ON THE PSYCHOLOGICAL REALITY OF TEXT TYPES

February 1979

Allen Munro, Kathy A. Lutz, and Lynn Gordon

Sponsored by
Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research

and
Advanced Research Projects Agency
Under Contract No. N00014-77-C-0328
ONR NR No. 154-397

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Office of Naval Research, Advanced Research Projects Agency, or the U.S. Government. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release: Distribution unlimited.
Text type is proposed as a psychologically valid construct. Previous research has suggested that text type may play a role in a reader's comprehension and memory for a text. Two experiments were conducted to explore the psychological reality of text types. In the first experiment, students were required to sort twelve texts on the basis of their similarities. The resultant sortings were subjected to a clustering analysis. Despite the fact that other bases for grouping together texts existed—a number of pairs...
of semantically related texts of different types were included—text type emerged as a powerful determiner of group membership. In the second experiment, students listened to recorded texts and then tried to recall them. As was predicted, text type had a significant effect on recall, with stories being recalled more fully than were instructions or definitions.
ARPA TECHNICAL REPORT

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ARPA Order Number : 3353</td>
</tr>
<tr>
<td>2.</td>
<td>ONR NR Number : 154-397</td>
</tr>
<tr>
<td>3.</td>
<td>Program Code Number : B 729</td>
</tr>
<tr>
<td>4.</td>
<td>Name of Contractor : University of Southern California</td>
</tr>
<tr>
<td>5.</td>
<td>Effective Date of Contract : 18 February 1977</td>
</tr>
<tr>
<td>6.</td>
<td>Contract Expiration Date : February 28, 1979</td>
</tr>
<tr>
<td>7.</td>
<td>Amount of Contract : $179,589.00</td>
</tr>
<tr>
<td>8.</td>
<td>Contract Number : N00014-77-C-0328</td>
</tr>
<tr>
<td>9.</td>
<td>Principal Investigator : Allen Munro (213) 741-7263</td>
</tr>
<tr>
<td>10.</td>
<td>Scientific Officer : Marshall J. Farr</td>
</tr>
<tr>
<td>11.</td>
<td>Short Title : On the Psychological Reality of Text Types</td>
</tr>
</tbody>
</table>

This Research was Supported by

The Advanced Research Projects Agency

and by

The Office of Naval Research

and was Monitored by

The Office of Naval Research
ABSTRACT

Text type is proposed as a psychologically valid construct. Previous research has suggested that text type may play a role in a reader's comprehension of and memory for a text. Two experiments were conducted to explore the psychological reality of text types. In the first experiment, students were required to sort twelve texts on the basis of their similarities. The resultant sortings were subjected to a clustering analysis. Despite the fact that other bases for grouping together texts existed—a number of pairs of semantically related texts of different types were included—text type emerged as a powerful determiner of group membership. In the second experiment, students listened to recorded texts and then tried to recall them. As was predicted, text type had a significant effect on recall, with stories being recalled more fully than were instructions or definitions.
ACKNOWLEDGEMENTS

This research was sponsored by ONR Contract N00014-77-C-0328. The support, encouragement, and advice of Marshall Farr and Henry Halff, Personnel and Training Research Programs Office of Naval Research, and of Harry F. O'Neil, Jr. and Dexter Fletcher, Cybernetics Technology Office, Defense Advanced Research Projects Agency, is gratefully acknowledged.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Theory of text types</td>
<td></td>
</tr>
<tr>
<td>Texts used in the experiments</td>
<td></td>
</tr>
<tr>
<td>Two hypotheses about the psychological reality of text types.</td>
<td></td>
</tr>
<tr>
<td>II. EXPERIMENT 1: CATEGORIZING TEXTS</td>
<td>11</td>
</tr>
<tr>
<td>Subjects and procedure</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>III. EXPERIMENT 2: RECALLING TEXTS</td>
<td>23</td>
</tr>
<tr>
<td>Subject and procedure</td>
<td></td>
</tr>
<tr>
<td>Equating passage difficulty</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>33</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure No. Page

1. Tree Produced by Clustering for Combined Sorts 16
2. Tree Produced by Clustering for 3-Group Sort 21
3. Mean percent of propositions recalled for each text and each text type 30
4. Mean percent of terminal nodes recalled for each text and each text type 31

LIST OF TABLES

Table No. Page

1. Similarities Matrix for Combined Sorts 14
2. Similarity Value on Which Clusters Formed for Combined Sorts 17
3. Similarities Matrix for 3-Group Sort 19
4. Similarity Value on Which Clusters Were Formed for 3-Group Sort 20
5. Difficulty Estimates for Individual Passages and Categories of Text-Type 26
6. Means and Standard Deviations of Percent Propositions Recalled. 28
7. Means and Standard Deviations of Percent Terminal Nodes Recalled. 29
I. INTRODUCTION

When reading a text, the literate person normally has a number of expectations about that text which may contribute to the reading process. There is often some expectation as to the topic matter of the text, since, in many cases, the text is selected because of an interest in the presumed topic. Usually a reader has some notion of how syntactically complex and how lexically abstruse a text is likely to be, based not only upon the expected topic, but also upon such factors as whether the work was apparently intended for children or for adults. Rumelhart (1977, 1978) has presented a theory of how these expectations and many others might all participate in the cognitive process of understanding texts. Another type of expectation, which, we believe, must influence the comprehension of and memory for texts, is expectation of text type.

There are many possible types of texts. Different people will have different conceptions of what constitutes a normal set of text types. For example, scholars are likely to have sets of expectations about the structures of technical articles in their fields. These expectations would include models for the prototypical format of the texts, topics to be covered, and the usual semantic relationships among major constituents of the texts. People who commonly read other types of texts can be expected to have well-developed sets of expectations about those types of texts as well; for example, some people have relatively precise representations for such diverse texts as regency novels, progressive labor party pamphlets, and horror comics. This plethora of possible distinct (and, to some extent, almost idiosyncratic) text types does not mean that
the phenomenon cannot be studied because every result will be buried in a mass of individual differences. We believe that, in a given culture, there are likely to be a relatively small number of basic text types. The more specific text types, such as those mentioned above, can be thought of as subclasses of the basic text types.

We have studied three different basic text types in some depth thus far. They are stories, instructions, and definitional explanations. Stories are short, simple narratives with a principal protagonist who is confronted by a situation which inspires a certain goal. The protagonist makes one or more attempts at the goal, and some resolution is achieved. Simple folk tales are one kind of text of this basic type. The second type of text, instruction, ordinarily consists of a description of some desirable state and a sequence of actions, to be performed by the reader, which will result in the state. Short "how-to" articles are one kind of instructions. The third type of text we have studied is definitional explanations. These are short texts which define some unfamiliar object or process to the reader. Short popular science articles are a kind of definitional text.

The long range goals for our work on text types are, first, to learn whether text type does, indeed, play a role in text processing and in memory for texts, and, second, to learn what conceptual structures and cognitive processes are responsible for such text-type effects.

\[1\] Mandler, Scribner, Cole, & DeForest (1978) have presented evidence that suggest that at least one type of text, simple narrative, may have universal, cross-cultural characteristics.
Theory of text types

A complete text grammar should provide three levels of analysis: (1) the semantics; (2) the text structure; and (3) the sentential and lexical linguistic realization.

The semantics level deals with the actual information contained in each text. In general, the semantic content of a text can be specific or generic—typically stories convey specific information, while definitions and instructions convey generic information. Individual texts can be analyzed to provide representations of the information content of the text. We have chosen to represent the semantics of stories as semantic networks with many higher level causal, temporal and enabling relations between propositions and groups of propositions. Definitions and instructions are represented as schemata which consist of activateable subschemata. These take the form of lists of propositions primarily related by the sharing of arguments.

The text structure level consists of the ordering of information into appropriate units. This level represents the organization of the information according to appropriate conventions to produce the desired text-type. While the actual semantic content of stories differs, the organization of the kinds of information displays many regularities. Thus, a story (regardless of its particular content) usually consists of a setting, which 'sets' the action in time or space, and a plot. The plot consists of a purpose (which provides the impetus to the protagonist), an attempt (which provides a response to that impetus), and an outcome. In some sense, this corresponds to the old recommendation to anyone (in this culture) narrating something, to begin at the beginning, go through the middle, and stop at the end. This
advice would be useless for definitions, for example, since there is often no temporal or causal 'beginning.' Moreover, there is no overwhelming semantic reason for ordering the elements of a story this way; often the 'point' of a story is the outcome. According to this set of conventions, beginning with the outcome is inappropriate, but it is certainly possible to imagine a set of conventions (in some other culture), which permit the introduction of a story by telling its outcome, as an emphatic device.

The linguistic realization of a text consists of the encoding of the ordered units of information into words, sentences, and super-sentential constituents. This level provides the appropriate lexical and syntactic realization of the information, based on the constraints of the general linguistic rules of the language and the constraints established by the intent and format of the text-type. This level would deal with such things as the high number of imperative clauses found in instructions. It is difficult to determine at this point to what degree the linguistic structure of texts is tied to their text-type, i.e., to what degree the lexical and syntactic facets of a text can be manipulated without influencing (or changing) the type to which the text is judged to belong. This level is one which we have given the least study--few real generalizations can yet be made which characterize text-types along these lines. Stories and instructions tend to have active verbs (both transitive and intransitive), while definitions are characterized more by stative verbs (including passive and copular forms). Instructions as noted above tend to have many imperatives (in our texts, about half of the clauses are imperatives), whereas the other two text-types rarely have any.
In recent years there has been a good deal of research on the grammar of simple texts. There have been two basic approaches to the problem. One group of investigators (including Frederickson, 1975, 1977, Kintsch, 1975, Kossinsky, 1977, McKoon, 1977, and Meyer, 1975) has emphasized the structure of the semantic representations of texts in memory. The second group, which includes Graesser (in press), Mandler & Johnson (1977), Rumelhart (1975), and Thorndyke (1977), has attempted to characterize both a level of semantic representation for texts and also a structural representation, which is meant to capture the constituent structure of the texts. This structural representation bears a similar relation to a text that a syntactic representation bears to a sentence in the theory of transformational grammar. The structural representation reflects the perceived constituent structure of a text, and, presumably, makes a contribution to its semantic interpretation.

It is important to remember that structural representations of texts do not have any existence independent from the mind of the reader. For the sake of brevity, we will sometimes refer to "the text structure of this text", and so on, below. The structural representations we present are meant only as a kind of static depiction of the process of constituent analysis during reading. Such an analysis is the product of constituency expectations (determined by the reader's perception of the type of the text) and the mental representations of the propositions of the text. In our theory, constituency judgements play an important role in suprasentential semantics.

Most of the research on the structure of texts (particularly that done by those researchers who investigate both semantic and text structure representation) has dealt with only one type of text, namely simple narrative. Our goal has been to extend the theoretical approach developed by others to
deal with other types of texts as well. In Gordon, Munro, Rigney & Lutz (1978) we presented pilot evidence that suggested that more than one type of text structure must be postulated to account for differences in people's memories for different texts. According to the model presented in that study, hypothesized structural differences between the three types of text cause readers to remember some of the text types more easily than the others. The model posits structural representations for the three types of text and predicts that texts which possess greater structural hierarchy and greater semantic specificity are better remembered than text types which have a more linear structure.

The major thrust of the current study is to establish the psychological validity of the text type distinction. One experiment requires the readers to classify a number of texts into groups based on any perceived similarities. The directions in this experiment avoid any mention of a basis or scheme for classification, leaving the readers free to group texts as they wish. The analysis will determine how closely the groupings made by the readers match the hypothesized three categories of text. The second experiment tests for differences in memorability, as measured by free recall, for different types of texts. Specifically, the model predicts that stories will be recalled better than the other two types of text since stories have the greatest hierarchical structure and their semantic content is specific. Instructions, in turn, should be better remembered than definitional explanations since the elements or constituents in an instruction have some hierarchical organization compared to the linear structure of definitions. (See the sample structural representations in the Appendix.)

The reason that text structure affects memory is hypothesized to be due to the existence of text structure "schema" or mental expectations in
the mind of the reader. When the reader encounters a certain type of text, the successful reader recognizes the type and automatically uses prior knowledge about the structure of this type of text to facilitate further reading and memory. For example, when a story is encountered, the reader automatically expects to read about a plot and a setting. The reader implicitly knows that the plot will consist basically of a purpose, attempt, and outcome. These prior expectations represent a kind of higher level mental resource that aids the reading and memory process. The model does not imply that readers are consciously aware of these knowledge structures and expectations which help them read a story. On the contrary, schema or expectations about text structure are automatic, subconscious aids that the successful reader has learned to use to guide the reading efficiently and effectively. The reader can also use structural schema as recall aids because these schema serve as powerful pointers or cues to the information to be retrieved during recall.

Texts used in the experiments

In addition to using stories of the type studied by Rumelhart (1975, 1977b), Thorndyke (1977), and Mandler & Johnson (1977), this study investigates recall of definitional explanations and instructions. Several texts of each of these three types are identified and analyzed according to their structural and semantic characteristics. For each text chosen for use in this study, two representations are generated, including a semantic representation that is similar in many respects to representations used by Frederickson and others who emphasize the semantic structures of text. Samples of one text of each type, together with a text structure representation and a semantic representation are presented in the Appendix.
In obtaining the texts to use in these experiments, we were constrained by our decision to use naturally occurring texts. We have used texts from many sources; stories from a number of folk-tale and anecdote books from American mainstream tradition; definitions from encyclopedias, text books, and popular science magazines; and instructions from how-to books and popular magazines. We controlled for text length by equating texts on number of words. We also tried to provide shared semantic features across texts of different types. For example, one text selected was a story about a hedgehog, while another was a definition of hedgehogs. We did not, however, precisely control linguistic features such as lexical and syntactic complexity. Though it may not be possible to equate texts completely along syntactic lines (for example it is difficult to find instructions without imperatives and definitions with imperatives), it is possible to equate texts along lines of lexical complexity (the frequency of the meaningful lexical items) and syntactic complexity (the number and kinds of complex sentences found in the texts). However, we did apply an approximate measure of "difficulty" to the texts selected.

Two hypotheses about the psychological reality of text types

If text type is a valid psychological variable, one would expect it to influence a variety of information processing operations which people might apply to texts. A simple such operation is deciding how similar two texts are to each other. We hypothesized that text type could serve subjects as one acceptable feature by which the similarity of texts could be judged. We did not predict that text type would be the only feature which subjects might use in making such judgements, but we felt that it would be an important feature, even when it was compared with other
potentially important measures of similarity, such as the semantic relatedness of the topics of the texts.

Experiment I, reported below, was conducted to test this hypothesis. Subjects were required to sort texts into groups on the basis of their similarities. The data produced were subjected to a clustering analysis. Our prediction was that this analysis would show major clusters for the three types of texts we felt we had included (stories, instructions, and definitional explanations) and that these clusters would be evident despite competing similarities among the texts. These competing similarities were introduced by the presence of four pairs of semantically related topics, pairs which always crossed text type boundaries.

The second hypothesis about the psychological reality of text types has to do with the recall of different types of texts. In Gordon, Munro, Rigney, and Lutz (1978) a rationale is presented for expecting stories to be better recalled (in terms of proportion of propositions) than instructions and for instructions to be better recalled than definitions. These expected results follow from two principles: semantically specific information (as in definitions and instructions), and complex hierarchical structures should permit greater recall than flat structures. As the examples in the Appendix show, among the texts of all three types considered, we have observed consistent differences in the nature of the structural grammars trees that represent the texts. For texts of the same length (as determined by number of words or number of "propositions" or meaning units), stories and instructions have more hierarchical, more "vertical" structural representations while definitions appear to be more "horizontal". This hypothesis was tested in the earlier study (Gordon, et al. 1978), but only two texts of each type
(and those two different lengths) were used. In Experiment II, reported below, the experiment was conducted with nine texts, three each of each type. All of the texts were of approximately the same length. Confirmation of the two hypotheses stated here should add to the evidence for the psychological reality of text types.
II. EXPERIMENT 1: CATEGORIZING TEXTS

Readers are aware of many aspects of texts, of which the features associated with text type distinctions proposed in the model may constitute at best only a set. This experiment determines the subjective importance of text type differences relative to other characteristics of text such as subject matter similarities and differences. The purpose of the experiment is to determine if categories made by readers match those postulated in the model.

Subjects and procedure

Twenty undergraduate college students chose to participate in this experiment for credit in an introductory psychology class. Students were tested in groups of two to six. Each student received the same texts, but arranged in random order. Two sets of materials were distributed including the 12 texts and the answer sheets. Of the 12 tests, four were stories, four were definitions, and four were instructions. The 12 tests were typed on a half page and were headed by the title of the passage preceded by an identifying letter in parentheses. The titles and letter abbreviations are as follows:

<table>
<thead>
<tr>
<th>Stories</th>
<th>Instructions</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B) Borrowing a Horse</td>
<td>(D) Training a Dog</td>
<td>(A) Artesian Wells</td>
</tr>
<tr>
<td>(F) Free Help</td>
<td>(L) Studying for</td>
<td>(C) Courtly Love</td>
</tr>
<tr>
<td>(T) The Boy and the Customs Officer</td>
<td>(M) Making a Planter</td>
<td>(H) Hedgehogs</td>
</tr>
<tr>
<td>(U) Unwelcome Guest</td>
<td>(S) Strawflowers</td>
<td>(N) Nematodes</td>
</tr>
</tbody>
</table>
Type of text is not the only basis on which the texts may be grouped. Readers can group the texts on the basis of subject matter similarities. The 12 texts were selected so that there were some similarities of topic matter. For example, one of the definitions describes the characteristics of hedgehogs while one of the stories presents a parable about a hedgehog.

The participants were asked to sort the texts into groups, starting with two groups and ending with eleven groups. First, the student made two groups out of the 12 texts, then three, then four, and finally on up to eleven. After each sort, the student recorded the text initials on the answer sheet. In addition, the student gave each grouping an identifying label and rated how appropriate the sorting seemed to be. These confidence ratings on the appropriateness of each grouping range from one to five with one indicating the most satisfactory grouping.

The instructions to the students were as follows:

In front of you there are twelve short passages. Each of these passages is headed by a letter in parentheses and a title. We would like you to read them quickly for understanding. You will be rereading them during your task. We would like you to put these passages into groups. We are going to ask you to sort them first into two groups, and then into three, all the way up to eleven groups. For each sorting, please put all twelve passage into the groups and please put at least one passage in each group.

Beside you, you can see the scoring sheets. At the top is a space for your name. Please write it in now. As you finish a sorting, please write down the letter associated with each text in the group to which you have assigned the passage.

If you look at the first sheet, you can see that there is a space provided for writing in the letters of the texts, under the appropriate group. There is also a line which says 12. After you have finished grouping all the texts and writing them in, count the letters to make sure that you have grouped all twelve of them. If you have, then check the space marked 12. If not, go back and find out which passage you have omitted and put it into whichever group you feel it belongs to and then check the space marked 12.
We realize that some of the groupings you make may feel funny or unnatural since we are asking you to do this for so many different numbers of groups. So we have provided a place for you to express how satisfactory you feel the sorting is. 1 is the most satisfactory and 5 is the least.

In grouping the texts, you may want to pile the passages into groups or use some other technique for separating them up. Please remember to write down your groupings on the score sheet. After you have finished a sorting, please try to give a descriptive name to any group which has more than one passage in it. Read all the texts before you begin sorting.

Notice that no standard or basis for the sorting was suggested to the students. Using this vague directive, we expected that individuals would generate their own criteria for sorting.

Results

Students' groupings were converted to numbered scores for assigning the group number to each text placed in that group. For example, if the student sorted the first six of the texts into group 1 on the answer sheet and the second half into group 2, then the first six texts would be scored '1' and the second six would be scored '2.' So for each sort, each text was given a value between 1 and the number of groups in that sort. This scoring procedure yielded numbers whose relative value rather than absolute value is of interest. A program was written to compare the values for each text for each sort and construct a similarities matrix. For example, if story B and story T were grouped together in the first sort, their values for that sort would be the same. Similarly, their values would also be the same in sort 2 (possibly of a different value than in sort 1) if they were grouped together again. The resulting similarities matrix for all students across all sorts is given in Table 1. Notice that the value along the diagonal is always 200 because there are 20 students x 10 sorts (a text is always grouped with itself). The matrix is divided
Table 1
Similarities Matrix for Combined Sorts

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>B</th>
<th>U</th>
<th>F</th>
<th>L</th>
<th>S</th>
<th>D</th>
<th>M</th>
<th>H</th>
<th>N</th>
<th>C</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Boy and the</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Customs Officer</td>
<td></td>
<td>89</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrowing a</td>
<td></td>
<td></td>
<td>113</td>
<td>77</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horse</td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>63</td>
<td>75</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unwelcome Guest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>49</td>
<td>116</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Free Help</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Studying for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>42</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Lecture Courses</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Strawflowers</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Training a Dog</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>to Heel</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Making a</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Concrete Planter</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Hedgehogs</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Nematodes</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Courty Love</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Artesian Wells</td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>
into three sections corresponding to the three text types: stories, instructions and definitions. Visual inspection indicates that the twelve text passages were often grouped according to text type. The triangle in the upper left corner of the table indicates how often the stories were grouped together, the middle triangle corresponds to the instructions and the lower triangle indicates how often the definitions were grouped together. Visual inspection confirms that similarity scores are not evenly distributed, but rather, are grouped by text type.

To determine whether the students grouped the passages into the three predicted categories, a cluster analysis was performed. The minimum distance method was used in forming the clusters. The essence of the procedure is to merge objects which are most similar (separated by a minimum distance) and to treat this cluster as a single object in a new matrix. The process is then repeated, joining together the next most close objects, some of which may be clusters of other objects. The result of this procedure is a graphical presentation showing which elements cluster together, beginning with the clusters formed by the closest elements and proceeding to combinations of less closely related texts. Figure 1 shows the tree produced by clustering using the similarities matrix for combined sorts (found in Table 1). The correlations printed in the tree are scaled for 0 to 100. The similarity values on which the clusters were formed is given in Table 2.

The predicted result was that three overall clusters would be formed, corresponding to the stories, instructions, and definitions used in the experiment. A strong cluster for stories is evident in the results (see Figure 1). Although there were subgroups within the other two types,
Figure 1. Tree produced by clustering for combined sorts
Table 2

Similarity Value on Which Cluster Formed for Combined Sorts

<table>
<thead>
<tr>
<th>Text</th>
<th>Variable Number</th>
<th>Other Boundary of Cluster</th>
<th>No. of Items in Clusters</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Boy & the Customs Officer</td>
<td>1</td>
<td>9</td>
<td>12</td>
<td>33.29</td>
</tr>
<tr>
<td>Unwelcome Guest</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>82.58</td>
</tr>
<tr>
<td>Borrowing a Horse</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>66.16</td>
</tr>
<tr>
<td>Free Help</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>61.50</td>
</tr>
<tr>
<td>Training a Dog to Heel</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>81.24</td>
</tr>
<tr>
<td>Making a Concrete Planter</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>47.29</td>
</tr>
<tr>
<td>Studying for Lecture Courses</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>70.77</td>
</tr>
<tr>
<td>Strawflowers</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>44.09</td>
</tr>
<tr>
<td>Courtly Love</td>
<td>11</td>
<td>12</td>
<td>2</td>
<td>61.56</td>
</tr>
<tr>
<td>Artesian Wells</td>
<td>12</td>
<td>1</td>
<td>10</td>
<td>37.13</td>
</tr>
<tr>
<td>Nematodes</td>
<td>10</td>
<td>1</td>
<td>11</td>
<td>34.94</td>
</tr>
<tr>
<td>Hedgehogs</td>
<td>9</td>
<td>1</td>
<td>12</td>
<td>33.29</td>
</tr>
</tbody>
</table>
which did not cross over text type boundaries, the clustering analysis did not clearly demarcate the categories of instructions and definitional texts.

A second analysis was performed, using only the data generated when the students were asked to sort the twelve texts into three groups. Since this sorting allowed for a perfect matching of the texts to the predicted text type categories, it is important to examine the outcome of this sort. The similarities matrix for the three-group sort is found in Table 3 and the tree produced by clustering (as above for Figure 1) is presented in Figure 2. The similarity values on which the clusters were formed is given in Table 4. The results conform closely to our predictions.

Discussion

The intent of this experiment was to determine the extent to which unprompted readers recognize the distinctions between texts, in particular between types of texts. In the instructions, the experimenter provided no hint of a criterion on which to sort the texts. The instructions were deliberately vague in order to discover the salient features of the texts to the students (and, therefore, to confirm independently the hypothesized text-type membership of these texts).

It was very likely that the judgements made by the students could have been made on semantic grounds. In other words, the particular semantic characteristics of the texts selected for use in the experiment could influence or bias the sorting. In addition to text type, there were other bases available for grouping texts together. For example, we deliberately ensured that there were close semantic relationships among the topics of pairs of texts of different types: a story and an instruction both dealt with dogs; one of the stories and a definition both involved hedgehogs; one story and a definition are centrally concerned with wells.
Table 3

Similarities Matrix for 3-Group Sort

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>B</th>
<th>U</th>
<th>F</th>
<th>L</th>
<th>S</th>
<th>D</th>
<th>M</th>
<th>H</th>
<th>N</th>
<th>C</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Boy and the Customs Officer</td>
<td>T</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Borrowing a Horse</td>
<td>B</td>
<td>15</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unwelcome Guest</td>
<td>U</td>
<td>16</td>
<td>11</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Help</td>
<td>F</td>
<td>16</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studying for Lecture Courses</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strawflowers</td>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>11</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training a Dog to Heel</td>
<td>M</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>7</td>
<td>16</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Making a Concrete Planter</td>
<td>H</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedgehogs</td>
<td>N</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Nematodes</td>
<td>C</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>Courtly Love</td>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Artesian Wells</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
Table 4
Similarity Value on Which Clusters Were Formed for 3-Group Sort

<table>
<thead>
<tr>
<th>Text</th>
<th>Variable Number</th>
<th>Other Boundary of Cluster</th>
<th>No. of Items in Clusters</th>
<th>Distance of Similarity When Clusters Formed</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>44.89</td>
</tr>
<tr>
<td>U</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>97.20</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>96.74</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>91.83</td>
</tr>
<tr>
<td>L</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>69.60</td>
</tr>
<tr>
<td>S</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>87.59</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>91.49</td>
</tr>
<tr>
<td>M</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>62.50</td>
</tr>
<tr>
<td>H</td>
<td>9</td>
<td>10</td>
<td>2</td>
<td>65.92</td>
</tr>
<tr>
<td>N</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>53.02</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>12</td>
<td>2</td>
<td>86.44</td>
</tr>
<tr>
<td>A</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>44.89</td>
</tr>
<tr>
<td>Stories</td>
<td>The Boy and the Customs Officer</td>
<td>96</td>
<td>96</td>
<td>91</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Unwelcome Guest</td>
<td></td>
<td>97</td>
<td>83</td>
<td>27</td>
</tr>
<tr>
<td>Free Help</td>
<td></td>
<td>84</td>
<td>29</td>
<td>53</td>
</tr>
<tr>
<td>Borrowing a Horse</td>
<td></td>
<td>42</td>
<td>52</td>
<td>50</td>
</tr>
<tr>
<td>Studying for Lecture Courses</td>
<td></td>
<td>87</td>
<td>54</td>
<td>27</td>
</tr>
<tr>
<td>Strawflowers</td>
<td></td>
<td>69</td>
<td>46</td>
<td>9</td>
</tr>
<tr>
<td>Training a Dog to Heel</td>
<td></td>
<td>91</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Making a Concrete Planter</td>
<td></td>
<td>24</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>Definitions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedgehogs</td>
<td></td>
<td>65</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>Nematodes</td>
<td></td>
<td>37</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Courty Love</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artesian Wells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tree produced by clustering for 3-group sort
In examining the results of the clustering analysis, it is clear that the students (without prompting) converged on the three text-type distinctions which we have postulated, at least in the three-group sort. In the analysis of all the sortings the results are not altogether clear, perhaps, in part, because there are fewer opportunities for all and only the texts of a given type to be grouped together. On the other hand, all the discrete groupings in both analyses (Figures 1 and 2) consist of members of the same type. That is, there is no evidence of cross-type grouping.

The second sorting (into three groups) allows a much clearer observation of the effects of text type—there is no obstacle to the assignment of the texts into type-defined groups. Inspection of Figure 2 demonstrates the unity of the stories and instructions as a group. Definitions which have much less hierarchical (and, thus, less clearly marked) structure and fewer semantic and syntactic cues as to their type-membership are not as clear-cut as in the other two types. However, these texts do form clusters—Hedgehogs with Nematodes (possibly a semantic grouping—both are descriptions of living beings) and Courtly Love with Artesian Wells.

It is significant that clustering within our predicted text types was stronger than clustering across test type boundaries, despite the existence of other, topical, relationships among texts of different types. We take these results as encouragement for the hypothesis that these text types are psychologically distinct.
III. EXPERIMENT 2: RECALLING TEXTS

In our previous research on recall of tests (Gordon, et al. 1978) students were required to recall at most six texts, two each of the three types we have studied. Furthermore, in those experiments the two texts of each type were of quite different lengths. In this experiment, nine of the texts used for Experiment 1 were employed. Each type of text was therefore represented by three specific texts. An attempt was made to select texts so that a range of difficulty was represented by the texts of each type. An analysis of "difficulty" (see "Equating Passage Difficulty") shows that this effort succeeded.

Our predictions for this experiment were that text type would have a significant effect on recall of the texts. We expected stories to be recalled best, followed by instructions, with definitions the least well recalled type of text.

Subjects and procedure

Thirteen undergraduate college students participated voluntarily in this experiment for credit in an introductory psychology course. All students received the same treatment since this is a completely within-subjects design. The two factors in this design are text-type (story, instructions, definition) and materials (three different passages of each text type).

The students were tested in groups of four to six. They were told that they would hear a number of passages and were instructed to listen carefully and attempt to remember as much as possible. They were informed that they would be asked to provide as near verbatim a recall as possible
for each of the texts. The nine passages used in the experiment were presented via a tape recording. After each text was presented orally, the students were given a one-minute intervening task which consisted of adding a page of 3-digit number problems. Then, they wrote out everything which they could recall from the text, as completely and exactly as they could. Unlimited time was provided for recall. The texts were presented in this order on the tape:

Borrowing a Horse, Making a Concrete Planter, Courtly Love, Unwelcome Guest, Training a Dog to Heel, Artesian Wells, The Boy and the Customs Officer, Studying for Lecture Courses, and Hedgehogs.

Equating passage difficulty

Memory for texts can be influenced by a number of factors other than text type as discussed earlier. One major influence on recall is passage difficulty level as determined by such factors as word frequency, lexical complexity, and sentential syntax. An attempt was made to equate the nine passages used in this experiment on the basis of difficulty. One simple, but rather accurate, method for assessing the difficulty level of a passage is the Fry Formula for Estimating Readability. This method defines difficulty in terms of linguistic factors such as syllable count and sentence length. This approach is based on the assumption that passages containing words with more syllables and longer sentences are more difficult to read.

The Fry method yields a numerical grade level for a passage from grades 1 through 17. The intent of assessing passage difficulty in this experiment is not to categorize or label each passage according to a general grade level but rather to estimate and compare the relative
difficulty of the nine passages. Therefore, the Fry approach has been used only to yield the raw scores rather than using the Fry Readability Scale to determine the resultant categories for those raw scores. The procedure used to estimate passage difficulty following the Fry approach is as follows:

1. Count out 100 words of the passage, beginning with the start of a sentence. Count numerals, initials, and proper nouns.

2. Count the number of sentences in the 100 words, estimating length of the fraction of the last sentence to the nearest 1/100th.

3. Count the total number of syllables in the 100-word segment.

4. Divide the result of (3)—the syllable count—by the result of (2)—the sentence count—to yield the raw difficulty score.

These raw difficulty estimates for each of the nine passages are given in Table 5, along with the mean difficulty level for stories, instructions, and definitions. A one-way ANOVA comparing the means for the three groups revealed no significant differences in mean difficulty level between the three types of text, F (2,6) = .12, N.S. Although the mean difficulty ratings do not differ significantly between the three groups, a visual inspection of the means indicates that the stories are most difficult, followed by instructions, and then, definitions (a higher score means the passages possess greater difficulty). Since our hypothesis is that the stories text-type will be recalled best, a slight difference in the difficulty, in this direction (i.e., stories are slightly more difficult) is desirable because any obtained recall superiority for stories, then, cannot be a function of "easier" passages.
<table>
<thead>
<tr>
<th>Text Type</th>
<th>Passage Title</th>
<th>Difficulty</th>
<th>Mean Difficulty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stories</td>
<td>Borrowing a Horse</td>
<td>23.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unwelcome Guest</td>
<td>32.80</td>
<td>24.92</td>
</tr>
<tr>
<td></td>
<td>The Boy & the Customs Officer</td>
<td>18.66</td>
<td></td>
</tr>
<tr>
<td>Instructions</td>
<td>Making a Concrete Planter</td>
<td>20.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Training a Dog to Heel</td>
<td>18.64</td>
<td>23.15</td>
</tr>
<tr>
<td></td>
<td>Studying for a Lecture Course</td>
<td>30.49</td>
<td></td>
</tr>
<tr>
<td>Definitions</td>
<td>Courtly Love</td>
<td>23.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Artesian Wells</td>
<td>18.21</td>
<td>22.54</td>
</tr>
<tr>
<td></td>
<td>Hedgehogs</td>
<td>26.28</td>
<td></td>
</tr>
</tbody>
</table>

Table 5
Difficulty Estimates for Individual Passages and Categories of Text-Type
Results

To score the students' free recalls, a set of standards was used to first determine the propositions contained in each text passage; the students' written productions were then scored for inclusion of those propositions. Basically, a proposition is defined as any clause containing a verb (additional rules are detailed in Gordon, et al. 1978). In addition to determining the number of propositions that each student recalled from each passage, we also scored the recalls for inclusion of terminal nodes. A terminal node is defined as the lowest structural element in the text structure of each type of text. The terminal nodes found at the bottom of the sample text structures in the Appendix are typical components for each text type. A given terminal node can be represented in the text by one or more propositions. When students included one or more propositions that were part of a terminal node of a text, we scored that node as being present. Therefore, for each of the nine texts, recalls were scored for the presence of both structural terminal nodes and propositions. Raw recall scores were converted into ratio scores of the number of propositions or terminal nodes included in the recall to the total possible number of propositions or terminal nodes in each particular text. The means of the students' ratio scores for propositions recalled from each of the nine passages are shown in Table 6. The means of the students' ratio scores for terminal nodes recalled from each passage are shown in Table 7. A graph of the data is presented in Figures 3 & 4. Visual inspection indicates that our expectations were confirmed, in that, stories were generally recalled better than instructions which appear to have been recalled better than definitions. To test this conclusion, a one-way
<table>
<thead>
<tr>
<th>TEXT TYPE</th>
<th>PASSAGE TITLE</th>
<th>MEAN</th>
<th>S.D.</th>
<th>TEXT TYPE</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stories</td>
<td>Borrowing a Horse</td>
<td>41.35</td>
<td>(20.71)</td>
<td>Instructions</td>
<td>51.21</td>
</tr>
<tr>
<td></td>
<td>Unwelcome Guest</td>
<td>49.08</td>
<td>(18.24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Boy and the Customs Officer</td>
<td>63.20</td>
<td>(12.93)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructions</td>
<td>Making a Concrete Planter</td>
<td>26.03</td>
<td>(10.97)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Training a Dog to Heel</td>
<td>50.24</td>
<td>(15.47)</td>
<td></td>
<td>29.68</td>
</tr>
<tr>
<td></td>
<td>Studying for a Lecture Course</td>
<td>26.15</td>
<td>(11.48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definitions</td>
<td>Courtly Love</td>
<td>14.93</td>
<td>(9.65)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Artesian Wells</td>
<td>49.52</td>
<td>(15.36)</td>
<td></td>
<td>34.14</td>
</tr>
<tr>
<td></td>
<td>Hedgehogs</td>
<td>24.55</td>
<td>(11.48)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 7
MEANS AND STANDARD DEVIATIONS
OF PERCENT TERMINAL NODES RECALLED

<table>
<thead>
<tr>
<th>TEXT TYPE</th>
<th>PASSAGE TITLE</th>
<th>MEAN</th>
<th>S.D.</th>
<th>TEXT TYPE</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stories</td>
<td>Borrowing a Horse</td>
<td>53.85</td>
<td>(21.34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unwelcome Guest</td>
<td>67.12</td>
<td>(22.65)</td>
<td></td>
<td>67.10</td>
</tr>
<tr>
<td></td>
<td>The Boy and the Customs Officer</td>
<td>80.35</td>
<td>(11.69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructions</td>
<td>Making a Concrete Planter</td>
<td>36.77</td>
<td>(13.23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Training a Dog to Heel</td>
<td>56.68</td>
<td>(12.56)</td>
<td></td>
<td>32.70</td>
</tr>
<tr>
<td></td>
<td>Studying for a Lecture Course</td>
<td>42.01</td>
<td>(17.65)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definitions</td>
<td>Courtly Love</td>
<td>25.65</td>
<td>(12.92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Artesian Wells</td>
<td>47.58</td>
<td>(22.32)</td>
<td></td>
<td>45.15</td>
</tr>
<tr>
<td></td>
<td>Hedgehogs</td>
<td>24.86</td>
<td>(8.88)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3 Mean percent of propositions recalled for each text and each text-type

a. Borrowing a Horse (story)
b. Making a Concrete Planter (instruction)
c. Courtly Love (definition)
d. Unwelcome Guest (story)
e. Training a Dog to Heel (instruction)
f. Artesian Wells (definition)
g. The Boy and the Customs Officer (story)
h. Studying for Lecture Courses (instruction)
i. Hedgehogs (definition)
Figure 4 Mean percent of terminal nodes recalled for each text and each text-type.

a. Borrowing a Horse (story)
b. Making a Concrete Planter (instruction)
c. Courtly Love (definition)
d. Unwelcome Guest (story)
e. Training a Dog to Heel (instruction)
f. Artesian Wells (definition)
g. The Boy and the Customs Officer (story)
h. Studying for Lecture Courses (instruction)
i. Hedgehogs (definition)
ANOVA compared the mean recall scores which were obtained by collapsing scores for the three passages of each type into one, mean score. In other words, each student's mean recall of stories was compared to his or her mean recall of instructions and mean recall of definitions. This within-subjects factor of text type did significantly affect recall of both terminal nodes, $F(2, 24) = 7.08$, $p < .01$, for terminal nodes, and $F(2, 24) = 42.70$, $p < .01$, for propositions.

Discussion

In this experiment, a measure of level of difficulty was used to ensure that the texts of different types were of approximately equivalent reading levels. The texts were all of about the same length. Nonetheless, the prediction that text type would significantly affect amount recalled was born out by the results of the experiment. As was expected, stories were recalled to the greatest extent, instructions next, and definitions were the least well recalled. These results support the contention that these text types affect memory for text.

The results of the two experiments reported here, together with the evidence presented in Gordon, et al (1978), provide convincing support for text type as a valid psychological construct.
REFERENCES

Graesser, A.C. How to catch a fish: The memory and representation of common procedures. Discourse Processes, in press.

APPENDIX

Three Sample Texts Used in the Experiments, Together
With Their Text Structures and Semantic Representations

Three Sample Texts

The texts are presented here divided into their component propositions, following the method described in Gordon, et al (1978). The numbers of the propositions may be referred to in the corresponding text structure representations.

The Boy and the Customs Officer (A Story)

1. A boy went to market one day
2. to sell a lamb,
3. leading his dog along
4. on a leash.
5. On the way,
6. he thought about how to get into town
7. without paying any duty
8. on the lamb.
9. Arriving
10. near the customs house,
11. he picked up the lamb,
12. tied it up,
13. and hid it,
14. under a bush.
15. Then he took his dog
16. and put it into his bag,
17. The boy opened his bag,
18. and the dog jumped out
19. and ran off.
20. "Now look
21. what you've done,
22. cried the boy.
23. 'I promised that dog to a gentleman
24. in town,
25. Now he's escaped
26. all because of your customs check!"
27. "Go
28. and fetch him,"
29. said the customs man,
30. "there's no duty
31. on dogs."
32. So the boy went back,
33. picked up the lamb
34. and put it in his bag.

35. "You're lucky,
36. I caught him,"
37. scolded the boy
38. as he returned to the customs house.
39. The customs man thought
40. the boy had the dog in his bag,
41. and so he let him into the town
42. without paying duty.

Studying for Lecture Courses (An Instruction)

1. What should you do in a study period
2. Immediately after a lecture?
3. You should review the notes
4. which you took in class.
5. first of all making sure
6. that you understand them.
7. Don't assume
8. since you were able to follow all the principal points
9. made by the lecturer in the class,
10. that you have, in fact, assimilated all of them.
11. It is easy
12. to fall into this trap
13. and to deceive yourself
14. into thinking
15. that you have learned more than
16. you actually have.
17. In most cases, you will need,
18. unless the lecturer is unusually well organized
19. and you are a top-notch note-taker,
20. to revise
21. or rewrite your notes.
22. In revising your notes,
23. eliminate any of them
24. which now seem trivial
25. or unimportant,
26. and expand those
27. which you now can see
28. are important.
29. You should do this
30. while the lecture is still fresh in your mind
31. since you will find it a hopeless task
32. if you let
33. time pass
34. (and with it your memory).
35. In rewriting your notes,
36. reorganize them
37. so that they are more legible,
38. better arranged,
39. in more useful condition
40. for subsequent review.
Courtlty Love (A Definition)

1. What was courtly love?
2. It was a system.
3. or cult of love.
4. It was a sentiment of a specialized kind
5. which was created by the poets at a particular period.
6. It was predicated upon a recognized social structure--
7. the feudal society.
8. An aristocratic cult,
9. it excluded from its mysteries all those of common birth
10. or humble station.
11. Only the "gentle" were capable of love
12. and not all of those,
13. for the perfect knight was compelled
14. to follow...(15)...the prescribed ritual of the cult
15. carefully.
16. The service of love, indeed, was like that of a vassal to his lord:
17. the lover must be subservient to the desire,
18. even to the whim of his lady.
19. "Courtesy"
20. and humility were among the chief characteristics of this love.
21. Courtesy could be obtained only by the knight
22. who was well-born
23. and trained in courts.
24. It was conferred by love
25. and demanded gentility.
26. The knight swore
27. to protect all gentle ladies
28. and to obey...(29)...the commands of his lady in the service of love
29. without question.
30. With great humility
31. he must accept her praises
32. and condemnations alike.
33. He reverenced her almost as a deity.
"THE BOY & THE CUSTOMS OFFICER"

The text structure of a story used in the experiments.

"STUDYING FOR LECTURE COURSES"

The text structure of a definition used in the experiments.
The text structure of an instruction used in the experiments.

Semantics of "The Boy and the Customs Officer"
COURTLY LOVE (x)
is when
OR (LOVE-SYSTEM (x), LOVE-CULT (x))
SPECIALIZED-SENTIMENT (x)
CREATE (POETS (PARTICULAR PERIOD), x)
PREDICATE-ON (POETS, x, FEUDAL SOCIETY)
ARISTOCRATIC-CULT (x)
EXCLUDE (x, FROM MYSTERIES (x), OR (PEOPLE (COMMON-BIRTH), PEOPLE (HUMBLE STATION)))
CAPABLE-OF (ONLY (GENTLE), x)
CAPABLE-OF (NOT (ALL GENTLE)), x
COMPETE (PERFECT-KNIGHT, CAREFUL (FOLLOW (PERFECT-KNIGHT, RITUAL (x))))
LIKE (SERVICE (x), SERVICE-TO (VASSAL, LORD))
SUBSERVIENT-TO (LOWER, OR (DESIRE (LADY), WANT (LADY)))
CHIEF-CHARACTERISTICS (x, AND (COURTESY, HUMILITY))
CONFERENCE (x, Courtesy)

FEUDAL SOCIETY (x)
is when
RECOGNIZED-SOCIAL-STRUCTURE (x)
COMPOSED-OF (x, AND (COURT, AND (AND LORDS, LADIES), RETAILERS
(ATTACHED-TO (COURT, COURT))))

PERFECT-KNIGHT (x)
is when
CAPABLE-OF (x, COURTLY LOVE)
LOVER (x)
GENTLE (x)
COMPETE (COURTLY LOVE, x, CAREFUL (FOLLOW (x, RITUAL (COURTLY LOVE))))
LIKE (SERVICE (x), SERVICE-TO (VASSAL, LORD))
SUBSERVIENT-TO (x, DESIRE (LADY (x)))
ATTAIN (ONLY (x), COURTESY)
WELL-BORN (x)
TRAINED (x, IN COURTS)
SWAY (x, PROTECT (x, ALL (GENTLE LADIES)))
NOT (SWAY (x, PROTECT (x, ALL (WOMEN))))
SWAY (x, WITHOUT QUESTION (COMMANDS (LADY (x)), IN SERVICE OF LOVE))
HUMBLE (ACCEPT (x, AND (PRAISES (LADY (x)), CONDEMNATIONS (LADY (x))))
LIKE (REVERENCE (x, LADY (x)), REVERENCE (x, DEITY))

COURTESY (x)
is when
CHIEF-CHARACTERISTICS (COURTLY LOVE, AND (x, HUMILITY))
ATTAIN (ONLY KNIGHT (x), AND (TRAINED (KNIGHT, IN COURTS), WELL BORN (KNIGHT)), x)
CONFERENCE (COURTLY LOVE, x)
DEMAND (x, GENTILITY)

The semantic representation of "COURTLY LOVE"

STUDYING-FOR-LECTURE-COURSE (STUDENT, LECTURE)
is when
IMMEDIATE (AFTER (DO (STUDENT, x), LECTURE))
REVIEW-LECTURE-NOTES (STUDENT, NOTES (LECTURE))
REWRITE-LECTURE-NOTES (STUDENT, NOTES (LECTURE))

REVIEW-LECTURE-NOTES (STUDENT, NOTES)
is when
ENSURE (STUDENT, UNDERSTAND (STUDENT, NOTES))
NOT (ASSUME (STUDENT, BECAUSE (ABLE (STUDENT, FOLLOW (STUDENT, PRINCIPAL-
POINTS (MADE (LECTURE, POINTS, IN CLASS))))), ASSIMILATED (STUDENT
(ALL (PRINCIPAL-POINTS))))
EASY (FALL-INTO (STUDENT, TRAP))
EASY (DECEIVE (STUDENT, STUDENT, MORE-THAN (THINK, STUDENT (LEARN (STUDENT,
0))), LEARN (STUDENT, C2))))

REWRITE-LECTURE-NOTES (STUDENT, NOTES)
is when
IN-MOST-CASES (NECESSARY (x))
UNLESS (AND (IMAGINATIVE (WELL-ORGANIZED (LECTURER)), TOP-NOTCH (NOTE-TAKER
(STUDENT)), NECESSARY (x))
ELIMINATE (STUDENT, NOTES (OR (TRIVIAL, UNIMPORTANT)))
EXPAND (STUDENT, NOTES (IMPORTANT))
WHILE (YET (FRESH (LECTURE, MEMORY (STUDENT))), DO (x))
IF (ALLOW (STUDENT (PASS (TIME))), UNHELP (x))
IF (PASS (TIME), DECAY (MEMORY (STUDENT)))
REORGANIZE (STUDENT, NOTES)
MAKE ((Note, AND (MORE (ELEGANT (NOTES)), BETTER (ARRANGED (NOTES)), MORE
USEFUL-FOR (NOTES, SUBSEQUENT (REVIEW))))

The semantic representation of "STUDYING-FOR-LECTURE-COURSE"
DISTRIBUTION LIST

Navy

1 Dr. Jack Adams
Office of Naval Research Branch
223 Old Marylebone Road
London, NW 15th
England

1 Dr. Jack R. Borsting
Provost & Academic Dean
U.S. Naval Postgraduate School
Monterey, CA 93940

1 Dr. Robert Breaux
Code N-71
NAVTAEQUIP/CEN
Orlando, FL 32813

1 Dr. John F. Brock
Navy Personnel R&D Center
San Diego, CA 92152

1 Mr. Maurice Callahan
Pers 23a
Bureau of Naval Personnel
Washington, DC 20370

1 Dept. of the Navy
CNAVNAV (NAV 0340)
Washington, DC 20350

1 Chief of Naval Education & Training Support (01A)
Pensacola, FL 32509

1 Capt. H. J. Connery
Navy Medical R&D Command
WPKI
Bethesda, MD 20014

1 Dr. Charles E. Davis
ONR Branch Office
536 S. Clark St.
Chicago, IL 60605

1 Mr. James S. Duva
Chief, Human Factors Laboratory
Naval Training Equipment Center
(Code H-215)
Orlando, FL 32812

1 Dr. Richard Ester
Naval Postgraduate School
Monterey, CA 93940

5 Dr. Marshall J. Farr, Director
Personnel & Training Research Programs
Office of Naval Research (Code 458)
Arlington, VA 22217

1 Dr. Pat Federico
Naval Personnel R&D Center
San Diego, CA 92152

1 CDR John Ferguson, MSC, USN
Naval Medical R&D Center (Code 44)
National Naval Medical Center
Bethesda, MD 20014

1 Dr. John Ford
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Eugene E. Gloye
ONR Branch Office
1030 East Green St.
Pasadena, CA 91106

1 Capt. D. M. Gragg, MC, USN
Head, Section on Medical Education
Uniformed Services Univ. of the Health Sciences
6917 Arlington Road
Bethesda, MD 20014

1 Mr. George H. Graine
Naval Sea Systems Command
SEA 047C12
Washington, DC 20362

1 Dr. Steve Harris
Code L322
NAWCR
Pensacola, FL 32508

1 LCDR Charles W. Hutchins
Naval Air Systems Command
444 Jefferson Plaza #1
1411 Jefferson Davis Highway
Arlington, VA 20360

Navy (Cont'd)

1 COR Robert S. Kennedy
Naval Aerospace Medical & Research Laboratory
Box 29407
New Orleans, LA 70189

1 Dr. Norman J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (TJS)
Millington, TN 38054

1 Dr. James Lester
ONR Branch Office
495 Summer St.
Boston, MA 02210

1 Dr. William L. Maloy
Principal Civilian Advisor for
Education & Training
Naval Training Command, Code OOA
Pensacola, FL 32508

1 CAPT Richard L. Martin
USF Francis Marion (LPA-249)
FPO New York, NY 09501

1 Dr. Sylvia R. Mayer (MC11)
HQ Electronic Systems Div.
Holiday AFB
Bedford, VA 01731

2 Dr. James McGrath
Navy Personnel R&D Center
Code 306
San Diego, CA 92152

1 Commanding Officer
U.S. Naval Amphibious School
Coronado, CA 92155

1 CDR Paul Nelson
Naval Medical R&D Command
Code 44
National Naval Medical Center
Bethesda, MD 20014

1 Library
Navy Personnel R&D Center
San Diego, CA 92152

6 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390

1 John Olsen
Chief of Naval Education & Training Support
Pensacola, FL 32509

1 Office of Naval Research
Code 200
Arlington, VA 22217

1 Office of Naval Research
Code 437
800 N. Quincy St.
Arlington, VA 22217

1 Scientific Director
Office of Naval Research
Scientific Liaison Group/Tokyo
American Embassy
AFO San Francisco, CA 96003

1 Dr. Kneale Marshall
Scientific Advisor to the Chief of Naval Personnel
Naval Bureau of Personnel (Pers OR)
Room 4410, Arlington Annex
Washington, DC 20370

1 Dr. Richard A. Pollack
Academic Computing Center
U.S. Naval Academy
Annapolis, MD 21402

1 Mr. Arnold I. Rubinstein
Human Resources Program Manager
Naval Material Command (O344)
Room 1044, Crystal Plaza #5
Washington, DC 20360

1 Dr. Worth Scanland
Chief of Naval Education & Training
Code W-5
NAS, Pensacola, FL 32508
Navy

1 A. A. Sjoholm
Tech. Support, Code 201
Naval Personnel R&D Center
San Diego, CA 92152

2 Mr. Robert Smith
Office of Chief of Naval Operations
OP-897E
Washington, D.C. 20350

Dr. Alfred F. Snodl
Training Analysis & Evaluation Group (TAG)
Dept. of the Navy
Orlando, FL 32813

1 CDR Charles J. Thelen, Jr.,
NFC, USN
Head, Human Factors Engineering Laboratory
Naval Air Development Center
Warminster, PA 18974

Army

1 Dr. Ralph Dusek
U.S. Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

1 Dr. Frank J. Harris
U.S. Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

1 Dr. Milton S. Katz
Individual Training & Skill Evaluation Technical Area
U.S. Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

1 D. Harold F. O'Neill, Jr.,
Attn: PERI-OK
5001 Eisenhower Ave.
Alexandria, VA 22333

Air Force

1 Director
Training Development
U.S. Army Administration Center
Attn: Dr. Sherrill
Ft. Benjamin Harrison, IN 46218

1 Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

1 Air University Library
AUL/LE 76443
Maxwell AFB, AL 36112

1 Dr. T. E. Cotterman
AFHRL/ASA
Wright-Patterson AFB
Ohio 45433

1 Dr. G. A. Eckstrand
AFHRL/ASA
Wright-Patterson AFB
Ohio 45433

1 CDR. Mercer
CETT Liaison Officer
AFHRL/Flying Training Div.
Williams AFB, AZ 85224

1 Dr. Ross L. Morgan (AFHRL/ASA)
Wright-Patterson AFB
Ohio 45433

1 Dr. Marty Rockway (AFHRL/TT)
Lowry AFB
Colorado 80230

1 Jack A. Thorpe, Capt. USAF
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20332

1 Brian K. Waters, LCOL, USAF
Air University
Maxwell AFB
Montgomery, AL 36112

Marines

1 Director
Office of Manpower Utilization
HQ, Marine Corps (WPU)
Bldg. 2009
Quantico, VA 22134

1 Dr. A. L. Saffonosky
Scientific Advisor (Code RD-1)
HQ, U.S. Marine Corps
Washington, DC 20380

Coast Guard

1 Mr. Joseph J. Cowan, Chief
Psychological Research (G-P-1/62)
U.S. Coast Guard HQ
Washington, DC 20590

Other DoD

1 Dr. Stephen Andriole
Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

12 Defense Documentation Center
Cameron Station, Bldg. 5
Alexandria, VA 22314
Attn: TAC

1 Dr. Dexter Fletcher
Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

1 Military Assistant for Human Engineering
Office of the Director of Defense Research & Engineering
Room 30129, The Pentagon
Washington, DC 20301

1 Director, Research & Data
OSD/MRAF (Rm. 3019)
The Pentagon
Washington, DC 20301

Civil Government

1 Dr. Joseph Markowitz
Office of Research & Development
Central Intelligence Agency
Washington, DC 20205

1 Dr. Andrew A. Maler
Science Education Dev. & Research
National Science Foundation
Washington, DC 20550

1 Dr. Wallace Stalko, Director
Manpower Research & Advisory Service
Smithsonian Institute
801 N. Pitt Street
Alexandria, VA 22314

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Non-Government

1 Prof. Earl A. Allwork
Dept. of Psychology
Code 287
Old Dominion University
Norfolk, VA 23508

1 Dr. Michael Abwood
Science Applications Institute
40 Denver Tech. Center West
7435 E. Prentice Ave.
Englewood, CO 80110

1 Psychological Research Unit
Dept. of Defense (Army Office)
Campbell Park Office
Canberra, ACT 2600

1 Ms. Carole A. Bagley
Minnesota Educational Computing Consortium
2529 Broadway Dr.
St. Paul, MN 55113
Non-Government (Cont'd.)

1 Dr. James A. Paulson
 Portland State University
 P.O. Box 751
 Portland, OR 97207

1 Mr. A. J. Pesh, President
 Eclecteech Associates, Inc.
 P.O. Box 178
 M. Stonington, CT 06359

1 Mr. Luigi Petruzzo
 2431 A. Edgewood St.
 Arlington, VA 22207

1 Dr. Peter Polson
 Dept. of Psychology
 University of Colorado
 Boulder, CO 80302

1 Dr. Diane M. Ramsey-Klee
 R.E Research & Systems Design
 3947 Ridgewood Dr.
 Malibu, CA 90265

1 Dr. Peter B. Read
 Social Science Research Council
 605 Third Ave.
 New York, NY 10016

1 Dr. Fred Reif
 SESAME
 c/o Physics Department
 University of California
 Berkeley, CA 94720

1 Dr. Andrew M. Rose
 American Institute for Research
 1055 Thomas Jefferson St. NW
 Washington, DC 20007

1 Dr. Leonard L. Rosenbaum, Chairman
 Department of Psychology
 Montgomery College
 Rockville, MD 20850

1 Dr. Ernst Z. Rothkopf
 Bell Laboratories
 600 Mountain Avenue
 Murray Hill, NJ 07974

1 Dr. Walter Schneider
 Department of Psychology
 University of Illinois
 Champaign, IL 61820

1 Dr. Allen Schoenfeld
 SESAME
 c/o Physics Department
 University of California
 Berkeley, CA 94720

1 Dr. Robert J. Seidel
 Instructional Technology Group
 HumRRO
 300 N. Washington St.
 Alexandria, VA 22314

1 Dr. Robert Singer, Director
 Motor Learning Research Lab
 Florida State University
 212 Montgomery Gym
 Tallahassee, FL 32306

1 Dr. Richard Snow
 School of Education
 Stanford University
 Stanford, CA 94305

1 Dr. Robert Sternberg
 Dept. of Psychology
 Yale University
 Box 11A, Yale Station
 New Haven, CT 06520

1 Dr. Albert Stevens
 Bolt, Garanek & Newman, Inc.
 50 Moulton St.
 Cambridge, MA 02138

1 Mr. William Stobie
 McDonnell-Douglas Astronautics Co.
 P.O. Box 30204
 Chico, CA 95926

1 Dr. Persis Sturges
 Dept. of Psychology
 California State University
 Chico, CA 95926

Non-Government (Cont'd.)

1 Mr. D. J. Sullivan
 c/o Canyon Research Group, Inc.
 741 Lakefield Road
 Westlake Village, CA 91361

1 Dr. Patrick Suppes
 Institute for Mathematical Studies
 in the Social Sciences
 Stanford University
 Stanford, CA 94305

1 Dr. Perry Thordyke
 The Rand Corporation
 1700 Main St.
 Santa Monica, CA 90406

1 Dr. K. W. Unchapper
 U.S./Information Sciences Institute
 4676 Admiralty Way, #1100
 Marina del Rey, CA 90291

1 Dr. Benton J. Underwood
 Dept. of Psychology
 Northwestern University
 Evanston, IL 60201

1 Dr. Willard S. Vaughan, Jr.
 Oceanautics, Inc.
 422 Sixth St.
 Annapolis, MD 21403

1 Dr. Robert Vineberg
 HumRRO/Western Division
 27857 Berwick Dr.
 Carmel, CA 93921

1 Dr. Claire E. Weinstein
 Educational Psychology Dept.
 Univ. of Texas at Austin
 Austin, TX 78712

1 Dr. David J. Weiss
 N660 Elliott Hall
 University of Minnesota
 72 E. River Road
 Minneapolis, MN 55455