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ABSTRACT

Lifting-body configurations are constructed from stream surfaces generated

by means of supersonic flows past inclined circular and elliptic cones. By

such ineans waverider shapes are devised with curved surfaces and known pressure

fields a:ýd shock-layer structures. The conical flow fields stem from perturba-

tions of the basic axisymmetric cone flow arising from small angle of attack

and small cross-section eccentricity. The approximate results are analytic

and in the form of hypersonic small disturbance theory. Various possibilities

for waverider shapes are discussed. Design formulas are presented that

determine how the Mach number, angle of attack, cross-section eccentricity,

and characteristic cone angle affect the waverider shape, pressure distribution,

and shock-layer structure.
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LIFTING BODIES DERIVED FROM

SUPERSONIC FLOWS PAST INCLINED CIRCULAR

AND ELLIPTIC CONES

1. Introduction

The design of an aircraft for high supersonic flight that achieves desire-

able aerodynamic behavior and still accommodates such demands as propulsion,

structures, materials, and operations is a very challenging task. A discus-

sijn of the requirements of hypersonic aircraft is given by KUchemann [1] and

by KUchemann and Weber [2]. When the Mach numbers are sufficiently high that

the flow disturbances are intrinsically nonlinear, a treatment of the problem

by means of linearized theory is not appropriate. A generalized study of the

problem by means of numerical solutions of the nonlinear governing equations of

fluid mechanics is very formidible indeed. For this reason the few known exact

solutions for flows past elementary geometries are extremely important. These

basic exact solutions provide insight and a knowledge of fundamental physical

features associated with high-speed flow. In addition, they can also be used

as building blocks for flows past more complex geometries.

A basic scheme for deriving ex,.,t solutions for three-dimensional lifting

bodies by means of simple two-dimensional wedge flows was set forth by

Nonweiler [3]. These results were elaborated upon by Venn and Flower [4], Nardo

[5], and others. The simplest configurations thus derived are called caret

wings, or :aret waveriders, because of their caret shape. Because these

aerodynamic shapes are derived from basic two-dimensional flows, they generally

involve flat surfaces and concomitant sharp corners where these surfaces inter-

sect. These sharp corners may be undesireable when factors such as viscous and

heating effects are taken into account,



Corresponding to the flat surfaces generated by the basic wedge-shock

flow, curved surfaces can be generated by utilization of the stream surfaces

associated with the axisymmetric supersonic flow past a circular cone. Such

surfaces were devised by Jones [6] and Woods [7]. These constructions

generate curved surfaces end curved shocks that are attached to sharp leading

edges. The flows for both the cone-generated surfaces and the wedge-generated

surfaces can be classified as conical flows.

Besides the axisymmetrical conical flows, there are also conical flows

associated with inclined circular cones and with non-circular cones. These

flows generate streani surfaces that could be attractive for constructions of

lifting bodies with curved surfaces. The analytical description of these

flows, as contrasted with a numerical description, generally involves a per-

turbation analysis of the basic axisymmetric circular-cone flow. A straight-

forward perturbation analysis is not uniformly valid in all the variables,

but fails in a vortical layer adjacent to the body surface. The pressure

and azimuthal velocity, however, are uniformly valid across the vertical layer

[8,9,10]. This is very important because the azimuthal perturbation velocity

is pertinent in determining the flow stream surfaces and the pressure is

important in determining the relevant forces on the surfaces. Thus the first-

order straight-forward perturbation expansion, while being suspect at first

glance, is thus pertinent in determining the stream surfaces and related forces

on waverider configurations generated by the perturbation results. The object

of this investigation is to generate various waverider configurations by means

of angle-of-attack and cross-section eccentricity perturbations of the basic

axisymmetric cone flow.

The present study rests heavily on the fact chat approximate analytical

expressions are available for the perturbed flows past circular [11,12] and

I 4 -Z
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elliptic [13,14] cones at small angle of attack. These results allow for

an analytical, as opposed to d numerical, investigation to be performed that

leads to results that are simple and easily understood. The effects of free-

stream Mach number, pertinent cone angle, angle of attack, cross-section

eccentricity, and ratio of specific heats on the shock shape, shock-layer

structure, stream-surface shape, and surface conditions can be readily estab-

lished. Although the results are approximate, they are accurate enough for

the parametric and design considerations that are of primary concern here.

When the trends and concepts have become clear, more precise and elaborate

schemes of analysis can be undertaken for numerical accuracy.

Our main concern In this paper is the generation of stream surfaces that

can be used as solid surfaces in lifting-body waverider configurations. We

shall outline how the pressure distributions can be obtained, but we shall not

obtain actual lift, drag, or moment results here. Such results, and other

results of interest such as reported by Squire [15], will be the subject of

further research.
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2. Fundamental Wedge-Derived Waverider

The fundamental wedge-derived waverider, sometimes called the caret

waverider, is derived from the basic exact flow field produced by supersonic

flow through a plane oblique shock wave, as shown in Fig. 2.1a. The flow

is deflected by the angle A when passing through the shock. The plane

shock wave is inclin.d at an angle s with the freestream flow. Let the

line formed by the common intersection of the planes parallel and perpen-

dicular to the freestream flow with the plane of the shock denote the leading

edge of a solid wedge. The upper surface of the wedge is parallel to the

freestream flow and the lower surfae-e of the wedge, inclined downward at an

angle A with the upper surface, *" the stream surface of the flow that has

passed through the shock at the common-line intersection denoting the leading

edge of the wedge. The flow field between the lower surface of the wedge

and the shock wave is parallel and uniform and has properties obtainable

from the oblique-shock relations.

The oblique-shock relations are well known and can be expressed in ana-

lytical form exactly for a thermally and calorically perfect gas. Owing to

the intrinsic interaction of the variables, however, the shock .,:gle, 3,

cannot be obtained explicitly as a function of the deflection angle, A .

It is thus useful to utilize the approximate results of hypersonic small dis-

turbance theory, valid for large freestream Mach numbers, M , arid small

deflection and shock angles. This shock-angle relation originally obtained

by Linnell [16] is

sin e. ' • (/-C _
s-nY + + (Msin)- * (2.1)

The corresponding relation for the pressure coefficient is

_....__... , , _...... .. _. ..__ X, .,• ,• • , .- --.. , , -.... •,• ,, •
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p - p.
C p V 2

p P V 2

C __(2.2)

Psin Y+ sin 77

In inviscid steady flow, any stream surface can be utilized as a solid

surface since no flow crosses a stream surface. We now wish to visualize

further stream surfaces in Fig. 2.1a and utilize them as solid surfaces in

a new configuration. Mark out the axis AB aligned with the freestream flow

and lying in the top surface of the wedge. The normal projection of the axis

AB onto the lower surface of the wedge is denoted by AC. Any plane passing

through the axis AB is aligned with the freestream flow, and any plane

passing through the axis AC is aligned with the shock deflected flow. Now

select the points D and E on the shock surface, positioned symmetrically

(but not necessarily) on either side of the axes AB and AC. The two plane

surfaces passing through the pair of three points ACD and ACE are stream

surfaces in the shock deflected flow. The two plane surfaces passing through

the pairs of three points ABO and ABE are stream surfacesin the freestream

flow. If we choose these four new stream surfaces as the relevant solid sur-

faces of an aerodynamic body, then the new configuration appears as shown

in Fig. 2.1b. This aerodynamic configuration is called a caret waverider

since it appears to ride on the plane shock wave attached to its under surface.

The upper surface is parallel to the free stream and hence at freestream

conditions. The under surface of the caret shape is at a uniform pressure

given by formula (2.2), and the shock stand-off angle is given by formula

(2.1). For a given caret waverider configuration, the shock wave will be



6

attached as shown in Fig. 2.1b only for the particular Mach number determined

from Eq. (2.1) with s and A given. The caret waverider is a lifting aero-

dynamic shape since the pressure is higher on the under surface.

LL

L !I
IL I
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plane surface parallel
to free stream

defl ected-fl ow
stream surface .0

plane shock surface

Figure 2.1 a) Wedge-Shock Ccnfiguration

b) Wedge-Derived Waverider
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3. General Considerations for Conical Flows

3.1 Coordinates and Geometry

We wish to determine the stream surfaces of conical flows past slender

elliptic cones at small angles of attack [13,14]. We use spherical cvordinates

in a body-fixed system shown in Fig. 3.1. Let a - tan ea and b tan Db be

the semivertex angles of the semiminor and semimajor axes of the elliptic

cone. Then the elliptic cone is described by

tan em:

tan ac tnm (3.1)m
Vl+e Cos 27 .

where

tan * m 2 ab I b -- e a , ,iSa + b• •l-e'/ (3.2a)

e b2 .a2e - a2• .(3.2b)

The parameter e is a measure of the eccentricity of the elliptic cone. For

small eccentricities we can expand Eq. (3.1) in a Fourier series, the first

two terms of which are

ec e -" cos 20 + Q(,-) , (3.3)

where
e 2

-G + T2 [3 2 sin2am] sin 2m + O(e") , (3.4a)

e + • (15 - 20 siniz, + 8 sin•e } 4- O(em)] sin 2-m (3.4b)
+mm ~m

41



The parameter e is a new measure of the eccentricity and is the appropriate

small parameter in a perturbation procedure. The parameter 8 specifies the

semivertex angle of the basic circular cone about which the perturbation

expansion is performed.

The conical shock wave attached to the elliptic cone has the form [13,14],

for small a and e

GS + hg cos -cg cos 2¢ (3.4)

where
+1 1/2/ • + 3(3.5)

and K8  Ma is the hypersonic similarity parameter. The parameters • and g

are the shock eccentricity factors associated with angle of attack and elliptic

cone eccentricity. They are functions of K8 and are shown in Fig. 3.2.

3.2 The Shock-Layer Structure

Let u, v, and w denote the r, 0, and p spherical components of velocity, and

let p denote the pressure. Outside the surface vurtical layer and the viscous

boundary layer, the variables have the following expansions for small c and •:

u(e,G) u 0U(e) + aUI(R) cos € + Eu1 (0) cos 2.

, v (e) + V"1(o) cos 0 + 4v 1(G) cos 23
(3.6)

01•,(e) sin ¢ + cwl(o) sin 2¢

P(o,ý) = Po(G) + iP1(0) cos € + epl(0) cos 2U

The lowest-order terms in the expansions, with the subscript zero, pertain

to the basic-cone solution. The first-order terms with the tilde notation

pertain to the angle-of-attack perturbation, and the first-order terms without *1

-- , •... . .. . .... .. - . ' ... . . " , • _ ... - 2;
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the tilde notation pertain to the elliptic-cone eccentricity perturbation.

The pressure and the azimuthal velocity components, •I(O) and w1 (e), are

uniformly valid across the vortical layer.

As calculated by Doty and Rasmussen [12], the angle-of-attack velocity

perturbations uj/(V 8), hI/V., and •I/V. are functions of 0 and K within

the fabrication of hypersonic small-disturbance theory. Correct to the first

order expansion of interest, the shock-layer structure can be normalized

by the variable

(3.7)

At the cone surface, 0 - 0, and at the shock, 1 - 1. The angle-of-attack

velocity components are shown in Figs. 3.3a, b, c as a function of • and

various values of Ka. The corresponding elliptic eccentricity velocity

components [13,14] are shown in Figs. 3.4a, b, c. The body-surface values

of the azimuthal velocity components, j(G ) and c''1(), are shown in Fig. 3.5

as a function of K . The body surface perturbation pressure coefficients, •p
p1

an~d Cp, are shown in Fig. 3.6 as a function of K.

3.3 Conical Stream Surfaces

The vector equation for a streamline, V x d• : 0, can be written in

spherical coordinates as

dr rdo r sin d (38)

The conical stream surfaces are deternined by the last two terms of Eq. (3.8).

For small angles and to lowest order we have

do do
V (0 ) j(0) sin + w1 •) sin 2¢ (3.9)

0 . . . . . . . . . . . . . . ° . . . . . . . . - ! ~ ~ • • I ,



To lowest order, only the zeroth-order polar velocity, vo(®), for the basic

cone and the uniformly valid azimuthal perturbation velocities, w,'() and w1 (o),

enter the analysis. Even though these velocity functions are known, it does

not appear possible to obtain an integral of Eq. (3.9) analytically. In the

cases when ot or c vanish separately, the variables in Eq. (3.9) can be

separated, and integration can then be obtained at least by quadratures.

The polar velocity, v0 (o), can be approximated accurately for small

angles by [11,12,13,14,17]

vo0 () - -V.e(l -D ) (3.10)

Other formulas for the basic-cone flow and the perturbed flow are summarized

in the Appendix.

gI
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Figure 3.1 Cone Coordinates and Geometry
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Figure 3.2 Shock Eccentricity Factors, -y 1.4
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Figure 3.3 Inclined-Cone Velocity Perturbations
a) radial
b ) polar
c) azimuthal



15

0..8
aK

0.2
0.0 0Ka 000. .

Ka CO-

0I 22

0.50J

OS 0,6

0..6

0.0 015 1hO 0,0 015 1.0

2.0

V©0

0.5-

0..0

0 0' I IOD0 06 1.0

*e-a
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a) radial
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Figure 3.5 Azimuthal Velocity at the Body Surface, y 2 1.4
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4. Waverlders Derived from Inclined Circular Cones

4.1 Stream Surfaces

We first consider the case when e=O, that is, a circular cone at angle

of attack. When R=0, we can separate the variables in Eq. (3.9), perform

the integration on 3, and obtain

do tan-
_ .In C 1 (4.1)

Stan -T

where
as a + CLg COS s ' (4.2)

and ýs is the azimuthal angle where the stream surface intersects the shock.

The function ^'(,) is known r14] and shown in Fig. 3.3c, and thus the quad-

rature In expression (4.1) can be evaluated numerically. When a proceeds

to the cone surface, 0 - 5, the quadrature on the left side of (4.1) diverges,

and the left side tends to minus infinity. Correspondingly, the angle , on

the right side of (4.1) tends to zero. Thus all the stream surfaces become

tangent to the body surface at ý-O, the leeward ray on the cone.

4.2 Approximate Integration

Perusal ol the function w(0) in Fig. 3.3c suggests that wcan be

approximated by the relation

, ,()=A + (4.3a)

where A 5 (4. 3b)

B 6) (~]4.3c)

and 7 - When this approximation is substitutod into the integral in

S •_• '" - . ..... .... 1" " --- ' - ....-..... ..
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'67q. (4.1) and the integral evaluated, we obtain

Stan
ki In [ .+ Z2 In E ](ýj + ýz) I n [ In tan 2 (4.4)

tan T

where Wo (4.5a)2 6 V.

ý2 - 'a (C -1)_V (4.5b)

Equation (4.4) can also be written as

S- 6+ tan

tan

Expression (4.6) gives a relation between B/S and ,, with *s, •/l,

and KS as parameters. (Recall that a s/1 is given by Eq. (3.5).) The

parameter ýj is always positive since v'(6) is negative when oL is positive,

and vice versa. The dependency of ýt on K, can be determined with the aid

of Fig. 3.4. The parameter ýz changes sign as K5 varies, as might be anti-

cipated from perusal of Fig. 3.3c. it can be shown that [11,12]

V 91 •z .g /0. (4.17)

We can thus write ýZ asf -£ 2(• + l)( w(5)/V. + 2•(,a2 -g)(.a

T eee + 2+f (4..8a)

The dependency of ýz on K" is shown in Fig. 4.1. At KS  0 and K, 0.9,

the parameter ýZ is zero. It is positive when U<K,g0.9and negative when

K.S 0.9.

Li
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Several typical stream surfaces (plotted as Z tan 3 vs. -, with Z constant

and tan 0 - a, that is, projections on a plane perpendicular to the cone axis)

are shown in Fig. 4.2 for K, - 1.3, / • 0.2, and y 1.4.

4.3 Lip Anle

We shall refer to the portion of a stream surface adjacent to the shock

as the lip of the stream surface. The acute angle between the lip of a stream

surface and the plane surface passing through the lip and the axis of the

body cone is referred to as the lip a , denoted by ý. If o - •(e) denotes

the functional form for a stream surface, then the unit normal vector to a stream

surface is given by 
(

(4.9)
[I + sine(--)]/-

where e^ and e0 are the azimuthal and polar spherical unit basis vectors.

The lip angle is determined by cos - e¢ . n , and we find that, for small

angles 3,

tan - e* (do) (4.10)

From Eq. (3.9) we determine that

aw i( s) s i n s n s i n
e~(d~ a 0  s (4.11)

Utilizing Eq. (4.7) we determine the lip angle to be

tan a sin•.2

The dependency of 3 on K is shown in Fig. 4.3. The ratio (tan '•)csc'.s/(•/6)

increases from zero to the asymptotic value 5.5 as K. increases from zero to

infinity. The l1p angle thus becomes thicker as %/.3 and K. increase separately,

and it is a maximum when t, 900.
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4.4 Spacing of the Stream Surfaces

In Eqs. (4.1) or (4.6), the value of os designates a particular stream

surface, and a stream surface can be represented functionally by s = ýs(0'@)

constant. How closely the stream surfaces are spaced as e is varied outward

from the cone surface, for a fixed azimuthal angle 0, can be evaluated by the

derivative (as /a) with o held constant. From Eq. (4.1) we obtain

99 • ev o(G)

s eZfl4 . (4.13)

In terms of the normalized shock-layer variable • defined by expression (3.7),

we have

(•__¢s , •I•'6) sin ( . )

This derivative Increases when i increases and goes to infinity when • goes

to zero (D -÷ 6), and the stream surfaces become more closely spaced correspond-

ingly. As seen from Fig. 3.3c, the derivative Is insensitive to variations

in Kd when ý is about 0.7. When is less than 0.7, the derivative decreases

as K increases, and vice versa when • is greater than 0.7, but to a lesser

degree.
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4.5 Waveriders with a Freestream Upper Surface

Any stream surface just described can be utilized as a solid surface,

but a complementary surface remains to be described in order to fashion a

closed aerodynamic body. In this section we choose such surfaces that are

parallel to the free stream. We first demarcate the axis passing through

the vertex that is aligned with the free stream. This axis is inclined

by an angle a with the cone axis. Any plane passing through this freestream

axis is parallel to the free stream. We select pairs of these freestream

planes that pass through the lipshock intersection of the conical stream

surfaces, and a closed aerodynamic body is thus formed. The upper surfaces

are pairs of freestream planes passing through the freestream vertex axis,

and the lower surface is a stream surface of the inclinet circular-cone

flow field. These surfaces Join together at the lip-shock intersection,

An example is shown in Fig. 4,4 for which the lip-shock intersection

occurs at *s 900.

There are an infinite number of such aerodynamic waveriders, depending

on how the freestream planes are selected. As a step towards distinguishing

between the different configurations, let us determine the lip angle, ýw'

between the freestream planes and the conical stream surfaces. The normal

unit vector to a freestream plane intersecting the shock at s is, for small

angles
.

*Lc0- (•-)(l-g) cos bs] eý - Tj) sin ýs e(

/1 a- (1)(l-') Cos I + sin Ps
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The lip angle, w, is determined by the condition

Cos ýw * (4.16)

where n is the unit normal vector of the conical stream surface evaluated at

the shock, given by Eq. (4.9). We find for small ratios a/6 << I that

tan ;•- )" l sin ýs (4.17)S- (1-9) Cos Os

If the waverlder lip angle is ever to be a cusp, then we must have *w 0.

The right side of Eq. (4.17) can vanish only when sin s " 0 or when

S cos -s . (4.18)

The right-hand side of Eq. (4.18) vanishes when Ka - 0 and increases to 0.87

when K ,. When K - 0.5 and a/S - 0.5, then Eq. (4.18) yields os a 0,

and a cusp can occur only at 0s a 0. When K5 is larger than 0.5 and a/6 is

less than 0.5 a cusp cannot occur except at *s X 00 or 180". These are generally

the conditions of interest and, as such, the possibility of a cusp is of no

concern.

From structural or heating considerations, the condition where the lip

angle is a maximum is of interest. Setting the derivative of \W with

respect to s equal to zero yields, for small c/S,

cos * " -- ' . (4.19)

[4.
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When the right-hand side is less than minus unity, no relative maximum occurs.

When the right-hand side is small, we obtain

(4.20)

which illustrates that the maximum value of w occurs when > i/2. When

K6 N 1.3, y * 1.4, and a/a - 0.2, 3w a 8.60 is a maximum when s 96.80.

This particular waverider is similar in shape to that shown in Fig. 4.4, for
which os " 90 and 8 B.57°, The upper surfaces in these cases appear to

have a positive dihedral angle.

Another waverider can be formed in which the two upper freestream planes

are parallel, that is, the upper surface is flat. An example is shown in Fig. 4.5.

From geometrical considerations, this situation occurs when, for small a/a,

Cos (4.21)

For K, a 1.3, y u 1.4, and a/a - 0.2, we get Os 81.4* and *w 8.20. This

waverider is akin to the waverlder formed from a half cone at zero angle of

attack with a symmetry plane through the cone axis identified as a flat, zero-

thickness delta wing. The waverider shown in Fig. 4.5, however, while having

a flat upper surface, has a faired under surface with a "wing" of finite

thickness. This waverider can be said to have zero dihedral angle.

Other waveriders in this family can be formed that have negative dihedral

angles. These exist when ýs is less than the value given by Eq. (4.21). An

example is shown in Fig. 4.6 for 0s a 70* and 'w a 7.60. All of the waverid•rs

in this section are lifting bodies since the lower conical surface is at a

higher pressure than the upper freestream surfaces.
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4.6 Waveriders with a Complementary Wedqe Surface

Another means of deriving a closed aerodynamic shape in conjunction with a

conical stream surface is to use plane surfaces passing through the cone axis.

In these cases the freestream flow must be deflected by the angle a. We can

thus use the formulas for the fundamental wedge-derived waverider obtained

in Section 1, setting a •. Let the angle between the two cone-axis plane

surfaces be denoted by 2ip, where p is the dihedral angle, as shown in Fig.

4.7. The plane (or wedge) shock wave across the top of the waverider is

oriented at an angle sw with the free stream, and it is related to the

cone shock by the relation

SwS
(4,22)

S (B+ cos Cos 'p

We now note that O s - ,p and that a is given by Eq. (2,l), with sin a -

and sin A - a. We thus rewrite Eq. (4.24) as

S(. , [ - cos ,• cos :• (4.23)

Recalling that z a/6 is given by Eq. (3.5), we note that Eq. (4.25) )rovides

a relation between a/&, KV, and p. Solving for a/6, we obtain

BO cos ' ± /(X.J].• cos ¢),- - B1}
• (4, .,,,2

(.L•_L) -"'.B 2

where
3 cos (4.25)

I.... I I II
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Figure 4.8 shows a/S plotted as a function of K• for various values of the

dihedral angle ý and for y a 1.4. We observe that a/3 is double valued for

fixed values of K, and ý, but this Is only apparent for ý > 75' since the

curves are plotted for only the realistic values of a/$ < 1. The condition

*/1 n 0 corresponds to zero flow deflection over the upper surface; the

dihedral angle p is such that a plane Mach surface sits on the lip of the

waverider, and the lips extend to the cone surface as a pair of infinitesimally

thin delta wings.

The lift on the waveriders in this section may be positive or negative

depending on the value of oi/s. The pressure in the conical flow field Is

given by
Opt(0,0) C Po(S) p ( 1

PC0 CLP
- ' " *. ---+--- cos 0 + O(•) , (4.26)

and the pressure In the wedge flow field is given by (from Eq. (2.2))

CPw _ +1 (0) (4.27)

The minimum pressure on the conical stream surface occurs at the symmetry plane,

,.3 a and 0 • 0. The minimum lifting pressure differential is thus given by

CPm C PC(6,0) Cpw
77,.c -" (4.28)

We also note that C ,

Cpo ( )
" + I + • 2 In ")
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ji I Further, from Fig. 3.6, we note the C (6)16 -4. A lower bound for the value
p1

of az/4 corresponding to zero lift can now be found by setting LCPM * 0

i C2 I nlla2 -4(a) +1~2/.~) (.).$R:T~) 0. (.0

This relation provides A/d for zero lift as a function of K5 and is shown In

Fig. 4.7. The waveriders described by conditions below this line are lifting

when the conical surface is underneath, and the waveriders described by condi-

tions above the line are lifting when the wedge surface is underneath.

Approximately, the zero lift conditions occur when 4/6 % 0.4 for K, > 1.

A systematic variation of the cone-wedge waverider cross section geometries

Is shown in Figs. 4.9a, b, c, d, e, f' for a/ a 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.

For each value of ca/5, dihedral angles of *451, 60-, 700, 750, 80* are

shown along-with their corresponding values of K~ as determined from Eqs. (4.25)

or (4.26). For a/ 0.1, 0.2, and 0,3, the bodies are lifting when the conical

surface is underneath. At a/8 a 0.4, the body is nearly at zero lift, For

a/ 0.5 and 0.6, the bodies are lifting when the wedge surface is underneath.

The shock lies closer to the body when K~ Is larger, and hence when p Is

larger. The standard conditions K,, M 1.3, y - 1.4, and a/6 0.2 are represented

in Fig. 4.7, in which case 57" and 'A' 1 5".
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5. Waveriders Derived from Elliptic Cones

5.1 Stream Surfaces

We now consider the case when 0 - 0, that is, an elliptic cone at zero

angle of attack. When a - 0, we can separate the variables in Eq. (3.9),

perform the integration on 0, and obtain

Sn tan (5o

where

a 3- g Cos 2s , (5.2)

and where we have replaced 6 that appears in Eq. (3,10) by 0cl the elliptic

cone angle,

0 a 6 - c cos2• . (5.3)
ct

The variation of P that occurs in Cc is to be ignored in the integration.

These operations are consistent in our present first-order accuracy, The azi-

muthal velocity wi(o) is known [13,14] and is illustrated in Fig. 3.4c. The

quadratur'e thus can be evaluated numerically. When 0 proceeds to the cone

surface, 0 .- 0c, the quadrature on the left side of Eq. (5.1) diverges, and the

right side tends to minus infinity. Correspondingly, when the shock location

of the stream surface, PS is less than 900, the angle ,P tends to zero. When

(P is greater than 900, the angle ý tends to 1800. Thus the stream surfaces

that begin at the shock for Is < 900 become tangent to the cone surface at

0 0, and the stream surfaces that begin at the shock for 0s .90c become

tangent to the cone at P - 1800. The stream surface for p5 " 900 is a

symmetry plane that is perpendicular to the body at p " 90". Examples of

stream surfaces are shown in Fig. 5.1.

:, , • , . .. . .. . †. .. . . ..
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5.2 Approximate Integration

Figure 3.4c suggests that wl(e) can be approximated by the relation
0¢ B

w1 (a) - A + - (5.4a)

where
Swj(Gs) -wI(%)A a w - i((5.4b)

B • I(... w1 (e5 )] (5.4c)

where ' e s/Oc - a + O(E), Os - + O(e), and oc • + O(e). The errors of

order E in Eqs. (5.4) will subsequently be neglected. When this approximation

is used to evaluate the integral in Eq. (5.1), we obtain

k, In ]. + k2 In C+- - (k, + k2 ) In [0 In C tan (5,5)
T (c S c s ta s

where

k, w(5.6a)

k2= A•.+1) W()"2a Wj(ý)
Sz- -6 (5.6b)

Equation (5.5) can also be written as

k,* K + kS ] 05 = •(5.7)
______tan p[ c - [ "- tan (.

Expression (5,7) is a relation between o/6and t s with •s / ' and

K as parameters, The parameter k, is always positive since w1 (6) is negative

when e is positive, and vice versa. Figure 3.5 illustrates the dependency of

k, on K . The parameter k2 changes sign as K varies, which is suggested by6I
the behavior of w1 (o) shown in Fig. 3.4c. It can be shown that [13,14]

2g/2(58)
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We can now write k2 as

4g + a(a+l) {wj(s)/V }k 2 a .• (5.9)

Figure 5.2 shows how k2 depends on K• . The parameter k2 vanishes at K6 1.9.

In the range 0 _. K 1.9, k2 Is positive, and it is negative when K6 > 1.9.

5.3 Lip Angle

The lip angle is defined by cos x * ec.n, and for the elliptic conical

surfaces is determined by
a sin 2s

tan x - !

2g sin 2€ s Sc ~ c Z ~ l )( 5 . 1 0 )

Figure 5.3 shows the dependency of x on K•. The ratio (tan x)(csc 2ýs)/(c/S)

increases from zero to the asymptotic value 8.7 as K increases from zero to

infinity. The lip angle becomes thicker as K and &/1 increase separately.

The lip angle is a maximum when ýs a 450 and 1350, and it is zero at the

symmetry planes ,ps - 0 and 900.

5.4 Waveriders with a Freestream Upjper Surface

The axis of the elliptic cone at zero angle of attack is parallel to the

free stream, and any plane that passes through the cone axis is parallel to the

free stream. We choose pairs of plane surfaces that pass through the cone

axis and intersect the shock at the lips of a conical stream surface. When

the plane surfaces are the upper surfaces and the conical surFace is the lower

surface, a lifting aerodynamic waverider is formed. Two examples are shown in

Fig. 5.4 for K, 1.3, /6 = 0.1, and x = 1.4. These configurations correspond

to lip positions of 1s 1000 and 1100. The respective lip angles are found
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to be jIx 2.20 and 4.00. These elliptic-cone shapes are similar in form to

the circular cone shape shown in Fig. 4.6. The elliptic cone shapes are flatter

on the bottom and have thinner lip angles.

The pressure coefficient on the undersurface is given by

C Cp (0) (P )
P 0cos 2ý (5.11)

When Eq. (5.7) is used to determine 0 as a function of $, the surface pressure

as a function of $ can be determined.

I.

• *--. .. . . . . . .-" . . • .'• .
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Figure 5.4 Elliptic Cone Waveriders With Freestream Upper Surfaces
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6. Waveriders Derived From Inclined Elliptic Cones

6.1 Stream Surfaces

The general stream-surface structure for flow past an inclined elliptic

cone can be studied by rewriting Eq. (3.9) in the form

=4 (+ 2 e w dI d o -~ d u ( 6 .1 )ICZ ) (1 .. Z)(k 3  + k4P)

where P Ecos 0 , (6.2a)

k3  • (6.2b)ka il(O) + 2Ewl(G)
k4=w 1( (6.2c)

The difficulty with the integration of Eq. (6.1) comes from the combination

w*(+.P) k3 + k4U , (6.3)

which may vanish in the shock layer. The azimuthal velocity vanishes between

the shock and the body when w* 0 0. The azimuthal location 0 where w* vanishes

is determined by

Cos - (6.4)

The surface for w* 0 (dashed curve) is shown in Fig. 6.1 for K = 1.3,

"* 1.4, / = 0.2, and e / 0.1. The position where this surface inter-

sects the body surface is denoted by ýo =oc and is determined by

Cos ý0 " - "--.1

cc -• (6.5)

For the conditions in Fig. 6.1 we have ýoc 1270. The surface for w* 0

lies on the windward side of the body. Between the body and the surface w* 0

the azimuthal velocity is positive, and it is negative between the w* 0 surface
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and the shock. For other conditions, cos can be calculated with the

use of Fig. 6.2, which shows the ratio wj(6)/w1(6) as a function of K8

for y - 1.4. Also shown is the ratio at the shock, wj(,,)/W1 (B). For a given

value of K6, the ratio wl(e)/0(1) increases from the shock value to the

surface value.

We can obtain a straightforward approximate integration of Eq. (6.1)

by treating k3 and k4 as constants. Experience shows that the best values

to use for these constants are the values at the body. For this choice,

the body surface conditions are currectly given, which is especially important

for the position of the intersection of the windward-leeward dividing stream

surface with the body, denoted by €oc'

With the left side of Eq. (6.1) evaluated as for the previous cases,

we obtain the approximate integral of Eq. (6.1) to be

k5 k6

"an csc + k cot(6.6)
ta Os csc IS+ k, cot $

where k5 - 1/(K - k1) (6.7a)

k6  -k/(ý - kj) (6.7b)

ec -S - • cos 2ý , (6.7c)

- + a cos -"g cos 2. (6.7d)

Equation (6.6) reduces to Eq. (4.6) or (5.7) in the separate limits c-0

and 0 -' 0. If the conditions are such that k1  kj, then the appropriate

limit must be taken on the right-hand side of Eq. (6.5), which corresponds
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to setting k3 - k4 in the original differential equation (6.1).

Figure 6.1 shows stream surfaces generated by Eq. (6.6) for the conditions

Ka - 1.3, y - 1.4, a/S - 0.2, and E/S 0.1. The dividing stream surface

which separates the flow that proceeds toward the leeward ray from the flow

that proceeds toward the windward ray occurs at 5s a 1270. This dividing sur-

face is a plane surface in this approximation. The actual stream surfaces

should appear slightly different near the dividing stream surface and toward

the windward ray. In this region the actual stream surfaces have a negative

value of azimuthal velocity at the shock and hence should slope towards the

leeward direction before curving into the radial direction at the surface

w* - 0 and then curving further towards the windward ray as shown. The F

slope (/e) should actually be positive in the windward region whereas
so

the approximation (6.6) yields a slightly negative slope. Because the details

of the azimuthal velocity field have not been taken into account, the dividing

stream surface and its intersection with the body surface are not precisely

described by the plane surface shown, even though the location of the body

intersection is correct. Both the actual slopes and the approximation

slopes at the shock are small in the windward region, and hence the descrip-

tion shown in Fig. 6.1 is qualitatively valid except for the aforementioned

discrepancies.

6.2 Maximum-Entropy Surface

Outside the vortical and viscous boundary layers, the entropy has the

expansion

s(0 o so ()D+ as, cos o + Es, cos 2ýp (6.8)

where sg and s, are constants associated with the angle-of-attack and

eccentricity perturbations. Let

s asl cos + Es1 cos 2ps (6.9)

• . ...a. $ • , - . ,
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denote the entropy perturbation at the shock. It can be shown [11,13] that

S-- 2 V2

SCv -y~y-l)~ (l-%) [c(l-•) cos •s+ eq cos 2%] , (6.10)
c (1 0 & 0) W VCsý

where &o " //P (3) and a2(s) • yp (W)/po(a). The maximum entropy pertur-

bation at the shock occurs where the derivative with respect to Os of Eq. (6.10)

vanishes. This occurs where
Cos Osm" "4 'cou ~).,(6.11)

If the value of the right side is less than or equal to minus unity, the maximum

occurs at the windward ray, 0s a 1800. For the conditions of Fig. 6.1

(Ka a 1.3, y • 1.4, a/d a 0.2, c/S w 0,1), the maximum-entropy stream surface

originates at the shock at ps a 1330. This is on the windward side of the

dividing stream surface which is located in Fig. 6.1 at '5s a 1270. Thus the

maximum-entropy stream surface does not wet the body surface but lies in the

windward part of the shock layer. That the body surface and maximum-entropy
surface are not necessarily identical is also true for hypersonic blunt-body

flows (see Hayes and Probstuin [18], page 399), Melnik [10], on the other hand,

in his analysis of conical flows assumed that the body was a maximum entropy sur-

face. 1'he conical result holds for all values of Kd. The ratio of cos bsm

and cos *oc' given by Eq. (6.5) is

Cos •._.. 1
:os % lc-2 w1(6) (6.12)

For y - 1.4 this ratio is greater than unity for K, > 0, and hence we
0

conclude that sm > 'oc for K > 0.

6.3 Lip p e

Corresponding to Eqs. (4.12) and (5.10), we determine the lip angle,

\i, for the shock-stream surface intersection for an inclined elliptic cone

I I i-1............ • . ..'' ... .... ....... .. . ... .. . .. ......
I f I . II II I
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to be given by

tan x * tan + + tan X

sin os + L sin 2s (6.13)

When the angles are small, the lip angle for an inclined elliptic-cone stream

surface is equal to the sum of the lip angles for the corresponding inclined

circular-cone stream surface and the aligned elliptic-cone stream surface.

6.4 Waveriders With Freestream URper Surfaces

As before, waverider configurations can be formed by utilizing freestream

plane surfaces that pass through the vertex along an axis inclined at an angle

= with the cone axis, and intersect the shock at the lips of an underneath

conical stream surface. As an example we choose the conditions shown in

Fig. 6.1 with the lip located at - 90'. The waverider so formed is shown

in Fig. 6.3. The freestream surface intersecting the shock at has a unit

normal vector given by

- ()(l-•) cos s" (•) g cos 2s - a sin se

n- - (6.14)

C- cos p5  g cos 2p S] + (1)2 sin2, s

The waverider lip angle, xw, is determined by the condition cos Xw n,. n,

where n is given by Eq. (4.9). For small a/s, we obtain

Ssin C
tan Xw - tan x. - cs p . (6.15)

o - (•)(l-•) co s - (*) g cos 26

The waverider lip angle in Fig. 6.3 is found to be Xw M 8.9'. This waverider

has a positive dihedral and is analogous to thp circular cone waverider

shown In Fig. 4.4. The elliptic-cone waverider in Fig. 6.3 Is more shallow

L.I II l-f "i .. .l
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and flatter on the bottom than its circular-cone counterpart in Fig. 4.4.

It also has a slightly greater span since the attached shock is broader for

the ellipse. The pressure on the windward ray of the ellIptic-cone waverider

is less than that of its circular-cone counterpart, but the pressure at the

lips is greater owing to the greater inclination of'the shock. There are

also elliptic cone waveriders with zero and negative dihedral, corresponding

to the circular-cone waveriders shown in Figs. 4,5 and 4.6, but these will

not be discussed here. I

6,5 Further Remarks

Elliptic waveriders with wedge-shock upper surfaces can also be constructed,

such as was done for the circular cone configuration shown in Fig, 4.7. Because

there is an additional parameter, e/s, involved in fitting the wedge-shock

to the waverider, the analysis is very involved and will not be considered

here.

Other characteristics of interest for the families of waveriders presented

here are lift, drag, and stability. The pressure coefficient on the conical

stream surface can be obtained from the equation

c C() C() C (0)
! (ed) - -- + - cos p + (i) cos 2, , (6.16)
62 62 6

which is in hypersonic similarity form and can be regarded as known [13,14].

The lift and drag characteristics can thus be determined without great difficulty.

The pitching moment can also be determined, but general stability characteristics

require a knowledge of off-design flow conditions. These considerations are

fruitful subjects for further research.

........................
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7. Some Considerations Regarding Control Surfaces

7.1 Control Flaps

For controlled flight, control surfaces are necessary for changing and

maintaining pitching, yawing, and rolling motions as well as aerodynamic trim.

The waverider configurations that have been derived so far generally have

horizontal or nearly horizontal surfaces where flaps can be placed to produce

nearly vertical forces by their deflections. If enough dihedral is present,

it may be possible that the flaps could produce the behavior of a vee tail

and thus obviate the need of a vertical fin. In general, however, the design

of controlled flight necessitates the consideration of vertical control sur-

faces. In this section we shall formulate the analysis of vertical fins that

are themselves waverider configurations.

7.2 Vertical-Fin Control Surfaces

We consider a wedge-shock caret waverider, such as shown in Figs. 2a and

2b, but that is nonsymmetric, that is, the polar angles describing the free-

stream surfaces are unequal. A typical configuration that shall be utilized

as a vertical fin is shown in Fig. 7.1. Let one freestream surface be denoted

by tan os® 05 s®(for small angles) to represent the angle between a freestream

cone axis and the corresponding cone shock The other freestream surface which

shall represent the left half of a vertical fin is denoted by the conical angle

.1"The flow deflection angle is denoted by A and the shock angle is denoted

by Bw All these polar angles are regarded as small and are shown as projections

on a fixed Z plane. The dihedral angle between the two freestream surfaces

is denoted by y.

From geometrical considerations, the law of cosines yields
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2- (C + - 2 2 22) + 2

Expanding this equation and solving for of yields

s 0 2 1/2
= cos ± sin ij[-w)-l] (7.2)

Since os /0f is always positive the plus sign must be chosen when > > 900

since cos p is then negative. For a continuous variation, a change in sign

occurs when the radical vanishes. This does not occur 7ince e /a > l.

Hence the plus sign is to be selected in Eq. (7.2).

Equation (7.2) follows from the geometry of the configuration. The

shock conditions of gas dynamics, however, require that sw is determined by the

flow deflection A and the freestream Mach number as given by Eq. (2.1). We

can thus rewrite Eq. (7.2) as

1/2
cos • + sin U [ - ) 2 )- " 2  (7.3)

and determine s/• from

K K 2 + 1 (7.4)
w

Thus (of/5) is a function of o,: /, KV, y, cos •, and ýlS, where 6 is taken

as the chararteristic angle of the cone flow. When 6 = 0, w takes the

Mach angle ds its minimum value, and of takes a minimum value given by

Os s 1 /2

- cos + sin ,, [( ) K• - 1] (7.5)

mrin
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7.3 Vertical Fin for the Elliptic-Cone Waverider

We consider the elliptic-cone waveriders shown in Fig. 5.4 with the con-

ditions K, = 1.3, 1 = 1.4, and c/S - 0.1. In this case we match the freestream

upper surface,; of the cone waverider with the freestream surface of the half-

fin analyzed in Section 7.2. We thus set • and

*s

OS -)s - g cos 2 . (7.6)

For the lip at ýs 1000, we get for various values of A/3

0 1.06
0.1 1.21
0.2 1.40

Since the freestreani surfaces are matched, the vertical fin can start at

the cone vertex, or at some other position. The configuration for which the

fin starts at the vertex is shown in Fig. 7.2 for 6/6 - 0.2. In this case the

fin shock is attached to the conical lip. The case where the fin begins half-way

back on the elliptic-cone undersurface ib shown in Fig. 7.3 for A/6 - 0.2. In

a real flow, owing to viscous boundary-layer shock interaction, the flow would

not be as well-behaved as illustrated here.

7.4 Vertical Fin for Inclined-Cone Waveriders

When the basic conical waverider surfaces are derived from cones at angle-

of-attack, the freestream surfaces are inclined at an angle a with the geometric

cone axis. The formulas in Section 7.2 must be adapted to these situations

by the appropriate evaluation of ý. and 1. ) The unit normal vector to the free-

stream surface passing through lip shock and the freestream cone axis is given

by , defined by Eq. (6.14). If y denotes the unit normal vector to the

" . . . ,. .. .
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vertical plane, then we obtain • from the condition cos - n.

C!-- ( D-)(1-•) cos (L) ( jcos 2ýsi cos ý, + T sin'ý,Cos •" . •(7.7)

I~ ~ ~~o Ca-(-(l O (1-) § cos 2%32z + (E)2 sin' o

When a 0, this reduces to the result O - .- *s. There is no discrepancy

in this result compared to Section 7.3 if it is realized that the windward ray

was taken as 0 - 0 for the inclined-cone waveriders, whereas the non-inclined

elliptic-cone waverider utilized s 7/2 for the conical surface.

From geometrical considerations, we also obtain

• 2 * 2
s [ a* + 20 cos ,s(7.8)

where

as aB + 4 o Cos 2eg cos 20 (7.9)

We shall not consider further calculations here.

,ii

.-. ~... ' ..



63

LL

Figure 7.1 Geometry for the Vertical Fin
i
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K6 = 1.3

- 0.1

"- 0.2

i'i

"1.4.

Figure 7.2 Elliptic-Cone Waverider with Fin Starting at Vertex
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Ks 1.3

Figure 7.3 Elliptic-Cone Waverider with Fin Starting at Half Leng-th

&NOW



66

8. Concluding Remarks

By means of stream surfaces obtained from angle-of-attack and cross-section

eccentricity perturbations of the basic supersonic axisymmetric flow past a

circular cone, aerodynamic lifting-body configurations have been derived. The

emphasis has been on a systematic parametric study on the various configurations

that can be obtained. The configurations have attached shocks on sharp leading

edges and thus can be described as conical waveriders. Utilization of wedge-

shock caret-waverider results leads to a combination of configurations and to

vertical-fin control surfaces. Generalization of the perturbed flow past a

circular cone to allow for generalized non-circular cross soctIons [19] can

lead to further aerodynamic combinations.

The analysis has proceeded within the framework of hypersonic small-

disturbance theory, and approximate analytic formulas have been derived that

apply over a wide range of conditions. Although pressure distributions have

not been calculated, the pertinent formulas have been presented. Further

calculations by interested investigators can be performed readily.

The lifting-body configurations that have been presented appear attractive

in terms of high lift-drag ratio requirements. Further work is required to

account for other aerodynamic factors. Some of these are

1) lift, drag, and moment characteristics,

2) boundary-layer growth and related viscous effects,

3) off-design effects,

4) details oF flaps and other control surfaces,

5) unsteady flow and dynamic forces and moments,

6) blunted edges and noses,

7) experimental results.

... ....... .....~ * - . ... ..
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These subjects are part of a continuing program of research at the University

of Oklahoma, sponsored by the United States Air Force.
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APPENDIX A

FORMULAS FOR THE BASIC AXISYMMETRIC CONE FLOW

Formulas for the hypersonic flow field in the shock layer of an unyawed

cone can be obtained from the analysis of Rasmussen [17]. They are also derived

alternatively in the Appendix of reference £11]. For small angles within the

framework of hypersonic small-disturbance theory, the radial and polar velocity

components are given approximately by

uo 62 02 + 20 =l , (A.l)

vo o •l

+1 + 1 />
where • / (A.3)

and KE M a is the hypersonic small-disturbance parameter.

The temperature, speed of sound, and Mach number are given in terms of

the velocity for homentropic and homenergic flow. We obtain

To a02 (Y-l) M.'+ 2 1[ in2 JAS-a• T'-) lo+• 1 + 1:l_ K ý' [2 + 1In -D •-7-] (A.4)
T Y1 z 2 K50

where errors of order 62 have been ignored. Since the flow is homentropic,

the pressure is determined by

(a T (e) T(o) T --(3)

0 * [ 0 L I ] (A.5)

The temperature change (and hence the pressure change) across the shock layer

is small, and hence we can use the first term of a binomial expansion to write

p (o)T (e) - T (8)

* 1 1 T (~)(A.6)
00
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When the pressure jump across the shock is taken into account,

0p (a) 2P.(Bp= 1+ •(Mzsin28 -l) ,

1 + yK2 (A.7)

we can finally write the pressure distribution across the shock layer as

po(•) .yK• (y+l) KS + 2 32  
_2

2(.S 1 +2 { 1 + In 1] (A.B)p. 2 '(7-1 Ka + 2'

LL

F''
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APPENDIX B

FORMULAS FOR THE INCLINED ELLIPTIC CONE FLOW PERTURBATIONS

The flow perturbations outside the vortical layer are a linear combination

of the angle-of-attack contribution and the cross-section eccentricity con-

tribution, as given by Eqs. (3.6). At the shock, the angle-of-attack velocity

perturbations are given by [11,12]

- -- -u [l ( - to)] , (B.l)

S-(1-6) [2 ( - ) . o] + g(2 - o)(B.2)

y+l

S, - l • ( 0- • ) ] ,( B .3 )

where

P. 62 •2.1_____ -l • -(B.4)

Is the density ratio, and a . The shock eccentricity factor is

given by

3 + 20Z [3 4- + ) - In[Fa + /V3T]" Y + l cy / 7
S= (B,5)

+ 4G.2 In E + /_
5 - 2(1+.r ) [1 + a ] . .. n + 7

At the shock, the cross-seltion eccentricity velocity perturbations are

given by [13,14]

ul(a) S: g (I - :o) ,(E.6)i
0i
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g E l - } - (2 - •o)] (B.7)

V- - 2(l- ) (B.8)

and the shock eccentricity factor is given by

603
g = (B.9)

3 cos ( ) .•."+ 6 (o6 + a2 ) + 34 2 - 5

The pressure disturbance in the shock layer is given by [II,12,13,14]

(U + v ý,)/a 2 + F, B1a____= - y (Uo• + o1lo2+R (B.lOa)

p I

-Y (UoU + VoVl)la2 + F (B.lOb)
p(C)~ (u 1  v0v)a 0

where

1 • - 2�v yYv (l'a)(l'-e)'/a (B) 0 (B.lla)

Sl

F1  - (-T )v 0 yV 2  g(1-{o) 2 /a2 (0 ) (B.llb)

The azimuthal velocity perturbation wj(G) is related to the radial

perturbation u1 (o) by [13,14]

n F,

n ul (a) + o wi(e) (G Ho) ,B.12)

where

Vo do (B.13a)
0 0V0
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0
I =exp f Vo do] (B. 13b)

and where n - I for the angle-of-attack perturbation and n 2 for the cross-

section eccentricity perturbation. The pressure at the body surface o = 6+0(aE)

does not depend nn v, since v (6) = 0. Thus, replacing u1 (s) by wI(S) by

means of Eq. (B.12) yields the body pressure perturbation as a function of the

azimuthal velocity perturbation:

PI(S) y S uo(a) wI (6)u ( ) Ho )
p 76 n ao2 (6) a I[l -07o (6) ](.4

When Ho(6) is evaluated by means of Eqs. (M) and (A.2) and it is noted that

a 2(o) varies only a small amount across the shock layer, such that a 2 (o)- a'2 (B)

then Ha(6) has approximately the value [13,14]

H (s) a 2 (- )IV (a.15)
0 0

Thus, since u (6)/V - I + 0(62) , we can approximate Eq. (B.14) by

00poo6-, n a2(5)- + F: [1- -aJ(B ](B16

The coefficient of F1 is small enough to neglect, and we therefore obtain

PI(d) Y6S V W1 \6)
p6 n a- ('

0 0

The pressure perturbation at the surTace is thus very nearly proportional to the

azimuthal velo ,ty. This result is consistent with the fact that both thce

pressure and first-o-'der azimutnal velocity a.-e uniformly valid across the

vortical layer.

I-II . ... -.. -~ I -I --------- -I
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The azimuthal velocity perturbations evaluated at the surface have the

values D1l,12,13,14]

g i - [ - (I+•) + { 4 - 1~i [- ~

2[ (B.18)

- + 2 " -)(B.19)

lhe perturbation pressure variation across the shock layer can be obtained
from Eqs. (B.1O) when a,, ul, v1, and v, are evaluated by the formulas

of references [11,12,U•,14]. Since the valuer of the pressure at the shock

and at the body are given here, a simple linear variation with e across the
sc l
shock layer is adequate for design calculations.

I
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