and

1! 0 © 1 o0
s = - "= en -] ( ) .
~ P: q 0 T P

ol p gq -

The row vector M excludes the absorbing state K. The sub-matrix P

contains all the transition probabilities for remaining in non-absorbing

e e m—

states and the column vector g contains all the transition probabilities

for going from a transient state (HK or H) to the absorbing state K.

From elementary Markov theory we have that pu(n), the probability of a

-11-
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¥i1) on the n°® round fired is

4.

]
N
- B~
o o
\-/

2
q 0
- (. &)
2pq g
3 0

The general result for 2‘“ 1s easily proven by induction. Continuing,

qn-l

0
!En-l = <°’1)< (n - 1)pg™2 qn-l)
- ( (n-l)pqn'z , qn-l )

and

(a7)

T T =l




v

' pn(n) - !g“"l T = <(n-1)pqn-2 ’qn-l)(g )

= (n-1)pg"% = (n;l)mn_z ’

B i b L R

T ]

which is, of course, the general term of the pmf of N and corresponds
to the general term of the right-hand column of (1i) above in A. FPram
here, the development follows A above precisely and will not be

repeated. The reason that this is called a semi-Markov process is because

the time between events is a RV.

T T

Before turning to the next topic, we should note that the state
space may be much larger. There may be many transient states, thus, }3,
N and g may be mach larger. In fact, there may be quite a few absorbing
states. For example, it might be possible to be killed on the first hit, or
not killed on the first hit and killed on the second hit (as above). The
point is, that this technique provides a convenient and orderly way to

expand the state space.

C. Renewal Theory Integral Equations Technique

E It will be helpful in looking at the techniques to be described
k in what follows, to establish first scme notation and concepts from

reneval theory.

Let N(t) be the number of firings up to time t. Clearly, for
; every fixed t, this is a discrete RV. The situation may be depicted
graphically by & possible realization as shown in Figure 2. This process

is called a terminating semi-Markov renewal process. Most of the renewal

-13-
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’g theory litersture concernt itself with nonterminating processes, but we may

5 still profitably consider this approach.

: Tn the ordinary nonterminating renewal process, one important result
13 that E[N(t)] can be expressed as a simple integral equation. In our

[ case, howvever, we are more interested in the function h(t) which can

also, in a gimilar manner, be derived from a series of integral equations in
sequential order. In order to do this we define three functions, as

L

follows.

First, let T =2 X be the RV, time to n°" firing, with

Ot L ——

pit £77(t), then,

h::(t)dt =Pt <T_<t+dt,0 hits in n trials]

=Pt <T <t+dt|0 hits in n trials)

* P[O hits in n trials)

WIS T T

= 7™ (t)q" dat, n=12,..., (18)

hi(t)dt =Pi<T_ <tvdt 1 hit in n trisls)

TR T

-P[t<Tn<t+dt|1 nit in n trials]

Ll « P[1 bnit in n trials)

= ™) ] ™ e, n=12,..., (29)

where the factor ( '; ) 1is necessary because the hit may occur on any

round fired, and

e -15-
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hn(t) - P[t<'.l‘n<t+dt,1 hit in n-1 trials and

2™ pit on the n®' trial)

-P[t<Tn<t+dt|1 hit in n-1 trials and

d th

2™ nit on the n** trial)
« P[1 hit in n-1 trials and 2™ hit on the n*? ¢rial)
a ™ () ( nil W " at, n=2,3.., . (20)

Now, notice that if we consider the sequence n = 1,2,..., and consider
the sum on n thet (18) and (19) are not proper density functions, but that
(20) is (1t is Just the mixture defined in (14)). What we are doing here is
looking at the ensemble of all possible realizations of N(t), such as
Figure 2, and at every t selecting out all those which have had an

event occur in (t,t+dt). We then partition all these realizations into

thruee subsets:

(1) those with no hits,
(2) those with only one hit, and

(3) those which have terminated.

We are, of course, looking at subsets of (1), (2), and (3) where N =n
for all possible values of N. With this understanding of thc¢ nature of
h:(t), hi(t), and hh(t) we may now write three interconnected integral

equations. For example,

" ) 4
hn(t)dt o dtqj

. £(x) B, (t - x)ax ,

«l6-
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which states that if no hits had been scored in n-1 rounds, the last of
7 vhich was fired at time t-x, then if we fire another round at ¢t it

;‘ muct fail, in order fo the system to bde in the state of having Just fired
a round which was the n°> one, and no hits have been made yet. The inte-

gral is just the convolution of h:_l(t) with £(t). If we now define

TUETRERT T TTRE G Y TR e A T ar m R femee

W TR T T TR e

= q fot £(x) i h_y (t - x)ax

n=1l

t
- qr(t)+ 3 jo £(x) WOt - x)ex . (21)

Riatiadc aclaidth 1 SRR LA A et It - bl et B

Note that for n=1 we merely have one selection from f£(t), multiplied
by the probability of & failure, in order to get hz(t) (see Equation (18)).

3 In a similar manne:r,

l i
hn(t )at ;

t t
=dt p jo £(x) hg_l(t-x)dx +dt q fo £(x) h:;_l(t-x)dx )

where we have accounted for two mutually exclusive ways to get to the state

of having fired one round. These are, no successful rounds in n-1

firings and & hit on the n°", and one hit somevhere in the first n-1

rounds and ro hit on the nth round. Summing as before,

- M~ L
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bt (¢)
t ¢ o ¢ 1
| = pr(t)+ p fo £(x) n°(t-x)ax + q j £(x)h (¢t -x)ax , (22)
f 0
where we note that hi(t) = 0; and finally,
(t) [F el -0
hntdt-dtp o xhn_lt-xdx, !
which, when summed gives,
E
E | v
s n(t) = p f £(x) b (t - x)ax . (23)
[ 0o
f ,i
r Equations (21), (22) and (23) may be sclved in that order, as they depend cn i
3 each other in that order. Taking the characteristic function of both sides
F

of (21) and denoting the cf of °(t) vy %°(),

i Mottt e L

°(u) = q®u) + qo) W) ,

which, when solved for () 1is

1 - o - u
F “ ¢ (u) r:"qlér‘)n— . (e1)

: Now, taking the cf of (22) and describing the cf of ni(t) as 01(\1),

3

) = po(u) + p®(u) °u) + qou) F) ,

-18-
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' substituting ¢°(u) from (24) and solving for ¢ (u), one obtains:

tu) = _.PJL)_E“ . (25)
. (1 -q&(u)l

Pinelly, taking the cf of both sides of (23)

o(u) = p®lu) ®(u)

TR TR E N e R e v, mmmm s e e

and substituting ¢ (u) from (25) into this,

2
ou) = [r‘%‘%%a] : (26)

which agein iz the same as (16), as it should be.

The advantage of this technique is that, in spite of the lengthy
exposition given above, it is often the simplest and fastest vay to &
given desired result. Also, note that we have only used Equations (18), i
(19) ana (20) for definitions. We could have proceeded directly to the '
solution with (20), as it is just the mixture solution. Also, we can use l
Equations (2b) and (25) (or, (18) snd (19)) to get additional information

on the process. These have physical meanings such as: the inversion of

by - Lot e
Y

(24) will give the (improper) density function of the time to zero hits,
and (25) gives the pdf of the time to one hit. These additional rela-

e T

tions may also be obtained by the mixture technique, but each would

‘ : require a separate, independent calculation, in exactly the same manner

as descrived for h(t) 4in Section A above.

-19-
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D.

Renewal Theory Integro-Differential-Difference Equation
Techniques

For the renewal process described in Section C above, the integro-
differential-difference technique may be applied if the interfiring times
have a negative exponential pdf (ned). The reason for this is that the

ned RV has no memory and the process is reduced to & terminating semi-
Markov renewal process as a result.

However, if the supplementary variable technique (see, Cox, 1955 or
Keilson and Kooharian, 1960) is applied, the restriction to ned IFT's
is removed and general IFT’s may be considered at the cost of same
complication in the mathematics. In this fas .ion, the process goes from
non-Markov to semi-Markov. This procedure is widely used in the literature
pertaining to Stochastic Duels, but much ambiguity, many notational diffi-
culties and, in come cases, unnecessary complications are widespread.
Consequently, we shall illustrate the method for our example in some detail,

in the hope that the reader will find the literature more readily

accessible.

Az before, the process may be considered graphically as shown in
Figure 3. The situation depicted there is for the case where the proceas
is observed at some arbitrary time, t, and its state is noted. In this
case, the state is that N(t) = n and there have been no hits. The time
gince the last firing is & RV and is in the interval (t-y,t-y+ dy).
The corresponiing new random variable Yn, 1is the supplementary variable
and in renewal theory terms is the backward recurrence time (see, Cox and

Miller, 1965, p. 339). The other two cases are:

(1) the seme as shown in Figure 3, except that one hit has occured
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on one of the n firings (possivly, even on the ath firing),

and
(2) at the time of observation, the process has terminated, i.e.,

the second hit occurred on the n'® round.

In this latter case, the supplementary variable i. unnecessary since no
further events can take place. The supplementary variable is subscripted
with n eas it i8 a function of n, but its realization is not sub-
scripted, since we wish to look backwards the same distance y for all

Yn's.

The properties of the supplementary varisble, Yn, and its rela-
tionships to the IFf, X (which is most important), are well known and may
be summarized as follows:

() Yn 4is measured to the left from t and fy (y ;t)dy 4s the

n
probebility that the n°l firing lies in the interval

(t'Y:t’Y"' dY):

®) £, (y;t) = hg’l(t -y E(y), 0O<y<t, where hg’l(i)
n

is the already familiar pdf of the renewal process for

either zero hits or one prior hit, with N(t) = n;
(¢) Ply<x,,<y+ dylxm1>y] =Ply<X<y+dyl|lx>y]

£, {y Jay

= X( )dy =
Y F;(y)

which implies that the probatbility of a firing in the interval

(t,t+ A) =x(y)d+ o(d), where Alimo 9%2 a 0 ;




I A 4T T

/5 A(8)at
(@) £,(y) =2(y) e ; and

c -f5 A(t)as
(e) from (c) and (d) sbove, Fy(y) = e .

With this background, we now define a function which is the probability
that, if the process is cbserved at some arbitrary time ¢, with n
firings having occurred, and no hits have been made, and that the lest

firing was between y and y-d4dy time units earlier.

H:(t,y)d.y = P[N°(t)=n,y <Y <y-d]

‘P[T§<t,y<!n<y-dy]; 0<y<t,n>0

(O 3 y2t>0,n>0

Hg(t,y)dy = b(y-t)Fﬁ(y) ;5 y=t>0

The first form of (27) is to ba interpreted as a joint probability mass
function (improper) on the number of rounds fired with no hits occurring
(N°(¢)), and a probability density function on the time since the last
firing, Y , with s parameter t. The second (equivalent) form is inter-
Preted a3 a jofnt distridution function (improper) on T,, the time of
firing the nth round with no hits and a pdf on Yn, with a parameter
n. We also note that when n =0, ¢that y must equal ¢, which

accounts for the Dirac delta function &(y - t).

In an exactly similar fashion we have,

23
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H:;(t,y)dy = PN (t)=n,y< Y <y-ayl

P[Tln<t,y<Yn<y-dy]; 0<y<t,n2>1
»  (28)
o] H y>t,n2>1

where Nl(t) is the RV number of rounds fired with one hit somewhere,
and wvhere T;Lx is the RV time of firing of the nf'h round with one hit
in one of the n rounds fired. Now, the case where the process has

terminated is described by

nd th

Hn(t) = P[N(t)=n, 2 hit on the n round])

= P[Tn < t , process terminated]; t>0,n2>2 . (29)

In this case, the first form is a proper pmf on N with parameter ¢ ané

the second form ic a proper df on Tn where n 1is a4 parameter.

The fact that certain of the mass and density functions above are
improper will be seen as we derive them. As in Section C, above, this
occurs whenever ve consider a subset of the sample space which is not just
the terminated subset. The reason for this is not easy to see, but it is

related to the fact that all realizations terminate with probability one.

With thls background we may now derive the integro-differential-
difference equations which govern the process. If we ask ahout the state
at some forward time, t+ 4, note that this also simultaneously extends

y to y+A.

Now, from elementary calculus and referring to Figure 4, if we ask




A
i

-

w‘,’,(tm, y+4)
A

8

B Ta s s

Holt, y)  HX(t, y+4)

T T I Y i T e TS T T T e T

H:(t"‘ A,y+ L)

W

H:(t , ¥)1 - A(y)a)

Also, this same probability is that we are in the state:

3 no hits at t, and no firing occurs in the interval (t, t+A),

FIGURE 4

about being in stete: n firings and no hits at t+ 4, we hav:

k ‘H:(t,y)‘"%Hg(t,y)ﬁ+§aﬂz(t,y+z}m .

H:(t » ¥){1 = A(y)A]l. Equating these twoc statements, we have,

=, y) ¢ £ B, 0 5 B,y 00

n firings and

i.e.,
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Rearranging terms, dividing through by 4, and teking the limit as 4 = O

glves,

< %+ 3%+ X(y))ﬂg(t.y)-o; n=0,1,2,...,0<y<t. (30)

Note that, although H (t,y) 1s quite different in form from Ho(t,y)

for n >0, it still satisfies (30).

In a precisely similar manner, we can immediately write down for the

state: n firings and one hit,

—

4 %+.§%+My))ﬂ-}1(t,y).o; n=12,..., 0<y<t. (31)

For the situation of n {firings and two hits (process temimted), there
are two mutually exclusive possibilities when we go to t+4 from ¢t.
Either the process had terminated dbefore ¢ (and therefore, remains
terminated), or it had not terminated earlier and does terminate in

(t,t+4), thus,

t
s 8 @« [ 7 e,y amseey

n>2,t>0 .

Rearranging terms, dividing through by A and taking the limit as A = O,

t
% [8,()] =n (t) =p /o Hi_l(t,y) AMylay
n>2,t>0 . (32)

-26-
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Two boundary conditions must now be accounted for, as follows. Define

no(t)at = Pt <10 < ¢+ at) (33)
from which
. t
(t)a = jo ©_(t,y) Mydagey (3%)

where the right-hand side of (34) is the probability of being, at time ¢,
in state n-1 firings, with all failures and time y since the last
firing and a firing in the interval (t, t+A) with a failure at that

firing, integrated over all permissible values of y. Prom (34)

t
h:(t) = q h/; Hg_l(t »¥) Aly)dy, n>1 . (35)

Also,
hg(t) =0 , (36)

since H-?l(t ,¥) is undefined. Equivalently, we take the time of firing

the zeroceth round to be at t = O,
By similar reasoning, we obtain
1
()
t t
o [0 i eyaeee s [T 000w, 021, 6D
and
1
b (t) = 0o , (38)

27~
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)
: since there is no way to have a hit without a firing. The two terms on the
4
right-hand side of (37) account for the two ways to get to ome hit at
exactly time ¢, 4i.e., no prior hits and get a hit, and secondly, have a
:
i' . prior hit and get a miss at t.
'

We now define the following functioas

Rl L B e

P,y) = 2 ©k,y) )
y A H(t,y
Ht,y) = z (t,y)
Y z H: y
% | n(t) = 3 nl(t) > (39)
y n=2
1°(t) - 3 h:(t)
n=l
1 -
h(t) = 3 n(t)
Z M y,

Note that upon summing on n,
o o
H(t,y)dy = PIT°<t,y<Y<y-ay]l ,

where T° is the RV, time to a firing (for sny n) with no hits and Y
is the RV, time since last firing (for suv n). Similarly, Hl(t,y)
involves T the RV, time to a firing (for any n) with one prior hit.

Another important point is that

«28-
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1n H°(t,y)at = P[1° <¢,0 <Y <0-dy]
y=-0

= P[T < T° < ¢+ dt)

= 8(-t)at + n°(t)at ,

from Equations (27) and (39). This is because the definition of II:(t ’

includes the case of n = 0 and h:(t) does not. However,

Hz  ®(t,y) = nt(x) .
y—0

Now, upor summing on n and applying definitions (39) to Equatioms (30),

(31), (%), (35) and (37),
(%“‘ %* 1(}') )Ho(t:}') = O, O<y<t,
<%+§+ aly) )Hl(t,y) = 0, 0<y<t,
t
ne) = p [ RBew) Ay ¢ >0,
)
t
R = a [ Py v>0,
)
t %
nt(t) = qf (¢, y) Ay)dy + pf F(t,y) My)y , t >0,
0 0
and finally, the initial condition from (27),

°(0,y) = 8(y) .
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This comes tbout because, vhen t =0, y =0 and F;:(O) -l.

Before proceeding, it must be noted that; in most of the literature,
the preceding step is not a simple summation on n, bdut “ether, the form-
ation of a geanetric transformation (sometimes referred to as a probability
generating function or Z +transform) first. This is doue, by say,

2;_0 2 l-t(t ,¥) where 3 is the transform varisble. In almost all cases,
this step is unnecessary and yields nothing, since authors usually set

Z =1, and we are right where we are nov. The only reason for using the 2
transform technique at this point is if one wishes to discover some of the
properties of the pmf on N(t). This may be done in the usual fasniom by

taking appropriate derivatives of the Z <transform with respect to =z.

The next step is {0 convert all functions to their characteristic
functions, in the variable t, by the appropriate transformation. We

define:

)

cf's: k,y) ~ P,y

Ht,y) ~ Plu,y)

n(t) o(u) } . (48)

t

l
oo
—
[ <
~

n°(t)

ni(t)  ~ )

In performing thcse transforms, we note that the
’
cfk ':_t ®(t,y) ) = -tu¥,y)-8%0,y) .

Proceeding to operate on Equetions (42) through (k€) and vsing (k7),

[ R ,e wue e
R e T WO -y -
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( %-hn Ay) ')"’(u.v) = 8(y), y>o0,
(-%-m+x@%ﬁ%m;)-o , y>o0,
®u) = »p ‘/o. Y, y) Ay
®u) = q ‘[o. u,y) Ayly

$w = q [ e,y ey

+ pL ¥, y) Aylay

We shall 1llustrate how the right-hand side (rhs) of the last three equa-
tions come about by looking at the derivation of the rhs of (51).

me -3 [T e [T e,y ae

- t
= D jo as jo (e, y)el™ Aylay .

Now, since y < t, the integration above is over the shaded region
depicted in Figure 5, first in the y direction and then in the ¢
@irection. Reversing the order of integration we have

rhs = p J; Ay)ay j ‘_"1\11'. Hl(t)}')dt ’
y

(9)

(s0)

(51)

(s2)

(53)
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and since H(t,y) =0 for t <y, the inner integral is Y (u,y) snd

FIGURE 5

Integrating to Obtain Bquation (51)

we have the desired result.

The problem now is to solve the simultanecus set of equations (L9)
through (53).
tion in the variadle y. This may be solved in the usual way by getting the
general solution to the hamogeneous equation (rhs = O0) and sdding a par-

ticular solution for the entire equation. Thus, setting rhs = O,

Equation (49) is a linear, nonhomogeneocus differential eque-

2 ¥, y)
&7 .oy , or
Y:(t, y)

d1ln !;(“) Y)

& = fu-2Aly) , or

32
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1n 2(u,y) = sy - jo (bt + ¢ (5ke)
y
or Y:(u.y) o x oIW - [ A(E)S , (sha)

vhere K and ¢ are aome constants, and !: is the general solvtion to

the homogeneous equationm.

Bov, let us try the following particular solution, !; ,

Yy
Y,y = U(y)elWy - [ A(8)ds (55)

where U(y) is the unit step function, in (43), and we see at once that it

is satisfied. Therefore,
Pu,y) = Lo = (uly)+ Kl AERE (56)
We notice, fram (40) and (48), that if we let y = O,
) = 1+ W) ,
which immediately gives us that X = ®°(u). Thus,

fuy - [ a(8)at
Yu,y) = (uly)+ °°(u)]ew ° . (57)

The solution to (50) follows immediately, since there is no complicating

rhs and we may write

R k;*«jﬂ



fuy - JIA(E
a,y) = 01(u)eu'y fontea .

Now, substituting (57) into (52),

- tuy - [V A(E)at
| Cw-a [ e el 0T Ay (59)
? ‘ Remembering that U(y) =1 for y > 0, the integral on the rhs 1s just
the cf of the pdf of X. Therefore, (59) is
°(u) = qf1+ W) o(u) ,
k
E from which
F ) = ®(u) . (60)

l=q@\u

Substituting (60) into (57)

tuy - [YA(8)at
Ohu,y) = [U(y) + r_‘::;‘(’%]cw ° . (61)

Substituting Equations (58) ana (61) into (53)
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which, for (58) gives

Finally, (63) is substituted into (51)

or

tuy /T A(8)ak

u) = q ¢ (u) fo' e

- fuy « [YA(E)as
+ P fo [U(Y)+ _S-J.(.L}-l_:¢“u :Iew ° AMyly

F ) = qot () ‘P(u)‘*PO(u)[l'* l—%“q‘%%n] ’

(1 -qe))®

1y - [Ya(e)at
é(u,y) - y (+]

(1 - q@(u))®

*  duy- fo"x(e)de

O(u) - _Laﬂl.L

)\( )dy H
(1 -q‘P(u)]Z 0 v

(62)

(63)

(6k)
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vhich is the desired result and checks with all previous derivations.

At this point, one might questic: the need to use such an involved
and complicated method to get the result in Equation (64) when other
methods are simpler. The answer to this 1is that if it is the ‘onJy result
desired, then there is no advantage. However, it should be noted that
the reward for the additional effort is, as it should be, that additional
information is aveilable, namely, ore can invert Equations (60), (61), (62),
and (63) to get probability functions on the distribution of times for
zero hits, one hit, joint times for zero hits and time since last hit, and
one hit and time since last hit. Also, as previously noted, if the
geometric transform is used, information on the mumber of rounds fired can

be obtained.




References
BRIGHAM, E. ORAN. The Fast Fourier Transform, Prentice Hall, Inc.,
New Jersey, 197&.
COX, D.R. "The Analysis of Non-Markovian Stochastic Processes by the
Inclusion of Supplementary Variables,” Proceedings of the
Cambridge Philosophical Society, Vol. 51, No. 3, 1955,
t PP. 433=441.
E
: COX AND L916]1.LER The Theory of Stochastic Processes, Wiley, New York,
1965.
E GIFFIN, WALTER C. ! wn%form Techniques for Probability Modeling, Academic .
- Press, Inc., New York, 1975.
i KEILSON, J., AND KOOHARIAN, A. "On Time Dependent Queueing Processes,”
1 Annals of Mathematical Statistics, Vol. 31, 1960, pp. 10k-112.
3
g gt |
!

]

{

[}
-
{ 5 ¥
F !




1
¢

S A L Gk Lo M A A

SRR AR T e R e

Expository Publications

ANCKER, C.J., Jr., "The Status of Devclopments in the Theory of
Stochastic Duels,"” Proceedings - llith Mili rations
Research Symposium, Fall lﬁﬁ, PD. 260~269. DDC No.

AD 7- 31.

(Also, System Development Corporation Document SP-1017/008/00,
1 September, 1964, 25 pp.)

ANCKER, C.J., Jr. "The Status of Developments in the Theory of
Stochastic Duels - II," rations Research, Vol. 15, No. 3,
Mey-June, 1967, pp. }88-&

(Also, System Development Corporation Document SP-1017/008/01,
28 September, 1966, 32 pp., DDC No. AD-6LO 592).

AKCKER, C.J.; Jr., "State of the Art Summary (Stochastic Duels),”
Proceedings - 15th Annual U.S. 4 rations Research
S sium , 27 October, 1976. Available cn videotape only
(see p. 126 )

BHASHYAM, N. "Stochastic Duels," Ph.D. Thesis, University of
Delhi, India, May 1969, pp.1l-Gk, 85-86, 138-141, and 182-183.

GRUBBS, FRANK R. "Introduction to Stochastiz and Other Duels "
Ch. 17, pp. 17-1 to 17-21 in, Engineering Design Hand¥ ook,
Weapons Systems is, Part 1, DARCOM Pamphlet PT06-
101, U.S. Army Material Developwent and Readiness Command,
Alexandria, VA., November 1977.

THOMPSON, D. See, Tl in Research Papers, pp. 57>-576.

PEpyrev et o




Y

Expository Publications

ANCKER, C.J., Jr., "The Status of Developments in the Theory of
Btochastic Duels,"” Proceed%:gs - 14th Military Operations
Research Symposium, Fall 1964, pp. 260-269. DDC No.

AD 367-5631.

{Also, System Developmeni Corporation Document SP-1017/008/00,
1 September, 1964, 25 pp.)

ANCKER, C.J., Jr. "The Status of Developments in the Theory of
Stochastic Duels - II," rations Research, Vol. 15, No. 3,
hy.Jm, 1967) PP wa- .

(A1s0, System Development Corporation Document SP-1017/008/01,
28 September, 1966, 32 pp., DIC No. AD=-64O 592 ).

ANCKER, C.J., Jr., "State of the Art Summary (Stochastic Duels),"”
Proceedings - 15th Anmual U.S. Army Operations Research
8 sium , 27 October, 1976. Available on videotape only
(see p. 126 )

BHASHYAN, N. "Stochastic Duels,” Ph.D. Thesis, Univercity of
Delhi, India, May 1969, pr 1-b%, 85-86, 138-141, and 182-183.

GRUBBS, FRANK R. "Introduction to Stochastic and Other Duels,”
Ch. 17, pp. 17-1 to 17-21 in, Engineering Design Handbook,
Army Weapons Systems Analysis, Part 1, DARCOM Pamphlet P706-

101, U.S. Army Material Development and Readiness Command,
Alexandria, VA., November 1977.

THOMPSCN, D. See, Tl in Research Papers, pp. 573-576.

T
A i ey IR, i R AP B i
. . . R o5 s




) el
.

P
»
.y
f' APPENDIX
i SOME USEFUL RESULTS IN THE THEORY OF CHARACTERISTIC
? ) FUNCTIONS
| 0. Introduction 3
g :
This appendix comtains some theorems and other results from the
theory of characteristic functions which are useful in derivations or
applications in the Theory cf Stochastic Dusls. All of these results,
1:. except Theorem (Al5), are from a compilation in bibliographic item AS. s
" The proof of Theorem (Al5) is given herein.
We use @ (u) to denote the characteristic function of the pdf
rx(t). Except for the Parseval theorems, the results are for positive i
RV's only. The notations IL and !u are the same as those given
i 4
earlier in this work. A
| !
,«j
4
| 1. Some Parseval Thearems j
| Three useful versions of Parseval's Theorem are given below. i
" h
- . "
Joawnee - & [ qroema (a2) t
u
J: L £,(t) £o(t)at = = . 9 (u-v) & lwlaw ,
’ ® iut
j.. e n 1, () £5(t) £(t)at
- - ¢ (u-w f VeV v dv)dv.
: L L aeen( [ een e

A-1




¥
;
4
:

v T s [ T et e s

s e

e ey oy

T T T R T S TR A

AT TN T ey

2. Properties of Characteristic Functions of Positive
Randam Verisbles

In what follows, only positive random variadbles are considared,
i.e., pif's such that

£(t)>0, t>0
} (Aka)
£(t) =0, t<0O
and
_[ £(t)at = 1 (Abb)
0
with charscteristic function and inverse
ou) = f eIVt £(¢)at
0
u real, (as)
)=k [ o gy
respectively.
The properties of interest follow.
le(u)| <1, Imsginary u>o0 . (A7)

This implies no singularities in the upper half of the camplex plane.
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: , le(-u)| €1, Imagimary u<o .

This implies no singularities in the lower half of the complex plane.

le(u)| < T:T , 2£(t) & aifferentisble function
of bounded variation. Imaginary
w20, k =positive constant.

This implies that ®(v) diminishes as 1/R 4in the upper half-plane where
R is the radius of a semicircular path of integration in the complex

plane.

ST Ty e o

le(-u)| < ﬁ, £(t) a differentiable function (A20)
v of bounded variation. Imaginary
u<0, k = positive constant.

FYET, TR N

This implies that ®(-u) diminishes as 1/R in the lower half-plane, R
the same as in (A9).

Imeginary uw2>0
le(u-w)| <1, { . (A1)
Imeginary w <0

TRy T P LT T AT INTIRY N Ty

This implies no singularities in the upper half of the complex u plane

5
and the lower half of the complex w plane.
1
le(u-w)| < T-i—r. £(t) & differentisble functicn (A22)
| B W= ¥l  of bounded variation. Imaginary
| u20, imeginary w<O0, and
j k = positive canatant.
i
: ! R This implies that ®(u - w) diminishes as 1/R in the upper half of the
u plane and in the lower half of the w plane. R, as above.
|
S .




3. Some Theorems Involving Characteristic Functions of Positive

: ’ Randam Veriables
, We bave that
!

eri J_ v

3 f ‘1‘“ £(t)at = L M‘!BI_‘L_.__.I dw . (A13)
' 0

Note that for u = 0, this also gives an expression for the distribution
function of a random variable in terms of characteristic functioms. Also,

3 ' » » -4
f o' £(t)at = w(u) - z3; f_ﬁ"* “M},L' ) o (aa)

Note that for u = 0, this provides an expression for the complementary

distribution function in terms of characteristic functions.
t The characteristic function of the distribution function is given
as:
* iut t g{uz
f e <f f(i)di)d R Imaginary u > O . (nas)
(o] 0
Proof: .Integrating by parts,
d t \
f e‘“t( f £(t)ae )at
0 Cc
.:I.ut t » - .iut
" f(ﬁ)d!' - f o £(t)at
0 t=0 0
iut
- 1ip &£— . ®(u) .
toe iu iu
A-b
- o T R e L TN - RV Thpt
b T AT e s ik N " N o
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, Now, t0 explore the first term, let u be analytically eomtinued into the i
L) complex plane. Thus, u =x+ iy, x,y real.

| Py fut ixt -yt
L 1a e -}du-oe

Since Icml -],

o (0 s ¥2>0, any x
1 iut
: Tu lim e — irdetermingte, y =0, any x .
t e
E | L] » ¥<0, ay x
! Q.E.D.
r
‘; Contiming our listing of results,
{
:
i
; “ vt ° uj) - 1
g f e ( f £(8)as )dt - ﬂ—L—i . (26)
_:5 0 t u
- This 1is the characteristic function of the complementary distribution
! function.
; - - o 9 (u-w)e (v)-1]
iut - 3 A B

fo e rA(t)< ft rB(f.)ag)dt LAY I. - aw, (A7)
; .
St - - = ¢ (-w)e () - 1]

- L Ny

e_ fo fA(t)[j; fB(E)dt] at AR I. = du , (m18)




foﬂ fA(t)[ f: fn(!)d!:l[f: fc(f])dtﬂ at

. __:?_ f- ["c(":) - 1] (f- ¢, (u- v)[QB(w) -1] )du ’ 015)

fOT fA(t)< j: e AOLU )dt

- f;z_l: [g‘if_1]<l: OA(u-w)[':,iv)-ll dw)du ' (120)

f- fﬁt)( f: £y(that ) et

v
" ¢A('u)[¢n(\l) 1] 2 j - e'i\l‘t .1
) 2'1 f I;I‘z -

v du - u
. (j:: OA(u-v)‘['QB(v) - 1) dw)du , (a21)
v, (- ‘[ (n)-1)
t(t)<f f(!)dt)dt-?—f Wiss du , (A22)
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- (% (u) - 1)
- %n j. o ivb ®, (-su} qnu“ au , (A23)

f; rA(t)(‘/;;b fn(t)dt)dt

_ # f: [."1“:.1] < f: % (u-3w) &~ [g(w) - 2] “)“ .

v

IR i ]

f: rA(t)( f.;b fp(that ) ae
P g, (-au)(@y() - 1)

1 ® du

- «tuT - ¢ (u- )-1‘b'()-1]
-_1-*/..- .1‘:‘.1 (f- _— ‘v ":gj “)d“: (A25)

XTI j: gyt )( ft' £,(n) [f; fD(D)do] n e,

: “ « 9 (-u-v)iwy(v) - 1]
] p 4 .8_;5:‘/.'.%<~/:.ch7037 ldv-l)

"' (I: :A_(:u-\')[j!‘(rl)-lldv )du

k L A-T
e H R VO s —
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Our final result is that for any imtegral of the form

e, (-u) & (u)
gy [, B .

vhere there may be any mumber of cf's of positive RV's 4n the integrend,
a8 long as at least one has a positive argument and at least one ban &
negative argument and all are divided by u, then

P[A] = 2 fc Re Integrand (A27)

where C 1s any path in the lower right half of the camplex u plane,
which starts at u = 0 and terminates at + *. The path must remain on
the real u aris or de between the real u axis and the nearest singular-
ity in the lower half plane. Examples are shown in Figure Al.

“““ [ S
_____ O, _ ——— —

FIGURE Al
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PART II
ANNOTATED BIBLIOGRAPHY OF

RESEARCH PAPERS

This part of the work contains a comprehensive, fully annotated
bibliography of all research results known to the author. An exhaust-
ive search of the free-world literature has been made. Some mamscripts
which have never been published in the open literature are also

included.

A few papers included deal primarily with many - versus - many
situations, { contain some material on one - versus - one duels. In

this case, only the latter is annotated and appears herein.
The format is as follows:

(1) Each paper has an alpha-rumeric designation consisting of
the first one (two if necessary) letters of all authors
last names, plus a nmumber.

The papers are arranged alphabetically by first author, starting with
sole authorship and then dual authorship, and so on. The pumber indi-
cates the chronological sequence of all papers by a specified author,
or set of authors. The chronology is based on the date of the first

citaiion given for each entry in the bibliography. There may ve more

than one citation given, s it is cuscomary to produce first a company
or university, etc., version and then an open literature publication.
The latter is always the first citatiovn. The reason all versions are

given is that a reader who may have access to one version, may rest




E
1
L assured that there is no difference in content between versions, except 1

g as noted. J

£ )

1 Next, if there are both fundamental marksman (FM) and

fundamental duel (FD) results, the FM part is given first and the

E FD portion is next. The format for each part is the same, and gves

E as follows:

(1) Identified as FM or FD

: (2) For each model considered under FM or FD

(a) 1identified as CRIFT or FIFT, or mixed

% (b) all modifications, e.g., ammunition limitations, etc.

é (3) General solutions which are given

g

i (4) Particular examples with details

E

¢

E Finally, at the bottom left~hand side, a listing of all the prin-

cipal techniques of derivation used 1s given.

¥

S

SR
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The fundamental marksman (FM4) problem is defined as & marksman
firing at a passive target. He fires at certain intervals and either hits
or misses on each round. The trials cease on the first hit. The hit
yrobability is constant from round to round. The time between rounds may
be a contimuous RV or a constant. He starts with an unloaded weapon,

has unlimited time to hit the target and has unlimited cmmunition.

The fundamental duel (FD) pits 2 marksmen, as defined above,
against each other. The duel terminates when one hits the other, or both
are hit similtaneously. They start at the same time and, in general, have
different kill probabilities and different interfiring times.

NOTATICN AND ABBREVIATIONS

CRIFT - continuous random interfiring times

cf - characteristic function = [ t . et £(t)at

CRV - continuous random variable

af =~ distribvution function

DDC - defense documentaticn center (documents may be ordered from

this center using numters as thown in bitliogiaphy)

Erlang (k) - a RV with pdf given by

de k1 - 0x
fx(x) = '('fx—.—i")"' e N x>0, k=1]1,2,...

= 0 y elasevhere

E[X] - expectation of X

B-3
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© FD - fundamental duel
% FIFT « fixed interfiring times
; FM - fundamental marksmean
gt - geometric transform é P f(n)zn » @l8o sometimes called the
] z transform and if f(n) are elements of & pmf, sometimes
: called a probability generating function
f h(t) - pdf of RV, marksman's time to a kill
H(t) - df of RV, marksman's time o a kill
: H = the event of a hit
H - the event of no hit
i IFT - interfiring times tﬁ
L iid = independent, identically distributed ‘
r LT - laplace trensforn &[5 &% £(t)at ;
" mg? - moment generating function (same as the Laplace transform ‘;
with s replaced by -s) i
MLE = maximum likelihood estimate
ned - negative exronential pdf, given by
fx(x) ~ re T, x>0
= 0 R elsevwhere
; N - pumber of rounds fired; may or nay not ve a8 RV (sometimes
‘ 1& used as a gensral constant, as noted in text)
f i K(u,o°) - normally distributed RV with mean » and variance o
L pd? - probability density functicn, denoted by f,(x)
b z ot - probability mass function, denoted by p (x)
, : et « probability generating function (or, sometimes called
geometric transform or 2 transform)

P(A) - probebility A wins the duel

Bl
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P(B]

P[AB]

RV

TOF

v(x]

o DTl

-
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probability B wins the duel

probability neither A nor B wius the duel, consequently,
o draw

rate of fire or "alue of RV, R

RV, number of hits to a kill (for a situation where more
than one hit is required)

random variable

RV, marksman's time to a hit (kill) - may de subscripted as
appropriate

time-of-flight (may be a RV)
variance of X

interfiring time RV

B-5
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Al. ANCKER, C.J., Jr., "Stochastic Duels With Limited Ammunition Supply,"
Operations Research, Vol. 12, No. 1, Jan.-Feb., 196k, pp. 38-50.

(Also, System Development Corporstion, Sants Monica, CA., Document
SP=1017/001/00, 23 April, 1963, 2k pp., DDC No. AD=-LOL 10L.)

g.
"
/
5

-~
-

FD - CRIFT - (1) Random ammunition supply
= (2) Pixed ammunition supply

- (3) Special case; same as (1) above, except duel terminates
" when either side runs out of ammnition before a kill

T R TR A oA e e

B General Solutions: P[A], P[B], P[AB] (both sides run out of
E ammunition, (1) and (2); either side runs out of
ammunition, (3) )

Examples: (1) and (2) only

@ | Distribution of Number of Rounds

S . S B IFT paf's
5 Gemetric Geometric ned
3 Poisson Geometric ned
Binomial Geometric ned
Geometric Geometric BErlang (2)

Fixed Fixed ned
f Curves comparing this duel with FD

mixture technique
characteristic functions

A2. ANCKER, C.J., Jr., "Stochastic Duels of Limited Time-Duration," CORS
Jm (cmda)’ v01. u’ 'o. 2, Jm', 1966, ppo 69-810

(Also, System Development Corporation, Santa Monica, CA., Document
SP-1027/005/00, 30 March, 19€4, 2k pp., DDC No. AD-k36 529.)

Length of Duel

v FD- (1) CRIFT (a) Continuous random time limitation
: (b) Fixed time limitation

e - (2) FIFT (a) Continuous random time limitation
(b) PFixed time limitation

¥

T ks ot A

B
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y A2. (cont'a)
General Solutions: P(A], P[B], P[AB] (both sides run out of time

A;.

or kill simltanecusly)

Examples :

Distribution of
A's IFT B's IFT Time Limitation
ned ned ned
Erlang (2) Erlang (2) ned
ned ned fixed
Erlang (2) Erlang (2) fixed
fixed fixed ned
fixed Tixed fixed

Curves comparing this duel with FD

mixture technique
characteristic functions
number theory

ANCKER, C.J. Jr., "Stochastic Duels With Time-of-Flight Included,"
OPSEARCH (India), Vol. 3, No. 2, 1966, pp. T1-92.

Errata OPSEARCH (India), Vol. 3, No. 3, 1966, p. 155.

(Also, System Development Corporation, Santa Mcnica, CA., Document
SP-1017/009/00, 19 May, 1966, 28 pp.)

3 Procedures Considered:

(1) No Delay - firing proceeds as rapidly as possible, no delay to
observe effect

(2) Delay - each round is allowed to hit before next round is
prepared and fired

(3) Mixed - one side delays, the other has no delay

FN- CRIFT - (1) No Delay - random TOF
- fixed TOF

- (2) Delay <~ random TOF
- fixed TOF

FM-FIFT - Mo Delay - fixed TCF

General Solutions: (pdr) time to fire killing round, pdf time to
kil




3
f
3
'
3
3
:
i
!
i
t
14
3
{

Examples
Procedure IFT_paf IOF pdf {
o Delay ned ned ¥
! " Ro Delay ned constant (fixed)
Delay ned ned

? FD- CRIFT - (1) No Delay - random TOF

- fixed TOF
‘ -(2) Delay - random TOF 1
i
- (3) Mixed A fixed TOF (delay), B zero TOF !

Both fixed, A delay, B no delay i

FD- FIFT - (1) No Delay - fixed TCOF
- (2) Delay - fixed TOF

General Solution: P[A], P[B), P[AB] (both killed)

R, 4 AT A TR, S P ST S T o g

Examples : "

g E
3 A's A's R's B's

- Procedure IFT pdf TOF _pdf IFT pdf TOF pdf y
No Delay ned ned ned ned

No Deley ned fixed ned fixed ;

fixed 5

Delay ned ned ned ned

A Delay ned fixed acd gero :

A Delay

B no Delay ned fixed ned fixed

|

1 Special Case:

FD - CRIFT - no delay - TOF varies linearly

General Solution: P[A], P[B] P[AB]

Example :
{ A's IFT pdf B's IFT pdf
ned ned

nixture technique
characteristic functions
number theory
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Ak, ANCKER, C.J., Jr., "Stochastic Duels With Round-Dependent Hit
Frobabilities," MNaval Research Logistics Quarterly, Vol. 22, No. 3,
Sep‘h, 1975) FP- 575-5 5'

(Also, University of Southern California, Los Angeles, CA., ISE
Department Technical Report TR The3, 2 August, 15T4, 16 pp.)

FM - CRIFT - Round depandent hit probabilities

DA

MRS it

General Solution: pdf time to a kill

FD « CRIFT « Round dependent hit probabilities

TR R TR T AR AT AT, TR SR

LR A

General Soluticn: P[A] P[(B]

rman

. Examples:
E’ A's Hit
E’A Probability B's Hit
E A's IFT pdf on §-th Round B's IFT pdf Probability
} ned q, =( X1 ) % ned fixed
E J 3 IN - 1)
. (N, a fixed integer)
1
. qA
i Erlang (2) q4 =-F ned fixed
qA :
ned q = 3 ned fixed i

Curves for last example and compering l-st with FD

1 mixture technique
characteristic functions

, AS5. ANCKER, C.J., Jr., "Stochastic Duels With Bursts," Naval Research i ‘
;- L Euticﬂ wem’ VOl. 23’ NOu u, mco, 1976, ppo 703- iﬁo

(Also, University of Southern California, Los Angeles, CA., ISE
N Department Technical Report TR-T73-5, Nov., 1973, il pp.)
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AS. (cont'a)
FD - Mixed, CRIFT- FIFT
Genera) Solutions: P[A], P(B]
Example: A - FIFT, B - ned IFT
Curves of solution

FN- (1) Bursts of fixed size N (random time between rounds and
random times between bursts)

- (2) Same as (1) with fixed times between rounds in a burst

General Solutions: pdf time to a kill

FD-A ¢fires burat of fixed size N. Rounds within a burst equally
spaced. Random time between bursts. B 48 CRIFT, no bursts.

General Solutions: P[(A], P[B]

Example :
A B IFT
ned Dbdetween bursts ned

Solution curves, comparison with FD

mixture technique
characteristic functions

A6. ANCKER, C.J., Jr., "Theory of Stochastic Duels - Miscellaneous Results,"
TRASANA TECHNICAL MEMORANDUM 2-T7, March, 1978, 39 pp., U.S. Army TRADOC
Systems Analysis Activity, White Sands Miasile Range, New Mexico, DDC No.
A0-52158.

FN - Erlang (n) CRIFT
General Solution: pdf and d4df time to a kil
Example: n =1, n =2, eolution cwrves

FD = mtic? equity (each side fires first 1/2 the time and then FD
starts

Geners) Solution: P[A]
Example: Erlang (2) CR.FT's
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. A6. (comt'd)
FD-CRIFT's - tactical equity (except 2-nd firer returns fire
immediately)
General Solution: P[A]
' Exanple: ned IFT's

FD = CRIFT - initial surprise a CRV

Example: IFT's - ned, surprise pdf - Laplace
- solution curves, P[A]

Sub-Example :
Surprise: (1) pdf - ned

e atn ke kol datid sk ket

(2) pdf - ned for negative time only

FD - Erlang (n, m) CRIFT's i

General Solution: P[A], P[B]

€ problems by Thompson in T2 are simplified by using characteristic
functions, viz:

(1) (a) (®) (c) ena (2) (a),(b),(c)

1 problem by Thompson in T2 is simplified by using geometric transforms
and characteristic functions, viz: 2 (c)

Some useful results in the Theory of Characteristic Functions sre
listed or derived as follows:

3 Parseval Theorems

T properties of cf's of positive RV's
15 theorems concerning cf's of positive RV's

2 theorems on contour integration in the complex plane for

speciel integrands are developed. Useful in numerical
integreation.

mixture technique

characteristic functions
gecmetric transform

B-11
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A&G). ANCKER, C.J., Jr., and GAFARIAN, A.V., "The Distribution of Rounds
Fired in Stochastic Duels," Naval Research istics erly,
Vol. 11, No. %, Dec., 1964, pp. %0>=3%27.
(Also, Systems Develomment Corporation, Santa Monica, CA., Document
SP-1017/00k/00, & Merch, 1964, 35pp., DDC No. AD-u33 T6k.)

FM- CRIFT)- Random ammunition supply (contains fized
-FIFT ) supply case)

General Solutions: P(H), P(H), P(N = n|H)
ElN | H, EOF |l
P(: > ny | K], P(Nen|H], PNen]

Examples: Distribution of N
(no.of rovnds fired)

(1) Geametric
(2) Infinite supply
(3) Finite, fixed supply

FD- (1) CRIFT - (a) random sammunition supply
(b) fixed ammunition supply

General Salutioms: P[N, =n |A), PN, >r, | A1, P(N, =n | AB],
P(N, =n | Bl, P[N, =n)
B[N, [4), EI¥; |A)

Marginal increase in P[A] if ammunition supply is increased.

Exemples
“ N N
paf of ¥, mpp par paf of Xy pp par
(1) Geametric ned Geametric ned
’ (2) Binomial ned n(‘fxin ﬁ.:ita.tion) ned

(3) Fixed (constant) ned Fixed (constant) ned

FD- (2) FI'T - (a) random ammunition supply
{(v) 2ixed ammnitior supply

B-12
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A&Gl. (cont'd)

Qenersl Solutions: P[N, =n | A}, P[A), P(AB], P(N, =n | AB),
P[NA-II ' Bl, P[NA = n)
Marginal increase in P[A] if ammunition supply is increased.

Examples :
A B
mf of )IA paf of NB
(1) Geametric Geometric
(2) Infinite supply Infinite supply

(3) Fixed (comstant) Fixed (comstant)

nixture technique
characteristic functions
mmber theory

A&G2. ANCKER, C.J., Jr., and GAFARIAN, A.V., "The Distribution of the Time-
Duretion of Stochastic Duels," Naval Research %utiu Quarterly,
volt 12, NO‘. 3 & h, Sep‘t.-D&c., 1 S’ ppo 275-29 .
(A1s0, System Development Corporation, Santa Monica, Ch., Document
SP-1017/007/00, 10 August, 1964, 29 pp., DDC No. AD-606 169.)
FN- CRIFT | (1) random time limitation
-FIFT ( (2) fixed time limitation
General Solutioms: P(H], pdf time to hit, pdf time for no
hits, all moments of two preceding pdf's

(spacial case, no time limit), pdf of total
time to completion

Example :
IFT pdf parf - time limit
Erlang (2) ned
Fixed ned

B-13
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|y AL, (cont'd)

E FD- (1) CRIFT §a) random time 1imitation

- b) fixed time limitation

-(2) FIFT  (a) random time limitation

0y (b) fixed time limitation

Genersl Solutions: pif of T, |A, par of T, |AB, an

3

3 wmoments of the preceding pdf's (special

L casc, no time limit), total time pdf. 4

- ]

A's IFT B's IFT pdf paf - time limit ot
1 SNE-
(1) nea ned ned
: (2) Erlang (2) Erlang (2) ned it

(3) nea ned fixed .
(4) Erlang (2) Erlang (2) £ixed

| (5) Tixed fixed ned 1
! (integer x B's IFT) i

2 (6) fixea fixed fixed |

o (integer x B's IFT) "

S (7) fixed fixed none .

f (infinite time)

mixture technique

: characteristic functions

nunber theory

1

3

3

E 1
{

?

]
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A&Wl. ANCKER, C.J., Jr., and WILLIANS, Trevor, "Some Discrete Processes
in the Theory of Stochastic Duels,"” Operations Research, Vol. 13,
¥o. 2, Mar.-Apr., 1965, pp. 202-216.

(A1so0, tem Development Corporation, Santa Monica, CA., Document
5P-1017/002 /00, 13 August, 1963, 28 pp., DDC No. AD-420 514)

D - (1) FIFT
General Solutions: F[A], P(B), P[AB]
Examples :

(1) A's IPT an integral multiple of B's IFT
(2) B's IFT an integral multiple of A's IFT

Solution curves
FD - (2) Equel FIFT - probability of a neer miss is included. A near
miss causes a displacement and the loss of on
firing turn :

Genersl Solutioms: P[A), P[B)], P[AB]

Solution curves

mixture procedure
number theory
stochastic difference equations for (2)
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BARFOOT, C.B., "The Lanchester Attrition Rate Coefficient: Some
Comments on Seth Bondar's Paper and a Suggested Alternate Method,"

Operations Research, Vol. 17, No. 5, Sept.-Oct., 1969,
PP, oL,

FN- Markov dependent states > 2 « IFT constant but dependent on
current state

X111l probabilities dependent on current state
Initial conditions may be varied

General Solution: E[T]: in matrix form
Example: HNumerical

Markov chain theory
matrix algebra

BARFOOT, C.B., "Markov Duels," Operations Research, Vol. 22,
No. 2, Mar.-Apr., 1974, pp. 318-3%0.

(ALso, "Stochastic Duels in Which Each Comtestant's Shots Form a
Markov Chain," OR-69, 5-th International Conference on Opera-
tions Research, Venice, Italy, 23-27 June, 1969, ed. by John
Lavrence, Tavistock Publ., London, 1970, pp. 223-23k.)

(Aiso, Master's Degree Thesis submittei to the Department of
Operations Research, George Washington University, Washington, D.C.)

(Also, "Stochustic Duels With Markov Dependent Kill Probabilities,"
Center for Naval Analyses Working Paper, Arlington, VA., undated,
48 pp.)

FM - FIFT - Markov dependent states > 2

General Solutions: pmf (number of rounds to a kill or time to
kil1l); in matrix form E(N), V(N)

FD - FIFT -~ Markov dependent states > 2
General Solutioms: P[A], P(B], P[AB] in matrix form
Example: Two-state case FN-FIFT result

FD- FIFT - M. ‘kov dependent states > 2. A fires y rounds first
(random initial surprise), pmf(Y)- geometric

General Solutions: P[A], P(B), P[AB] in matrix form

Numerical example
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(cont'a)

Markov chain theory
matrix slgebra

BARFOOT, C.B., "Some Anti~-Armor Yodels Used in U. S. Marine Corps
Flanning Studies,” NCOAG CNA, Arlington, VA., NATO Conference,
26-30 August, 1974, Munich, Gernany, 19 pp.

FD = FIFT ~ Markov dependent states > 2

A fives busts of constant length, with a constant time
betwzen rocunds and a constant time between bursts

B fires with no turst, Just constant time between
rounds

Genersl Solutiona: P[A], P[B]l, P{AB] in matrix form; asymptotic
approximations to general solutions

Same as above - >ut A fires y rounds first (surprise)

(2) y a constant
(») Y @& gecuetric random varisble

General Solutions: P{A], P[B], P[AB) in watrix form; asymptotic
approximations to general solution

FN -« CRIFT - Markov dependent states > 2

IFT's are ned and dependent on current state
(difZerent parameter for each state)

General Solution: h(t)
FD « CRIFT ~ Markov dependent stetes > 2

Each duelist‘s IFT's are ned and dependent on current
state (different parameters for each state)

General Solution: F{A], P[P]; matrix double integrsl and a closed
solution by similarity transformation

FD « CRIFT - Markov dependent statas .» 2

Esch duelist's IFi{'s are ned and state dependent:

(1) & has a fixed time to fire first (surprise)
(2) A hus a random surprise time with ned
istrivution

B-17
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Ba 3. (cont'a)

‘ General Solution: P[A)], P[B]; matrix double integral and closed
: form by similarity transformation

Markov <hain theory
semi-Markov chain theory
matrix algebra
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BHASHYAN, W., "Stochastic Duel With Several Types of Weapoms,"
Defence Science Journal (India), Vol. 17, Ko. £, April, 1967,
. 1135-118.

(Also, Defence Science Laboratory Report, Delhi-6, India, 9 pp.)
(A1s0, Bh 3, pp. 67-T2.)

FM < CRIFT - several weapons Yiring simultaneously and irdependently,
each with individual ned IFT's and kill probabilities.

General Solution: h(t)

FD - CRIFT -~ each side with several {different for euach side) weapons,
firing simultaneously and independently. Each weapon with
individual ned IFT's and kill probabilities.

General Solution: P{A)}, P(B]

M:an and variance of nmumber of rounds of each type
weapon fired to a kill.

differential difference equation technique
z transforms

Bh 3 uses elementary methods (much simpler tut cannct get last results
above.

BHASHYAM, N., "Stochastic Duels With Pattern Firing," Advencing

Frontiers in Operational Research, Proceeldings of the Internstional

Seminar on Operational Research, New Delhi, India, T-10 August, 1967,
Ed. by H.S. Subba Rao, N.K. Jaiswal, and A. Ghosal, Hindustani
Publishing Corporation (India), 1969, pp. 151-16k4.

(Also, Bh 3, pp. 100-11k)
FM~ CRIFT ~ two weapons fired alternately, each firing a fixed number

of rounds (different for each weapon) with a different
IFT pdf and a different hit probability.

General Solution: LT h{t)

FD « CRIFT - each side, two weapons fired alternately, each firing a
fixed mumber of rounds (different for each weapon) with
a different IFT pdf and a different hit probability

General Solution: LT ¢time to a kill by A
P(al, P[B]

B-19
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Bh 3.
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(cont'd)
Examples:

(a) Each side fires one round each with two weapons and
ned IFT's

(b) A has one weapon, one round each
B has two weapons, one round each

{¢) A has two weapons, one round each
B has one weapon; one round each

Fumerical example, curvee

Bh 5 - different numerical examples and curves

supplementary variable technigue
differential difference equations
geometric transforms

Laplace transforms

BHASHYAM, N., "Stochastic Duels," Ph.D. Thesis, University of Delhi,
Delhi, India, May, 1969, 186 pp.

Four sections in this thesis have not been published in the open
literature. Only these are annotated here. The other sections
are cross referenced in the appropriate document.

(1) "Stochastic Duels With Only Pooled interfiring Time Distribution
Known," pp. T3-8k4.

FD - CRIFT -~ Probability that either fires next, given either fired
last, is probablistic. Therefore, the sequence of
firings is Markov and independent of times between

{:\mds. IFT's are different, depending on who fired
£t.

General Solution: LT (1) time to win by A (i.e., during duel)
(2) time to winby B (i.¢., during duel)

Numerical example = curves
differential difference equations
supplementary variables
gecmetric transform
Laplace traasfcrms

(2) "Stochastic Duels With Burst Fire," pp. 87-100

B=20

s

b

R R
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» Bh 3. (cont'a)

FM~ CRIFT - Bursts of fixed length fired with CRIFT and with contin-
uous RV between dursts

General Solution: LT h(t)

FD - CRIFT - Bursts of fixed length fired with CRIFT and with con-
] tinuous RV between bursts

General Solution: LT P{A], P[B]

t ] Examples: (1) all times ned, burst length very large
' (2) a1l times ned, A large burst size, B single
round fire (no bursts)

Numerical results = curves

: ] differential difference equations
supplementary variable technique
geometric transform

Laplace transforms

,E (3) "“Stochastic Duels of Limited Time Duration and Finite Ammunition
: Supply,” pp. 141-153.

FD- CRIFT (ned both sides) - Both fixed ammnition limitation -
time limitation a contimuous RV with ned pdf. A
draw occurs if time runs out or both run out of
ammnition

General Solution: P[(A], P[(B], P[AB)

Examples : 21; unlimited time
2 B unlimited ammwuition - solution curves

(3) B unlimited ammunition - unlimited time
(k) bvoth unlimited ammunition

differential difference equations
Laplace transforms

(k) "Stochastic Duels with Repairable Weapons," pp. 153-169.

FM - CRIFT - éa) Fixed limited ammunition
b) ammunition limitation a discrete RV

Time to failure of weapon pdf 18 ned. Repair time
is CRv

—y
e WM
PERY

General Solution: LT h(t) and time to run out of ammunition

i
»
B
|
1s

3 FD- CRIFT - (a) Fixed limited ammunition (both)
- : (b) Ammunition limitation & discrete RV

] :
o
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Bh 3. (cont'd)
Time to failure of weapons are pdf's with ned's.
Repair times are CRV's. Contestant under fire during
repair time.

General Solutions: P[A], P[B], P[AB)]

Particular Cases:

FM&FD - (1) A unlimited ammnition; B fixed
ammnition limit
FM & FD - (2) Both unlimited ammunition

Examples: (1) Unlimited ammnition, IFT's ned
Repair times ned
(2) Unlimited ammunition, IFT's ned
A repair time ned; B failure free

Sclution curves

differentisl difference equations
supplementary variable technique
geometric transforms

Laplace transforms

Bh 4.  BHASHYAM, N., "Stochastic Duels With Single Shot Kill Probability
Varying As A Function of Inter-Firing Time Interval," Defence

Science Laboratory, Delhi-6, India. Draft - Frivate Communication,

Spring 1970, 10 pp.

FM -« CRIFT - Fixed ammunition limitation
- Kill probability a function of IFT

General Solution: LT h(t)

FD - CRIFT - Fixed ammunition supplies, both sides
- Kill probvabilities, functions of IFT's

General Solutions: Integrals of LT P[A}, P[B], P[AB]

Example: Infinite ammunition supplies
IFT's are ned
Kill probabilities a negative exponential function
of IFT's

differential difference equations
geocmetric trarnsforms

Laplace transforms

supplementary variable technique

B-22
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Bh 5. BHASHYAM, N., "Stochastic Duels With Round Dependent Kill Probability
end General Inter-Piring Times," Defence Science laboratory, Delhi-
6, India. Draft - Private Communication, Spring 1970, 15 pp.

FM- CRIFT - Ammnition limitation: (a) fixed, and (b’ random
Round-dependent hit probabilities

General Solutions: LT h(t)

FD - CRIFT - Ammnition limitation: (a) fixed, and (b) random
Round-dependent hit probabilities

General Solutions: P(A]l, P[B], P[AB]; also,

(1) A fixed ammnition limit
B infinite supply
(2) Both have infinite supply

Examples: (1) both fixed ammunition supply, ned IFT's
(solution in terms of unspecified hit probabilities)

(2) voth fixed ammunition supply and both general
Erlang IFT's (solution in terms of unspecified hit
probabilities)

differential difference equations
special discrete transforms
geometric transforms

Laplace transforms

supplementary variable technique

Bh 6. BHASHYAM, N., "Stochastic Duels With Non-Repairable Weapons," Naval
Research istics erly, Vol. 17, No. 1, March, 1970, pp. 121-129.

(Also0, )Defence Science Laboratory Report, Delh:l-6,. India, undated,
13 pp.

(A1so, Bb 3, pp. 169-181.)

FM- CRIFT (ned only) - lLimited ammunition, failure prone weapons with
« limited replacement stock (faliure times are

ned)

General Solutions: LT h(t)
LT time-to-failure (weapons or ammunition supply)

B-23
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(cont'a)

FD- CRIFT (ned only) - Limited ammunition, failure prone weapons with
lim!).ted replacement stock (failure times are
ned

General Solutions: P[A], P[B], P[(AB]

Also, same with unlimited ammunition and replace-
ment stock a discrete RV

Examples: (1) both unlimited ammunition, A limited fixed weapon
supply

pumerical illustration with curves
(2) from Bh 3 - both unlimited ammunition, dboth
geometrically distributed nuuber of weapons

differential difference technique
Laplace transforms

BHASHYAM, N., "Stochastic Duels With Lethal Dose," Naval Research
Logistics Quarterly, Vol. 17, No. 3, Sept., 1970, pp. 3G 7=505 .

(Also, Bh 3, pp. 11L4-125.)

FM- CRIFT ~ Multiple hits to a ki1l (R)

(a) fixea R
(b) R a discrete RV

General Solutiom: LT h(t)

FD - CRIFT - Multiple hits to a kil1 (R)

() fixed R
(b) R a discrete RV

General Solutions: P[A)], P[B]

Examples: (1) TFT ned for both, R fixed for both
Solution curves

(2) IFT ned for both, R a geometric RV for both
Solution curves

geocmetric transtorms
differential difference equaiions
laplace transforms

Bh 5 gives a much simpler derivation

B-24
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Bh 8. BHASHYAM, N., "Stochastic Duels With Correlated Fire," Metrika,
Vol. 20’ NO. 1, Fﬂbm, 1973, Ppo 17-2"5.

(AXso, Bh 3, pp. 125-137.)

i FM- CRIFT - Two weapons with different IFT's and different hit

probabilities. The probability of firing a given weapon

on the next round, given a particular weapon was fired on

¥ the last round, is fixed. This leads to a correlation
between sequsances of weapons fired.

AT R S T e i

Ly General Solution: LT h{t)

L ALEERE S T

FD - CRIFT - Two weapons with different IFT's and different hit
probabilities. The probability of firing a given weapon
on the next round, given a particulsr weapon was fired

- or the last round, is fixed. This leads to a correlation
T between sequences of weaapons fired.

General Solution: P[A], P[B]
; Exaxples: ned IFT's for both

differential difference equations
; geometric transforms

Laplace trarsforus

supplemniary variables

o i A B

s
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BHASHYAN, N., and SINGH, N., "Stochastic Duels With Varying Single
Shot K411 Probabilities,"” %gr&tiona Research, Vol. 15, No. 2,
Iﬁ.r.-April, 1967, ppo 235-2 .

(ALso, Detence Science Laboratory Report, Delhi-6, Indis, November,
1966, 19 PP°)

FD - CRIFT (ned onmly)-Fixed ammunition limitation

- Kill probadbility is a function of round
number

General Solution: (1) P(A], P[B], P[AB]

(2) B[ l]ms infinite axmunition supply P[A],
P(B

(3) A ard B have infinite ammunition supplies;
P[A], P[B] developed separately without LT

Examples: (1) fixed kill probabilites; B infinite amrmnition
supply; also, both infinite ammunition suppiy

p'(m) = =2

(2) p(n) = —

n+1;

(3) p(n) = (1-0d"); p'(m) = 1-6")
a,B paramesters
differential difference equations

special discrete transforms
Laplace transforms
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B Bo 1. BONDER, Seth, "The lanchester Attrition-Bate Coefficient," Operations
% Research, Vol. 15, No. 2, March-April, 1967, pp. 2C1-232.

‘ FM- FIFT - Markov dependent hit probabilities (devendent on states)
three states

Pixed mumber of miltiple hits required to ill

§ General Solution: pmf of N - number of rounds fired to give a
fixed number of hits

[ 1 E[N]

combinatorial arguments

Bo 2. BONDER, Seth, "The Mean Lanchester Attrition Rate,” Operations
» Research, Vol. 18, No. 1, Jan.~Feb., 1970, pp. 179-181.

P T T

General Solution: If T is RV, time to a kill in situation
of Bol, gives E[T]

elementary probability arguments

VT T

e A,
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. Fi 1. FINLEY, David R., “A Thecretical Study of Round-to-Round Correlation
N in Gunnery," Cornell Aeronsutical Laboratory, Inc., Buffalo, New
York, Internal Research Report, WA-86-i84, Nov., 1968, 33 pp.

i (A1so, Master of Arts Thesis at the American University, 10 May, 1968,
E 33 pp. Availadble at University Microfilms, Inc., Ann Arbor, Michigen,
No. ML6LT)
FM - CRIFT
.
miss
3 states hit, not killed
nit, killed I
P[hit) = p, & constant; Plmiss] = 1-p; and Plkill|hit] =0, o i

constant. However, P moy depend on any or all of the

previous rounds fired. General results are derived which dc
3 not applv directly to FM or FD because more than one
{ killing round is allowed. However, these results can be
adapted to FM or FD. Verv generallv, positive correlation ;
1 is defined as: i
;: P(hit on i-th round | hits on specified previous rounds] if
3 > P[hit on i-th round | miss on at least ane of the
E specified previous rounds and miss on all other rounds].
3
1 Note: (a) any hit may be a kill
4 (v) this is not the same as the usual definition of cor-
4 relation and the results do not apply to ordinary
3 correlation.
General Solution: Positive correlation decreases kill probability,
i campared to the case where all trials are inde-
; pendent. For usual definition of correlation,
: positive correlation does not necessaxrily decrease
3 kill probability.

Example: no overkills (i.e., first kill terminates process)
dependence is Markov

: Results: positively correlated if correlation cosfficient > O;

aistribution of N, E[N], VIN]

Example: cf of h(t) for general IFT and E[T], V[T];
also ned

‘ D A 88 P aB above, B is FM
s Both IFT's ned

General Solution: P[A]

set theory
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FRIEDMAN, Yoram, “A Model for the Determination of Optimal Inter-
firing Times," (unpublished ms.), Faculty of Management, Tel Aviv
University, Tel Aviv, Israecl, July, 1976, 8 pp.

FM - Fixed time limit
= K111 probability a monotone non-decreasing function of IFT
- IFT 48 contimuous but greater than a certain minimum and at
choice of firer

For a fixed mmber of rounds fired (n) [ < the maximun
possible in time 1imit] proves that optimal x111 policy is
to contimually decrease the IFT's, but use up all the time
available.

Solution: Gives an algorithm for finding the <t's. Also shows
hows to f£ind the best n.

Lagrange multipliers
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GARG, R.C., and SINGH, N., "A Stochastic Duel in a Hunter-Killer

Game - I," The Symposium on Operations Research, No. L2, 1970,
Pp. 183-192

FD - CRIFT (both ned)

(1) combat -~ time 48 ned

3 states (2) no comtact - time is ned I all CRV's
(3) reclose & continue time is ‘
general pdf

Generea) Solutions: LT's of time-functions of various states; in
particular that A or B has won at time ¢
after each has expended a certain number of
rouands

Examples: (1) reclose and continue time is ned
(complete snlution)

(2) same as (1), but FM only

differential difference eouations
Laplace transforms

supplementary variable technique
geometric transforms
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GROVES, Arthur D., "The Mathematical Analysis of a Simple Duel,"
Ballistic Research Laboratory Report No. 1261, Aberdeen Proving
Grounds, Md., August, 1964, 23 pp., DDC No. AD-609 195.

FD - FIFT - A starts with a fixed time advantage (time he fires
before B does)

General Solution: in matrix form

(1) state probabilities after m cycles
(2) P(a), P[B], P[AB)]
Numerical examples

Markov chains
nmumber theory - matrix manipulations
geometric transforms

B-31
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H 1. HARRIS, Terrell J.,

"Many Versus Many Stochastic Duels," Caywood-

Schiller Associates Report, Chicago, Nlinois, Fall 1967, 18 pp.

FD - CRIFT - A
B

General Solutions:

E es: (1)
(2)

renewal theory
geometric transforms
Laplace transforms

general IFT
ned IFT

for P[A], P[B] in LT and geometric
transforms for mean number of rounds fired
to a victory for A

A's IFT -Erlang (k)
A's IPT-mixture of ned's
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J & Bl.

JAIOWAL, N.K., and BHASHYAM, N., "Stochastic Duels With Flight
Time and Replenishment," OPSEARCH (India), Vol. 5, No. &,
1966, pp. 169-185.

(A1s0, l;efcnce Science Laboratory Report, Delhi-6, India, 1966,
22 pp.

(Allo, EH 3) ppo h5-67)
FM - CRIFT - fixed ammunition supply at start

- ammnition replenishment of a fixed amount at times
vith paf (ned)

- TCF 1s CRV

General Solution: LT of h(t)

Special cases: (1) no replenishment, LT of h(t)

(2) no replenishment, initisl supply s discrete
RV (in BH 3 only), LT of h(t)

(3) no replenishment, unlimited ammnition,
1T of h(t)
(4) sero flight-time, LT of h(t)

(5) sero flight-time, no replenishment and
initial supply is fixed, LT of h(t)

(6) gero flight-time, no replenishment and

1?1‘3.1‘1 supply 1is a discrete RV, 1T of 1
h(t

(7) flight-time zero, no replenishment, un-
limited ammunition, LT of h(t) 3

FD - CRIFT - fixed ammunition supply at start

- ammunition replenishment of a fixed amount at times with
pdf (med)

- TOF is CRV

General Solutions: P[A], P(B], P[AB)

. ' i’
Examples: () { or'y Do - unlimited ammmition

' !
(2) {E;OF z:g - unlimited smmunition, zero flight- 3

time for B
curves in BH3
(3) IFT's ned-bdoth sero flight-time, unlimited

amminition

(k) IFT's ned -both flight-times sero (in Bh3)
- B unlimited ammunition

differential difference equations
geometric transforms

Laplace transforms
supnlementarvy variables __
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Ki{ 1. KIMBLETON, Stephen R.,

T oelgiidie. W o Calll -

"Attrition Rates for Weapons With Markov-

Dependent Fire," Oper:.lons Research, Vol. 19, No. 3, May-June,

1971, pp. 698-T06.

FM-FIFT - Markov dependent hit probabilities (dependent on states)
3 states, random :umber of multiple hits to kill

General Solutions:

Markov chain theory
renewal theory
difference equations
laplace transforms
geometric transforms

Laplace transform of N (number of rounds to
a ki11), E[N], V[N), pof of N

If T is time-to~-kill, Laplace transform of
paf of T, E[T], V[T]

B-3k
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KWON, T.Y., and BAI, D.S., "Stochastic Duels With Multiple Hits
and Limited Ammnition Supply,"” Korea Advanced Institute of
Science Report, Seoul, Korea, April, 1978, 23 pp.

FMN- CRIFT (1) Fixed number of hits to a xil1

(2) Random mumber of hits to a kill - geometrically
distributed, i.e.: Parameter = Pr(kill | hit]

(3) Pixed number of hits to a kill; ammunition limit-
ation & discrete RV

() Random number of hits to a kill (geometrically
distributed); ammunition limitation (geametric-
ally distributed)

(5) Fixed number of rounds fired simultaneocusly
(pattern); fixed probability of a pattern hitting,
each round in pattern which hits has fixed
probability of a kill

(6) Limited ammunition a discrete RV; fixed mumber of
rounds fired simultaneously with fixed probability
of a pattern hitting and each round in a pattern
xills with a fixed probability

General Solutions: LT h(t)

FD - CRIFT - Both sides same as FM (1), (2) amd (3)

General Solutions: P[A}, P(B], P(AB]

Examples: (a) fixed number of hits to a kill: ammunition limit
a geometric discrete RV; IFT's ned

(b) geometric mumber of hits to a kill; geometric
distribution for number of rounds, IFT's ned
- curves

(c) pattern firing (5) above, with IFT's ned

(a) pattern firing (6) above, with geometric distri-
bution for number of rounds, IFT's ned
- curves

mixture technique
laplace transforms
Case (2) also derived using reneval theory

B-35
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MOHAN, C., and ARORA, B.D., "On a Problem in Naval Defense,"

Operations Research, Vol. 12, No. 2, March- April, 1963,
mo 19 -19 .

FX - CRIFT (ned)

‘ (1) combat - time length iz ned

2 states l CRV's

l (2 ) vetween engagements - time length general pdf

Although IFT 1s ned, only firing times when hits
occur are considered, so these events are ned with
a parameter pr(not r)

General Solution: LT of time to n hits

Example: between - between-engagements time ned

also, expected time for n hits (i
4y
differential differencs equations d

supplementary variable technique
Laplace transforms
geometric transforms
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N&J1l. NAGABHUSHANAN, A., and JAIN, G.C., "Stochastic Duels With Damage, "
Operations Research, Vol. 20, No. 2, March-April, 1972,
PP. 1350-356.

(A1so, )Defence Science Laboratory Report, Delhi-6, India, undated,
M 13 pp.

FM-CRIFT (1) Amount of damage per round is a discrete RV with
a paf. Damage is independent round-to-round and
cumlative until total is a kill (predetermined
total damage)

(2) Demage per found is & CRV with paf; otherwise,
same as (1) above

(3) Demage is time-homogeneous, i.e., damage increase

in At = p(increase)it + 0(At ), where
increase is a discrete RV

General Solutions: cf h(t)

Example: three ciscrete damage states for (1), IFT ned

FD - CRIFT - same for both as (1}, (2) vw. [*) udove, plus
(4) Damage states are: no damage, dumage, %iil.
Given damage, the amount is a C2V with a
cumulative upper limit cw: sing a kill.
General Solutions: P[A], P[B]

Examples: (a) three discrete damage steter foi (1), IFT's
ned

am

(o) for (3) above, two discrete demage -cates

difference equations
_ geometric transforms
= reneval theory
differential difference equations
characteristic functions
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.! R&S1. RUSTAGI, J.S., and SRIVASTAVA, R.C., "Parameter Estimstion in a
; Markov-Dependent Firing Distribution,” Operations Research,

; VO].. 16’ ﬂo. 6, NOV.-DQC-, 1%8, ppo ]222.12270

. FN - FIFT - Two Markov-dependent states

b - Miltiple hits (r) to get a kill, aifferent first
: round hit probadility

Genersl Solution: pgf (geometric transform) of N (mumber
g of rounds to get T hits)

: '

E MLE of the three parameters involved

: Markov chain theory

1 renewal theory

geometric transforms

i

:

@
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:

'

SRS




T e SN T TR e T el W AR RN A n e e

5a 1. SAVIR, David, "Asynchromous Dodging Duels," private commnication,
19 August, 1970, pp. S54=69.

-

3
i

3
:
-
1
3
L
4

FD« FIFT - equal IFT's
: ] A starts first; B starts later, by an amount < IFT
Each can either hit, miss or near-miss, ceusing & dis-

placement and the loss of cme firing time (while
E remaining vulnersble.)

! General Solutions: P[A)}, P(B)

Boclean algebra
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Sc 1. SCHODERBEK, J.J., "Scume Weapon System Survival Probability Models - I.
Fixed Time Between Firings,” Operations Research, Vol. 10, No. 2,
March-April, 1962, pp. 155-167.

FD - FIFT - A has a fixed time sdvantage (surprise) over B 4

(1) Equal firing times (a), A's sdvantage < a

FITYT T A Tmem——meee

General Solution: P[A survives to time t]
P[A], same for B

ARV TERpeNere T

! Numerical exazmples and example &, b not equal (special case where
’ a and b are fixed IFT's)

(2) Same as (1) above, with lethal radius from a circular
E Normal (zero, pdf
A evacuates after firing k rounds

S

General Solution:

THTRRTT T YTy T T e m—

P[A is alive time T after initiating evacuation]

Numerical examples

SO

(3) Equal firing times; A fires first with probability p.
A evacuates after k > 3 rounds, evacuation distance RV

General Solution:

P[A 48 alive time T after initiating evacuationl A is
alive to evacuate]

Numerical example

cambinatorial methods
] Se 2. SCHODERBEK, J.J., "Some Weapon System Survival Probability Models -
] II. Random Time Between Firings,"' Operations Research, Vol. 10,
3 NO. 2, MCh-Apru, 1962, ppo 168-1'50

FD - CRIFT (both ned)

(1) X411 provabilities and rates of fire are continuous
functions of time

Jenersl Solutioms: P(A 4is alive at time t),
- P{A]l, seme forrB -

bt A1 . M T —
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Sc 2. (cont'd)
Mumericel Examples: kill probabilities and rates of fire constant
FD - CRIFT (both ned)
(2) Same as (1), but A evacuates at time t, (A is vulnerable
during evacuation). A moves a distence = which is Rayleigh
distributed.

General Solution: P[A survivies evacuation IA 1s alive to start]
and P[A survives evacuation]

differential equations
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SRIVASTAVA, S.S., and GARG, R.C., "Two-Sided A/S Warfare With
Limited Ammunition and Range of Fire Power," Trabajos le

Estadistica y de Investigacion Operativa, Vol. XXIII, Madriqd,
Spain, 1972, pp. 155-147.

FD - CRIFT - IFT's (both ned) - both limited smmunition
L states:

(1) Seeking contact - time is genersl paf
(2) Closing in- time is general pdf
(3) Combat - time is ned

(4) Release from combat - time is ned
(before starting (1) again)

All CRV's

General Solutions: LT's of time function of various states given
above. In particular, that A wins or B
wins, or a draw has occurred at time ¢,
after each has fired a specified number of
rounds

Example: seeking contact and closing in; both ned; general
solutions as given above, inverse LT's of these
functions and same functions at t = =

differential difference equations
supplementary variable technique
Laplace transform
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& S1. SRIVASTAVA, S.S., GARG, R.C., and SINGH, N., "A Stochastic Duel Ip ,

a Hunter-Killer Game - III," Cahiers du Certre d'Etudes de h

Recherche Operatiomnelle (Belgium), Vol. 11, No. 2, July, 1969,

pp- l -m- '
FD - CRIFT's (both ned) :
3 5<
ii L states: :
‘_ 7?
: (1) Closing |
z» (2) Coubat All these times are CRV's with general pdf's .
(3) No contact _
(4) Reclose & econtinue )
5 General Solutions: Bivariate geometric transform of LT of
time functions of various states. In

perticular, that A (or B) has won at

E@ time t after each has expended e specified
r number of rounds.
E

differential difference equations

supplementary variabies technique

geametric transforms

laplace transform
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"T1. THOMPSON, David E., “Reliability and Mcbility in the Theory of
Stochastic Duels,” Part F, Ch. 1, pp. 573-612, in Develovment of i
icul Models of Battelion Task Force Actlvities, ed. by S. i
Bonder and R. Farrell. Report No. SRL 1957, FR T0-1(U), Systems
Research Laboratory, Dept. of Industrial Engineering, University of
Michigan, September, 1970, DDC No. ADTi46TT7.

Btk ol A o e e

(Also, "Mobility and Reliability in the Theory of Stochastic Duels,"
Master's Theszis, Dept. of Industrial Engineering, University of
Michigan, Ann Arbor, Michigen, 8 August, 1968.)

e v

(Axso, DSL 02147 WP 68-L(U), Defense Systems Laboratory, University
i of Michigan, Ann Arbor, Michigan, 31 October, 1968.)

' (Also, "Reliability and Mobility in the Theory of Stochastic Duels,"
: a chapter, pp. 573-612, in Devel nt of Models for Defense Systems
% Planning, ed. S. Bonder and R. Farrell, Techrnical Report (U)
SRL 214T TR TO-2, Systems Research Laboratory, Dept. of Industrial
Engim;ering, University of Michigan, Ann Arbor, Micnigan, September,
1970.
% FD - CRIFT
: (1) Weapon 1ife time & CRV
3 (a) no withdrawal

5
i

ks e D

=+ i e e

T e A

General Solution: P(A)}, P[B], P[AB] 4n terms of pdf's
and d4f's

53T W e Tl e

Example: IFT's - ned, weapon lifetimes mned
(b) withdrawal at failure times \

Ceneral Solution: P(a], P[E], P[AB] in terms of pif's :
and dt's ;

Exsmple: IFT's - ned, weapon lifetimes med.
Cen be shown to be same as A2(1)(a)

(¢) withdrawal at next firing time after feilure

general Bulution: F[A], P[B), P[AB] in tems of pif's 11
and A4r's

: Example: IFT's - ned, wrapon lifetimes - ned.
' Discussion of significance of failure rates.
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i . . (cont'd)

(2) Round-dependent failures - round number om which failure occurs
is a discrete RV

3 (a) no withdrawal 3

1 . General Solutions: P[A], P[B], P(AB] 4n terms of pdf's
f& and af's
Shown to be same as Al

(b) withdrawal at failure times (no delay);
same as Al special case

Ei (¢) withdrawal et next round after failure - fixed kill i
1 probabhilities

] General Solutions: P[A], P[B], P[AB] in terms of pdf's
' and af's

3 Example: IFT'e med
FM - CRIFT (ned)

(3) Time-dependent kill prcbabilities

YT T AT

General Solution: h(t) 4n terms of pif's and df's
FD- CRIFT's (ned) - Time-dependent kill probabilities

General Solutions: P[A)}, P[B], PIAB] 4n terms of pdf's
and df's

Example

P, () = ——-‘—-—2- , similarly, for B
(rs + vt°)

(a, r, and v, constants)

FM - CRIFT (ned)

(4) Time-dependent kill probabilities and time-dependent firing
rates

[ General Solution: h(t) 4n terms of pdf's
] X and af's

B-U5




(cont'a)

P,(t) x, ()

A

PB t rB

FD = same, and special case: 4

t

elementary probability arguments

mixture technique

(3) uses stochastic differential equation method

THOMPSON, Devid E., "Stochastic Duels Involving Reliability,"

Naval Research Logistics Quarterly, Vol. 29, No. 1, March, 1972,
ppo l S"‘l .

Covers some but not all of T1

One new case, 2(c), round-dependent withdrawal at next firing time
after fallure and probability of failure on any given round is a
discrete RV

General Solutions: P[A], P(B], P[AB] in terms of pdf's end af's

mixture technique
elementary probability arguments

i rin, o ARk
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WILLIAMS, Trevor, "Stochastic Duele - II," System Development Corporation,

' Santa Monica, CA., Document, SP-1017/003/00, 13 Sept., 1963, 61 pp.
DDC No. AD420-515.
MM - CRIFT - Cumulants of h(t) (up to the fourth) derived in terms
of cumlants of IFT pdf
! FD - CRIFT ~ In times-to-kill as Erlang (k) functions
General Solution: Using FM above, can be used as an approximation
to any FD using means and variances of IFT's
Illustrations
FD - CRIFT - Approximate solution in terms of means and variances of
IFT's and kill probabilities (2 terms of an infinite
series)
mixture theory
moment generating functions
finite calculus
WILLIAMS, Trevor, "Stochastic Duels With Homing," System Davelopment
Corporation, Santa Monica, CA., Document, SP-1017/106/00, 18 May,
1965, 34 pp., DDC No. AD-617-TT3.
(A1so, "Stochastic Duels - I1I," System Development Corporation, Santa
Monica, CA., Document SP-1017/006/00, 22 June, 1964, T2 pp.
DDC No. AD-443-T5L.)
FD - CRIFT (both ned)
Hit probability, (pn), round-dependent and increasing, with
probability of & hit on n-th round (I ) a discrete RV with
paf a negative binomial
p = hit R 4 % where n = E(N), N the RV, round on
which hit occurs
This causes p, <p <p,
General Solution: P(A], P(B]
: - Curves camparing outcame Vs P, pb(instea.d of Dy Py )
; for various parsmeter values
" -ME of § and £ vhere Xk is a perameter in Erlang (k)
i .
s
’ mixture theory
noment generating functioms
geametric transforms
|
3
j B-4T
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WILLIAMS, Trevor, and ANCKER, C.J., Jr., "Stochastic Duels," Operations

R‘.ann, v°1- ].l, NO. S’ sgwl-Mo, l.%}, ppo 805-817.

(A1so, tem Development Corporation, Santa Monica, CA., Document
8R-1017/000/01, 20 March, 1963, 22 pp., DDC No. AD-L0O 637.)

¥D - CRIFT
General Solution: P[A], P[R]

Examples: (1) IFT's both ned = curves
(2) IFT's both Erlang (2) - curves

FD - CRIFT - Both fire simultanecusly at time zero ("classical duel")

General Solution: P(A), P[B], P[AB]
Example: IFT's both ned - curves

FD- CRIFT = A fires first 1/2 the time, B fires first 1/2 the time

(tactical equity)
General Solution: P[A], P[B]
Example: IFT's bdoth ' ned - curves

FD = CRIFT - For a random initial period of time, one side or the other
may fire with impunity (i.e., the other side cannot return
fire) - called "Random initial surprise” - time advantage

a CRV - positive values are A's advuntage, negative
values are B's advantage

General Solution: P[A]), P[B]

Example: IFT's ned and surprise time N(O,ca), curves

mixture theory
characteristic functions
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WILLIAMS, G. Trevor (ed. by ANCKER, u.J., Jr.), "Stochastic Duels
With Displacements (Suppression),” U.S. Army TRADOC Systems
Analysis Activity, White Sands Missile Range, New Maexico, TRASANA
Technical Memorandum 3-77, March, 1978, 8 pp., DDC No. AOQ- 521L6.

FD - CRIFT (both ned)
A miss may be a complete miss or & near miss. A near miss may
either be a kiil or cause a movement (suppression of fire) which ’3
lasts & time which is & CRV (both ned

Contestant is vvlnerable during a displucement (suppression),
but cannot retwn fire

General Solution: P[A)

difference equations
conditional probadilities

B-L9 N j




S A T e A R R R T . i T T e T R - S  T. -~ RN, Rl e e

» . 2INGER, A., :'Concentrnted Firing in Many Versus Many Duels,"
Universite’ du Québec, Montreal, unpublished, July, 1978, 27 pp.
FD - Alternats firing ;

« Fixed multiple hits to a kill required 3
(aifferent for each side)

é General Solutions: P(A|B starts), P(A|A starts ),

P(B|A starts), P(B |B starts)

3 | difference equations
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