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ABSTRACT

Lifting-body configurations are constructed from stream surfaces generated
by means of supersonic flows past inclined circular and elliptic cones. By
such means waverider shapes are devised with curved surfaces and knewn pressure
fields and shock-layer structures. The conical flow fields stem from perturba-
tions of the basic axisymmetric cone flow arising from small angle of attack
and small cross-section eccentricity. The approsimate results are analytic
and in the form of hypersonic small disturbance theory. Various possibilities
for waverider shapes are discussed. Design formulas are presented that

determine how the Mach number, angle of attack, cross-section eccentricity,

and characteristic cone angle affect the waverider shape, pressure distribution,

and shock-layer structure,
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LIFTING BOOIES DERIVED FRQOM
SUPERSONIC FLOWS PAST INCLINED CIRCULAR
AND ELLIPTIC CONES

1. Introduction

The design of an aircraft for high supersonic flight that achieves desire-
able aerodynamic behavior and still accommodates such demands as propulsion,
structures, materials, and operations is a very challenging task. A discus-
sion of the requirements of hypersonic aircraft is given by Kichemann [1] and
by Kiichemann and Weber [2]. When the Mach numbers are sufficiently high that
the flow disturbances are intrinsically nonlinear, a treatment of the problem
by means of linearized theory is not appropriate. A generalized study of the
problem by means of numerical solutions of the nonlinear governing eguations of
fluid mechaniss is very formidible indeed. For this reason the few known exact
solutions for flows past elementary gecmetries are extremely important. These
basic exact solutions provide insight and a knowledge of fundamental physical
features associated with high-speed flow. In addition, they can also be used
as building blocks for flows past more complex geometries.

A basic scheme for deriving ex.ct solutions for three-dimensional 1ifting
bodies by means of simple two-dimensional wedge flows was set forth by
Nonweiler [3]. These results were elaborated upon by Venn and Fiower [4], Nardo
[5], and others. The simplest configurations thus derived are called caret
wings, or -aret waveriders, because of their caret shape. Because these
aerodynamic shapes are derived from basic two-dimensional flows, they generally
invoive flat surfaces and concomitant sharp corners where these surfaces inter-
sect. These sharp corners may be undesireable when factors such 3s viscous and

heating effects are taken into account.
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Corresponding to the flat surfaces generated by the basic wedge-shock
flow, curved surfaces can be generated by utilization of the stream surfaces

associated with the axisymmetric supersonic flow past a circular cone. Such

R g 10 5 e e

surfaces were devised by Jones [6] and Woods [7]. These constructions

Tt

generate curved surfaces and curved shocks that are attached to sharp leading
edges., The flows for both the cone-generated surfaces and the wedge-generated
surfaces can be classified as conical flows. }

Besides the axisymmetrical conical flows, there are also conical flows

associated with inclined circular cones and with non-circular cones. These

s s e i T

flows generate stream surfaces that could be attractive for constructions of
1ifting bodies with curved surfaces. The analytical description of these

flows, as contrasted with a numerical description, generally involves a per-
turbation analysis of the basic axisymmetric circular-cone flow. A straight- i
é forward perturbation analysis is not uniformly valid in all the variables,

but fails in a vortical layer adjacent to the body surface. The pressure

and azimuthal velocity, however, are uniformly valid across the vartical layer
[8,9,10]. This is very important because the azimuthal perturbation velocity
is pertinent in determining the flow stream surfaces and the pressure is
important in determining the relevant forces on the surfaces. Thus the first-
order straight-forward perturbation expansion, while being suspect at first
glance, is thus pertinent in determining the stream surfaces and related forces
E on waverider configurations yenerated by the perturbation results. The object
of this investigation is to generate varicus waverider configurations by means
of angle-of-attack and cross-section eccentricity perturbations of the basic
axisymmetric cone flow.

The present study rests heavily an the fact that approximate analytical

expressions are available for the perturbed flows past circular [11,12] and




elliptic [13,14] cones at small angle of attack. These results allow for

an analytical, as opposed to a numerical, investigation to be performed that
Teads to results that are simple and easily understood. The effects of free-
stream Mach number, pertinent cone angle, angle of attack, ¢ross-section
eccentricity, and ratio of specific heats on the shock shape, shock-Tayer
structure, stream-surface shape, and surface conditions can be readily estab-

Tished. Although the results are approximate, they are accurate enough for

the parametric and design considerations that are of primary concern here,
: When the trends and concepts have become clear, more precise and elaborate
schemes of analysis can be undertaken for numerical accuracy.
Qur main concern in this paper is the generation of stream surfaces that
can be used as solid surfaces in lifting-body waverider configurations. We

shall outline how the pressure distributions can be obtained, but we shall not

T R T e ey s e e

obtain actual 1ift, drag, or moment results here. Such results, and other
results of interest such as reported by Squire [15], will be the subject of

further research.
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2. Fundamental Wedge-Derived Waverider

The fundarental wedqe-derived waverider, sometimes called the caret
waverider, is derived from the basic exact flow field produced by supersonic
flow tarough a plane ohlique shock wave, as shown in Fig. 2.1a. The flow
is deflected by the angle A when passing through the shock. The plane
shock wave is inclined at an angle g with the freestream flew. (et the
line formed by the common intersection of the planes parallel and perpen-
dicular to the freestream flow with the plane of the shock denote the leading
edge of a solid wedge. The upper surface of the wedge is parallel to the
freestream flow and the lower surfare of the wedge, inclined downward at an
angle A with the upper surface, i~ the stream surface of the flow that has
passed through the shock at the common-line intersection denoting the leading
edge of the wedge. The flow field between the Tower surface of the wedge
and the shock wave is parallel and uniform and has properties obtainable
from the oblique-shock relations.

The oblique-shock relations are well known and can be expressed in ana-
lytical form exactly for a thermally and calorically perfect gas. Owing to
the intrinsic interaction of the variables, however, the shock 2.gle, 3,
cannot be obtained explicitly as a function of the deflecticn angle, & .

[t is thus useful to utilize the approximate results of hypersonic small dis-
turbance theory, valid for large freestream Mach numbers, M_, and small
deflection and shock angles. This shock-angle relation originally obtained

by Linnell [16] is

sin g

Al - ! .
Sne T ,[(4 )+ (GO (2.1)

The corresponding relation for the pressure coefficient is
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G L /5 * Msin 22
? In inviscid steady flow, any stream surface can be utilized as a solid
; surface since no flow crosses a stream surface. We now wish to visualize
: further stream surfaces in Fig. 2.1a and utilize them as solid surfaces in
% a new configuration. Mark out the axis AB aligned with the freestream flow

and lying in the top surface of the wedge. The normal projection of the axis
AB cnte the lower surface of the wedge is denoted by AC. Any plane passing
through the axis AB is aligned with the freestream flow, and any plane

Selieds o ot Dl o B 5

passing through the axis AC 1s aligned with the shock deflected flow. Now
select the points D and E on the shock surface, positioned symmetrically 3

e R

(but not necessarily) on either side of the axes AB and AC. The two plane
surfaces passing through the pair of three points ACD and ACE are stream

surfaces in the shock deflected flow. The two plane surfaces passing through 1

] the pairs of three points ABD and ABE are stream surfacesin the freestream
flow. If we choose these four new stream surfaces as the relevant solid sur-
faces of an aerodynamic body, then the new configuration appears as shown

in Fig. 2.1b. This aerodynamic configuration is called a caret waverider

N A B e T dn s o L itamL

since it appears to ride on the plane shock wave attached to its under surface.

T

The upper surface is parallel to the free stream and hence at freestream
conditions, The under surface of the caret shape is at a uniform pressure
. given by formula (2.2), and the shock stand-off angle is given by formula

(2.1). For a given caret waverider configuration, the shock wave will be




attached as shown in Fig. 2.1b only for the particular Mach number determined

from £q. (2.1) with 3 and & given. The caret waverider is a 1ifting aero-

: ' dynamic shape since the pressure is higher on the under surface.
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3. General Considerations for Conical Flows

3.1 (Coordinates and Geometry

We wish to determine the stream surfaces of conical flows past slender
elliptic cones at small angles of attack [13,14]. We use spherical cnordinates
in a body-fixed system shown in Fig. 3.1. Let a = tan 8, and b = tan O be
the semivertex angles of the semiminor and semimajor axes of the elliptic
cone, Then the elliptic cone 1s described by

tan ©
tan o, = _— (3.1)
y1+e cos 2@

where

tane v 22 .y T =2 AT ,

" RTEEE L/ (3.22)
b /EE(I"QZ) »
2 . a2
¢ :pryar (3.2b)
The parameter e is a measure of the eccentricity of the elliptic cone. For
small eccentricities we can expand Eq. (3.1) in a Fourier series, the first
two terms of which are
9, * § - e cos 2p + 0(e) (3.3)
where
2
§ 2@, + %5 [(3-2 s1n2®m] sin 2o + o(e*) , (3.4a)

ezg[1+% (15 -20sin2e +8 sin*o ) + 0(e*)]sin 22, . (3.4b)
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The parameter ¢ is a new measure of the eccentricity and is the appropriate
small parameter in a perturbation procedure. The parameter & specifies the
semivertex angle of the basic circular cone about which the perturbation
expansion is performed.

The confcal shock wave attached to the elliptic cone has the form [13,14],

for small a« and ¢ ,

9 = B + «d COS ¢ - €9 coS 2¢ (3.4)
where
1/2
B/G'E%l*‘}%z'] , (3.5)

and Kg = M, 1s the hypersonic similarity parameter. The parameters d and g
are the shock eccentricity factors associated with angle of attack and elliptic

cone eccentricity. They are functions of K‘5 and are shown in Fig, 3.2.

3.2 The Shock-Layer Structure

Let u, v, and w denote the v, G, and ¢ spherical components of velocity, and
let p denote the pressure. Outside the surface vurtical layer and the viscous

boundary layer, the variables have the following expansions for small o and ¢:

= u_(e) + ali1(0) cos ¢ + cuy(0) cos 2¢

u 0

@9
10)

)

v
) = oWy (@
) P

<
©

(3.6)

=
O

0 sin ¢ + ew (0) sin 2¢

( )
( V,(0) + avy(e) cos ¢ + cvy(a) cos 2¢
( )
p(ose )

Pol@) + ap1(®) cos ¢ + epy(@) cos 2¢

The lowest-order terms in the expansions, with the subscript zero, pertain
to the basic-cone solution. The first-order terms with the tilde notation

pertain to the angle-of-attack perturbation, and the first-order terms without

ek set L o
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the tilde notation pertain to the elliptic-cone eccentricity perturbation.
The pressure and the azimuthal velocity components, Wl(e) and wi(@), are
uniformly valid across the vortical layer.

As calculated by Doty and Rasmussen [12], the angle-of-attack velocity
perturbations 31/(Vw6). VI/VQ, and Wl/vm are functions of ¢ and K6 within
the fabrication of hypersonic small-disturbance theory. Correct to the first

order expansion of interest, the shock-layer structure can be normalized

by the variable
§:2-8 (3.7)

At the cone surface, g a 0, and at the shock, a1, The angle-of-attack

velocity components are shown in Figs. 3.3a, b, ¢ as a function of 8 and
various values of Kd. The corresanding elliptic eccentricity velocity
components [13,14] are shown in Figs. 3.4a, b, c. The body-surface values '¥
of the azimuthal velocity components, Wl(@c) and Wx(@c)- are shown in Fig. 3.5 g

as a function of Ks‘ The body surface perturbation pressure coefficients, Epl

and Cpl, are shown in Fig., 3.6 as a function of Kd‘

3.3 Conical Stream Surfaces

The vector equation for a streamline, V X E: = 0, can be written in
spherical coordinates as

. _rdo___r sin nde
UT'.'T V(9,0)  W(0.0) : (3.8)

The conical stream surfaces are determined by the last two terms of Eq. (3.8). '

For small angles and to lowest order we have

do
y ( 8Y T @i (Q) sTn s ¥ ewy(9) sin 2¢

L s s T S N OO
- e . v il
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To lowest order, only the zeroth-order polar velocity, vo(e). for the basic

cone and the uniformly valid azimuthal perturbation veloc¢ities, Ql(e) and w,(0),
enter the analysis. Even though these velocity functions are known, it does

not appear possible to obtain an integral of Eq. (3.9) analytically. In the
cases when a or ¢ vanish separately, the variables in Eq. (3.9) can be

separated, and integration can then be cbtained at least by quadratures,

The polar velocity, vo(e), can be approximated accurately for small

angles by [11,12,13,14,17]

5 ]
v.(o) = -VQG(T - -g-z-) (3.10) ;.

of
Other formulas for the basic-cone flow and the perturbed flow are summarized

in the Appendix.
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Figure 3.1 Cone Coordinates and Geometry
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0, = 8 + ag COS ¢ - £g COS 24
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Figure 3.2 Shock Eccentricity Factors, vy = 1.4
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4. Waveriders Derived from Inclined Circular Cones

4.1 Stream Surfaces

We first consider the case when ¢=0, that is, a circular cane at angle
of attack. When ==0, we can separate the variables in Eq. {3.9), perform

the intagration on @, and obtain

where

and 3 is the azimuthal angle where the stream surface intersects the shock.
The function Wl(e) is known [14] and shown in Fig. 3.3c, and thus the quad-
rature in expression (4.1) can be evaluated numeriqa\]y. When © proceeds

to the cone surface, @ + §, the quadrature on the left side of (4.1) diverges,

and the left side tends to minus infinity. Correspondingly, the angle s on

the right side of (4.1) tends to zero. Thus 21l the stream surfaces become

tangent to the body surface at =30, the leeward ray on the cone.

4.2 Approxinate Integration

Perusal of the function ul(ﬁ) in Fig. 3.3c suggests that Wl can be

approximated by the relation

o) =a B (8.32]

Wi(3) - Wy ls)
where Az jwij — L (4.35)
8 .:civ,(f)_-]m@)j , (4.3c)

and 7 = 3/4, When this approximation is substituted into the integral in
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2q. (4.1) and the integral evaluated, we obtain

$
tan =
il 9
Kiin [ g*fa 1+% In g;%Z] -(K, + K2) 1n [gel=1n( g 1,
° s s tan 1;
A"
where ?(15-12-%!\1]111 ,
b5 .o (o)W () - 2aWi(8)
2578 T2V,
Equation (4.4) can also be written as
v N
kl. - Ko
0 -5 U o+45 O . tan %
[ 3! [&ws 7! :
tan -fi

Exprassion (4.6) gives a relation between 3/§ and ¢, with bgs a/é,
g/8 1s given by Eq. (3.5).) The

and K as parameters. (Recall that o
parameter Wl is always positive since Wl(d) is negative when « is positive,
and vice versa. The dependency of tx on Ky can be determined with the aid

of Fig. 3.4. The parameter K2 changes sign as Ka varies, as might be anti-

cipated from perusal of Fig. 3.3c. it can be shown that [11,12]

We can thus write Ez as

¥oe . 202(o * 1)W1 (8)/Vm b+ 20(0? - )
2073 7o (o-17

The dependency of ?; on K. {fs shown in Fig. 4.1, At K6 = 0 and K5 = 0.9

r

the parameter K; is zero. [t is positive when 0<Kz0.9and negative when

K, % 0.9,

(4.4)

(4.5a)

(4.5b)

(4.6)

—
'S
~4

~

{4.8a)
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)

Several typical stream surfaces (plotted as Z tan 2 vs.

and tan @ = 9, that is, projections on a plane perpendicular to the cone axis)

are shown in Fig. 4.2 for K, = 1.3, a/8 s 0.2, and v = 1.4,

4.3 Lip Angle

We shall refer to the portion of a stream surface adjacent to the shock

4, with Z =

constant

as the 1ip of the stream surface. The acute angle between the 1ip of a stream

surface and the plane surface passing through the 1ip and the axis of the
1f v = ¢(0) denotes

body cone is referred to as the 1ip angle, denoted by Y

the functional form for a stream surface, then the unit normal vector to a stream

surface is given by . .
e, - sin(a%% &

[+ sin2e(d)?1"?

na

where é and ée are the azimuthal and polar spherical unit basis vectors.
. , and we find that, for small

]
The 11p angle is determined by cos X = é¢

angles 2,

a d¢
tan X e* <d®)

From Eq. {3.9) we determine that

awy(3) sin ¢ Q wi(s) © sin b

B (@ R

Utilizing Eq. (4.7) we determine the 1ip angle to be

5 N

Yool s
tan A 3 :ng:%) sin ¢s
The dependency of X on K, is shown in Fig. 4.3.

increases from zero to the asymptotic value 5.5 as Kd

(4.9)

(4.10)

(4.11)

(4.12)

The ratio (tan Y)csclv%/(a/é)

increases from zero to

infinity. The 11p angle thus becomes thicker as a/$ and K6 increase separately,

and it is a maximum when b T 90°.
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4.4 Spacing of the Stream Surfaces

In Eqs. (4.1) or (4.6), the value of b¢ designates a particular stream
surface, and a stream surface can be represented functicnally by tg = @s(®.¢) =
constant., How closely the stream surfaces are spaced as ¢ is varied outward
from the cone surface, for a fixed azimuthal angle 4, can be evaluated by the

derivative (a¢s/a@) with 4 held constant. From Eq. (4.1) we obtain

(_a_¢£) £ - lege S‘Tn
RN ov, (@ '
. 3 W (0) sin ‘
§V, 6773% ' (4.13)

In terms of the normalized shock-layer variable & defined by expressien (3.7),

we have

g o wl(g'Ks) sin 4
—3) s & 4.14
(38 ) ) $ON 8[2+(a-1)3] (14

This derivative 1ncreases when x increases and goes to infinity when & goes

to zero (0 + §), and the stream surfaces become more closely spaced correspond-
ingly. As seen from Fig. 3.3¢c, the derivative 1s insensitive to variations

in K6 when 3 is about 0.7. Whend1s less than 0.7, the cerivative decreases

as KG increases, and vice versa when § is greater than 0.7, but to a lesser

degree.
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4.5 Waveriders with a Freestream Upper Surface

Any stream surface just described can be utilized as a solid surface,
but a complementary surface remains to be described in order to fashion a
closed aerodynamic body. In this section we choose such surfaces that are
parallel to the free stream. We first demarcate the axis passing through
the vertex that is aligned with the free stream. This axis 1s inclined
by an angle o with the cone axis. Any plane passing through this freestream
axis is parallel to the free stream. We select pairs of these freestream
planes that pass through the 1ipshock {ntersection of the conical stream
surfaces, and a closed aerodynamic body is thus formed. The upper surfaces
are pairs of freestream planes passing through the freestream vertex axis,
and the Tower surface is a stream surface of the incline¢ circular-cone
flow field. These surfaces join together at the 1ip-shock intersection,
An example is shown in Fig. 4.4 for which the 1ip-shock intersection
occurs at 4. = 90°.

There are an infinite number of such aerodynamic waveriders, depending

on how the freestream planes are selected. As a step towards distinguishing

between the different configurations, let us determine the 1ip angle, kw‘
between the freestream planes and the conical stream surfaces. The normal
unit vector to a freestream plane intersecting the shock at bs is, for small
angles

) = (3 (1-) cos 5.1 e, - (2) sin s, e
o Le- 5)0-g) cos sl e, - () sindg 8 (4.15)

VTa- (20-9) cos 31% + (P2 sindyy
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The 1ip angle, ?w, is determined by the condition
’\d - LY
cos A *n N, (4.16)
where ﬁ is the unit normal vector of the conical stream surface evaluated at

the shock, given by Eq. (4.9). We find for small ratios «/8 << 1 that
2.3 1
tan ¥ =3[ —(—151-" - ]sine, . (4.17)
IR CLE PR 3 (1-9) cos ¢ s

If the waverider 11p angle is ever to be a cusp, then we must have kw = 0,

The right side of Eq. (4.17) can vanish only when sin by 0 or when

5 cos ¢ = EEEE . (4.18)

The right-hand side of Eq. (4.18) vanishes when Kg =0 and increases to 0.87
when K6 -+ @, When Ks = 0.5 and a/5 = 0.5, then £q. (4.18) ylelds o * 0,
and a cusp can occur only at g ® 0, When K6 is larger than 0.5 and o/8 1s
less than 0.5 a cusp cannot occur except at ¢g * 0° or 180°. These are generally
the conditions of interest and, as such, the possibility of a cusp is of no
concern,

From structural or heating considerations, the condition where the 1ip
angle kw {s a maximum is of interest. Setting the derivative of ?w with

respect to g equal to zero yfelds, for small a/$,

Q
(4]
[}

—

(4.19)

O 2

B
cos *s

i

e e lw*“""‘“’“‘"w*m‘-—_y
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When the right-hand side 1s less than minus unity, no relative maximum occurs.

When the right-hand side is small, we obtain

v, g2l
¢5 '2'+ q g ] (4'20)

which 11lustrates that the maximum value of kw occurs when vg > w/2. When
K‘5 = 1.3, vy =1.4, and a/§ = 0.2, kw = 8,6° {s a maximum when bg ® 96.8°.
This particular waverider is similar in shape to that shown in Fig. 4.4, for
which o = 90° and ?w = 3.57°, The upper surfaces in these cases appear to
have a positiVe dihedral angle,
Another waverider can be formed in which the two upper freestream planes
are parallel, that is, the upper surface is flat. An example i3 shown in Fig. 4.5.

From geometrical considarations, this situation occurs when, for small a/s,

cos ¢ ® {a/8) (4.21)

o .

For K = 1.3, v » 1.4, and a/s = 0.2, we get o = 81.4° and X = 8.2°. This

waverider {s akin to the waverider formed from a half cone at zero angle of

attack with a symmetry plane through the cone axis identified as a flat, zero- 1
thickness delta wing. The waverider shown in Fig., 4.5, however, while having
a flat upper surface, has a faired under surface with a "wing" of finite
thickness, This waverider can be said to have zero dihedral angle.

Othar waveriders in this family can be formed that have nagative dihedral
angles. These axist when bg is less than the value given by Eg. (4.21). An

example 1s shown in Fig. 4.6 for ¢ = 70° and %w = 7.6°, All of the waveridurs

- M

in this section are 11fting bodies since the lower conical surface is at a

g

higher pressure than the upper freestream surfaces.
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4.6 Waveriders with 2 Complementary Wedge Surface

Another means of deriving a closed aerodynamic shape in conjunction with a
conical stream surface is to use plane surfaces passing through the cone axis.
In these cases the freestream flow must be deflected by the angle a. We can
thus use the formulas for the fundamental wedge-derived waverider obtained
in Section 1, setting A » «. Let the angle between the two cone-axis plane
surfaces be denoted by 2y, where y is the dihedral angle, as shown in Fig.

4.7. The plane (or wedge) shock wave across the top of the waverider is
oriented at an angle By with the free stream, and 1t {s related to the

cone shock by the relation

- "
Sw 6 = ®s cos ¢

(4.22)

» (8 + ad cos o,) cOS ¥

g
We now note that o = nm - y and that 8, is g¢iven by Eq. (2.1), with sin 2 -3

arnd sin & = a. We thus rewrite Eg. (4.24) as

%[:%1— +/(:L?—)z+ ersT (5—)‘ N [% - 3§ cos wlcos v . (4.23)

Recalling that ¢ =z 3/8 1s given by Eq. (3.5), we note that Eq. (4.25) provides

a relation between 4/, K and . Solving for &/4, we obtain

(4.¢8)

Bo cos y ¢t // (l}l g cos y)2- K%: {(1£L)2- B2}
(4l - 82

% .
$
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Figure 4,8 shows «/8 plotted as a function of K5 for various values of the
dihedral angle y and for vy = 1,4, We observe that a/S 15 double valued for
fixed values of Ky and 4, but this 1s only apparent for v » 75° since the
curves are plotted for only the realistic values of a/8 < 1, The condition
a/é = 0 corresponds to zero flow deflection over the upper surface; the
dihedral angle y is such that a plane Mach surface sits on the 1ip of the
waverider, and the 1ips extend to the cone surface as a pafr of infinitesimally
thin delta wings.

The 11ft on the waveriders in this section may be positive or negative
depending on the value of a/¢, Tha pressure in the conical flow fileld is

given by

37—t % — cos ¢ + 0(a?) (4.26)

and the pressure in the wedge flow field is given by (from Eq. (2.2))

c
P < 4 3
e gl@h /il ek (4.27)

The minimum pressure on the conical stream surface occurs at the symmetry plane,
3 % §and 4 = 0, The minimum 11{fting pressure differential is thus given by
AC C.(s,0) ¢C

P P p
oz —f— - £ (4.28)

We also note that [ , , 1

CP () 2 2
R L (4.29)




Further, from Fig. 3.8, we note the ¢ (6)/6 = -4, A lower bound for the value

S P
‘ : of a/¢§ corresponding to zero 11ft can now be found by setting Acp =0
; m
. 2 2 2 < o <
B et RS .

This relation provides «/& for zerc 1ift as a function of Ka and 1s shown in

Fig. 4.7. The waveriders describad by conditions below this 1ine are 11fting
when the conical surface 1s underneath, and the waveriders described by condf-
tions above the 1ine are 1ifting when the wedge surface is underneath.
§ Approximataly, the zero 11ft conditions occur when «/¢ « 0.4 for Ka > 1.

A systematic variation of the core-wedge waverider cross section geometries
] {s shown in Figs. 4.9a, b, ¢, d, &, f for a/5 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
] For each valua of /S, dihedral angles of y = 45°, 60°, 70°, 75°, 80° are

R

shown along.with their corresponding values of K6 as determined from Eqs. (4.25)
@ or (4,26). For a/§ = Q,1, 0.2, and 0.3, the bodies are 11fting when the conical
surface {s underneath., At a«/8 = 0.4, the body is nearly at zero 11ft. For

a/& = 0.5 and 0.6, the bodies are 1ifting when the wedge surface 1s underneath.

The shock 11es closar to the body when K6 1s larger, and hence when y is

a4

{ larger, The standard conditions Ks = 1.3, vy = 1.4, and o/ = 0.2 are represented

in Fig. 4.7, in which case 4 = 57° and X = 15°,
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Fiqure 4.1  Circular-Cone Stream~Surface Function
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5. Waveriders Derived from E111iptic Cones

5.1 Stream Surfaces

We now consider the case when a = 0, that is, an elliptic cone at zero
angle of attack. When a = O, we can separate the variables in Eq. (3.9),

perform the integration on @, and obtain

Q
2¢ wi(e) do tan ¢
- ,,I* #L:L@—: 1n[m—¢—s-] ’ (5.1)
@s
where
0f = B - eg cos 2g (5.2)

and where we have replaced & that appears in Eq. (3.10) by 9 the elliptic
cone angle,

9. 8 6 - € cos 2¢ . (6.3)

The variation of ¢ that occurs in 0, 15 to be 1gnored in the integration.
These operations are consistent in our present first-order accuracy. The azi-
muthal velocity wi(@) 1s known [13,14] and 15'111ustrated in Fig., 3.4c. The
quadrature thus can be evaluated numerically. When @ proceeds to the cone
surface, © -~ 0o the quadrature on the left side of Eq. (5.1) diverges, and the
right side tends to minus infinity. Correspondingly, when the shock location
of the stream surface, by 1s less than 90°, the angle 4 tends to zero. When
by is greater than 90°, the angle ¢ tends to 180°. Thus the stream surfaces
that begin at the shock for ¢, < 90° become tangent to the cone surface at

¢ = 0, and the stream surfaces that begin at the shock for bg 90° become
tangent to the cone at p = 180°. The stream surface for g * 90° 1s a

symmetry plane that is perpendicular to the body at p = 90°. Examples of

stream surfaces are shown in Fig. 5.1,

B D rrye S

!
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5.2 Approximate Integration

Figure 3.4c suggests that w;(©) can be approximated by the relation

5. B
wy(e) = A+ £— . (5.4a)
where N
n:l WI(isE ; w1 (9,) ' (5.4)
[+
s Spenil (5.4¢)

where § = 05/0, = o + 0le)y og = 8 + 0(c), and o, = § + 0(c). The errors of
order ¢ in Eqs. (5.4) will subsequently be neglected. When this approximation
is used to evaluate the integral in Eq. (5.1), we obtain

@ -0 o +e
¢ ¢ @ tan
ky In [ggr-gzl * kg In [5§;“§EJ = (ky * kz) In [5§J = 1n [g;ﬁ-%; »  (5.5)
where
g - & Wil3
ky 2 s-g,i—l , (5.62)
.. & fgtl) wilg) = 20 wi(8)
K N CR VA : (8.66)
Equation (5.5) can also be written as
YT 9% G: o B % “ tan
[5;—_*0—(: = [5:“7-5: <1 = fan v - (5.7)

Expression (5.7) 1s a relation between o/s and b with by /s , and
K6 as parameters. The parameter k, 1s always positive since w;(s) 1s negative
when ¢ is positive, and vice versa. Figure 3.5 {llustrates the dependency of

ky on Kd. The parameter k, changes sign as KLs varies, which 1s suggested by

the behavior of w,;(a) shown in Fig. 3.4c. It can be shown that [13,14]

el - o agrer (5.8)

n
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We can now write k, as

¢ 49t alotl) wi(s)/v }
kp = - % a(o=T) (5.9)

Figure 5.2 shows how k, depends on I<‘5 . The parameter k, vanishes at Ks = 1,9,

In the range 0 = Kg % 1.9, kz 1s positive, and it 1s negative when Ks; % 1.9,

5.3 Lip Angle
The 1ip angle is defined by cos A = é¢-ﬁ, and for the elliptic conical

surfaces is determined hy
o sin 2¢s

T .10

Figure 5.3 shows the dependency of A on Ks' The ratio (tan x){csc 2¢S)/(e/6)
increases from zero to the asymptotic value 8.7 as K6 increases from zero to
infinity. The 11p angle becomes thicker as K(s and ¢/§ increase separately.
The 11p angle 1s a maximum when ¢, = 45° and 135°, and it 1s zero at the

symmetry planes b = 0° and 90°.

5.4 Waveriders with a Freestream Upper Surface

The axis of the elliptic cone at zero angle of attack 1s parallel to the
free stream, and any plane that passes through the cone axis is parallel to the
free stream. We choose pairs of plane surfaces that pass through the cone
axis and Intersect the shock at the 1ips of a conical stream surface. When
the plane surfaces are the upper surfaces and the conical surface is the lower
surface, a 1ifting aerodynamic waverider is formed. Two examples are shown in
Fig. 5.4 for K = 1.3, ¢/§ = 0.1, and » = 1.4. These configurations correspond

to 11p positions of by ® 100° and 110°. The respective 1ip angles are found
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to be |A| = 2.2° and 4.0°, These elliptic-cone shapes are similar in form to
the circular cone shape shown in Fig. 4.6. The elliptic cone shapes are flatter
on the bottom and have thinner 1ip angles.

The pressure coefficient on the undersurface is given by

(0,4) Cp (O Cp, (o)

¢ P
L s+ (D)

3 cos 29 (5.11)

When Eq. (5.7) is used to determine © as a function of ¢, the surface pressure

as a function of ¢ can be determined.
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Elliptic-Cone Stream-~Surface Function
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| 6. Waveriders Derived From Inclined E11iptic Cones

poes ";hiﬂmm&m&m

6.1 Stream Surfaces

The general stream-surface structure for flow past an inc¢lined elliptic

cone can be studied by rewriting Eq. (3.9) in the form

] aw] + 2ew - du
: nCa Tl i e o (6.1)

LIS e

! where L ECOoS ¢ , (6.22)

; ks Taw(9) + Zewy(9) ’ (6.2b) B

¢ — 2zwy (0) 'i;
ke Z3@TT0) + Zewi (0] : (6.2c)

The difficulty with the integration of Eq. (6.1) comes from the combination i

W*(@|U) 2 k3 + Kyu ’ (6-3) \tla

which may vanish in the shock layer. The azimuthal velocity vanishes between

the shock and the body when w* = 0. The azimuthal location b where w* vanishes

is determined by il

o o2 Wi(e .‘
cos ¢ 5 Wf%6+ . (6.4)

The surface for w* = 0 (dashed curve) is shown in Fig. 6.1 for KS = 1.3,
v 2 1.4, a/5 3 0.2, and ¢/5 = 0.1. The position where this surface inter- 0

sects the body surface 1s denoted by b9 = ¢oc and is determined by

)
a Wl(Gc)

€% toc T T 2c (e

a Wil8 3
:-E-c-w16 . (6‘5) ‘!‘

For the conditions in Fig. 6.1 we have s . = 127°. The surface for w* =0
lies on the windward side of the body. Between the body and the surface w* = 0

the azimuthal velocity is positive, and it is negative between the w* = 0 surface

2 3
il i R - to . . “” PRLIN = L s i RN A S0ty Y 44 PR A Ny o2 L WA 850 Nt S0 g B s L, e ,‘_,,”-x
e . t . . - . .. T BT o - e [, e [ . .
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and the shock. For other conditions, cos boc CaN be calculated with the
use of Fig. 6.2, which shows the ratio w;(8)/wi(8) as a function of K5
for vy = 1.4, Also shown is the ratio at the shock, w;(2)/Ww(8). For a given
value of Ka' the ratio wy(e@)/W;(@) increases from the shock value to the
surface value.

We can obtain a straightforward approximate integration of Eq. (6.1)
by treating k; and k, as constants., Experience shows that the best values

to use for these constants are the values at the body. For this choice,

the body surface conditions are currectly given, which is especially important

for the position of the intersection of the windward-leeward dividing stream
surface with the body, denoted by boc
With the lTeft side of Eq. (6.1) evaluated as for the previous cases,

we obtain the approximate integral of Eq. (6.1) to be
- - *® " El+kl - Ez"'kz
9 -0, . 95 9+ e, ' EE, .
o -8, 0O _@‘s+®c @_

ks kg
ia.'l_% ki csc ¢ + k; cot o
) Ky csc ., +k; cot ¢ 4
tan 7} ! s s
where ks = Ky/(k; = ki) )
ks = KI/(El - kl) s
9. 28 - e €08 2¢ 1
dg * &+ af COS o, - €9 COS 20,

Equation (6.6) reduces to Eq. (4.6) or (5.7) in the separate limits ¢ - 0
and o - Q. If the conditions are such that il = k,, then the appropriate

Timit must be taken on the right-hand side of Fgq. (6.6), which corresponds

(6.7a)
(6.7b)
(6.7¢c)

{6.7d)
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to setting k3 = ky in the original differential equation (6.1).

Figure 6.1 shows stream surfaces generated by Eq. (6.6) for the conditions
K5 = 1.3, y=1.4, /8§ = 0.2, and /8 = 0.1, The dividing stream surface
which separates the flow that proceeds toward the leeward ray from the flow
that proceeds toward the windward ray occurs at og * 127°. This dividing sur-
face is a plane surface in this approximation. The actual stream surfaces

should appear slightly different near the dividing stream surface and toward

the windward ray. In this region the actual stream surfaces have a negative
value of azimuthal velocity at the shock and hence should slope towards the
leeward direction before curving into the radial direction at the surface

w* = 0 and then curving further towards the windward ray as shown. The

slope (aq;/ae)¢S should actually be positive in the windward region whereas

the approximation (6.6) yields a slightly negative slope. Because the details
of the azimuthal velocity field have not been taken into account, the dividing
stream surface and 1ts intersection with the body surface are not precisely

described by the plane surface shown, even though the location of the body

intersection 1s correct. Both the actual slopes and the approximation
slopes at the shock are small in the windward region, and hence the descrip- 3
tion shown in Fig. 6.1 is qualitatively valid except for the aforementioned

discrepancies. 13

6.2 Maximum-Entropy Surface

i
Outside the vortical and viscous boundary layers, the entropy has the ;
T

expansion

s(@,p) = 5o(3) + a;1 Cos ¢ + e5y cos 2¢ ) (6.8)

where s, and s, are constants associated with the angle-of-attack and

eccentricity perturbations, Let

s¥ = asy cos b * €5y COS 24 (6.9)
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denote the entropy perturbation at the shock. [t can be shown [11,13] that

e L L p——

* 2 V2
Sl a Ly(ye- i ot .
y v(y=1) 8 (1-8,) 3203 (a(1-3) cos o + eg cos 20,1 (6.10)

where &, = pm/po(s) and ag(ﬁ) ] Ypo(B)/oo(a). The maximum entropy pertur-

bation at the shock occurs where the derivative with respect to o, of Eq. (6.10)

vanishes., This occurs where

. s . a(l-
€OS dgn® = 7}E§QL : (6.11)

If the value of the right side 1s less than or equal to minus unity, the maximum

e

occurs at the windward ray, b " 180°. For the conditions of Fig. 6.1

(Kg = 1.3y v = 1.4, a/s = 0.2, ¢/5 = 0.1), the maximum-entropy stream surface
A originates at the shock at b ™ 133°, This 1s on the windward side of the

? dividing stream surface which is located in Fig. 6.1 at b ™ 127°, Thus the I

maximum-entropy stream surface does not wet the body surface but 1ies {in the i3

windward part of the shock layer, That the body surface and maximum-entropy

surface are not necessarily identical is also true for hypersoni¢c blunt-body

flows (see Hayes and Probstein [18], page 399). Melnik [10], on the other hand,
in his analysis of conical flows assumed that the body was a maximum entropy sur-
face. Ihe conical result holds for all values of Ks . The ratio of cos L

and c¢os doc given by €q. (6.5) 1s

oS 4om 1l -4
09 29

g

(6.12) g

x:

oc

1(8)

For v = 1.4 this ratio is greater than unity for K. » 0, and hence we
Q

conclude that *sm > *oc for l<s > 0,

6.3 Lip Angle
Corresponding to Egs. (4.12) and (5.10), we determine the 1ip angle,

\", for the shock-stream surface fntersection for an inclined eliiptic cone g
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to be given by

* ~
tan A = tan A + tan A

-
= % accng7 sin ¢  + % ErségTj-sin 2d¢ . (6.13)

When the angles are small, the 11p angle for an inclined elliptic-cone stream
surface 1s equal to the sum of the 11p angles for the corresponding inclined

circular-cone stream surface and the aligned ell{ptic-cone stream surface.

6.4 Waveriders With Freestream Upper Surfaces

As before, waverider configurations can be formed by utilizing freestream
plane surfaces that pass through the vertex along an axis inclined at an angle
o With the cone axis, and intersect the shock at the 1ips of an underneath
conical stream surface. As an example we choose the conditions shown in
Fig. 6.1 with the 1ip located at ¢, = 90°, The waverider so formed is shown
in Fig, 6.3. The freestream surface intersecting the shock at ¢ has a unit

normal vector glven by

. [o ~ (2)(1-g) cos ¢, - (£) g cos 26,18, - L sin ¢ e
. § s &’ s* 0§ s -0 ' (6.14)

V0o = (201-8) cos o = (£) g cos 28 1% ($)F sinis

A -

The waverider 1ip angle, Ay is determined by the condition cos Ay "Nyt My

-

where n is given by Eq. (4.9). For small o/8, we obtain

2sin ¢
g § (6.15)

tan xw x tan A* - = - -
o = (5)(1-8) cos bg - (%) g cos 29,

The waverider 1ip angle in Fig. 6.3 1s found to be Aw = 8.9°, This waverider

has a positive dihedral and 1s analogous to the circular cone waverider

shown in Fiq, 4.4. The elliptic-cone waverider in Fig., 6.3 1s more shallow
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and flatter on the bottom than {ts circular-cone counterpart in Fig. 4.4.

It also has a slightly greater span since the attached shock is broader for
the ellipse. The pressure on the windward ray of the elliptic-cone waverider
is less than that of 1ts circular-cone counterpart, but the pressure at the
1ips 1s greater owing to the greater inclination of the shock. There are
also elliptic cone waveriders with zero and negative dihedral, corresponding
to the circular-cone waveriders shown in Figs. 4.5 and 4.6, but these will

not be discussed here.

6.5 Further Remarks

El1liptic waveriders with wedge-shock upper surfaces can also be constructed,
such as was done for the circular cone contiguration shown in Fig, 4.7. Because
there {s an additional parameter, ¢/§, involved in fitting the wedge-shock
to the waverider, the analysis 1s very involved and will not be considered
here.

Other characteristics of interest for the families of waveriders presented
hare are 1{ft, drag, &nd stability. The pressure coefficient on the conical
stream surface can be obtained from the equation

B

C, (o) C. (o) C. (o)
c P
2 (9,6) = 2+ ($) P s g s (5 —
62 82 8 S

COS 29 (6.16)

which 1s in hypersonic similarity form and can be regarded as known [13,14],
The 1ift and drag characteristics can thus be determined without great difficulty.
The pitching moment can also be determined, but general stability characteristics

require a knowledge of off-design flow conditions. These considerations are

fruitful subjects for further research.
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Kﬁ = 1.3
vy =1.,4
p - ‘ a/d = 0,2
e/§ = Q,,

90°

Figure 6.1 Stream Surfaces for Inclined Eliiptic Cane §




57

[ ——

E
§
;
L}
3 t :
.%
J
g "
i1
] f;
2r
Q=3 s
L
)
|
;

&

st AN et D 4w R s

~

o
B i
0 1 | 1 A -l | 1 1 L. - i -
) 2 + é 8 /0 '7,
K, *
y Figure 6.2  Azimuthal Velocity Ratios at Shock and Body :
i




TR AT T

W TG MY TR T TR e

e B

- itk G SA S

bg ® g0°
A = 8,9°

58

a/s
e/s

= 1.3
= 0,2
= 0.1
= 1,4

Figure 6.3

Inclined E1liptic-Cone Waverider With Freestream

Upper Surface:

Positive Dihedral
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7. Some Considerations Regarding Control Surfaces

7.1 Control Flaps

For controlled flight, control surfaces are necessary for changing and
matntaining pitching, yawing, and rolling motions as well as aerodynamic trim.

The waverider configurations that have been derived so far generally have

horizontal or nearly horizontal surfaces where flaps can be placed to produce
nearly vertical forces by their deflections. If enough dihedral is present,
1t may be possible that the flaps could produce the behavior of a vee tail
and thus obviate the need of a vertical fin. In general, however, the design
of controlled flight necessitates the consideration of vertical contral sur-
faces. In this section we shall formulate the analysis of vertical fins that 3

are themselves waverider configurations.

7.2 Vertical-Fin Control Surfaces j

We consider a wedge-shock caret waverider, such as shown in Figs. 2a and
2b, but that 1s nonsymmetric, that {s, the polar angles describing the free-
stream surfaces are unequal. A typical configuration that shall be utiliized
as a vertical fin is shown in Fig., 7.1. Let one freestream surface be denoted
by tan 0y = O (for small angles) to represent the angle between a freestream
cone axismand t;e corresponding cone shock The other freestream surface which
shall represent the left half of a vertical fin is denoted by the conical angle
Op- The flow deflection angle is denoted by 4 and the shock angle is denoted
by Bw‘
on a fixed Z plane. The dlhedral angle Letween the two freestream surfaces

A1l these polar angles are regarded as small and are shown as projections

is denoted by Y.

From geometrical considerations, the law of cosines yields
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.2 2 _ 2_21/: _2_2]/:’-2
csw - zosmef cos ¥, + O% [(OSG. B,) + (o ~8) "] . (7.1)

Expanding this equation and solving for o yields

GS 95 2 1/2

P = cos y_ t sin o, [( 5;— ) =11 . (7.2)

Since og /ef is always positive the plus sign must be chosen when y_ > 90°

@®

since cos p_ is then negative. For a continuous variation, a change in 3ign

occurs when the radical vanishes. This does not occur since Og /6w > 1.

-]

Hence the plus sign is to be selected in Eq. (7.2).

Equation (7.2) follows from the geometry of the configuration. The

shock conditions of gas dynamics, however, require that B is determined by the

flow deflection 4 and the freestream Mach number as given by Eq. (2.1). We
can thus rewrite Eq. (7.2) as

0] C‘)S 2 2

S
— 2y (& - gt? 7
5 cos y, + sin v, [{ -+ (Bw) 1] , (7.3)

and determine 5/sw from

5 +1 +1,2 2 2
E;‘Ka['xﬁ‘*‘a (%) +/(l4—) K (-@—) +1 ] . (7.4)

Thus (0c/8) is a function of o /&, K, v, cos ¥, and 4/8, where § is taken

0

as tha characteristic angle of the cone flow. When 4 = Q, By takes the

Mach angle 45 its minimum value, and 9 takes a minimum value given by

]

5 cos y_ + sin [(-{-‘l) KS - 1] . (7.5)

KB 3
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7.3 Vertical Fin for the Elliptic-Cone Waverider

We consider the elliptic~cone waveriders shown in Fig. 5.4 with the con-
ditions Ké = 1.3, vy =1.4, and /8 = 0,1, In this case we match the freestream
upper surface: of the cone waverider with the freestream surface of the half-

fin analyzed in Section 7.2. We thus set Y T bg and

" 2
es” =05 =8 - egcos 20, . (7.6)

For the lip at bg = 100°, we get for various values of A/

5/8 04/8
0 1.06
0.1 1.21
0.2 1.40

Since the freestream surfaces are matched, the vertical fin can start at
the cone vertex, or at some other position. The configuration for which the
fin starts at the vertex is shown in Fig. 7.2 for a/8 = 0.2. In this case the
fin shock is attached to the conical 1ip. The case where the fin begins half-way
back on the eliiptic-cone undersurface is shown in Fig. 7.3 for A/86 = 0.2. In
a real flow, owing to viscous boundary-layer shock interaction, the flow would

not be as well-behaved as i1lustrated here.

7.4 Vertical Fin for Inclined-Cone Waveriders

When the basic conical waverider surfaces are derived from cones at angle-
of-attack, the freestream surfaces are inclined at an angle o with the geometric
cone axis. The formulas in Section 7.2 must be adapted to these situations
by the appropriate evaluation of y_ and D¢ The unit normal vector to the free-

stream surface passing through 1ip shock and the freestream cone axis is given

by ﬁw, defined by Eq. (6.14). If éy denotes the unit normal vector to the

Lo ‘ B e st T IR, I
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vertical plane, then we obtain y_ from the condition cos 4, = - n_ - e,

(o- (%)(1~§) cos ¢, - (¥) g cos 20,1 cos b, * %-s1n2¢s

cos y

25

o - £y = 2 as2
lo - (31(1-9) cos o5 - (F) § cos 281° + (3)° sin® o

When « = 0, this reduces to the result ¢ =7 - ¢.. fhere s no discrepancy
in this result compared to Section 7.3 1f ft is realized that the windward ray
was taken as ¢ = 0 for the inclined-cone waveriders, whereas the non-inclined
elliptic-cone waverider utilized 9y > n/2 for the conical surface.

From geometrical considerations, we also obtain

1/2
*® 2 *
@s“ 3 [@s +ad - 20, o cos ¢S] , {7.8)
where

* .

@, = 8 *+ag cos ¥ - 2eg cos 2¢, . (7.9)

We shall not consider further calculations here.
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Geometry for the Vertical Fin
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Figure 7.2 Elliptic-Cone Waverider with Fin Starting at Vertex
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Ko = 1.3

SO

Figure 7.3 Elliptic-Cone Waverider with Fin Starting at Half Length
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8. Concluding Remarks

By means of stream surfaces obtained from angle-of-attack and cross-section
eccentricity perturbations of the basic supersonic axisymmetric flow past a
circular cone, aerodynamic 1iTting-body configurations have been derived. The
emphasis has been on a systematic parametric study cn the various configurations
that can be obtained. The configurations have attached shocks on sharp leading
edges and thus can be described as conical waveriders. Utilization of wedge-
shock caret-waverider results leads to a combination of configurations and to
vertical-fin control surfaces. Generalization of the perturbed flow past a
circular cone to allow for generalized non-circular cross sections [19] can
lead to further aerodynamic combinations.

The analysis has proceeded within the framework of hypersonic small-
disturbance theory, and approximate analytic formulas have been derived that
apply over a wide range of conditions, Although pressure distributions have
not been calculated, the pertinent formulas have been presented. Further
calculations by interested investigators can be performed readily.

The 1ifting-body configurations that have been presented appear attractive
in terms of high 1ift-drag ratio requirements. Further work is required to
account for other aerodynamic factors. Some of these are

1) 11ft, drag, and moment characteristics,

2) boundary-layer growth and related viscous effects,

3) off-design effects,

4) details of flaps and other control surfaces,

5) unsteady flow and dynamic forces and moments,

6) blunted edges and noses,

7) experimental results.
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These subjects are part of a continuing program of research at the University

of Oklahoma, sponsored by the United States Air Force.
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APPENDIX A
FORMULAS FOR THE BASIC AXISYMMETRIC CONE FLOW

Formulas for the hypersonic flow field in the shock layer of an unyawed
cone can be obtained from the analysis of Rasmussen [17]. They are also derived
alternatively in the Appendix of reference [11]. For small angles within the
framework of hypersonic small-disturbance theory, the radial and polar velocity

components are given approximately by

P N S (A1)
v
v—='@[]'%§'] ’ (A.2)
1/2
where % a [ l%l + KLT ] . (A.2)

$

and Ka = M_§ is the hypersonic small-disturbance parameter.

The temperature, speed of sound, and Mack number are given in terms of

the velocity for homentropic and homenergic flow. We obtain

T, a2 (r1) M 2 2 g2
—o.= o.: 2 a x:—]- 2 B - 9
s o Do A L LR LA B (A.4)
where errors of order &2 have been ignored. Since the flow 1s homentropic, j

the pressure is determined by

p(e) T (e) T T(6) = To(8) TT

9]

€0 At S L i ) (A.5)

The temperature change (and hence the prassure change) across the shock layer

is small, and hence we can use the first term of a binomial expansion to write

Pole) L Tole) - To(8)
B TE) T T (8

(A.6)

{

i

+

H

!

i
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When the pressure jump across the shock is taken into account,

Satc BB s o inn IR, 2 el

i
b p.(8) i
5 0 2 2 in? i
= + S - ’ .
5 ’ o ] ;%T (M2 s5in2g-1) ;
=1+ 'YKGZ ’ (A~7)
' ]
we can finally write the pressure distribution across the shock layer as 3
é p_(9) vK2 (y#1) K2+ 2 2 2 3
' L . - S .8 8 1
: b 1+ 5 [1 +W—K—§—+—-2—{ 1 ‘G-z""' In -é'z'}] . (A.8) 1
e g
3 i’!
3
g .
|
J
}
)
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APPENDIX B
FORMULAS FOR THE INCLINED ELLIPTIC CONE FLOW PERTURBATIONS

The flow perturbations outside the vortical layer are a 1inear combination
of the angle-of-attack contribution and the cross-section eccentricity con-
tribution, as given by Eqs. (3.6). At the shock, the angle-of-attack velocity

perturbations are given by [11,12]

Up(s) . .

-+ [ -90t -] ' (8.1)

ie) .. E .

T E O L2 (D ) r e - ) (8.2)

= Y

wi(8) .

- - [1-300 - )] , (8.3)
where

. Pe - 82 gl-]

iz tVow = (8.4)
is the density ratio, and o 2 8/6 . The shock eccentricity factor is
given by

(1 + g¢) 1- In[o + vV3%-T]
Y+ TIT
e} gt -

5-2(1"'0’2) [-l+4_0;_]_1n0'+ de-l

v g VOZ-l

3+202[3-4

[Yal)
u
—
o
(5]

At the shock, the cross-section eccentricity velacity perturbations are

given by [13,14]

Ul(B)
~— =98l -3) (E.6)

o
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vi(8) 2 (-

-%;— * g [{ 3YI‘ - g - (2-801 (B.7)
wi(B)

= -29 (1 - ¢, ) (8.8)

and the shock eccentricity factor 1s given by

3
g= 6o \ (B.g)

g +;%—(06+02)+3GL‘-0'2-5

The pressure disturbance in the shock layer is given by [11,12,13,14]

B1(0) i i -
W 2 -y (UOU]_ + VOVI)/aOZ + Fl ) (B.]OQ)
py(e) )
E;TﬁT a .y (uou1 + vovl)/ao +Fy , (B.10b)
where .
- Sy {
Fioz - = W 26 (1-)(1-5,)%/a2 (8) (B.11a) |
v-TIC, o/ /% )
- 2 g(1-z,)%/a2 (4] |
Fy = - = yV_28g(1-g,)%/a2 (8 . (B.11b)
I RN o' /%
The azimuthal velocity perturbation w,(e) is related to the radial '
1
perturbation u,(e) by [13,14] 1
|

nF, J
nup(e) + e wi(e) = - Hote) \B.12) i
where ?
L oagt
Holo) 2 ¢ ) —— do (6.13a)
8 0 |

oo
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(o)

Yo
1 = exp [J v do ] . (B.13b)
0
£
and where n = 1 for the angle-of-attack perturbation and n = 2 for fthe cross-

section eccentricity perturbation. The pressure at the tody surface 0 = 8+0(a,c)
does not depend on v; since vo(a) = 0, Thus, replacing u;(8) by w;(d) by
means of Eq. (B.12) yields the body pressure perturbation as a function of the

azimuthal velocity perturbation:

Pi(8) v & uo(ﬁ) wy(8) ST u0(6) HO(G) ] (B.14)
N0 nag(s) b ag () . ‘

When Ho(s) is emvaluated by means of Eqs. (A.1) and (A.2) and it is noted that
ag (9) varies only a small amount across the shock layer, such that a: (0)= ag (8),
then Ho(a) has approximately the value [13,14]
a2
Ho(é) a; (a)/v . (B.15)

Thus, since uo(s)/vm = 1 + 0(82) , we can approximate Eq. (B.14) by

Pils)  yd Vo wils) aZ (g) 5 16
07 T Thazter PRl - gTy ] (B.16)
The coefficient of F, is small enough to neglect, and we therefore obtain
Pi(s)  ys V_ wyls) .
(B8.17)

p (&)~ n aoz(W

The pressure perturbation at the surrace is thus very nearly proportional to the
azimuthal velov,ty. This result is consistent with the fact that both the

pressure and first-oirder azimutnal velocity ae uniformly valid across the

vartical layer.

ORI
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The azimuthal velocity perturbations evaluated at the surface have the

values [11,12,13,14]

Wy (6) . . Bo4 1 Vol T
—V:—=-£-(1+g)+-‘2—5%{ﬁ'f'1' "cic;_" 1o (8.18)
W1(8) Lo, 2 a1, s

i Sl Prrtar g sl (8.19)

The perturbation pressure variation across the shock layer can be obtained
from Eqs. (B.10) when Uy, u;, V;, and v; are evaluated by the formulas
of references [11,12,135,14]. Since the values of the pressure at the shock
and at the body are given here, a simple linear variation with @ across the

shock layer is adequate for design calculations.
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