AIRCRAFT HYDRAULIC SYSTEMS DYNAMIC ANALYSIS

MCDONNELL AIRCRAFT COMPANY
MCDONNELL DOUGLAS CORPORATION
ST. LOUIS, MISSOURI 63166

OCTOBER 1978

TECHNICAL REPORT AFAPL-TR-78-77
Final Report - February 1977 - September 1978

Approved for public release; distribution is unlimited.
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility for any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Paul D. Lindquist Kenneth E. Binns
Project Engineer Group Leader

FOR THE COMMANDER

William F. Bailey, Major, USAF
Chief, Vehicle Power Branch

"If your address has changed, if you wish to be removed from our mailing list, or if the address is no longer employed by your organization please notify AECOM/PR, P.O. Box 554, E-53, 45650 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/05760/3 April 1978 - 1 pg
Title: Aircraft Hydraulic Systems Dynamic Analysis

Final Report

Authors: H. DeGarcia, J. B. Greene, R. J. Levek

Performing Organization Name and Address: McDonnell Douglas Corporation, P.O. Box 516, St. Louis, Missouri 63166

Contractor Project Number: F33615-74-C-2616

Controlling Office Name and Address: Air Force Aero Propulsion Laboratory (POP), Wright-Patterson Air Force Base, Ohio 45433

Report Date: October 1978

Number of Pages: 337

Security Classification: Unclassified

DISTRIBUTION STATEMENT: Approved for public release, distribution unlimited.

SUPPLEMENTARY NOTES

KEY WORDS:
- Hydraulic System
- Final Report
- Transient Response
- Computer Program Verification
- Frequency Response
- Test Results
- Steady State

ABSTRACT:

This report describes the continued development and test verification of digital computer models used to simulate hydraulic systems under dynamic conditions. Frequency and transient models of a variable delivery vane pump and a fixed displacement piston-type hydraulic motor are included. Additional verification and development of the transient model for the piston-type hydraulic pump was accomplished. Verification and development of a computer program to describe the mechanical response of a hydraulic line to internal...
excitations from a hydraulic pump was begun. This effort was conducted by McDonnell Aircraft Company (McDonnell Douglas Corp.) under contract with the Air Force. The effort was a continuation of the basic contract wherein four computer programs for hydraulic system dynamic analysis were developed. The basic contract results were reported in AFAPL-TR-77-63, October 1977.
PREFACE

This final report was prepared by the McDonnell Aircraft Company, Design Engineering Power and Fluid System Department, McDonnell Douglas Corporation under contract F33615-74-C-2016, Supplemental Agreement P00007.

The effort was sponsored by the Air Force Aero Propulsion Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio under Project No. 3145-30-18 with AFAPI/POP, and was under the direction of Paul Lindquist and William Kinzig.

The final report covers work conducted during the contract extension period from 18 February 1977 through 30 September 1978. At McDonnell, Neil Pierce directed the program and J. B. Greene was the principal investigator. Special acknowledgement is also given to R. J. Levak, H. deGarcia, and L. E. Clements.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>INTRODUCTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1. HYDRAULIC LINE MECHANICAL RESPONSE (HLMR)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2. F-15 PISTON PUMP MODEL VERIFICATION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3. VANES PUMP MODEL DEVELOPMENT AND VERIFICATION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4. HYDRAULIC MOTOR MODEL DEVELOPMENT AND VERIFICATION</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>HYDRAULIC LINE MECHANICAL RESPONSE (HLMR) PROGRAM</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1. BACKGROUND</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>a. Previous MCAIR Effort</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>b. Literature Survey</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. TEST SET-UP AND PROCEDURES</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3. TEST RESULTS</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>a. Pump Pressure Pulsaions</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>b. Line Response</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(1) Straight Pipe</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>(2) One-Elbow Pipe</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>(3) Two-Elbow Pipe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) Comparison Between Internal and External Data</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>(5) Elastomer Flexibility</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>(6) Strain Measurements</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>4. ANALYTICAL PROCEDURES</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>a. Terminology</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>(1) Degrees of Freedom</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>(2) Vibration Modes</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>(3) Resonance</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>b. Straight Pipe: Transverse and Longitudinal Vibrations</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>c. One-Elbow Pipe Vibrations</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>d. Two-Elbow Pipe Vibrations</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>5. MODEL VERIFICATION</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>a. Test Data Summary</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>(1) Straight Pipe</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>(2) One-Elbow Pipe</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>(3) Two-Elbow Pipe</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>b. Comparison of Analytical and Test Results</td>
<td>33</td>
</tr>
<tr>
<td>SECTION</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-15 PISTON PUMP MODEL VERIFICATION</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>1. FREQUENCY RESPONSE TESTS</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>a. Test Circuit Description and Computer Model</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>b. Test Results and Comparison to HSFR Program Predictions</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>2. TRANSIENT TEST DESCRIPTION</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>3. PROGRAM CHANGES AND HYTRAN PUMP MODEL VERIFICATION</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>a. F-15 Pump Model Changes</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>b. Pump Model Verification for 3000 PSI Transient Tests</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>c. Pump Model Verification for 4400 PSI Transient Tests</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>d. F-15 Pump Model Verification Using the Complete Test Stand Model</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>4. F-15 INSTRUMENTED PUMP STEADY STATE TESTING</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VANE PUMP MODEL DEVELOPMENT AND VERIFICATION</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>1. VANE PUMP HSFR MODEL DEVELOPMENT AND VERIFICATION</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>a. HSFR Model</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>b. HSFR Verification Test Set-Up and Procedure</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>c. Test Run Summary</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>d. Test Results and Discussion</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>2. VANE PUMP HYTRAN MODEL DEVELOPMENT AND VERIFICATION</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>a. HYTRAN Model</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>b. HYTRAN Verification Tests and Results</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>c. HYTRAN Simulation and Discussion</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>3. STEADY STATE TESTS</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDRAULIC MOTOR MODEL DEVELOPMENT AND VERIFICATION</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>1. FREQUENCY RESPONSE MODEL AND VERIFICATION</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>a. Motor Model</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>b. Verification Tests and Results</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>2. TRANSIENT MODEL AND VERIFICATION</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>a. HYTRAN Motor Model</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>b. Verification Tests and Results</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>c. HYTRAN Simulation and Discussion</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>3. STEADY STATE TESTS</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUMMARY AND CONCLUSIONS</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>1. HYDRAULIC LINE MECHANICAL RESPONSE PROGRAM</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>a. Program Objectives</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>b. Test Results</td>
<td>185</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Cont'd)

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(VI) c. Line Data Reduction</td>
<td>185</td>
</tr>
<tr>
<td>d. Control of Line Mechanical Response</td>
<td>185</td>
</tr>
<tr>
<td>2. F-15 PISTON PUMP MODEL VERIFICATION</td>
<td>186</td>
</tr>
<tr>
<td>a. Objectives</td>
<td>186</td>
</tr>
<tr>
<td>b. Test Article</td>
<td>186</td>
</tr>
<tr>
<td>c. Model Changes</td>
<td>186</td>
</tr>
<tr>
<td>d. Conclusions</td>
<td>187</td>
</tr>
<tr>
<td>3. VANE PUMP MODEL DEVELOPMENT AND VERIFICATION</td>
<td>187</td>
</tr>
<tr>
<td>a. Vane Pump Pressure Pulsations</td>
<td>187</td>
</tr>
<tr>
<td>b. Vane Pump HSFR Model</td>
<td>188</td>
</tr>
<tr>
<td>c. Vane Pump HSFR Model Verification</td>
<td>188</td>
</tr>
<tr>
<td>d. Vane Pump HYTRAN Model Verification</td>
<td>188</td>
</tr>
<tr>
<td>4. HYDRAULIC MOTOR MODEL DEVELOPMENT AND VERIFICATION</td>
<td>189</td>
</tr>
<tr>
<td>a. HSFR Motor Model and Verification</td>
<td>189</td>
</tr>
<tr>
<td>b. HYTRAN Motor Model and Verification</td>
<td>189</td>
</tr>
<tr>
<td>VII RECOMMENDATIONS</td>
<td>190</td>
</tr>
<tr>
<td>1. HYDRAULIC LINE MECHANICAL RESPONSE</td>
<td>190</td>
</tr>
<tr>
<td>2. F-15 PISTON PUMP MODEL</td>
<td>190</td>
</tr>
<tr>
<td>3. CECO VANE PUMP MODELS</td>
<td>190</td>
</tr>
<tr>
<td>a. HSFR Model</td>
<td>191</td>
</tr>
<tr>
<td>b. HYTRAN Model</td>
<td>191</td>
</tr>
<tr>
<td>4. HYDRAULIC MOTOR MODELS</td>
<td>191</td>
</tr>
<tr>
<td>a. HSFR Model</td>
<td>191</td>
</tr>
<tr>
<td>b. HYTRAN Model</td>
<td>191</td>
</tr>
<tr>
<td>APPENDIX A BIBLIOGRAPHY OF FLUID-LINE COUPLING ANALYSES</td>
<td>192</td>
</tr>
<tr>
<td>APPENDIX B NLAR COMPUTER PROGRAM AND SAMPLE RESULTS</td>
<td>198</td>
</tr>
<tr>
<td>APPENDIX C DERIVATION OF EQUATIONS FOR THE HYDRAULIC LINE MECHANICAL RESPONSE PROGRAM</td>
<td>217</td>
</tr>
<tr>
<td>APPENDIX D F-15 PUMP MODEL CHANGES</td>
<td>228</td>
</tr>
<tr>
<td>APPENDIX E VANE PUMP MODELS</td>
<td>234</td>
</tr>
<tr>
<td>APPENDIX F HYDRAULIC MOTOR MODELS</td>
<td>298</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>317</td>
</tr>
<tr>
<td>FIGURE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Test Configurations</td>
</tr>
<tr>
<td>2</td>
<td>Test Set-Up Schematic</td>
</tr>
<tr>
<td>3</td>
<td>Hydraulic Resonances</td>
</tr>
<tr>
<td>4</td>
<td>Peak Pressures 1600-1900 RPM</td>
</tr>
<tr>
<td>5</td>
<td>Peak Pressures 2700-2900 RPM</td>
</tr>
<tr>
<td>6</td>
<td>Peak Pressures 2900-3100 RPM</td>
</tr>
<tr>
<td>7</td>
<td>Peak Pressures 3900-4300 RPM</td>
</tr>
<tr>
<td>8</td>
<td>Peak Pressures 4300-4700 RPM</td>
</tr>
<tr>
<td>9</td>
<td>Hydraulic System Line Response Straight Pipe Unclamped Mode Shape Data</td>
</tr>
<tr>
<td>10</td>
<td>Hydraulic System Line Response Straight Pipe Clamped Mode Shape Data</td>
</tr>
<tr>
<td>11</td>
<td>Hydraulic System Line Response Straight Pipe Clamped Mode Shape Data</td>
</tr>
<tr>
<td>12</td>
<td>Hydraulic System Line Response One-Elbow Pipe Unclamped Mode Shape Data</td>
</tr>
<tr>
<td>13</td>
<td>Hydraulic System Line Response One-Elbow Pipe Unclamped Mode Shape Data</td>
</tr>
<tr>
<td>14</td>
<td>Hydraulic System Line Response One-Elbow Pipe Unclamped Mode Shape Data</td>
</tr>
<tr>
<td>15</td>
<td>Hydraulic System Line Response One-Elbow Pipe Clamped Mode Shape Data</td>
</tr>
<tr>
<td>16</td>
<td>Hydraulic System Line Response One-Elbow Pipe Clamped Mode Shape Data</td>
</tr>
<tr>
<td>17</td>
<td>Hydraulic System Line Response One-Elbow Pipe Clamped Mode Shape Data</td>
</tr>
<tr>
<td>18</td>
<td>Hydraulic System Line Response Two-Elbow Pipe Unclamped Mode Shape Data</td>
</tr>
<tr>
<td>19</td>
<td>Hydraulic System Line Response Two-Elbow Pipe Unclamped Mode Shape Data</td>
</tr>
<tr>
<td>20</td>
<td>Hydraulic System Line Response Two-Elbow Pipe Clamped Mode Shape Data</td>
</tr>
<tr>
<td>21</td>
<td>Hydraulic System Line Response Two-Elbow Pipe Clamped Mode Shape Data</td>
</tr>
<tr>
<td>22</td>
<td>Straight Pipe Unclamped 2900 RPM 435HZ</td>
</tr>
<tr>
<td>23</td>
<td>Straight Pipe Clamped 2900 RPM 435HZ</td>
</tr>
<tr>
<td>24</td>
<td>Straight Pipe Clamped 4350 RPM 653HZ</td>
</tr>
<tr>
<td>25</td>
<td>One-Elbow Pipe Unclamped 4350 RPM 653HZ</td>
</tr>
<tr>
<td>26</td>
<td>One-Elbow Pipe Clamped 4350 RPM 653HZ</td>
</tr>
<tr>
<td>27</td>
<td>Two-Elbow Pipe Unclamped 4600 RPM 60HZ</td>
</tr>
<tr>
<td>FIGURE</td>
<td>LIST OF ILLUSTRATIONS</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>28</td>
<td>Two-Elbow Pipe Clamped 4600 RPM 690Hz</td>
</tr>
<tr>
<td>29</td>
<td>Elastomer Flexibility Test Set-Up</td>
</tr>
<tr>
<td>30</td>
<td>Elastomer Flexibility Test</td>
</tr>
<tr>
<td>31</td>
<td>Straight Pipe Bending Vibrations Fixed-Fixed Supports</td>
</tr>
<tr>
<td>32</td>
<td>Inertia Area Ratio Effects on Vibrations Equal Pipe Lengths</td>
</tr>
<tr>
<td>33</td>
<td>Clamp Elastomer Flexibility, Straight Pipe</td>
</tr>
<tr>
<td>34</td>
<td>One-Elbow Pipe Inplane Vibrations Axial Frequency</td>
</tr>
<tr>
<td>35</td>
<td>One-Elbow Pipe Inplane Vibrations Coupled Axial Bending Frequency</td>
</tr>
<tr>
<td>36</td>
<td>One-Elbow Pipe Out-of-Plane Vibrations Fluid: Red Oil at 130°F 3000 PSI</td>
</tr>
<tr>
<td>37</td>
<td>HLMR Test Data Summary Straight Pipe</td>
</tr>
<tr>
<td>38</td>
<td>HLMR Test Data Summary One-Elbow Pipe</td>
</tr>
<tr>
<td>39</td>
<td>HLMR Test Data Summary Two-Elbow Pipe</td>
</tr>
<tr>
<td>40</td>
<td>One-Elbow Pipe Inplane Vibrations Effect of Fluid on Axial Frequency</td>
</tr>
<tr>
<td>41</td>
<td>Hydraulic Pump Verification Test Set-Up</td>
</tr>
<tr>
<td>42</td>
<td>9 Ft. Frequency Response Test Section</td>
</tr>
<tr>
<td>43</td>
<td>Peak to Peak Pressure Pulitations 83.41 Inches From Pump Outlet</td>
</tr>
<tr>
<td>44</td>
<td>48" From P3: Fundamental 113°F 12.9 GPM</td>
</tr>
<tr>
<td>45</td>
<td>Frequency Response Extended F-15 Pump Verification Test MIL-H-5606B 4400 PSI 113°F 12.9 GPM 18.01 Inches From Pump Outlet</td>
</tr>
<tr>
<td>46</td>
<td>Frequency Response Extended F-15 Pump Verification Test MIL-H-5606B 4400 PSI 112°F 12.9 GPM 35.41 Inches From Pump Outlet</td>
</tr>
<tr>
<td>47</td>
<td>Frequency Response Extended F-15 Pump Verification Test MIL-H-5606B 4400 PSI 113°F 12.9 GPM 47.41 Inches From Pump Outlet</td>
</tr>
<tr>
<td>48</td>
<td>Frequency Response Extended F-15 Pump Verification Test MIL-H-5606B 4400 PSI 113°F 12.9 GPM 59.41 Inches From Pump Outlet</td>
</tr>
<tr>
<td>49</td>
<td>Frequency Response Extended F-15 Pump Verification Test MIL-H-5606B 4400 PSI 113°F 12.9 GPM 71.41 Inches From Pump Outlet</td>
</tr>
<tr>
<td>50</td>
<td>Frequency Response Extended F-15 Pump Verification Test MIL-H-5606B 4400 PSI 113°F 12.9 GPM 83.41 Inches From Pump Outlet</td>
</tr>
<tr>
<td>FIGURE</td>
<td>LIST OF ILLUSTRATIONS</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>51</td>
<td>Frequency Response Extended F-15 Pump Verification Test</td>
</tr>
<tr>
<td>52</td>
<td>Frequency Response Extended F-15 Pump Verification Test</td>
</tr>
<tr>
<td>53</td>
<td>Frequency Response Extended F-15 Pump Verification Test</td>
</tr>
<tr>
<td>54</td>
<td>Frequency Response Extended F-15 Pump Verification Test</td>
</tr>
<tr>
<td>55</td>
<td>Standing Wave Pattern Measured and Computed Data</td>
</tr>
<tr>
<td>56</td>
<td>Standing Wave Pattern Measured and Computed Data</td>
</tr>
<tr>
<td>57</td>
<td>HYTRAN Pump Model Verification Test Set-Up</td>
</tr>
<tr>
<td>58</td>
<td>F-15 Hydraulic Pump 95-01+P4 Turn-On Transient 19.25 CIS 130°F</td>
</tr>
<tr>
<td>59</td>
<td>HYTRAN Schematic Diagram for Pump Verification</td>
</tr>
<tr>
<td>60</td>
<td>Outlet Pressure With Hanger Damping Term at 25 77-2 CIS Turn-Off Transient Test 3000</td>
</tr>
<tr>
<td>61</td>
<td>Hanger Damping Term at 45 and 125 77-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>62</td>
<td>Outlet Pressure 2-77 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>63</td>
<td>Outlet Pressure 2-38.5 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>64</td>
<td>Outlet Pressure 38.5.2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>65</td>
<td>F-15 Hydraulic Pump Turn-Off Transient 77 CIS 130°F</td>
</tr>
<tr>
<td>66</td>
<td>Outlet Pressure T1-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>67</td>
<td>Control Pressure T1-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>68</td>
<td>Internal Case Pressure 77-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>69</td>
<td>Hanger Position 77-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>FIGURE</td>
<td>ILLUSTRATION DESCRIPTION</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>70</td>
<td>F-15 Hydraulic Pump Turn-On Transient 77 CIS 130°F</td>
</tr>
<tr>
<td>71</td>
<td>Outlet Pressure 2-77 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>72</td>
<td>Control Pressure 2-77 Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>73</td>
<td>Internal Case Pressure 2-77 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>74</td>
<td>Hanger Position 2-77 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>75</td>
<td>F-15 Hydraulic Pump Turn-On Transient 38.5 CIS 130°F</td>
</tr>
<tr>
<td>76</td>
<td>Outlet Pressure 2-38.5 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>77</td>
<td>Control Pressure 2-38.5 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>78</td>
<td>Internal Case Pressure 2-38.5 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>79</td>
<td>Hanger Position 2-38.5 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>80</td>
<td>F-15 Hydraulic Pump Turn-Off Transient 38.5 CIS 130°F</td>
</tr>
<tr>
<td>81</td>
<td>Outlet Pressure 38.5-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>82</td>
<td>Control Pressure 38.5-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>83</td>
<td>Internal Case Pressure 38.5-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>84</td>
<td>Hanger Position 38.5-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>85</td>
<td>F-15 Hydraulic Pump Turn-On Transient 17 CIS 100°F</td>
</tr>
<tr>
<td>86</td>
<td>Outlet Pressure 17.25-77 CIS Turn-On Transient 100°F 3000 RPM</td>
</tr>
<tr>
<td>87</td>
<td>Control Pressure 17.25-77 CIS Turn-On Transient 100°F 3000 RPM</td>
</tr>
<tr>
<td>88</td>
<td>Internal Case Pressure 17.25-77 CIS Turn-On Transient 100°F 3000 RPM</td>
</tr>
<tr>
<td>89</td>
<td>Hanger Position 17.25-77 CIS Turn-On Transient 100°F 3000 RPM</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>F-15 Hydraulic Pump Turn-Off Transient 77-17.25 CIS 100°F</td>
</tr>
<tr>
<td>91</td>
<td>Outlet Pressure High Pressure System 77-17.25 CIS Turn-Off Transient 4400 PSI 100°F</td>
</tr>
<tr>
<td>92</td>
<td>Control Pressure 77-17.25 CIS Turn-Off Transient 100°F 3000 RPM</td>
</tr>
<tr>
<td>93</td>
<td>Internal Case Pressure 77-17.25 CIS Turn-Off Transient 100°F 3000 RPM</td>
</tr>
<tr>
<td>94</td>
<td>Hanger Position 77-17.25 CIS Turn-Off Transient 100°F 3000 RPM</td>
</tr>
<tr>
<td>95</td>
<td>Single F-15 Pump System</td>
</tr>
<tr>
<td>96</td>
<td>F-15 Hydraulic Pump 94-A4-PR Turn-On Transient 77 CIS 130°F</td>
</tr>
<tr>
<td>97</td>
<td>Outlet Pressure 2-77 Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>98</td>
<td>Control Pressure 2-77 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>99</td>
<td>Internal Case Pressure 2-77 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>100</td>
<td>Hanger Position 2-77 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>101</td>
<td>F-15 Hydraulic Pump 94-A4-PR Turn-Off Transient 77 CIS 130°F</td>
</tr>
<tr>
<td>102</td>
<td>Outlet Pressure 77-7 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>103</td>
<td>Control Pressure 77-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>104</td>
<td>Hanger Position 77-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>105</td>
<td>Internal Case Pressure 77-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>106</td>
<td>Outlet Pressure 2-154 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>107</td>
<td>Pressure 378 Inches from Pump Outlet 2-154 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>108</td>
<td>Control Pressure 2-154 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>109</td>
<td>External Case Pressure 2-154 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>FIGURE</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>10</td>
<td>Internal Case Pressure 2-154 CIS Turn-On Transient 140°F 4000 RPM</td>
</tr>
<tr>
<td>111</td>
<td>Suction Pressure 2-154 CIS Turn-On Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>112</td>
<td>Outlet Pressure 154-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>113</td>
<td>Outlet Pressure 154-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>114</td>
<td>Pressure 378 Inches From Dump Outlet 154-2 CIS Turn-Off Transient 300°F 4000 RPM</td>
</tr>
<tr>
<td>115</td>
<td>Suction Pressure 154-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>116</td>
<td>Control Pressure 154-2 CIS Turn-Off Transient 130°F 4000 RPM</td>
</tr>
<tr>
<td>117</td>
<td>F-15 Hydraulic Pump Run #1 9 Dec 77 7.7 CIS 100°F</td>
</tr>
<tr>
<td>118</td>
<td>F-15 Hydraulic Pump Run #2 9 Dec 77 0 Flow 100°F</td>
</tr>
<tr>
<td>119</td>
<td>F-15 Hydraulic Pump Run #3 9 Dec 77 7.7 CIS 100°F</td>
</tr>
<tr>
<td>120</td>
<td>F-15 Hydraulic Pump Run #4 12 Dec 77 0 Flow 200°F</td>
</tr>
<tr>
<td>121</td>
<td>Power Loss for Runs 1-4</td>
</tr>
<tr>
<td>122</td>
<td>F-15 Hydraulic Pump Run #5 PC VS. PS 12 Dec 77 6 Flow 100°F</td>
</tr>
<tr>
<td>123</td>
<td>F-15 Hydraulic Pump Run #6 PC VS. PS 12 Dec 77 77 CIS 100°F</td>
</tr>
<tr>
<td>124</td>
<td>F-15 Hydraulic Pump Run #7 PC VS. PS 12 Dec 77 0 Flow 100°F</td>
</tr>
<tr>
<td>FIGURE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>125</td>
<td>F-15 Hydraulic Pump Run #13 PCD Int. and PCD Ext. vs QCD 1.5 CIS 100°F</td>
</tr>
<tr>
<td>126</td>
<td>F-15 Hydraulic Pump Run #14 PCD Int. and PCD Ext. vs QCD 77 CIS 100°F</td>
</tr>
<tr>
<td>127</td>
<td>F-15 Hydraulic Pump Run #15 PCD Int. and PCD Ext. vs QCD 7.7 CIS 100°F</td>
</tr>
<tr>
<td>128</td>
<td>F-15 Hydraulic Pump Run #17 PCD Int. and PCD Ext. vs QCD 77 CIS 200°F</td>
</tr>
<tr>
<td>129</td>
<td>F-15 Hydraulic Pump Run #20 PCD Int. and PCD Ext. vs QCD 1 CIS 200°F</td>
</tr>
<tr>
<td>130</td>
<td>F-15 Hydraulic Pump Run #21 PCD Int. and PCD Ext. vs QCD 7.7 CIS 200°F</td>
</tr>
<tr>
<td>131</td>
<td>F-15 Hydraulic Pump Run #1 DT vs DS 0 CIS 100°-130°F</td>
</tr>
<tr>
<td>132</td>
<td>F-15 Hydraulic Pump Run #2 DT vs DS 7.7 CIS 93°-90°F</td>
</tr>
<tr>
<td>133</td>
<td>F-15 Hydraulic Pump Run #3 DT vs DS 0.0 CIS 184-212°F</td>
</tr>
<tr>
<td>134</td>
<td>F-15 Hydraulic Pump Run #4 DT vs DS 7.7 CIS 190°-175°F</td>
</tr>
<tr>
<td>135</td>
<td>F-15 Hydraulic Pump Run #5 PC vs DS 77 CIS 100°-97°F</td>
</tr>
<tr>
<td>136</td>
<td>F-15 Hydraulic Pump Run #6 PC vs DS 0.0 CIS 96°-126°F</td>
</tr>
<tr>
<td>137</td>
<td>F-15 Hydraulic Pump Run #7 PCD vs QCD 4.2 CIS 105°F</td>
</tr>
<tr>
<td>138</td>
<td>F-15 Hydraulic Pump Run #8 PCD Int. and PCD Ext. vs QCD 77 CIS 102°F</td>
</tr>
<tr>
<td>139</td>
<td>F-15 Hydraulic Pump Run #11 PCD Int. and PCD Ext. vs QCD 77 CIS 193°-220°F</td>
</tr>
<tr>
<td>140</td>
<td>F-15 Hydraulic Pump Run #12 PCD Int. and PCD Ext. vs QCD 4.2 CIS 183°-185°F</td>
</tr>
<tr>
<td>141</td>
<td>CECO Vane Pump HSFR Test Schematic</td>
</tr>
<tr>
<td>142</td>
<td>Total Pressure Pulsations at Pump Outlet (P1)</td>
</tr>
<tr>
<td>143</td>
<td>CECO MFP-330 Vane Pump 97-1A-P1 Fundamental 8 GPM 120°F</td>
</tr>
<tr>
<td>144</td>
<td>CECO MFP-330 Vane Pump 97-1A-P1 2nd Harmonic 8 GPM 120°F</td>
</tr>
</tbody>
</table>

"xiv"
FIGURE 145 CECO MFP-330 Vane Pump 97-IA-P1 3rd Harmonic
8 GPM 120°F ... 114
146 Outlet Line Total Pressure Pulsations - 8 GPM 115
147 Outlet Line Total Pressure Pulsations - 8 GPM 116
148 Outlet Line Total Pressure Pulsations - 8 GPM 117
149 CECO MFP-330 Vane Pump 97-IA-R1 Fundamental
3 GPM 120°F ... 118
150 CECO MFP-330 Vane Pump 97-IA-R2 Fundamental
8 GPM 120°F ... 118
151 CECO MFP-330 Vane Pump 97-IA-R3 Fundamental
8 GPM 120°F ... 119
152 CECO MFP-330 Vane Pump 97-IA-R4 Fundamental
8 GPM 120°F ... 119
153 CECO MFP-330 Vane Pump 97-IA-R5 Fundamental
8 GPM 120°F ... 120
154 CECO MFP-330 Vane Pump 97-IA-R6 Fundamental
8 GPM 120°F ... 120
155 CECO MFP-330 Vane Pump 97-IA-R7 Fundamental
8 GPM 120°F ... 121
156 CECO MFP-330 Vane Pump 97-IA-R8 Fundamental
8 GPM 120°F ... 121
157 11,300 RPM 8 GPM 120°F 122
158 13,500 RPM 8 GPM 120°F 122
159 15,000 RPM 8 GPM 120°F 123
160 Upstream Control Line Total Pressure Pulsations - 8 GPM ... 124
161 11,300 RPM 8 GPM 120°F 125
162 15,000 RPM 8 GPM 120°F 125
163 CECO MFP-330 Vane Pump Case Inlet Fundamental
8 GPM 120°F 50 PSIG 126
164 Total Pressure Pulsations - 8 GPM, 17% Air, 62 PSIG Inlet ... 127
165 Measured and Computed Peak Pressures Pump Outlet 130
166 Measured and Computed Peak Pressures Load Valve Inlet 131
167 Measured and Computed Peak Pressures Total Pressure Pulsations
High Pressure Sense Line Inlet 132
168 Measured and Computed Peak Pressures with Total Pressure
Pulsations Low Pressure Sense Line Inlet 133
169 CECO Vane Pump Steady State and Transient Response Test Set-Up Schematic ... 134
FIGURE PAGE

17C CECO MFP Instrumentation Schematic .. 136
171 Schematic of Balanced Variable Displacement Valve Pump and Controller .. 136
172 CECO Vane Pump .. 137
173 Control Set-Up For Metering Valve .. 138
174 CECO Vane Pump Steady State and Transient Response HYTRAN Schematic .. 141
175 Outlet Pressure 8-35 GPM Turn-On Transient 120°F 15,000 RPM .. 144
176 Control Pressure 8-36 GPM Turn-On Transient 120°F 15,000 RPM .. 144
177 Control Pressure 8-35 GPM Turn-On Transient 120°F 15,000 RPM .. 145
178 Control Valve Pressure 8-35 GPM Turn-On Transient 120°F 15,000 RPM .. 145
179 System Return Pressure 8-35 GPM Turn-On Transient 120°F 15,000 RPM .. 146
180 Return Flow 8-35 GPM Turn-On Transient 120°F 15,000 RPM .. 146
181 Differential Pressure 8-35 GPM Turn-On Transients 120°F 15,000 RPM .. 147
182 Servo Valve Position 8-35 GPM Turn-On Transient 120°F 15,000 RPM .. 147
183 Servo Piston Position 8-35 GPM Turn-On Transient 120°F 15,000 RPM .. 148
184 Servo Piston Pressure 8-35 GPM Turn-On Transient 120°F 15,000 RPM .. 148
185 Servo Piston Pressure 8-35 GPM Turn-On Transient 120°F 15,000 RPM .. 149
186 Outlet Pressure 35-8 GPM Turn-Off Transient 120°F 15,000 RPM .. 150
187 Control Pressure 35-8 GPM Turn-Off Transient 120°F 15,000 RPM .. 150
188 Control Pressure 35-8 GPM Turn-Off Transient 120°F 15,000 RPM .. 151
189 Control Pressure 35-8 GPM Turn-Off Transient 120°F 15,000 RPM .. 151
190 System Return Pressure 35-8 GPM Turn-Off Transient 120°F 15,000 RPM .. 152
191 Return Flow 35-8 GPM Turn-Off Transient 120°F 15,000 RPM .. 152
FIGURE PAGE

192 System Return Pressure 35-8 GPM Turn-Off Transient
120°F 15,000 RPM 153
193 Inlet Pressure 35-8 GPM Turn-Off Transient
120°F 15,000 RPM 153
194 Differential Pressure 35-8 GPM Turn-Off Transient
120°F 15,000 RPM 153
195 Servovalve Position 35-8 GPM Turn-Off Transient
120°F 15,000 RPM 154
196 Servo Piston Position 35-8 GPM Turn-Off Transient
120°F 15,000 RPM 155
197 Servo Piston Extend Pressure 35-8 GPM Turn-Off Transient
120°F 15,000 RPM 155
198 Servo Piston Retract Pressure 35-8 GPM Turn-Off Transient
120°F 15,000 RPM 156
199 Return Flow 8-35 GPM Turn-On Transient
120°F 15,000 RPM 157
200 Servo Piston Extend Pressure 8-35 GPM Turn-On Transient
120°F 15,000 RPM 158
201 Servo Piston Retract Pressure 8-35 GPM Turn-On Transient
120°F 15,000 RPM 158
202 CECO Vane Pump Steady State and Transient Test Set-Up ... 160
203 CECO MFP-330 Vane Pump 97-03-P1 Steady State Test
15,000 RPM 120°F 161
204 CECO MFP-330 Vane Pump 97-03-XP Steady State Test
15,000 RPM 120°F 161
205 CECO MFP-330 Vane Pump 97-07-P1 Steady State Test
35 GPM 120°F 162
206 CECO MFP-330 Vane Pump 97-07-Q1 Steady State Test
35 GPM 120°F 162
207 CECO MFP-330 Vane Pump 97-07-(P2-P3) Steady State Test
35 GPM 120°F 163
208 CECO MFP-330 Vane Pump 97-07-XBP1 Steady State Test
35 GPM 120°F 163
209 CECO MFP-330 Vane Pump 97-07-XP Steady State Test
35 GPM 120°F 164
210 Hydraulic Motor 167
211 Hydraulic Motor Test Schematic 168
212 P1 Fundamental Pressure 170
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>213</td>
<td>P1 2nd Harmonic</td>
<td>170</td>
</tr>
<tr>
<td>214</td>
<td>Motor Inlet Fundamental Pressure</td>
<td>171</td>
</tr>
<tr>
<td>215</td>
<td>Motor Outlet Fundamental Pressure</td>
<td>172</td>
</tr>
<tr>
<td>216</td>
<td>Hydraulic Motor Test Bench</td>
<td>173</td>
</tr>
<tr>
<td>217</td>
<td>Hydraulic Motor Test Schematic</td>
<td>175</td>
</tr>
<tr>
<td>218</td>
<td>Motor Inlet Pressure</td>
<td>177</td>
</tr>
<tr>
<td>219</td>
<td>Motor Outlet Pressure</td>
<td>177</td>
</tr>
<tr>
<td>220</td>
<td>Motor RPM</td>
<td>178</td>
</tr>
<tr>
<td>221</td>
<td>Motor Pressure Drop Vs. Return Pressure</td>
<td>179</td>
</tr>
<tr>
<td>222</td>
<td>Hydraulic Motor Leakage Characteristics</td>
<td>180</td>
</tr>
<tr>
<td>223</td>
<td>Aero Hydraulic Motor 98-02-(P1-P2) Steady State Test CW Shaft End 125°F</td>
<td>181</td>
</tr>
<tr>
<td>224</td>
<td>Aero Hydraulic Motor 98-02-P3 Steady State Test CW Shaft End 125°F</td>
<td>182</td>
</tr>
<tr>
<td>225</td>
<td>Aero Hydraulic Motor 98-02-MS Steady State Test CW Shaft End 125°F</td>
<td>182</td>
</tr>
<tr>
<td>226</td>
<td>Aero Hydraulic Motor</td>
<td>183</td>
</tr>
<tr>
<td>C-1</td>
<td>One-Elbow Pipe Out-Of-Plane Loading</td>
<td>218</td>
</tr>
<tr>
<td>C-2</td>
<td>One-Elbow Pipe Out-Of-Plane Vibrations</td>
<td>223</td>
</tr>
<tr>
<td>C-3</td>
<td>Fundamental Out-Of-Plane Frequency Pipe with a Bend</td>
<td>224</td>
</tr>
<tr>
<td>C-4</td>
<td>Hydraulic Line Mechanical Response Two-Elbow Pipe Torsion Mode</td>
<td>225</td>
</tr>
<tr>
<td>C-5</td>
<td>Hydraulic Line Mechanical Response Two-Elbow Crosspipe Translation</td>
<td>226</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pipe Frequency Overview</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>One-Elbow Pipe Data Correlation</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>Two-Elbow Pipe Data Correlation</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>HSFR Program Input Data High Pressure Test Short Line</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>Transient Testing Data Run Parameters</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>F-15 Pump Transient Tests at 3000 PSIG Outlet Pressure</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>F-15 Pump Transient Tests at 4400 PSIG Outlet Pressure</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>Basic HYTRAN Input 3000 PSI Hydraulic System 2-77 CIS Turn-On Transient</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>HYTRAN Input Data 3000 PSI System 2-38.5 CIS Turn-On Transient</td>
<td>64</td>
</tr>
<tr>
<td>10</td>
<td>HYTRAN Input Data 4400 PSI System Turn-On Transient Run</td>
<td>71</td>
</tr>
<tr>
<td>11</td>
<td>HYTRAN Input Data 154 CIS Turn-On Transient 130°F 3000 PSI Line Data</td>
<td>85</td>
</tr>
<tr>
<td>11 (Cont)</td>
<td>HYTRAN Input Data Turn-On Transient Component Data</td>
<td>86</td>
</tr>
<tr>
<td>11 (Cont)</td>
<td>HYTRAN Input Data Turn-On Transient Steady State Input Data</td>
<td>87</td>
</tr>
<tr>
<td>12</td>
<td>F-15 Instrumented Pump Steady State Testing - 3000 PSI</td>
<td>94</td>
</tr>
<tr>
<td>13</td>
<td>F-15 Instrumented Pump Steady State Testing - 4400 PSI</td>
<td>102</td>
</tr>
<tr>
<td>14</td>
<td>Vane Pump Test Summary</td>
<td>111</td>
</tr>
<tr>
<td>15</td>
<td>Hydraulic System Frequency Response Program</td>
<td>129</td>
</tr>
<tr>
<td>16</td>
<td>CECO Pump Model Verification Tests Instrumentation Requirements</td>
<td>135</td>
</tr>
<tr>
<td>17</td>
<td>CECO Pump Model Transient Verification Tests</td>
<td>139</td>
</tr>
<tr>
<td>18</td>
<td>HYTRAN Input Data of Vane Pump Transient Simulation</td>
<td>142</td>
</tr>
<tr>
<td>18 (Cont)</td>
<td>HYTRAN Input Data</td>
<td>143</td>
</tr>
<tr>
<td>19</td>
<td>CECO Vane Pump Steady State Tests</td>
<td>160</td>
</tr>
<tr>
<td>20</td>
<td>HSFR Input Data</td>
<td>171</td>
</tr>
<tr>
<td>21</td>
<td>Hydraulic Motor Transient Test Runs</td>
<td>174</td>
</tr>
<tr>
<td>22</td>
<td>HYTRAN Input Data for Motor</td>
<td>176</td>
</tr>
<tr>
<td>23</td>
<td>Hydraulic Motor Breakout Pressure Test Results</td>
<td>178</td>
</tr>
<tr>
<td>B1</td>
<td>HLMR Program Listing</td>
<td>199</td>
</tr>
<tr>
<td>B2</td>
<td>List of Symbols</td>
<td>210</td>
</tr>
<tr>
<td>B3</td>
<td>Straight Pipe Computer Run</td>
<td>212</td>
</tr>
<tr>
<td>B3 (Cont)</td>
<td>Magnification Factors</td>
<td>213</td>
</tr>
<tr>
<td>B4</td>
<td>One-Elbow Pipe Computer Run</td>
<td>214</td>
</tr>
<tr>
<td>B5</td>
<td>Two-Elbow Pipe Computer Run</td>
<td>215</td>
</tr>
</tbody>
</table>
SECTION I
INTRODUCTION

This report describes work performed under the extension (Supplemental Agreement P00007) of the Aircraft Hydraulic System Performance Analysis contract. This effort was a continuation of the basic contract, the results of which were reported in Reference (1).

The task involved the development and verification by test of digital computer models and/or programs in four areas.

1. HYDRAULIC LINE MECHANICAL RESPONSE (HLMR)
 A test program was conducted to determine the mechanical resonances and mode shapes of hydraulic lines due to internal excitation by flow/pressure pulsations from a typical piston-type hydraulic pump. The objective was to develop and verify a computer program for predicting line mechanical response based on pump flow/pressure pulsations predicted by the Hydraulic System Frequency Response (HSFR) program, which was developed during the basic contract. Basic data for the design of central hydraulic piping systems was obtained as well as the effects of an intermediate elastomeric pipe support.

2. F-15 PISTON PUMP MODEL VERIFICATION
 An F-15 instrumented hydraulic pump (Abex) was used during the basic contract to verify the pump Hydraulic Transient Analysis (HYTRAN) model. A direct case pressure pickup was added to the pump and certain tests were repeated. Direct case pressure data was utilized along with additional analysis of original verification data to further improve the pump model.

3. VANE PUMP MODEL DEVELOPMENT AND VERIFICATION
 HSFR and HYTRAN models were developed and verified by test for a variable volume vane pump. The unit modeled and tested was the vane stage of the main fuel pump (MFP-330) on the F-100 turbojet engine. It was designed and is supplied by Chandler Evans Inc., Control Systems Division. The pump was tested using MIL-H-56068 hydraulic oil consistent with previous model development work and the established Hydraulic Performance Analysis Test Facility (HPAF).

4. HYDRAULIC MOTOR MODEL DEVELOPMENT AND VERIFICATION
 HSFR and HYTRAN models were developed and verified by test for a constant displacement, piston-type hydraulic motor. The unit modeled and tested was designed and supplied by Aero-Hydraulics, Inc. (The Garrett Corporation). The test motor is used in the F-18 leading edge maneuvering flap system, and similar units are used in F-15, F-14, and B-1 applications.
Test methods and instrumentation were the same as described in Reference (1) for test work during the basic program. Special test setups required for the vane pump and hydraulic motor are described in subsequent sections of this report. Computer models developed during the supplemental contract are in the same format as those developed during the original contract, and are compatible, "building block" additions to the HSFR and HYTRAN computer programs documented in References (2) through (5).
SECTION II
HYDRAULIC LINE MECHANICAL RESPONSE (HLMR) PROGRAM

Hydraulic line vibrations due to pulsations from axial piston-type pumps can create serious problems in aircraft. These internal forcing functions cause the hydraulic system lines to vibrate and transmit loads into supporting structure. The importance of developing analytical tools coupled with experimental tests was recognized by AFAPL and funds were allocated in the program extension to pursue this development.

The objectives of the HLMR program effort were to:

- Develop and verify a computer program for predicting line mechanical response due to predicted pump pulsations.
- Provide basic data for the design of piping systems.
- Provide information regarding intermediate supports.

The test program included determining the mechanical resonances and mode shapes due to pump excitation of three configurations: a straight pipe, a pipe with a 90-deg. bend, and a pipe with two 90-deg. bends (dogleg). In addition, the effect of an intermediate elastomeric support was evaluated.

1. BACKGROUND

a. Previous MCAIR Effort

An initial effort to evaluate the mechanical response of a hydraulic installation due to internal forcing functions was reported in Reference (6). This preliminary investigation used forcing functions from the pressure and flow transmitted by the pump, as provided by the HSFR computer program. The results indicated that the hydraulic line normalized amplitudes varied directly with the intensity of the forcing function. Although the program's predictions indicated the amplitude trend, it did not duplicate the mechanical resonances.

b. Literature Survey

A review of published literature was conducted to determine the extent of work performed on fluid-line coupling analyses. Appendix A presents an annotated bibliography of the literature surveyed.

It was determined that much effort has been devoted to analyzing large piping systems transporting oil through the Arabian fields, water within Navy shipboard piping, and academic stylized systems. Except for the Navy studies, all analyses concentrated on straight pipes with different support conditions and variations in internal fluid velocity. None studied the coupling between hydraulic pump pulsations and line mechanical response.
2. TEST SET-UP AND PROCEDURES

Three different pipe configurations of equal length, Figure 1, were installed in MCAIR's HPAC test fixture. The specimens consisted of one-inch outside diameter, with 0.1-in. wall thickness, 3AL-2.5V titanium tubes; a straight pipe, a pipe with a single 90-deg. bend, and one with two 90-deg bends (dogleg). In each case the pipe was rigidly mounted at each end using Dynatube fittings between brackets, Figure 2, attached to a steel plate. In the test set-up, the pipe specimens were part of the pressure system between the pump and the flow control valve, and isolated from extraneous mechanical vibration inputs in order to determine only the effect of the pump pulsations. The test circuit included a trombone tube section to permit adjustment of the standing wave location in the test specimen. The test fluid was MIL-H-5606B hydraulic oil.

Tests with an intermediate support placed at the locations shown in Figure 1 were conducted to determine the effect of an elastomeric clamp on line responses.

Six single axis accelerometers were installed on each specimen at the same location with respect to the pipe centerline. Triaxial accelerometers to record data simultaneously along three orthogonal axis were not employed, since their weight would have affected the line response. Lightweight single axis accelerometers were used to minimize this effect. Tests had to be repeated for each axis thereby increasing test time for each configuration.

Pressure transducers and thermocouples were installed in the test set-up. The standing pressure wave in the test line was determined as a function of pump speed, by means of a roving transducer.

All the test data was run with a pump outlet flow of 2.0 gpm and a nominal pump inlet temperature of 130°F. Each test specimen was run unclamped and clamped before moving the accelerometers to a different axis. A pump speed sweep from 1000 to 5000 rpm was made while recording analog data on tape. Data plots of acceleration as a function of pump speed were made from the tapes. These plots were used to identify the pump speeds at each mechanical resonance. Then, for each significant mechanical resonance condition, spectrum analyses were obtained while dwelling the pump at the resonant speed. In addition, the phase relationship was obtained between a reference accelerometer and all other accelerometers.

4
FIGURE 1. TEST CONFIGURATIONS

FIGURE 2. TEST SET-UP SCHEMATIC
3. TEST RESULTS

a. Pump Pressure Pulsations

The standing pressure wave was determined from the graphical data of fundamental pressure peaks versus pump speed at a number of pre-set locations using a roving transducer. As previously mentioned, all test data was obtained with a pump outlet flow of 2 gpm and a pump inlet temperature of 130°F.

The results summarized in Figure 3, indicate three resonance speeds. Pump speeds above and below those shown have lower peak values and have waves with translational nodes as seen in Figures 4 through 8.

![Figure 3. Hydraulic Resonances](image)
FIGURE 4. PEAK PRESSURES
1600-1900 R.P.M.

FIGURE 5. PEAK PRESSURES
2700-2900 R.P.M.
FIGURE 6. PEAK PRESSURES
2900-3100 R.P.M.

FIGURE 7. PEAK PRESSURES
3900-4300 R.P.M.
b. Line Response

Line response data reduction was made in terms of mode shapes for the three configurations. The graphical presentation made herein shows the normalized deflection, base on maximum amplitude/acceleration, as a function of pipe length for each resonance speed. In addition the reference acceleration previously mentioned is shown for each case. For specimens with bends, the inplane and out-of-plane modes are shown for a visualization of the motions involved. It is seen that the cushioned elastomeric clamp had no effect on restraining the line (almost identical mode shapes) but slightly lowered the acceleration.

(1) Straight Pipe

Both unclamped and clamped configurations exhibit almost identical mode shapes, Figures 9 and 11, equivalent to the third harmonic at the same excitation level. Note that the line resonance condition coincides with the second resonance of the standing pressure wave.

The clamped setup had a slightly higher acceleration with the clamp providing no physical effect on the mode shape. However, it did produce another distinct resonance, Figure 10, characterized by a longitudinal acceleration which was the highest for the straight line configuration.
PUMP SPEED 2900 RPM (435 Hz)
FREQUENCY 435 Hz

FIGURE 9. HYDRAULIC SYSTEM LINE RESPONSE STRAIGHT PIPE UNCLAMPED MODE SHAPE DATA

PUMP SPEED 4150 RPM (653 Hz)
FREQUENCY 653 Hz

FIGURE 10. HYDRAULIC SYSTEM LINE RESPONSE STRAIGHT PIPE CLAMPED MODE SHAPE DATA
PUMP SPEED 2900 RPM (435 HZ)
FREQUENCY 435 HZ

NORMALIZED DEFLECTION

0 10 20 30 40 50 60 DISTANCE - IN

FIGURE 11. HYDRAULIC SYSTEM LINE RESPONSE
STRAIGHT PIPE CLAMPED MODE SHAPE DATA

(2) One-Elbow Pipe

Unclamped and clamped configurations had identical resonances, similar mode shapes and accelerations slightly lower for the latter case. Both set-ups had a recurring frequency at 1030-1035 Hz corresponding to higher harmonics of the pump speeds shown on Figures 12 and 15. The basic mode shape for these cases have two nodes such that the inplane normalized deflections show the characteristics of the third mode of a cantilever or fixed-pinned beam for the first leg, and the first mode for the second leg. The out-of-plane deflections compare with those of the third mode for a fixed-fixed beam.

Peak accelerations for this configuration occurred at the elbow in the inplane direction. Interestingly, the second standing pressure wave resonance at 2900 RPM also excited a mode shape similar to the previously discussed inplane deflections for 1035 Hz. However, there was little motion in the out-of-plane direction although only the clamped version was measured as seen in Figures 13 and 16.

The only frequency occurring on the first harmonic of the pump speed is at 653 Hz (4350 RPM) and produced the maximum accelerations for both the unclamped and clamped configurations with the latter having a slightly (ten percent) lower accelerations. The inplane mode shapes, seen in Figures 14 and 17, are basically the first leg motion coupled to that of the second leg with the maximum acceleration measurement at the station after the elbow, away from the pump.
FIGURE 12. HYDRAULIC SYSTEM LINE RESPONSE
ONE-ELBOW PIPE UNCLAMPED MODE SHAPE DATA

FIGURE 13. HYDRAULIC SYSTEM LINE RESPONSE
ONE-ELBOW PIPE UNCLAMPED MODE SHAPE DATA
FIGURE 14. HYDRAULIC SYSTEM LINE RESPONSE
ONE-ELBOW PIPE UNCLAMPED MODE SHAPE DATA

FIGURE 15. HYDRAULIC SYSTEM LINE RESPONSE
ONE-ELBOW PIPE CLAMPED MODE SHAPE DATA
FIGURE 16. HYDRAULIC SYSTEM LINE RESPONSE
ONE-ELBOW PIPE CLAMPED MODE SHAPE DATA

PUMP SPEED 2900 RPM (435 Hz)
FREQUENCY 870 Hz

FIGURE 17. HYDRAULIC SYSTEM LINE RESPONSE
ONE-ELBOW PIPE CLAMPED MODE SHAPE DATA

PUMP SPEED 4350 RPM (653 Hz)
FREQUENCY 653 Hz
(3) Two-Elbow Pipe

Two fundamental resonances were encountered in this configuration for the unclamped and clamped set-ups. Both sets have similar mode shapes. The out-of-plane peak response occurs at 2900 RPM, the second standing wave resonance, with the maximum deflection midway of the first leg as seen in Figures 18 and 20. In addition, the measured accelerations are close to each other. However, the maximum accelerations occur in the in-plane direction with lateral cross-tube motions as shown in Figures 19 and 21. Peak accelerations in the clamped set-up were 15 percent lower than the unclamped version.

(4) Comparison Between Internal and External Data

Graphical superposition of the peak pressures and accelerations are shown in Figures 22 through 28 for the three test configurations. The general trend for the straight and two-elbow lines is for the peak acceleration to occur in the vicinity of zero peak pressure, and for the one-elbow line to have the pressure and acceleration to peak almost simultaneously. A possible explanation to this disparity could be the number of section or legs in a line. Thus, a straight and a two-elbow pipe consist of "odd" sections, and the one-elbow has "even" (two legs) sections.

![Graphical representation of in-plane and out-of-plane deflections](image)
Figure 19. Hydraulic system line response: two-elbow pipe unclamped mode shape data.

Figure 20. Hydraulic system line response: two-elbow pipe clamped mode shape data.
FIGURE 21. HYDRAULIC SYSTEM LINE RESPONSE
TWO-ELBOW PIPE CLAMPED MODE SHAPE DATA

FIGURE 22. STRAIGHT PIPE UNCLAMPED 2900 RPM 435 HZ
FIGURE 23. STRAIGHT PIPE CLAMPED 2900 RPM 435 HZ

FIGURE 24. STRAIGHT PIPE CLAMPED 4350 RPM 653 HZ
FIGURE 25. ONE-ELBOW PIPE UNCLAMPED 4350 RPM 653 HZ

FIGURE 26. ONE-ELBOW PIPE CLAMPED 4350 RPM 653 HZ
FIGURE 27. TWO-ELBOW PIPE UNCLAMPED 4600 RPM 690 HZ

FIGURE 28. TWO-ELBOW PIPE CLAMPED 4600 RPM 690 HZ
(5) **Elastomer Flexibility**

The clamp elastomer was subjected to successive weights in the test set-up shown in Figure 29. Also shown is a cross-sectional view of the wedge-shaped yellow nitrile clamp elastomer. The results shown in Figure 30, indicate that with increases of one-pound or five-pound weights produce equal slopes or a flexibility (spring rate) of 1290 lb/in. This value can be used in future support flexibility studies.

(6) **Strain Measurements**

Strain measurements were made on the one-elbow (L-shaped) pipe in the unclamped and clamped configurations to evaluate pump effects. This was beyond the scope of the program. Two gages were placed 3/8-inch from the line specimen edge closest to the pump. One gage was installed to register the longitudinal strain and the other for the circumferential strain. The two gages were attached to the tubing 90-degrees apart with the circumferential strain on the bottom pipe surface and the longitudinal strain on the pipe surface towards the inside of the pipe bend (horizontal plane).

FIGURE 29. ELASTOMER FLEXIBILITY TEST SET-UP
The measured strains were approximately equal for all resonance conditions encountered and are summarized as follows:

<table>
<thead>
<tr>
<th>Test Set-Up</th>
<th>Direction</th>
<th>Strain (Microinches/Inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclamped</td>
<td>Longitudinal</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Circumferential</td>
<td>1080</td>
</tr>
<tr>
<td>Clamped</td>
<td>Longitudinal</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Circumferential</td>
<td>1130</td>
</tr>
</tbody>
</table>

The calculated longitudinal and circumferential stresses from the measured strains were about 20 percent and 10 percent lower for the unclamped and clamped configurations, respectively, than those stresses calculated from pressure and geometric considerations.

The results are inconclusive and additional testing is needed, since F-15 Iron Bird has shown the expected variation in stress as a function of motion.
4. ANALYTICAL PROCEDURES

a. Terminology

As previously shown the frequency response data can be used to characterize
the shape of deformation of a line associated with each natural frequency or
resonance. These unique deformation distributions along the pipe are herein
referred to as mode shapes. These mode shapes provide visual means of analyzing
the dynamical behavior of a hydraulic line.

A brief review of fundamental considerations in pipe vibrations is appropriate.

(1) Degrees-of-Freedom

This refers to the number of independent quantities defining the position
of a system. This means that a system consisting of a mass attached to a massless
spring and constrained to a unidirectional motion has one degree of freedom because
the system is defined by the deflection of the spring. On the other hand, a simply
supported (pinned-pinned) beam or pipe has an infinite number of degrees of freedom.
This is due to the flexibility of each element relative to adjoining ones which
require an infinite number of element deflections to describe the position
completely.

(2) Vibration Modes

The number of principal modes is equal to the number of degrees of
freedom. Frequencies of the principal modes of oscillation are called natural
frequencies. The lowest natural frequency is called the first or fundamental
mode of vibration. A pipe, or beam, has an infinite number of principal
modes.

(3) Resonance

Resonance is a phenomenon which occurs when a system is excited
periodically (such as by pump pulsations) with a frequency at or very near the
natural frequency of the system. At this condition, if the damping of the system
is small the system will respond with large amplitudes which have undesirable
structural effects.

Between supports or clamps, a pipe is a beam with uniform mass distribution.
Each restrained length possesses an infinite number of degrees of freedom,
consequently vibration may occur in an infinite number of modes singly or in
combination. Table 1 gives an overview of vibration modes as a function of
variable supports. The frequency factor (multiplier) given in the right hand
column is an indication of how the higher model frequencies vary under basic
conditions. For example, comparing the factors, the first and second natural
frequencies of a fixed-fixed pipe will be the same as the second and third
natural frequencies of a cantilever pipe with the same geometric characteristics.
TABLE 1. PIPE FREQUENCY OVERVIEW

<table>
<thead>
<tr>
<th>SUPPORT</th>
<th>MODES OF VIBRATION</th>
<th>FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANTILEVER</td>
<td>FIRST</td>
<td>3.52</td>
</tr>
<tr>
<td></td>
<td>SECOND</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td>THIRD</td>
<td>61.7</td>
</tr>
<tr>
<td>PINNED-PINNED</td>
<td>FIRST</td>
<td>9.87</td>
</tr>
<tr>
<td></td>
<td>SECOND</td>
<td>39.5</td>
</tr>
<tr>
<td></td>
<td>THIRD</td>
<td>89.9</td>
</tr>
<tr>
<td>FIXED-PINNED</td>
<td>FIRST</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>SECOND</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>THIRD</td>
<td>104</td>
</tr>
<tr>
<td>FIXED-FIXED</td>
<td>FIRST</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td>SECOND</td>
<td>61.7</td>
</tr>
<tr>
<td></td>
<td>THIRD</td>
<td>12.1</td>
</tr>
</tbody>
</table>

b. Straight Pipe: Transverse and Longitudinal Vibrations

For a straight pipe or beam, the transverse and longitudinal frequencies have been studied by a number of authors such as those in References 7 and 8. A short computer program including the effects of a fluid in the pipe has been accomplished (Appendix B) and provided the inputs for Figure 31, which shows the effects of varying pipe length between fixed supports. Reducing the length by one-half causes a four-fold increase in the fundamental frequency and a potentially destructive effect if it falls within the pump operating regime. Note that the frequency is approximately the same for aluminum, steel, and titanium tubes. This is because the ratios of modulus of elasticity to density for these materials are nearly equal. The factors shown indicate the effect of fluid on frequencies. Reducing the pipe diameter or increasing the wall thickness lowers the frequency since for a given length the modifying parameter is the square root of the inertia-area ratio as shown in Figure 32. Although the computer program presented in Appendix B is for a pipe with fixed or built-in ends, the fundamental and higher order frequencies for a straight pipe of any length between various types of non-flexible supports can be determined by means of the frequency factors provided in Table 1.
FLUID: RED OIL AT 130°F, 3000 PSI

PIPE LENGTH BETWEEN SUPPORTS - IN

MATERIAL FACTOR
ALUMINUM 0.69
STEEL 1.15
TITANIUM 1.00

FUNDAMENTAL FREQUENCY - HZ

FIGURE 31. STRAIGHT PIPE BENDING VIBRATIONS
FIXED-FIXED SUPPORTS

FIGURE 32. INERTIA AREA RATIO EFFECTS ON VIBRATIONS
Equal Pipe Lengths
A brief investigation was made into the effect of clamp elastomer flexibility, Figure 33, which indicates that for midspan clamp stiffnesses below 30C lb/in. (test elastomer 1290 lb/in.), the critical speed is only dependent on pipe length. As the spring rate/stiffness is substantially increased, there is the danger of having the critical speed within the pump operating regime.

c. One-Elbow Pipe Vibrations

Programs were developed for the in-plane and out-of-plane vibrations and are included in Appendix B. For the in-plane vibrations, the analysis is based on simplified analysis using frequency factors shown in Table 1 for the appropriate end conditions and modes. In addition, Dunkerley's method was used to find the coupling frequencies. The method is used to find the approximate value of the frequencies of shafting systems. The formula is as follows:

$$\frac{1}{f^2} = \frac{1}{f_1^2} + \frac{1}{f_2^2} + \frac{1}{f_3^2} + \cdots + \frac{1}{f_n^2}$$

where \(f \) is the approximate fundamental natural frequency of the system, and \(f_1, f_2, f_3, \cdots f_n \) are the natural frequencies of a single mass of a multi-degree of freedom system. The limitations imposed on the program is its applicability to pipes with 90-deg bend angles.

The results are shown in Figures 34 and 35 for the test pipe size (1.00-O.D. x .051 wall) and indicates the effect of material type and leg length on frequency. The numbered modes have been detailed in Table 1. It is seen that for a titanium pipe of equal leg lengths of 23 inches, there are no in-plane vibrations of significance within the pump operating regime.

For the out-of-plane vibrations, the analytical development is shown in Appendix C and the computer program incorporated in Appendix B. Computer runs were performed for two different pipe sizes and the results are shown in Figure 36. Variation of leg lengths and type of material are not as important as the pipe length between supports. Thus, undesirable out-of-plane vibrations are encountered in the operating regime if the distance between supports are in the vicinity of 20 inches or less.

d. Two-Elbow Pipe Vibrations

The inplane and out-of-plane vibration analysis were developed using similar techniques as the one-elbow inplane analysis. The derivation of the equations of motion for the crosspipe (middle leg) translational and torsional modes are shown in Appendix C.
FIGURE 33. CLAMP ELASTOMER FLEXIBILITY, STRAIGHT PIPE

FIGURE 34. ONE-ELBOW PIPE INPLANE VIBRATIONS AXIAL FREQUENCY
FIGURE 35. ONE-ELBOW PIPE INPLANE VIBRATIONS
COUPLED AXIAL-BENDING FREQUENCY

FIGURE 36. ONE-ELBOW PIPE OUT-OF-PLANE VIBRATIONS
Fluid: Red Oil at 130°F 3000 psi
5. MODEL VERIFICATION

a. Test Data Summary

Pictorial representations of the relationship between resonances and pump speed, for the data previously reported, are summarized in Figures 37 through 39 for the straight pipe, one-elbow pipe, and two-elbow pipe, respectively. There are two basic sets of data in each figure. The first set are the horizontal lines which indicate the natural frequencies measured on the test set-up. The second set is the radial arrangement of straight lines, with a common point at the origin of the rectangular coordinate system, which depicts the relationship between the exciting frequency and the pump speed. These radial lines have slopes equal to the harmonics of the pump, which is the number of oscillations per revolution. The intersections of these radial lines (hydraulic exciting frequencies) with the horizontal lines (natural mechanical frequencies) indicate conditions of resonance.

 Although tests indicated three hydraulic resonances at pump speeds of 1600 rpm, 2900 rpm, and 4300 rpm, none excited a fundamental mechanical resonance. At 1600 rpm no significant mechanical responses were measured in any of the three test configurations. The other two pump speeds produced the larger responses in terms of measured accelerations.

(1) Straight Pipe

The test data summary is shown in Figure 37. At 2900 rpm, the pipe is responding similarly to the third mode of a beam with built-in ends. The measured frequency at this mode was 435 Hz. This is close to the computed value of 409.3 Hz.

At 4350 rpm, a longitudinal excitation was measured at 653 Hz. This value is almost half the calculated frequency of 1370 Hz indicating possible interaction with pipe overhang just outside the supporting brackets or the brackets themselves when a clamp is used.

(2) One-Elbow Pipe

The hydraulic resonances at 2900 rpm and 4300 rpm resulted in predominantly inplane motions. As seen in Figure 38, the peak accelerations were measured at the first harmonic of the pump speed, with 315-G for the unclamped case reduced to 286-G for the clamped version, on the accelerometer located after the elbow, away from the pump. Higher order mechanical responses were measured at 1030-1035 Hz which excited both inplane and out-of-plane motions. The calculated out-of-plane fundamental frequency is 43.8 Hz which is so low with respect to the pump operating regime that it precludes any coupling with mechanical or hydraulic resonances for the system tested.
FIGURE 37. HLMR TEST DATA SUMMARY
Straight Pipe
FIGURE 38. HLDR TEST DATA SUMMARY
One Elbow Pipe
FIGURE 39. HLMR TEST DATA SUMMARY
Two-Elbow Pipe
(3) **Two-Elbow Pipe**

Similarly, the measured data is illustrated in Figure 39. The two resonances shown, with insets providing visual representation of the mode shapes, were excited by the first harmonic of the pump speeds at 2900 rpm (out-of-plane) and 6100 rpm (in-plane). The latter pump speed is slightly higher than the hydraulic resonance measured at 4300 rpm.

b. **Comparison of Analytical and Test Results**

The straight pipe vibration modes and frequencies are predictable, while the one-elbow pipe out-of-plane fundamental frequency was calculated to be far below the pump operating regime and consequently of little relevance. The one-elbow pipe in-plane vibrations indicate that for the test configuration, the calculated axial and coupled axial-bending frequencies are within the expected accuracy limits of the analysis but lower than the measured value. In the determination of the axial frequency, the entire fluid weight was considered to be contributing to the total component weight. The contribution of fluid weight to the overall solution has not been studied as extensively as mechanical systems. The results of a brief study into the variation of fluid weight on the axial frequency is shown in Figure 40.

![Graph](image)

Figure 40. One-elbow pipe in-plane vibrations effect of fluid on axial frequency

33
A 33% effective fluid weight results in an accurate prediction of the axial frequency. Pipe sizes with ratios of flow area to cross-section area which are very close to each other results in similar axial frequencies. It is interesting to note that Reference 8 suggests that in a spring-mass system the determination of frequencies should take into account one-third of the spring weight. The test results and analysis are summarized as follows:

Table 2 - One-Elbow Pipe Data Correlation

<table>
<thead>
<tr>
<th>Pump Speed (RPM)</th>
<th>Frequency (Hz)</th>
<th>Mode Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measured</td>
<td>Calculated</td>
</tr>
<tr>
<td>1720</td>
<td>851</td>
<td>Axial (100% fluid)</td>
</tr>
<tr>
<td>2800</td>
<td>1030-1035</td>
<td>Axial (33% fluid)</td>
</tr>
<tr>
<td>3540</td>
<td>870</td>
<td>Axial (33% fluid)</td>
</tr>
<tr>
<td>4350</td>
<td>655</td>
<td>Axial (33% fluid)</td>
</tr>
</tbody>
</table>

The two-elbow pipe computer output data were extracted for comparison with the measured data and the results are summarized as follows:

Table 3 - Two-Elbow Pipe Data Correlation

<table>
<thead>
<tr>
<th>Pump Speed (RPM)</th>
<th>Frequency (Hz)</th>
<th>Mode Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measured</td>
<td>Calculated</td>
</tr>
<tr>
<td>2900</td>
<td>435</td>
<td>Coupled axial-bending</td>
</tr>
<tr>
<td>4600</td>
<td>634</td>
<td>Axial</td>
</tr>
</tbody>
</table>
SECTION III
F-15 PISTON PUMP MODEL VERIFICATION

Further testing and computer program model development work was accomplished on the instrumented F-15 hydraulic pump (S/N 038). The HYTRAN pump computer model was enhanced.

The instrumented pump used in the original AFAPL three year contract was refurbished by Abex. The wiped port plate and cylinder barrel were replaced, a case drain pressure tap was installed, and new O'rings were installed.

Steady state tests were run to recheck the case pressure/flow and the heat rejection characteristics.

The HYTRAN pump model calculation of case pressure was to be verified with the case pressure transducer, and tests were repeated for low and high flow demands at several test conditions identical to those for the original pump model verification.

In addition tests were repeated at 4400 psi pump outlet pressure to verify the F-15 pump transient model at the higher pressure. Frequency response data was also taken to determine pressure pulsations at the 4400 psi test pressure with the pump valve plate still timed for 3000 psi outlet pressure.

1. FREQUENCY RESPONSE TESTS

The refurbished F-15 instrumented pump was used for the extended frequency response testing. Outlet circuit pressure pulsations at 4400 psi were mapped in the same line locations as in the original 3000 psi frequency response verification tests. Total pressure pulsations and fundamental frequency pulsations were measured at each location during the pump speed sweeps.
a. **Test Circuit Description and Computer Model**

A load valve was added to the transient test stand and test runs were made on the system configuration shown in Figure 41 with MIL-H-5606B hydraulic fluid. Figure 42 shows the 9 ft. frequency response test section which terminates at the load valve. The figure details the locations of the measured data points used for the frequency mapping. A roving clamp-on transducer was used to collect data at the indicated points between locations P3 and P2, which were permanent transducer locations. For each test point a plot of the fundamental frequency and a oscilloscope trace of the total peak to peak pressure pulsations were made as the pump swept from 1000 to 4300 rpm. The steady state flow rate of 12.9gpm was somewhat higher than desired, but it was necessary to keep the pump operating in a stable mode. HSFR input data for the high pressure verification circuit is shown in Table 4.

![Frequency Response Test Section](image)

FIGURE 41. HYDRAULIC PUMP VERIFICATION TEST SETUP
FIGURE 42. 9 FT. FREQUENCY RESPONSE TEST SECTION

TABLE 4. HSFR PROGRAM INPUT DATA HIGH PRESSURE TEST - SHORT LINE

| FREQUENCY [Hz] | 1 | 10.0 | 30.0 | 90.0 | 1.50 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 | 8.0 | 8.5 | 9.0 | 9.5 | 10.0 |
|----------------|---|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1300.0 | 1 | 37.26| 1.000 | 0.500 | 0.250 | 0.125 | 0.062 | 0.031 | 0.016 | 0.008 | 0.004 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1200.0 | 1 | 37.26| 1.000 | 0.500 | 0.250 | 0.125 | 0.062 | 0.031 | 0.016 | 0.008 | 0.004 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1000.0 | 1 | 37.26| 1.000 | 0.500 | 0.250 | 0.125 | 0.062 | 0.031 | 0.016 | 0.008 | 0.004 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 900.0 | 1 | 37.26| 1.000 | 0.500 | 0.250 | 0.125 | 0.062 | 0.031 | 0.016 | 0.008 | 0.004 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 800.0 | 1 | 37.26| 1.000 | 0.500 | 0.250 | 0.125 | 0.062 | 0.031 | 0.016 | 0.008 | 0.004 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 700.0 | 1 | 37.26| 1.000 | 0.500 | 0.250 | 0.125 | 0.062 | 0.031 | 0.016 | 0.008 | 0.004 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 600.0 | 1 | 37.26| 1.000 | 0.500 | 0.250 | 0.125 | 0.062 | 0.031 | 0.016 | 0.008 | 0.004 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 500.0 | 1 | 37.26| 1.000 | 0.500 | 0.250 | 0.125 | 0.062 | 0.031 | 0.016 | 0.008 | 0.004 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 400.0 | 1 | 37.26| 1.000 | 0.500 | 0.250 | 0.125 | 0.062 | 0.031 | 0.016 | 0.008 | 0.004 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 300.0 | 1 | 37.26| 1.000 | 0.500 | 0.250 | 0.125 | 0.062 | 0.031 | 0.016 | 0.008 | 0.004 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 200.0 | 1 | 37.26| 1.000 | 0.500 | 0.250 | 0.125 | 0.062 | 0.031 | 0.016 | 0.008 | 0.004 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 100.0 | 1 | 37.26| 1.000 | 0.500 | 0.250 | 0.125 | 0.062 | 0.031 | 0.016 | 0.008 | 0.004 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

37
b. Test Results and Comparison to HSFR Program Predictions

The test data was manually overplotted on a reduced computer output plot. Manual plotting and reproduction distortion will introduce some error in the correlation process.

Oscilloscope traces of the peak to peak pressure pulsations indicated resonant frequencies at 1500, 2650 and 4000 rpm. These frequencies of course were identical to those seen at the 3000 psi operating pressures. The highest pulsation recorded was located at 83.41 inches from the pump outlet. At approximately 4000 RPM they were 1300 psi peak to peak as indicated in Figure 43.

The fundamental peak pressure pulsation measured in the lab is presented in Figure 44. At 4000 rpm there is a 300 psi peak to peak pulsation. This indicates that the remainder of the pulsation energy is found at the higher harmonics.

The HSFR computer generated pressures at the mapping locations are presented in Figures 45 through 54. The test data has been overplotted on the computer output for comparison. The plots show excellent frequency correlation of 0-3% (0 to 75 rpm) for the second and third resonant speeds of 2650 and 4000 rpm.

![Figure 43. Peak to peak Pressure Pulsations 83.41 inches from pump outlet](image)
FIGURE 44. 48" FROM P3: FUNDAMENTAL 113°F 12.9 GPM

FIGURE 45. FREQUENCY RESPONSE EXTENDED F-15 PUMP VERIFICATION TEST
MIL-H-56058 44000PSI 120°F 12.9 GPM
18.03 INCHES FROM PUMP OUTLET
FIGURE 46. FREQUENCY RESPONSE EXTENDED F-15 PUMP VERIFICATION TEST
MIL-H-5606B 4400 PSI 112°F 12.9 GPM
35.41 INCHES FROM PUMP OUTLET

FIGURE 47. FREQUENCY RESPONSE EXTENDED F-15 PUMP VERIFICATION TEST
MIL-H-5606B 4400 PSI 113°F 12.9 GPM
47.61 INCHES FROM PUMP OUTLET
FIGURE 48. FREQUENCY RESPONSE EXTENDED F-15 PUMP VERIFICATION TEST
MIL-H-5606B 4400 PSI 113°F 12.9 GPM
59.41 INCHES FROM PUMP OUTLET

FIGURE 49. FREQUENCY RESPONSE EXTENDED F-15 PUMP VERIFICATION TEST
MIL-H-5606B 4400 PSI 113°F 12.9 GPM
71.41 INCHES FROM PUMP OUTLET
FIGURE 50. FREQUENCY RESPONSE EXTENDED F-15 PUMP VERIFICATION TEST
MIL-H-5606B 4400 PSI 113°F 12.9 GPM
83.41 INCHES FROM PUMP OUTLET

FIGURE 51. FREQUENCY RESPONSE EXTENDED F-15 PUMP VERIFICATION TEST
MIL-H-5606B 4400 PSI 113°F 12.9 GPM
95.41 INCHES FROM PUMP OUTLET
FIGURE 52. FREQUENCY RESPONSE EXTENDED F-15 PUMP VERIFICATION TEST
MIL-H-5606B 4400 PSI 113°F 12.9 GPM
107.41 INCHES FROM PUMP OUTLET

FIGURE 53. FREQUENCY RESPONSE EXTENDED F-15 PUMP VERIFICATION TEST
MIL-H-5606B 4400 PSI 113°F 12.9 GPM
119.41 INCHES FROM PUMP OUTLET
Instrumentation error and temperature drift during testing could account for errors of this magnitude. However, HSFR predicts a first resonant speed that is about 200 rpm too low (1330 vs 1500 rpm). The predicted resonant point is below the compensator valve's natural frequency of 1500 rpm. The predicted point does not appear because it is washed out by the compensator valve whose dynamic behavior is not modeled.

Figures 55 and 56 compare the computed and measured standing pressure waves at 2650 rpm and 4000 rpm. The period of the wave shows excellent correlation between computed and measured results, but the measured amplitudes are much lower than the HSFR program predicts. At 4000 rpm, the predicted amplitude is off by a factor of about 2.5 while the 2650 rpm values disagree by a factor of about 3.7.

Data is not available from the 3000 psi testing at the 12.9 gpm flow rate for direct comparison to the data taken at 4400 psi. However, as expected pulsations were higher with the 4400 psi outlet pressure because the pump valve plate remained timed for a 3000 psi outlet pressure.
FIGURE 55. STANDING WAVE PATTERN MEASURED AND COMPUTED DATA
2650 RPM

FIGURE 56. STANDING WAVE PATTERN MEASURED AND COMPUTED DATA
4000 RPM
2. TRANSIENT TEST DESCRIPTION

Transient testing of the F-15 instrumented pump, with MIL-H-5606B hydraulic fluid, investigated load level, speed, temperature and case pressure effects at 3000 psi and 4400 psi pump outlet pressures. A schematic of the test stand is presented in Figure 57. Thirteen data parameters listed in Table 5 were recorded during the testing. The analog signals from the transducers were digitized by waveform recorders and transferred to cassette tapes through the Wang programmable calculator.

A summary of the 3000 psi pump outlet pressure transient test runs appear in Table 6. When checking out the reworked F-15 pump it was found that turn-off transients took longer to stabilize at the same test conditions established during the previous pump testing. It was noticed that the pump actuator pressure during a turn-off transient peaked between 3000 and 3500 psi, and that the hanger hit its stop about three times before stabilizing out. Before the instrumented pump was sent back to Abex, the actuator pressure would peak at approximately 2400 psi. The compensator setting was readjusted to see if this would decrease the actuator pressure. This had very little effect. The compensator spool valve was removed and inspected but nothing was found that could cause the unexplained increased in actuator pressure. The turn-on transients generated similar data as the previous tests, although the pump case drain pressures were now higher.
TABLE 5 TRANSIENT TESTING DATA RUN PARAMETERS

- PC: Pump Control Pressure (Actuator Pressure)
- P1: Pump Case Drain Pressure, Inc. real
- P2: Case Drain Line Pressure, External
- P3: Pump Outlet Pressure
- P5: Suction Pressure
- P6: Reservoir Pressure
- P4: Pressure 376 inches from Pump Outlet
- P7: Transient Control Valve Position
- P8: Pump Range Position
- P9: Pump Compensator Spool Position
- DT: Drive Torque
- FF: Pressure at Port Plate
- Q0: Outlet Flow

TABLE 6 F-15 PUMP TRANSIENT TESTS AT 3000 PSIG OUTLET PRESSURE

<table>
<thead>
<tr>
<th>RUN NUMBER</th>
<th>TYPE OF TRANSIENT TEST</th>
<th>STEADY STATE FLOW LEVEL (PSI)</th>
<th>DRIVE SPEED (RPM)</th>
<th>APROX STEADY STATE CASE PRESSURE (PSI)</th>
<th>RESERVOIR PRESSURE (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOAD LEVEL EFFECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-01-XX</td>
<td>Turn-On</td>
<td>2</td>
<td>131</td>
<td>4000</td>
<td>90</td>
</tr>
<tr>
<td>94-01-XX</td>
<td>Turn-Off</td>
<td>19.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-02-XX</td>
<td>Turn-On</td>
<td>2</td>
<td>131</td>
<td>4000</td>
<td>90</td>
</tr>
<tr>
<td>94-02-XX</td>
<td>Turn-Off</td>
<td>13.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-03-XX</td>
<td>Turn-On</td>
<td>2</td>
<td>131</td>
<td>4000</td>
<td>90</td>
</tr>
<tr>
<td>94-04-XX</td>
<td>Turn-Off</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-05-XX</td>
<td>Turn-On</td>
<td>2</td>
<td>131</td>
<td>4000</td>
<td>90</td>
</tr>
<tr>
<td>94-06-XX</td>
<td>Turn-Off</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-07-XX</td>
<td>Turn-On</td>
<td>2</td>
<td>131</td>
<td>4000</td>
<td>90</td>
</tr>
<tr>
<td>94-07-XX</td>
<td>Turn-Off</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-08-XX</td>
<td>Turn-On</td>
<td>2</td>
<td>131</td>
<td>4000</td>
<td>90</td>
</tr>
<tr>
<td>94-08-XX</td>
<td>Turn-Off</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPEED EFFECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-09-XX</td>
<td>Turn-On</td>
<td>2</td>
<td>131</td>
<td>4000</td>
<td>90</td>
</tr>
<tr>
<td>94-09-XX</td>
<td>Turn-Off</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-10-XX</td>
<td>Turn-On</td>
<td>2</td>
<td>131</td>
<td>4000</td>
<td>90</td>
</tr>
<tr>
<td>94-10-XX</td>
<td>Turn-Off</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-11-XX</td>
<td>Turn-On</td>
<td>2</td>
<td>131</td>
<td>4000</td>
<td>90</td>
</tr>
<tr>
<td>94-11-XX</td>
<td>Turn-Off</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>case PRESSURE EFFECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-01-XX</td>
<td>Turn-On</td>
<td>2</td>
<td>130</td>
<td>4000</td>
<td>100</td>
</tr>
<tr>
<td>94-01-XX</td>
<td>Turn-Off</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
When the instrumented pump was shipped to Abex for refurbishment, they found that the port plate was wiped. A wiped port plate provides a modified leakage path to inlet from case. The increased leakage flow to inlet results in lower case pressures (58 psig typical). With the modified pump's leakage path was eliminated and consequently the case pressures were higher (80 psig typical). With higher case pressures, the ability for the actuator to dump fluid while destroking on a turn-off transient is lessened. Thus it might take slightly longer for the pump to destroke, and the increased oscillations may be due to this coupled with higher case pressures causing the compensator to take longer to reach a steady state (force balance) condition.

The pump compensator was adjusted to give a 4400 psig pump outlet pressure. Some of the transient tests were repeated at the higher pressure and they are summarized in Table 7. Although the pump was capable of attaining higher outlet pressures, it was necessary to limit the pressure to 4400 psi to avoid excessive outlet transients due to the limited compensator stroke, and the necessity to measure this movement at the higher pressures.

Table 7: F-15 Pump Transient Tests at 4400 PSIG Outlet Pressure

<table>
<thead>
<tr>
<th>RUN NUMBER</th>
<th>TYPE OF TRANSIENT</th>
<th>STATIONARY STATE</th>
<th>TRANSIENT TIME</th>
<th>DRIFT</th>
<th>INITIAL SPEED</th>
<th>APPLIED CASE</th>
<th>RESERVOIR PRESSURE (PSIG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06-04-XX</td>
<td>Transit</td>
<td>17.25</td>
<td>22</td>
<td>204</td>
<td>10000</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>06-05-XX</td>
<td>Transit</td>
<td>17.25</td>
<td>22</td>
<td>204</td>
<td>10000</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>06-06-XX</td>
<td>Transit</td>
<td>17.25</td>
<td>22</td>
<td>204</td>
<td>10000</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>06-07-XX</td>
<td>Transit</td>
<td>17.25</td>
<td>22</td>
<td>204</td>
<td>10000</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>06-08-XX</td>
<td>Transit</td>
<td>17.25</td>
<td>22</td>
<td>204</td>
<td>10000</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>06-09-XX</td>
<td>Transit</td>
<td>17.25</td>
<td>22</td>
<td>204</td>
<td>10000</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>06-10-XX</td>
<td>Transit</td>
<td>17.25</td>
<td>22</td>
<td>204</td>
<td>10000</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>06-11-XX</td>
<td>Transit</td>
<td>17.25</td>
<td>22</td>
<td>204</td>
<td>10000</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>06-12-XX</td>
<td>Transit</td>
<td>17.25</td>
<td>22</td>
<td>204</td>
<td>10000</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>06-13-XX</td>
<td>Transit</td>
<td>17.25</td>
<td>22</td>
<td>204</td>
<td>10000</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>06-14-XX</td>
<td>Transit</td>
<td>17.25</td>
<td>22</td>
<td>204</td>
<td>10000</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>06-15-XX</td>
<td>Transit</td>
<td>17.25</td>
<td>22</td>
<td>204</td>
<td>10000</td>
<td>70</td>
<td>57</td>
</tr>
</tbody>
</table>

48
During the testing it was found that the pump compensator was very unstable at steady state flows less than 17.25 CIS and fluid temperatures much greater than 100°F. The transient test also had to be run at 3000 RPM instead of 4000 to stabilize the compensator. Figure 58 shows the pressure upstream of the transient control valve for a turn-on transient from 2 - 19.25 CIS at 130°F. The transient control valve was not activated until 0.02 seconds into the test run. Between 0.0 and 0.02 seconds the pressure varies 400 psi due to the compensator instability. Increasing the steady state flow helped to alleviate the problem.

3. PROGRAM CHANGES AND HYTRAN PUMP MODEL VERIFICATION

The objective of the extended testing was further verification of the HYTRAN F-15 pump model. The HYTRAN program schematic of the test system is shown in Figure 59. The recorded inlet pressure and external case drain pressure were chosen as the boundary conditions for the simulation. The suction pressure transducer was located 55.75 inches from the pump inlet, and the case transducer was 18.0 inches from the case drain port.

A HYTRAN component model (TEST91) was written to input the test data as boundary conditions in the simulation. The subroutine TEST91 uses the input pressure data to compute the flow at time t in the simulation using the equation:

\[Q = \frac{C - P(t)}{Z} \]

where

- \(C \) = line characteristic (PSI)
- \(Z \) = line impedance (PSI/CIS)
- \(P(t) \) = P data pressure value at time t (PSI)

The input test data was filtered to eliminate excessive noise and reduce computation error in the simulation. This was accomplished by using a 100 Hz filter on the pressure signals when they were played back from the analog tape into the waveform analyzer. Use of the filtered test data also reduced the same error that might be introduced by imperfections in other component models. The remainder of the system in Figure 59 is the HYTRAN model of the actual test set-up from the pump outlet to the load valve. Component Type 23 is the transient control valve and the two Type 41's are restrictors used to control the maximum and bypass steady state flow rates. The dimensions were taken from the test stand. Table 8 presents the typical HYTRAN input data used to describe the test schematic in Figure 59.
FIGURE 58. F-15 HYDRAULIC PUMP 95-01+P4 TURN-ON TRANSIENT
19.25 CIS 130°F

FIGURE 59. HYTRAN SCHEMATIC DIAGRAM FOR PUMP VERIFICATION
TABLE 8. BASIC HYTRAN INPUT 3000 PSI HYDRAULIC SYSTEM
2-77 CIS TURN-ON TRANSIENT

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>0.15</td>
<td>0.15</td>
</tr>
</tbody>
</table>

a. F-15 Pump Model Changes

During the original AFAPL contract, extensive testing was done on the F-15 instrumented pump. The HYTRAN model adequately predicted the initial transients and general operating characteristics of the actual instrumented pump. However, the transient decay was not accurately computed. The follow-on contract work has emphasized improving the damping of the pump model. Not adequately defining the damping characteristics of the actuator, hanger and compensator are some of the areas that would cause this problem.

The original HYTRAN pump model computed the actuator leakage coefficient as a linear relationship between the leakage coefficient at maximum pump displacement and actuator position plus the leakage coefficient at zero pump displacement. This flow along with case pressure plays a significant part in determining the damping characteristics of the hanger. The computation for actuator leakage was updated using an equation for fully developed laminar steady flow between stationary flat plates. (Eqn 1)
\[Q = \frac{wb^3}{12\mu L} \Delta P \quad (1) \]

where

- \(\mu \) = fluid viscosity (lb-sec/in^2)
- \(Q \) = flow rate (cis)
- \(\Delta P \) = pressure drop (psi)
- \(b \) = passage height (in)
- \(w \) = passage width (in)
- \(L \) = passage length (in)

The user inputs the depth of the flat cut on the actuator and the minimum actuator engagement which occurs when the pump is at minimum outlet flow. The new computation method has slightly improved the pump model. The effects of adding a velocity term due to the motion of the actuator were small for the pressure drops (1000 psi) and actuator rates (50-60 in/sec max) of the pump, so it was not included in the computation.

Another area of investigation was the flow forces on the compensator valve. The original HYTRAN model contained a simple computation describing these forces. Efforts to improve the computation did not prove fruitful. Removal of the flow force term did adversely alter the simulation, thus it was not changed.

A parametric study was performed on the F-15 pump model to determine the sensitivity of the input data in the computer simulation. Four input data parameters were investigated for turn-off and turn-on transients at a pump speed of 4000 rpm, 3000 psi pump outlet pressure, steady state flows of 77 CIS and 2 CIS, 130°F system operating temperature and a control valve operating time of 4 milliseconds. The parameters investigated were hanger damping, actuator displacement, coefficient of pump leakage and case volume.

The hanger damping term had the most significant effect on the damping frequency of the pump model. The hanger damping term accounts for velocity dependent friction factors which include the effects on the changes in precompression and decompression when the hanger is in motion.
Initial attempts to alter this term did not prove successful because of the limited knowledge about the case pressures which affected the dynamics of the hanger. With the addition of the internal case drain transducer, it was possible to significantly vary the damping term and monitor the computed case pressure, the hanger position, actuator, outlet and inlet pressures to assure that these values were not deviating from the measured values. The term was varied until a value was reached that would give good correlation between the computed results and the measured test data. Figure 60 shows the pump outlet pressure for a turn-off transient at 77 CIS and 130°F with the hanger damping term at 25 lbs/in/sec. Although the initial peak pressure correlation is good the subsequent decay of the computed waveform is at a higher frequency. This was the best correlation obtained under the original contract. The value of hanger damping was varied and Figure 61 presents the computed results at 45 and 125 lbs/in/sec. The 125 value significantly slowed down the simulation and the 45 value appears to be the optimum. Increasing the hanger damping in an attempt to obtain good period correlation for the turn-off transient leads to an undesirable increase in the amplitudes of the computed data. This amplitude behavior necessitates stopping short of the value that might give the best period correlation.

FIGURE 60. OUTLET PRESSURE WITH HANGER DAMPING TERM AT 25 77-2 CIS TURN-OFF TRANSIENT TEST 3000 PSI 130°F
A value of 45.0 lbs/in/sec yielded the best correlation for the simulated conditions. The pump outlet pressure from a turn-on transient run at 77 CIS and 130°F is shown in Figure 62. The hanger damping term was 45 lbs/in/sec for this run. In general the turn-off simulation required a slightly larger hanger damping term than the turn-on case.

The pump model was then run at 38.5 CIS. A value of 70 lbs/in/sec was used to obtain the correlation shown for the pump outlet pressure in the turn-on transient of Figure 63. However the same value for hanger damping did not significantly improve the computer simulation of the 38 CIS turn-off transient shown in Figure 64.

Time has not allowed investigation to determine an algorithm for the hanger damping term for all the cases recorded in the laboratory. It is desirable to develop a method that could be incorporated into HYTRAN to choose the best term based on system conditions. Further work in this area is needed.
FIGURE 62. OUTLET PRESSURE 2-77 CIS TURN-ON TRANSIENT
130°F 4000 RPM

FIGURE 63. OUTLET PRESSURE 2-38.5 CIS TURN-ON TRANSIENT
130°F 4000 RPM
The coefficient of pump leakage was varied for various turn-on and turn-off transient runs. This term had very little effect on the simulations and appears to be a good candidate for removal.

Varying the actuator displacement had an adverse effect on both turn-on and turn-off transient simulations. The present maximum and minimum value are optimum.

The case volume was changed from 250 in3 to 48 in3 (which is the correct value) with only a minor change in pump outlet pressure amplitudes.

Appendix D presents the revisions to the pump input data and the PUMP51 subroutine listing.
b. **Pump Model Verification for 3000 psi Transient Tests**

Using the input data in Table 8 for the system shown in Figure 59, a turn-off transient at 77 CIS and 130°F was run. Figure 65 shows the input data boundary conditions for this simulation. The results of the simulation are presented in Figures 66 through 69. The computed pump outlet pressure in Figure 66 compares well with the test data both in magnitude and phase. The computed results are conservative after the initial transient response at approximately 50 milliseconds into the simulation. The computed peak actuator pressure in Figure 67 is 3300 psi while the measured value is only 3000 psi, about a 10 percent error), but the subsequent response is very good. The computed internal case pressure matches the test data exceedingly well. The case pressure transducer was located in the area of the compensator valve. There is a 1/8" dia. hole x 1 3/4" long path between the transducer and the actual case. Statically, the effect of the long orifice is to reduce the pressure. Dynamic effects could result in peak pressure attenuation and misphase between the two internal case pressures, however, this does not appear to be the case. The hanger position is plotted in Figure 69. The measured data cuts off at -.18 inches but the computed value reaches -.24 inches. There is a similar discrepancy for the overshoot at 80 milliseconds in the simulation. The phasing between the measured and computed position is adequate. The amplitude correction is relatively poor, although the transient flow does settle to the proper steady state value.

The computer printout data is the actuator position. The hanger acts as a lever arm between the actuator and the restoring spring where the measurement of hanger position was taken. The computer actuator velocity term is integrated to obtain the resultant displacement. A simplified Euler integration is used. Perhaps a more sophisticated technique would work better, but at the expense of increased computation time and operating costs. Improving these results may prove to be unattractive.

The next computer simulation was for a turn-on transient run using the same conditions as the previous run with the input boundary conditions of Figure 70. The computed pump outlet pressure in Figure 71 almost matches the data trace. The computed actuator pressure (Figure 72) and internal case pressure (Figure 73) also follow the measured data. The computed hanger position in Figure 74 is about 0.12 inches below the measured data. The final predicted value however is very close to the test results.
Figure 65. F-15 Hydraulic Pump Turn-Off Transient
77 CIS 130°F
FIGURE 66. OUTLET PRESSURE 77-2 CIS TURN-OFF TRANSIENT
130°F 4000 RPM

FIGURE 67. CONTROL PRESSURE 77-2 CIS TURN-OFF TRANSIENT
130°F 4000 RPM
FIGURE 68. INTERNAL CASE PRESSURE 77-2 CIS TURN-OFF TRANSIENT
130°F 4000 RPM

FIGURE 69. RANGER POSITION 77-2 CIS TURN-OFF TRANSIENT
130°F 4000 RPM
FIGURE 70. F-15 HYDRAULIC PUMP TURN-ON TRANSIENT
77 CIS 130°F
FIGURE 71. OUTLET PRESSURE 2-77 CIS TURN-ON TRANSIENT
-30°F 4000 RPM

FIGURE 72. CONTROL PRESSURE 2-77 CIS TURN-ON TRANSIENT
130°F 4000 RPM
FIGURE 73. INTERNAL CASE PRESSURE 2-77 CIS TURN-ON TRANSIENT 130°F 4000 RPM

FIGURE 74. RANGER POSITION 2-77 CIS TURN-ON TRANSIENT 130°F 4000 RPM

63
Turn-on and turn-off simulation were made at a steady state flow of 38.5 CIS. The input data file for the turn-on transient is shown in Table 9 and the boundary conditions in Figure 75. This computer output data for outlet pressure, actuator pressure, case drain pressure and hanger position are shown in Figure 76 through 79.

This boundary conditions for the turn-off transient at 38.5 CIS and 130°F is shown in Figure 80. The output data is presented in Figures 81, 82, 83, and 84.

The general computed vs measured data correlation is better for the turn-on transients. Both amplitude and period characteristics of the data fit much better than for the turn-off case. This is also true for the 77.0 CIS runs.

TABLE 9. HYTRAN INPUT DATA 3000 PSI SYSTEM 2-38.5 CIS TURN-ON TRANSIENT

<table>
<thead>
<tr>
<th>DATA RUN NO.</th>
<th>94-02</th>
<th>94-02+PS</th>
<th>94-02 0.002</th>
<th>94-02 1.50 15</th>
<th>PUMP***07J3739</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.75 1.0 0.049 3.0L7</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.75 1.0 0.056 3.0L7</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.75 1.0 0.054 3.0L7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.75 1.0 0.056 3.0L7</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.75 1.0 0.054 3.0L7</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.75 1.0 0.056 3.0L7</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.75 1.0 0.054 3.0L7</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.75 1.0 0.056 3.0L7</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.75 1.0 0.054 3.0L7</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.75 1.0 0.056 3.0L7</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.75 1.0 0.054 3.0L7</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.75 1.0 0.056 3.0L7</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.75 1.0 0.054 3.0L7</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.75 1.0 0.056 3.0L7</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55.75 1.0 0.054 3.0L7</td>
</tr>
</tbody>
</table>

64
FIGURE 75. F-15 HYDRAULIC PUMP TURN-ON TRANSIENT
38.5 CIS 130°F
FIGURE 76. OUTLET PRESSURE 2-38.5 CIS TURN-ON TRANSIENT
130°F 4000 RPM

FIGURE 77. CONTROL PRESSURE 2-38.5 CIS TURN-ON TRANSIENT
130°F 4000 RPM
FIGURE 78. INTERNAL CASE PRESSURE 2-38.5 CIS TURN-ON TRANSIENT
130°F 4000 RPM

FIGURE 79. HANGER POSITION 2-38.5 CIS TURN-ON TRANSIENT
130°F 4000 RPM
FIGURE 80. F-15 HYDRAULIC PUMP TURN-OFF TRANSIENT
38.5 C15 130°F
FIGURE 81. OUTLET PRESSURE 38.5-2 GTS TURN-OFF TRANSIENT 130°F 4000 RPM

FIGURE 82. CONTROL PRESSURE 38.5-2 GTS TURN-OFF TRANSIENT 130°F 4000 RPM
FIGURE 83. INTERNAL CASE PRESSURE 38.5-2CIS TURN-OFF TRANSIENT
130°F 4000 RPM

FIGURE 84. HANGER POSITION 38.5-2 CIS TURN-OFF TRANSIENT
130°F 4000 RPM
c. Pump Model Verification for 4400 psi Transient Tests

A HYTRAN simulation was made of a turn-on transient from 17.25 CIS to 77.0 CIS at 99°F and 4400 psi pump outlet pressure. The input data is presented in Table 10 and the boundary conditions are shown in Figure 85. The orifice and valve opening were computed to obtain the correct starting and ending flows. The output graphs of pump outlet flow, actuator pressure, internal case pressure, and hanger position were overplotted with test data as shown in Figures 86, 87, 88, and 89. The correlation of computed outlet pressure and actuator pressure to test data is good at the higher pump operating pressure. The computed case pressure show a little instability but follow the general wave shape of the test data. The computed hanger position lags the measured data but it looks quite good.

The input boundary conditions for the turn-off transient at the same test conditions is in Figure 90. The results of the HYTRAN simulation are shown in Figures 91 through 94. The initial pump outlet pressure prediction is good but the computed actuator pressures are high.

As with the 3000 psi data the correlation is better both in amplitude and period for the turn-on transient case. The turn-off transient generally requires a larger hanger damping term than the turn-on case. But a value of 60 lbs/in/sec was used in both simulations.

| TABLE 10. HYTRAN INPUT DATA 4400 PSI SYSTEM |
| TURN-ON TRANSIENT RUN |

<table>
<thead>
<tr>
<th>Time</th>
<th>Flow</th>
<th>Actuator Pressure</th>
<th>Internal Case Pressure</th>
<th>Hanger Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>

71
FIGURE 83. F-15 HYDRAULIC PUMP TURN-ON TRANSIENT
17 CIS 100°F
FIGURE 86. OUTLET PRESSURE 17.25 - 77 CIS TURN-ON TRANSIENT
100°F 3000 RPM

FIGURE 87. CONTROL PRESSURE 17.25 - 77 CIS TURN-ON TRANSIENT
100°F 3000 RPM
FIGURE 88. INTERNAL CASE PRESSURE 17.25 -77 CIS TURN-ON TRANSIENT
100°F 3000 RPM

FIGURE 89. HANGER POSITION 17.25 - 77 CIS TURN-ON TRANSIENT
100°F 3000 RPM
FIGURE 90. F-15 HYDRAULIC PUMP TURN-OFF TRANSIENT
77-17.25 C15 100°F
FIGURE 91. OUTLET PRESSURE HIGH PRESSURE SYSTEM
77-17.25 CIS TURN-OFF TRANSIENT
4400 PSI 100°F

FIGURE 92. CONTROL PRESSURE 77-17.25 CIS TURN-OFF TRANSIENT
100°F 3000 RPM

76
FIGURE 93. INTERNAL CASE PRESSURE 77-17.25 CIS TURN-OFF TRANSIENT
100°F 3000 RPM

FIGURE 94. FANSER POSITON 77-17.25 CIS TURN-OFF TRANSIENT
100°F 3000 RPM
d. F-15 Pump Model Verification Using The Complete Test Stand Model

The entire F-15 instrumented pump test stand was modeled with the HYTRAN program. The HYTRAN block diagram of the test system is shown in Figure 95. The elements which make up the system are split into lines and components. The lines are numbered sequentially and have upstream and downstream ends. The components are also numbered in a separate sequence. Node numbers are assigned to the points at which the flow divides or combines under steady state flow conditions and leg numbers are labeled between two nodes. The simulation consisted of running the HYTRAN program under the same lab test conditions. The first simulation was of a turn-on transient at 130°F and from 2-77 CIS steady state flows. The reservoir test data in Figure 96 was input as a boundary condition. The results of the computer simulation are shown overplotted with the test data in Figures 97, 98, 99 and 100. The plots of outlet pressure, actuator pressure and hanger position correlate well with the test data. The computed internal case pressure in Figure 99 however does not match the measured results. The calculated pressure values are about 60 psi higher than the data, and the phasing between the two is incorrect. With the external case pressure as a boundary condition this misphasing did not occur.

The next simulation was for a turn-off transient at 130°F and 77.0 CIS. The input reservoir pressure is shown in Figure 101. The computed outlet pressure in Figure 102 is able to predict the maximum amplitude of the first pressure spike but this model undershoots on the subsequent response between 0.050 and 0.090 seconds in the simulation. This undershoot also misphases the measured and computed results. This undershoot characteristic did exist for the turn-off run with the inputted case drain and suction pressures as boundary conditions, but it was not as prevalent. Further work in the area of amplitude damping should correct the modeling discrepancy. The actuator pressure and hanger positions are overplotted with test data in Figures 103 and 104. The internal case pressure plot in Figure 105 shows adequate phase correlation but the amplitude predictions are off.

The next attempt at total system simulation was not to use input data as boundary conditions. This was done to test the basic accuracy of the HYTRAN program without any external forcing factors.
FIGURE 95. SINGLE F-15 PUMP SYSTEM

FIGURE 96. F-15 HYDRAULIC PUMP 94-A4-FR THRM-ON TRANSIENT
77 CIS 130°F
FIGURE 97. OUTLET PRESSURE 2-77 CIS TURN-ON TRANSIENT 130°F 4000 RPM

FIGURE 98. CONTROL PRESSURE 2-77 CIS TURN-ON TRANSIENT 130°F 4000 RPM
FIGURE 99. INTERNAL CASE PRESSURE 2-77 CIS TURN-ON TRANSIENT
130°F 4000 RPM

FIGURE 100. RADIUS POSITION 2-77 CIS TURN-ON TRANSIENT
130°F 4000 RPM
FIGURE 101. F-15 HYDRAULIC PUMP 94-A4-PF TURN-OFF TRANSIENT
77 CIS 130°F

FIGURE 102. OUTLET PRESSURE 77-2 CIS TURN-OFF TRANSIENT
130°F 4000 RPM
Figure 103. Control Pressure 77-2 CIS Turn-Off Transient
130°F 4000 RPM

Figure 104. Hamter Position 77-2 CIS Turn-Off Transient
130°F 4000 RPM
The turn-on transient was made with the test conditions of run number 94-0L-XX. For the turn-on transient simulation, the load valve was sized to drop 3000 psi at 154.0 CIS. The reservoir pressure was 80 psia. A listing of the HYTRAN input data for the turn-on simulation at 130°F is shown in Table 11. Figures 106 and 107 show computed pressures at two locations along the pump outlet line. Corresponding test data has been overplotted for comparison. The initial and final steady state pressure levels are correct for the simulation.

For a turn-on transient the pump de-strokes to supply the demanded flow. In the HYTRAN simulation the pump model is able to adequately do this. The subsequent response to the operating steady state pressure however is slightly faster than the measured data as shown in Figures 106 and 107 at 80 milliseconds into the simulation. A lag could be programmed into the compensator circuit to delay the build-up in pressure but the benefits of such a fix may not be applicable for all the test cases. Computed actuator pressure (Figure 108) shows good correlation when compared to the test data. The computed pressures in the case drain circuit in Figures 109 and 110 fail to reach the actual peak pressures. Similarly the inlet pressure plot in Figure 111 shows a peak prediction about 50 psi higher than the measured data.

<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>LENGTH</th>
<th>INTERNAL</th>
<th>WALL THICKNESS</th>
<th>MODULUS OF RESILIENCE</th>
<th>DELAY</th>
<th>CHARACTERISTIC VELOCITY OF SOUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.04</td>
<td>0.05</td>
<td>0.002</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>0.04</td>
<td>0.05</td>
<td>0.003</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>0.04</td>
<td>0.05</td>
<td>0.004</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>0.04</td>
<td>0.05</td>
<td>0.005</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>0.04</td>
<td>0.05</td>
<td>0.006</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>0.04</td>
<td>0.05</td>
<td>0.007</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td>0.04</td>
<td>0.05</td>
<td>0.008</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
<td>0.04</td>
<td>0.05</td>
<td>0.009</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
<td>0.04</td>
<td>0.05</td>
<td>0.010</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>0.04</td>
<td>0.05</td>
<td>0.011</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>11</td>
<td>1.1</td>
<td>0.04</td>
<td>0.05</td>
<td>0.012</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>12</td>
<td>1.2</td>
<td>0.04</td>
<td>0.05</td>
<td>0.013</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>13</td>
<td>1.3</td>
<td>0.04</td>
<td>0.05</td>
<td>0.014</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>14</td>
<td>1.4</td>
<td>0.04</td>
<td>0.05</td>
<td>0.015</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>15</td>
<td>1.5</td>
<td>0.04</td>
<td>0.05</td>
<td>0.016</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>16</td>
<td>1.6</td>
<td>0.04</td>
<td>0.05</td>
<td>0.017</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>17</td>
<td>1.7</td>
<td>0.04</td>
<td>0.05</td>
<td>0.018</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>18</td>
<td>1.8</td>
<td>0.04</td>
<td>0.05</td>
<td>0.019</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>19</td>
<td>1.9</td>
<td>0.04</td>
<td>0.05</td>
<td>0.020</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>20</td>
<td>2.0</td>
<td>0.04</td>
<td>0.05</td>
<td>0.021</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>21</td>
<td>2.1</td>
<td>0.04</td>
<td>0.05</td>
<td>0.022</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>22</td>
<td>2.2</td>
<td>0.04</td>
<td>0.05</td>
<td>0.023</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>23</td>
<td>2.3</td>
<td>0.04</td>
<td>0.05</td>
<td>0.024</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>24</td>
<td>2.4</td>
<td>0.04</td>
<td>0.05</td>
<td>0.025</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>25</td>
<td>2.5</td>
<td>0.04</td>
<td>0.05</td>
<td>0.026</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>26</td>
<td>2.6</td>
<td>0.04</td>
<td>0.05</td>
<td>0.027</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>27</td>
<td>2.7</td>
<td>0.04</td>
<td>0.05</td>
<td>0.028</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>28</td>
<td>2.8</td>
<td>0.04</td>
<td>0.05</td>
<td>0.029</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>29</td>
<td>2.9</td>
<td>0.04</td>
<td>0.05</td>
<td>0.030</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
<tr>
<td>30</td>
<td>3.0</td>
<td>0.04</td>
<td>0.05</td>
<td>0.031</td>
<td>10.02</td>
<td>6.0715</td>
</tr>
</tbody>
</table>
TABLE 11. (CONTINUED) HYTRAN INPUT DATA TURN-ON TRANSIENT COMPONENT DATA

COMPONENT	INTERFACES DATA 1	3	1	2	7	9	7	1	2	12	13	20	21	22	23	7	24	9	7	25	26	27	28
REAL DATA CARD 1	1.270E+00	.200E+04	.150E+00	.250E+00	0.0	.240E+00	.450E+00	.650E+00	0.0	.200E+00													
REAL DATA CARD 2	1.300E+00	.400E+04	.700E+07	.1100E+03	.4700E+03	.7100E+03	.9500E+03																
REAL DATA CARD 3	1.300E+01	.7500E+00	.1900E+00	.2900E+00	.4000E+00	.2100E+01	.3900E+02	.5000E+01	.4900E+02														
REAL DATA CARD 4	1.270E+01	.400E+04	.200E+00	.200E+00	0.0	.240E+00	.450E+00	.650E+00	0.0	.200E+00													

86
TABLE 11. (CONTINUED) HYTRAN INPUT DATA TURN-ON TRANSIENT STEADY STATE INPUT DATA

<table>
<thead>
<tr>
<th>LEG NO</th>
<th>UST NODE NO</th>
<th>DST NODE NO</th>
<th>NO OF ELEMENTS</th>
<th>FLOW GUESS</th>
<th>UST PRESS</th>
<th>DST PRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>14</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>18</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>19</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

NUMBER OF NODES = 14 NUMBER OF LEGS = 20 NUMBER OF CONSTANT PRESSURE NODES = 0

LEG CONNECTION INPUT DATA

LEG NO	ELEMENTS IN LEG	
--------	-----------------	
1	2	
2	3	
3	4	
4	5	
5	6	
6	7	
7	8	
8	9	
9	10	
10	11	
11	12	
12	13	
13	14	
14	15	
15	16	
16	17	
17	18	
18	19	
19	20	
FIGURE 106. OUTLET PRESSURE 2-154 CIS TURN-ON TRANSIENT
130°F 4000 RPM

FIGURE 107. PRESSURE 1/2 INCHES FROM EXIT OUTLET 2-154 CIS
TURN-ON TRANSIENT 130°F 4000 RPM
FIGURE 108. CONTROL PRESSURE 2-154 CIS TURN-ON TRANSIENT
130°F 4000 RPM

FIGURE 109. EXTERNAL CASE PRESSURE 2-154 CIS TURN-ON TRANSIENT
130°F 4000 RPM
FIGURE 110. INTERNAL CASE PRESSURE 2-154 CIS TURN-ON TRANSIENT
130°F 4000 RPM

FIGURE 111. SUCTION PRESSURE 2-154 CIS TURN-ON TRANSIENT
130°F 4000 RPM
A turn-off transient with an initial pump outlet flow of 154 CIS was simulated. The pump outlet pressure measured at the P3 transducer location in Figure 95 is shown overplotted on the computer results in Figure 112. The transient valve on the simulation closed about 4 milliseconds too late, but the predicted peak pressure after turn-off is close to the measured value. The resultant phasing between the measured and computed data is incorrect. Several changes were made to the HYTRAN input data to try and correct the simulation. Altering the hanger damping term did not significantly improve the results. The test data in Figure 112 indicates that the pump response was damped. The pressure/flow energy was either absorbed by the pump to stroke the hanger to a low flow condition or the system had some unknown operating characteristics.

The transient valve used in the test was pressure opened and spring closed. Looking at the trace of valve position versus time it appeared that the poppet did bounce on closure. An attempt was made to try and simulate the poppet bounce. The HYTRAN results are shown in Figures 113, 114, 115 and 116. The computed pump outlet pressure in Figure 113 shows excellent correlation for the first 60 milliseconds of the simulation. Again the predicted pump undershoot does not correspond to the data. The transient valve does appear to cause the discrepancy. Unfortunately, on the transient valve, only the closed or open positions provide an accurate reading for the poppet location. The instrumentation was not able to measure intermediate poppet locations. However, the guessed poppet bounce characteristic did improve the simulation. The undershoot characteristics may be attributable to the pump model.

![Graph showing pressure results](image-url)
FIGURE 113. OUTLET PRESSURE 154-2 CIS TURN-OFF TRANSIENT
130°F 4000 RPM

FIGURE 114. PRESSURE 378 INCHES FROM PUMP OUTLET 154-2
CIS TURN-OFF TRANSIENT
130°F 4000 RPM
FIGURE 115. SUCTION PRESSURE 154-2 CIS TURN-0.1" TRANSIENT
130°F 4000 RPM

FIGURE 116. CONTROL PRESSURE 154-2 CIS TURN-0.1" TRANSIENT
130°F 4000 RPM
4. F-15 INSTRUMENTED PUMP STEADY STATE TESTING

Steady state runs with MIL-H-5606B fluid were made of drive torque vs. drive speed, control (actuator) pressure vs. drive speed, and case drain pressure (internal and external) vs. case drain flow. The steady state test conditions are listed in Table 12. Testing was performed on the transient test bench (Figure 41).

The drive torque vs. drive speed plots in Figures 117 thru 120 were used to compute the pump power loss (heat rejection). The ideal power was calculated as:

\[
\text{Power (PSI*CIS)} = (\text{Outlet} - \text{Inlet}) \times \frac{Q_{\text{outlet}}}{\text{RPM}} \times \frac{\pi}{2/60}
\]

The torque is:

\[
\text{Torque (in-lbs)} = \frac{\text{Power}_{\text{IDEAL}} \times (\text{CIS})}{\text{RPM}}
\]

Table 12

F-15 INSTRUMENTED PUMP STEADY STATE TESTING - 3000 PSI

<table>
<thead>
<tr>
<th>RUN #</th>
<th>TEST CONDITION</th>
<th>PUMP OUTLET PRESSURE (PSI)</th>
<th>PUMP INLET PRESSURE (PSI)</th>
<th>RESERVOIR PRESSURE (PSI)</th>
<th>COMPENSATOR SETTING (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>2</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>3</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>4</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>5</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>6</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>7</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>8</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>9</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>10</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>11</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>12</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>13</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>14</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>15</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>16</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>17</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>18</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>19</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>20</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>21</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>22</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>23</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>24</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>25</td>
<td>1000 PSI</td>
<td>1000</td>
<td>1000</td>
<td>3000</td>
<td>3000</td>
</tr>
</tbody>
</table>
FIGURE 117. P-15 HYDRAULIC PUMP RUN #1 9 DEC 77
7.7 CIS 100°F

FIGURE 118. P-15 HYDRAULIC PUMP RUN #2 9 DEC 77
0 FLOW 100°F
FIGURE 119. F-15 HYDRAULIC PUMP RUN #3 12 DEC 77
7.7 GPH 210°F

FIGURE 120. F-15 HYDRAULIC PUMP RUN #4 12 DEC 77
0 FLOW 200°F
The power loss is the difference between the ideal and measured values. The results are plotted in Figure 121. The heat rejection characteristics were similar to the original pump data. (3.8 HP @ 4500 rpm, 200°F, 0.0 CFM outlet flow)

Figures 122, 123 and 124 show plots of pump actuator pressure versus drive RPM. The pressure spike at 1620 RPM in all three plots corresponds to a mechanical resonant condition of the compensator spool.

Plots of case drain pressure vs case flow were made for the conditions in Table 12. Some of the steady state plots are shown in Figures 125 thru 130.

The steady state pump tests still show an instability in the case drain pressure vs flow graphs at the low pump outlet flows. The instability occurs transiently as the flow control value in the case drain line is adjusted. Any looping effect results from the inability of the plotting device to adequately respond to the pressure signal. The origin of this anomaly in the pump is not known.

The 3000 psi steady state tests indicate a slight increase in the case drain flow from the previous testing. The increase may be attributable to the lack of a leakage path provided by the "wiped" port plate on the original pump.
FIGURE 122. F-15 HYDRAULIC PUMP RUN #5 PC VS. PS 12 DEC 77
0 FLOW 100°F

FIGURE 123. F-15 HYDRAULIC PUMP RUN #6 PC VS. PS 12 DEC 77
77 CIS 100°F
FIGURE 124. F-15 HYDRAULIC PUMP RUN #7 PC VS. PS 12 DEC 77
0 FLOW 100°F

FIGURE 125. F-15 HYDRAULIC PUMP RUN #13 PCP INT. AND PCB EXT.
VS. QCD 1.5 CIS 100°F
FIGURE 126. F-15 HYDRAULIC PUMP RUN #14 PCD INT. AND PCD EXT. VS. QCD 77 CIS 100°F

FIGURE 127. F-15 HYDRAULIC PUMP RUN #15 PCD INT. AND PCD EXT. VS. QCD 7.9 CIS 100°F
FIGURE 128. F-15 HYDRAULIC PUMP RUN #17 PCD INT. AND PCD EXT. VS. QCD 77 CIS 200°F

FIGURE 129. F-15 HYDRAULIC PUMP RUN #20 PCD INT. AND PCD EXT. VS. QCD 4 CIS 200°F
The steady state test series was repeated with the pump compensator set at 4435 psig. A listing of the test runs is shown in Table 13. Plots of drive torque vs. drive speed are shown in Figures 131, 132, 133 and 134. They show the instability of the pump through most of the sweep range. The plot of actuator pressure vs. drive speed in Figure 135 shows that the compensator is fairly stable when the pump outlet flow is 77.0 Gls. Instabilities occur at 1900, 2350, 2700, and 3750 RPM. At a lower flow setting, in Figure 136 the rattling is prevalent throughout the sweep range.

TABLE 13
F-15 INSTRUMENTED PUMP STEADY STATE TESTING - 4400 PSI

<table>
<thead>
<tr>
<th>RUN</th>
<th>TEST CONDITIONS</th>
<th>PUMP INLET FLOW (Gls)</th>
<th>PUMP OUTLET FLOW (Gls)</th>
<th>ACTUATOR PRESSURE (PSIG)</th>
<th>RATTLE</th>
<th>SUMMARY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50 x 20, 6000 rpm</td>
<td>6.0</td>
<td>135.5</td>
<td>50</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50 x 20, 6000 rpm</td>
<td>7.7</td>
<td>154.2</td>
<td>55</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>50 x 20, 6000 rpm</td>
<td>9.0</td>
<td>173.5</td>
<td>55</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>50 x 20, 6000 rpm</td>
<td>11.7</td>
<td>193.7</td>
<td>55</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>50 x 20, 6000 rpm</td>
<td>12.0</td>
<td>195.7</td>
<td>55</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>50 x 20, 6000 rpm</td>
<td>16.9</td>
<td>205.6</td>
<td>55</td>
<td>43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 131. F-15 HYDRAULIC PUMP RUN #1 DT VS DS
9 CIS 100°-130°F

FIGURE 132. F-15 HYDRAULIC PUMP RUN #2 DT VS DS
7.7 CIS 93°-95°F
FIGURE 133. F-15 HYDRAULIC PUMP RUN #3 DT VS. DS
0.0 CIS 164-212°F

FIGURE 134. F-15 HYDRAULIC PUMP RUN #4 DT VS. DS
7.7 CIS 190°-275°F
FIGURE 135. F-15 HYDRAULIC PUMP RUN #5 PC VS DS
77 CIS 100°-97°F

FIGURE 136. F-15 HYDRAULIC PUMP RUN #6 PC VS DS
0.0 CIS 96°-126°F
Plots of case drain pressure versus case flow are shown in Figures 137 thru 140 for the high compensator setting. As the case flow is changed, the pressure instability still exists.

Figure 137. F-15 Hydraulic Pump Run #7 PCD vs QCD 4.2 CIS 105°F

Figure 138. F-15 Hydraulic Pump Run #8 PCD Int. and PCD Ext. vs QCD 77 CIS 102°F
FIGURE 139. F-15 HYDRAULIC PUMP RUN #11 PCD INT. AND PCD EXT. VS QCD 77 CIS 193°-220°F

FIGURE 140. F-15 HYDRAULIC PUMP RUN #12 PCD INT. AND PCD EXT. VS QCD 4.2 CIS 183°-185°F 107
SECTION IV

VANE PUMP MODEL DEVELOPMENT AND VERIFICATION

Models of a variable volume vane pump were developed for the frequency (HSFR) and transient (HYTRAN) computer programs. The main fuel pump on the F-100 turbojet engine consists of a variable volume vane stage and a centrifugal boost stage. The pump was designed by Chandler Evans Inc., Controls Systems Division (CECO). A specially instrumented vane stage unit was supplied by CECO for computer model test verification. The boost stage was replaced with a plate which contained inlet and lubrication supply ports. The pump was tested with (MIL-H-5606B) hydraulic oil in order to make use of the existing verification test and test data processing facility at MCAIR. MIL-H-5606B is slightly more dense and viscous than the normal pump fluid media, JP-4 engine fuel.

1. VANE PUMP HSFR MODEL DEVELOPMENT AND VERIFICATION
 a. HSFR Model
 A frequency domain model of the vane pump was developed for use with the HSFR program. The model is similar to the existing piston pump model contained in References 2 and 3 HSFR program user and technical description manuals. User and technical description manual material for the vane pump model are contained in Appendix E.
 b. HSFR Verification Test Set-Up and Procedure
 Figure 141 is a schematic of the test set-up used for measurement of vane pump pressure pulsations. The test circuit plumbing size and length simulated the actual installation on the F-100 engine for the pump to metering valve flow and sensing lines. The throttle operated main fuel metering valve is an integral part of the engine unified controller unit. A ball valve was used to simulate the metering function. The pump control varies outlet flow to maintain a 60 psi drop across the metering valve. Downstream valves were used to create circuit back pressures (300-900 psig) similar to that of the actual system. Reservoir (F-4 hydraulic) bootstrap pressure was independently controllable so that pump suction pressure could be varied. The vane stage pump inlet pressure was maintained at the maximum reservoir capability (55-64 psig) during all tests except for runs made at 35-42 psig. Vane stage inlet pressure from the boost stage is normally about 120 psig.
FIGURE 141
CECO VANE PUMP
HSFR Test Schematic
The vane pump was driven by a direct drive 200 hp AC electric motor with variable frequency speed control up to 7000 rpm. A 5:1 speed increaser loaned to MCAIR by CECO provided the proper drive interface to the vane pump whose rated speed is 15,000 rpm.

Pump pulsations were mapped in the outlet and upstream control lines with a roving Kistler transducer. Pump outlet maximum flow rates were set at 8, 20, and 30 gpm to vary the internal timing of the pump outlet flow porting. Pressure pulsation amplitudes were recorded for total and harmonic responses as the pump speed was swept from 5000 to 15000 rpm. The pump remained on full stroke until a speed was achieved where pump capacity exceeded the metering valve flow setting. Two levels of air content (2% and 17%) were tested to check the effect of dissolved air on pump outlet pulsations.

c. Test Run Summary

Table 14 presents a summary of test runs and test conditions for the vane pump frequency tests. Pump inlet oil temperatures were from 115° to 135°F during all tests.

d. Test Results and Discussion

Typical test results are presented herein. Test data for all runs are on file at MCAIR. Figure 142 compares total pressures at the pump outlet port (P1) for maximum outlet flows of 8, 20, and 30 gpm. Pulsations increased in amplitude with decreasing flow. This is as expected since the pump is apparently timed for minimum pulsations at higher flow rates. This accounts for the characteristic of increasing pulsation amplitudes as speed increases at a constant outlet flow rate. Total pulsations at the outlet port reach a maximum of 210 psi peak-peak (p-p) at 14,000-14,500 rpm. Figures 143, 144, and 145 show harmonic analysis of the outlet port pressure pulsations (P1) at 8 gpm. The fundamental pumping frequency (Figure 143 contains most of the pulsation energy, i.e. 98 psi peak or 196 psi p-p at 14,000 rpm. The fundamental pumping frequency is 4000 hz at 15000 rpm. Second and third harmonic pulsations (Figures 144 and 145) exhibit very low amplitudes, <20 psi p-p.
<table>
<thead>
<tr>
<th>RUN</th>
<th>OUTLET PRESSURE (PSIG)</th>
<th>ELEVATION PRESSURE (PSIG)</th>
<th>Outlet Flow (GPM)</th>
<th>Dissolved Air (%)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>97-1A-20</td>
<td>319</td>
<td>64</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-21</td>
<td>343</td>
<td>63</td>
<td>0</td>
<td>1-3</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-22</td>
<td>348</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-23</td>
<td>340</td>
<td>63</td>
<td>0</td>
<td>1-2</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-24</td>
<td>340</td>
<td>63</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-25</td>
<td>342</td>
<td>62</td>
<td>0</td>
<td>1-3</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-26</td>
<td>344</td>
<td>62</td>
<td>0</td>
<td>1-2</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-27</td>
<td>344</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-28</td>
<td>344</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-29</td>
<td>344</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-30</td>
<td>344</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-31</td>
<td>344</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-32</td>
<td>344</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-33</td>
<td>344</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-34</td>
<td>344</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-35</td>
<td>344</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-36</td>
<td>344</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-37</td>
<td>344</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-38</td>
<td>344</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-39</td>
<td>344</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97-1A-40</td>
<td>344</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE 1A. VANE PUMP TEST SUMMARY
Figure 142.

Total pressure pulsations at pump outlet (P1)

<table>
<thead>
<tr>
<th>Pressure fluctuations (psi/cm)</th>
<th>Max. outlet flow (gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>30 gpm</td>
</tr>
</tbody>
</table>

Run 97-3A-P1
FIGURE 143. CECO MFP-330 VANE PUMP 97-1A-P1 FUNDAMENTAL
8 GPM 120°F

FIGURE 144. CECO MFP-330 VANE PUMP 97-1A-P1 2nd HARMONIC
8 GPM 120°F
Roving transducer data for total pulsations in the outlet line near the metering valve are shown in Figures 146, 147 and 148. Fundamental responses at these positions are shown in Figures 149 through 156. These also show the general trend of increasing pulsation amplitudes with increasing speed. Standing waves of the fundamental frequency pulsations for three system resonant pump speeds (11,300, 13,500, and 15,000 rpm) are shown in Figures 157, 158 and 159. These standing waves exist in the main line between the pump and metering valve, and are the result of acoustic energy reflected by the metering valve.
FIGURE 14c.
OUTLET LINE TOTAL PRESSURE PULSATIONS - 8 GPM
FIGURE 147:
OUTLET LINE TOTAL PRESSURE FLUCTUATIONS - 8 CPM

-126
FIGURE 148.

OUTLET LINE TOTAL PRESSURE PULSATIONS - 8 GPM
FIGURE 149. CECO MFP-330 VANE PUMP 97-1A-R1 FUNDAMENTAL
8 GPM 120°F

FIGURE 150. CECO MFP-330 VANE PUMP 97-1A-R2 FUNDAMENTAL
8 GPM 120°F
FIGURE 151. CECEO MFP-330 VANE PUMP 97-1A-R3 FUNDAMENTAL
8 GPM 120°F

FIGURE 152. CECEO MFP-330 VANE PUMP 97-1A-R4 FUNDAMENTAL
8 GPM 120°F

119
FIGURE 153. CECCO MFP-330 VANE PUMP 97-1A-R5 FUNDAMENTAL
8 GPM 120°F

FIGURE 154. CECCO MFP-330 VANE PUMP 97-1A-R6 FUNDAMENTAL
8 GPM 120°F
FIGURE 155. CECCO MFP-330 VANE PUMP 97-1A-R7 FUNDAMENTAL
8 GPM 120°F

FIGURE 156. CECCO MFP-330 VANE PUMP 97-1A-R8 FUNDAMENTAL
8 GPM 120°F
DISTANCE - INCHES FROM P1 X'DUCTER

FIGURE 157. 11,300 RPM
8 GPM 120°F

DISTANCE - INCHES FROM P1 X'DUCTER

FIGURE 158. 13,500 RPM
8 GPM 120°F
Typical total pressure pulsations near the pump in the upstream control line are shown in Figure 160 for both fixed (P2) and roving transducers (S1, S2). Standing waves in the sensing line for the fundamental pulsations at 11,300 rpm and 15,000 rpm are shown in Figures 161 and 162. Total pulsations of up to 1000 psi p-p were recorded in the upstream sensing line. This is a small (1/4 OD), dead-ended line exposed to a strong acoustic source at the main fuel line. Such a line exhibits a 1/4 wavelength resonant frequency. Pulsating flow in the large main line (3/4 O.D.) is capable of generating very large pressure amplitudes in the small sensing line. Continuous pump operation at a resonant speed could cause adverse effects in the pump with such high pressure pulsations in the sensing line. The pulsation frequency is probably far above the control valve spring/mass natural frequency, therefore the valve does not respond to the high amplitude pulsations. However, early fatigue failure could result to parts exposed to the pump sensing port pressure pulsations.

Figure 163 shows total and fundamental case inlet pressure pulsations for an 8 gpm flow rate. Total case pressure pulsations reached a maximum of 130 psi p-p. Case pulsations are the result of vane inlet port timing and the test set-up inlet system. Case pulsations in the complete pump unit are also influenced by the output of the boost stage low flow impeller.
FIGURE 160
UPSTREAM CONTROL LINE TOTAL PRESSURE PULSATIONS - 8 GPM
Figure 164 shows outlet (P1A) and upstream control port (P2A) pressure pulsations for a 17% dissolved air content at an 8 gpm flow rate. Inlet pressure was 62 psig. Outlet pulsations are slightly less than with 1% air and a 43 psig inlet pressure (Figure 147). Control line pulsations are slightly higher than with 2% air and the same inlet pressure (Figure 160). These limited tests suggest that the vane stage is not unduly sensitive to normal levels of dissolved air in the pumping fluid. Normal inlet pressure to the vane stage is boosted to about 120 psig, which makes the pump even less sensitive to air content. The tests were run at inlet pressures of 63 psig or less.
PUMP OUTLET PORT (P1A)

UPSTREAM CONTROL PORT (P2A)

100 psi/cm

5,000 10,000 15,000 RPM

FIGURE 164.
TOTAL PRESSURE PULSATIONS - 8 GPM, 17% AIR, 62 PSIG INLET

127
An HSFR computer simulation was made using the test conditions of run number 97-3A. The vane pump outlet flow was 30 gpm. The simulated test system included the components shown in Figure 141 from the vane pump to the load valve, including the high and low pressure sense lines terminating in the pump. A one cubic inch volume was assumed at these end points. The HSFR input data defining the system is listed in Table 15.

Figure 165 shows the computed fundamental peak pressure at the pump outlet and the measured fundamental response. The test data is quiet showing no major resonant frequencies through the rpm sweep. The system frequencies are close together because of the effects of long lines in the system. The load valve in the circuit did not provide a strong reflection point, so the measured data probably reflects system line resonant responses down to the reservoir. The HSFR circuit termination was the load valve and the lack of frequency correlation may be attributable to this. The comparison between the measured and computed fundamental responses and also shown at the load valve in Figure 166.

The control lines branching to the vane pump servo valve had well defined boundary conditions. Figure 167 compares the measured fundamental peak and total pressure pulsations with the HSFR predicted results at the high pressure sense line inlet. The program was able to predict the strong resonance points at 7800 and 10,100, although the computed higher point at 12,500 rpm was approximately 300 rpm in error from the data. The measured and predicted response for the low pressure sense line at the pump is shown in Figure 168. The program computed five major resonant peaks compared to the measured four. Amplitude correlation for all the plots is poor.

This has been the general pattern for the HSFR runs. The vane pump model operation is very similar to the piston pump model. Therefore, this type of characteristic was not unexpected.
TABLE 15. HYDRAULIC SYSTEM FREQUENCY RESPONSE PROGRAM

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>TYPE</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>573</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>148</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>809</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>558</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>103</td>
</tr>
</tbody>
</table>

Note: The table represents the frequency response program for a hydraulic system. The data includes various parameters such as frequency, physical data, and other specifications relevant to the system's response characteristics.
FIGURE 165. MEASURED AND COMPUTED PEAK PRESSURES PUMP OUTLET

130
FIGURE 166. MEASURED AND COMPUTED PEAK PRESSURES LOAD VALVE INLET
CECO MFP-330 VANE PUMP
97-3A-P2 FUNDAMENTAL
30 GPM 120 F

Figure 167. Measured and computed peak pressures total pressure pulsations high pressure sense line inlet
CECO MFP-330 VANE PUMP
97-3A-P3 FUNDAMENTAL
30 GPM 120 F

FIGURE 168. MEASURED AND COMPUTED PEAK PRESSURES WITH TOTAL PRESSURE
PULSATIONS LOW PRESSURE SENSE LINE INLET

133
2. VANE PUMP HYTRAN MODEL DEVELOPMENT AND VERIFICATION

a. HYTRAN Model

A transient model of the vane pump was developed for use with the HYTRAN Program. Specific design parameters such as servovalve flow area versus stroke, the relation between cam location and maximum pump flow, and the servo piston loading were provided by CECO and used in the HYTRAN model. User and technical description manual sections for the transient vane pump model are contained in Appendix E.

b. HYTRAN Verification Tests and Test Set-up

The transient testing on the CECO vane pump was performed on the system illustrated in Figure 169. The transient test set-up is a close approximation of the fuel system installed on the P-100 engine. Extra lines were added upstream and downstream of the flow valve to provide at least one calculation interval for the HYTRAN program at the sampled data rate.

![Figure 169: CECO VANE PUMP Steady State and Transient Response Test Set-Up Schematic](image)
Table 16 contains a listing of the system and pump parameters recorded during the transient testing. Figure 170 is a schematic showing the pump instrumentation and Figure 171 is a schematic cross section of the vane stage pump. A photograph of the instrumented pump, speed increaser, and drive is shown in Figure 172.

TABLE 16

CECO PUMP MODEL VERIFICATION TESTS

INSTRUMENTATION REQUIREMENTS

<table>
<thead>
<tr>
<th>EXTERNAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL VALVE PRESSURE (P4)</td>
<td></td>
</tr>
<tr>
<td>SYSTEM RETURN PRESSURE (P5, P7)</td>
<td></td>
</tr>
<tr>
<td>SUCTION PRESSURE (P6)</td>
<td></td>
</tr>
<tr>
<td>RETURN FLOW (Q1)</td>
<td></td>
</tr>
<tr>
<td>TRANSIENT CONTROL VALVE POSITION (XCV)</td>
<td></td>
</tr>
<tr>
<td>PUMP OUTLET PRESSURE (P1)</td>
<td></td>
</tr>
<tr>
<td>PUMP INLET PRESSURE (P8)</td>
<td></td>
</tr>
<tr>
<td>SERVOVALVE CONTROL PRESSURE HIGH SIDE (P2)</td>
<td></td>
</tr>
<tr>
<td>SERVOVALVE CONTROL PRESSURE LOW SIDE (P3)</td>
<td></td>
</tr>
<tr>
<td>SERVOVALVE CONTROL DIFFERENTIAL PRESSURE (P2-P3)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTERNAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVO PISTON PRESSURE (LARGE AREA, INCREASE FLOW SIDE) (PC1)</td>
<td></td>
</tr>
<tr>
<td>SERVO PISTON PRESSURE (SMALL AREA, DECREASE FLOW SIDE) (PC2)</td>
<td></td>
</tr>
<tr>
<td>SERVOVALVE POSITION (XCV)</td>
<td></td>
</tr>
<tr>
<td>BALANCE PISTON POSITION TOP (XBP1)</td>
<td></td>
</tr>
<tr>
<td>BALANCE PISTON POSITION BOTTOM (XBP2)</td>
<td></td>
</tr>
<tr>
<td>SERVO PISTON POSITION (XP)</td>
<td></td>
</tr>
</tbody>
</table>

135
FIGURE 170. CECO MFP INSTRUMENTATION SCHEMATIC

FIGURE 171. SCHEMATIC OF BALANCED VARIABLE DISPLACEMENT VANE PUMP AND CONTROLLER
FIGURE 172
CECO VANE PUMP
The transient flow control valve was a ball type hand valve located next to the P4 transducer in Figure 169. To obtain the desired transient flow changes in 20 and 40 milliseconds, the valve was powered by a hydraulic actuator attached to the valve lever arm. Figure 173 shows the control set-up for the transient flow valve. Flow rates at valve open and closed positions were regulated by adding spacers on the rod end of the actuator. The actuator was driven by an independent power supply. The accumulator was charged by system pressure then isolated from the system prior to the transient. An electrical signal to the servo valve provided the command to stroke the actuator.

FIGURE 173
CONTROL SET UP FOR METERING VALVE
Transient tests in the lab were run to establish load level, loading rate, speed, temperature and inlet cavitation effects on the vane pump. Table 17 lists the tests that were made with the vane pump test set-up. When running the transient test steps were taken to assure that the pump's internal relief valve did not open. Also, since the pump's internal porting was time for high flow conditions, the dwell time at low flow was minimized.

TABLE 17
CECO PUMP MODEL
TRANSIENT VERIFICATION TESTS

<table>
<thead>
<tr>
<th>No.</th>
<th>Steady State Flow Rates (GPM)</th>
<th>On Time (Sec)</th>
<th>Off Time (Sec)</th>
<th>Pump Speed (RPM)</th>
<th>Fluid Temp (°F)</th>
<th>Reservoir Pressure (psi)</th>
<th>Run Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LOAD LEVEL EFFECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97-10-XX</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>.000</td>
<td>.000</td>
<td>15000</td>
<td>120</td>
<td>55</td>
<td>97-11-XX</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>.000</td>
<td>.000</td>
<td>15000</td>
<td>120</td>
<td>56</td>
<td>97-12-XX</td>
</tr>
<tr>
<td>2</td>
<td>LOADING RATE EFFECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97-13-XX</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>.080</td>
<td>.080</td>
<td>15000</td>
<td>120</td>
<td>54</td>
<td>97-14-XX</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>.080</td>
<td>.080</td>
<td>15000</td>
<td>120</td>
<td>55</td>
<td>97-15-XX</td>
</tr>
<tr>
<td>3</td>
<td>SPEED EFFECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97-16-XX</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>.000</td>
<td>.000</td>
<td>15000</td>
<td>120</td>
<td>55</td>
<td>97-17-XX</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>.000</td>
<td>.000</td>
<td>15000</td>
<td>120</td>
<td>55</td>
<td>97-18-XX</td>
</tr>
<tr>
<td>4</td>
<td>TEMPERATURE EFFECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97-19-XX</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>.000</td>
<td>.000</td>
<td>15000</td>
<td>210</td>
<td>54</td>
<td>97-1A-XX</td>
</tr>
<tr>
<td>5</td>
<td>INLET CAVITATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97-1B-XX</td>
</tr>
</tbody>
</table>

NOTES: 1. XX denotes turn-on and turn-off transients.
2. 97-10-XX same as run 97-11 except with 5700 psi back pressure.
c. HYTRAN Simulation and Discussion

Test results for turn-on and turn-off transient runs were compared to the HYTRAN vane pump model. A computer simulation of the vane pump system was made with the HYTRAN program. The HYTRAN block diagram of the test system is shown in Figure 174. The elements which make up the system are divided into components and lines. The lines are numbered sequentially and have upstream and downstream ends. The components are also numbered in a separate sequence. Mode numbers are assigned to the points at which the flow divides or combines under steady state flow conditions and leg numbers are labeled between two nodes. The simulation consisted of running the HYTRAN program under lab test conditions. Initially, measured test data was used as boundary conditions in the simulation. The test data was too noisy and better results were achieved by modeling the entire test system. A turn-on transient was made with the test conditions similar to run number 97-13+XX. The turn-off transient was made with test conditions similar to run number 97-13-XX.

During the turn-on transient, flow through the metering valve was set at 30 CIS. Flow rate was initialized in the steady state portion of the program. Flow was then increased to 130 CIS by opening the flow control valve in approximately 40 milliseconds. The HYTRAN input data for the turn-on transient is listed in Table 18. The results of the computer simulation are presented in Figures 175 through 185.

The computed versus measured pump outlet pressure is plotted in Figure 175. Figures 176 and 177 show the comparison of the control pressures on the high and low side of the pumps internal servo valve. The pressure upstream of the transient flow valve is plotted in Figure 178, and Figure 179 is the pressure 34.0 inches along line number 7. The computed pressure data in these graphs indicate good transient correlation with the measured results. It appears that the final computed steady state pressure level is about 50 psi lower than the data even though Figure 180 indicates that the steady state flows are correct.
FIGURE 174. CECC VANE PUMP STEADY STATE AND TRANSIENT RESPONSE HYTRAN SCHEMATIC
TABLE 18: HYTRAN INPUT DATA OF VANE FUMP TRANSIENT SIMULATION

HYTRAN VANE FUMP MODEL: HXH1012521001

<table>
<thead>
<tr>
<th>TIME</th>
<th>LENGTH</th>
<th>VELOCITY</th>
<th>VELOCITY</th>
<th>VELOCITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

HYTRAN VANE FUMP MODEL: HXH1012521002

<table>
<thead>
<tr>
<th>TIME</th>
<th>LENGTH</th>
<th>VELOCITY</th>
<th>VELOCITY</th>
<th>VELOCITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

HYTRAN VANE FUMP MODEL: HXH1012521003

<table>
<thead>
<tr>
<th>TIME</th>
<th>LENGTH</th>
<th>VELOCITY</th>
<th>VELOCITY</th>
<th>VELOCITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

HYTRAN VANE FUMP MODEL: HXH1012521004

<table>
<thead>
<tr>
<th>TIME</th>
<th>LENGTH</th>
<th>VELOCITY</th>
<th>VELOCITY</th>
<th>VELOCITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

HYTRAN VANE FUMP MODEL: HXH1012521005

<table>
<thead>
<tr>
<th>TIME</th>
<th>LENGTH</th>
<th>VELOCITY</th>
<th>VELOCITY</th>
<th>VELOCITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
TABLE 18 (CONTINUED)

HYTRAN INPUT DATA
FIGURE 175. Outlet Pressure 8-35 GPM Turn-On Transient
120°F 15,000 RPM

FIGURE 176. Control Pressure 8-35 GPM Turn-On Transient
120°F 15,000 RPM
FIGURE 177. CONTROL PRESSURE 8-35 GPM TURN-ON TRANSIENT
120°F
15,000 RPM

FIGURE 178. CONTROL VALVE PRESSURE 8-35 GPM TURN-ON TRANSIENT
120°F
15,000 RPM
FIGURE 179. SYSTEM RETURN PRESSURE 8-35 GPM TURN-OFF TRANSIENT
120°F
15,000 RPM

FIGURE 180. RETURN FLOW 8-35 GPM TURN-ON TRANSIENT
120°F
15,000 RPM
FIGURE 181. DIFFERENTIAL PRESSURE 8-35 GPM TURN-ON TRANSIENTS
120°F 15,000 RPM

FIGURE 182. SERVOVALVE POSITION 8-35 GPM TURN-ON TRANSIENT
120°F 15,000 RPM
FIGURE 183. SERVO PISTON POSITION 8-35 GPM TURN-ON TRANSIENT
120°F 15,000 RPM

FIGURE 184. SERVO PISTON PRESSURE 8-35 GPM TURN-ON TRANSIENT
120°F 15,000 RPM
The computed metering head pressure differential in Figure 181 corresponds well to the measured data. The data noise results from instrumentation error in subtracting the two control signals (P2 and P3). The servo valve displacement in Figure 182 and the actuator position in Figure 183 correlate very well to test data. However, the slight delay in moving the servo valve back to the null position results in the computation of erroneous actuator pressures (Figures 184 and 185). Actuator friction and stiction are not taken into account in this model. Also the loading on the actuators under transient operating conditions is not well defined. These areas of the model can be improved with more thorough test data than the set-up in the hydraulics lab was to obtain.

Plots of the turn-off transient simulation at the same test conditions are shown in Figures 186 through 198. Again the slight delay in the computed servo valve position in Figure 195 causes the actuator pressures to be incorrect, although there is better correlation than for the turn-on case. The addition of an accurate pressure dependent load curve on the actuator would probably improve this simulation.
FIGURE 186. OUTLET PRESSURE 35-8 GPM TURN-OFF TRANSIENT
120°F 15,000 RPM

FIGURE 187. CONTROL PRESSURE 35-8 GPM TURN-OFF TRANSIENT
120°F 15,000 RPM
FIGURE 188. CONTROL PRESSURE 35-8 GPM TURN-OFF TRANSIENT
120°F 15,000 RPM

FIGURE 189. CONTROL PRESSURE 35-8 GPM TURN-OFF TRANSIENT
120°F 15,000 RPM
FIGURE 190. SYSTEM RETURN PRESSURE 35-8 GPM TURN-OFF TRANSIENT
120°F 15,000 RPM

FIGURE 191. RETURN FLOW 35-8 GPM TURN-OFF TRANSIENT
120°F 15,000 RPM
FIGURE 192. SYSTEM RETURN PRESSURE 35-8 GPM TURN-OFF TRANSIENT
120°F
15,000 RPM

FIGURE 193. INLET PRESSURE 35-8 GPM TURN-OFF TRANSIENT
120°F
15,000 RPM
FIGURE 194. DIFFERENTIAL PRESSURE 35-8 GPM TURN-OFF TRANSIENT
120°F 15,000 RPM

FIGURE 195. SERVOVALVE POSITION 35-8 GPM TURN-OFF TRANSIENT
120°F 15,000 RPM
FIGURE 196. SERVO PISTON POSITION 35-8 GPM TURN-OFF TRANSIENT
120°F 15,000 RPM

FIGURE 197. SERVO PISTON EXTEND PRESSURE 35-8 GPM TURN-OFF TRANSIENT
120°F 15,000 RPM
FIGURE 198. SERVO PISTON RETRACT PRESSURE 35-8 GPM TURN-OFF TRANSIENT
120°F 15,000 RPM
The turn-on transient simulation was repeated. The initial volumes of the actuator were decreased. This resulted in slightly better phase correlation with the actuator pressures and pump outlet flows as shown in Figures 199, 200 and 201. However, the computed outlet pressures is now leading the measured values. Knowing the accurate volumes of the retract and extend side of the actuator would provide the correct phasing between the model results and the data. The lack of a good actuator loading function during the transient probably prohibited the correlation of the actuator pressures.

![Graph showing return flow data for 8-35 GPM turn-on transient](image-url)

Figure 199. Return flow 8-35 GPM turn-on transient

120°F

15,000 RPM
FIGURE 200. SERVO PISTON EXTEND PRESSURE 8-35 GPM TURN-ON TRANSIENT
120°F
15,000 RPM

FIGURE 201. SERVO PISTON RETRACT PRESSURE 8-35 GPM TURN-ON TRANSIENT
120°F
15,000 RPM
3. STEADY STATE TESTS

Steady state tests were performed on the instrumented vane pump. The runs were made on the circuit shown in Figure 202. Test conditions involved flow and speed sweeps at 120°F and 210°F. Table 19 presents a listing of the completed steady state tests. The pump parameters recorded during the steady state testing were:

- Pump outlet pressure (P1)
- Pump outlet flow (Q1)
- Servo piston pressure (large area) (PC1)
- Servo piston pressure (small area) (PC2)
- Servo valve control differential pressure (P2-P3)
- Servo piston position (XP)
- Balance piston position top (XBP2)
- Balance piston position bottom (XBP1)

Figure 203 shows the pump outlet pressure for a flow sweep at 15000 RPM. The flow was varied by a hand operated metering valve. The outlet pressure is directly proportional to the flow and the curve represents the pressure/flow characteristics of the system. The piston position in Figure 204 is shown moving to the fully extended position, which corresponds to the minimum cam displacement and maximum pump outlet flow.

Sweeping the pump RPM from 4000 to 15000 RPM provided the vane pump operating characteristics. The metering valve was set to regulate the flow at 35 gpm. Figures 205 and 206 show how the pump outlet pressure and flow gradually attain the required values. In Figure 207 the control pressure signal is increasing until it reaches the required 60 psid across the metering valve. The balance piston in Figure 208 then starts moving at 9200 RPM as the cam adjusts to maintain a constant flow.

The servo piston position in Figure 209 shows that the piston is at a minimum position (corresponding to max flow) until the pump goes on control. Then the piston backs off to maintain the desired flow rate. A rough estimate of the internal leakage was made from these steady state plots. The leakage was assumed to be directly proportional to the vane stage pressure rise. A simplified formula for internal leakage was used.
FIGURE 202
CECO VANE PUMP STEADY STATE AND TRANSIENT TEST SETUP

TABLE 19 CECO VANE PUMP STEADY STATE TESTS

<table>
<thead>
<tr>
<th>SPEED (RPM)</th>
<th>FLOW (GPM)</th>
<th>FLUID TEMPERATURE (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweep (4000-15000)</td>
<td>8</td>
<td>120</td>
</tr>
<tr>
<td>Sweep (4000-1500)</td>
<td>25</td>
<td>120</td>
</tr>
<tr>
<td>Sweep (4000-15000)</td>
<td>35</td>
<td>120</td>
</tr>
<tr>
<td>11500</td>
<td>8-25</td>
<td>120&210</td>
</tr>
<tr>
<td>13500</td>
<td>8-30</td>
<td>120&210</td>
</tr>
<tr>
<td>15000</td>
<td>8-36</td>
<td>120</td>
</tr>
</tbody>
</table>

160
FIGURE 203. CECO WFP-330 VANE PUMP 97-03-F1 STEADY STATE TEST
15,000 RPM 120°F

FIGURE 204. CECO WFP-330 VANE PUMP 97-03-XF STEADY STATE TEST
15,000 RPM 120°F
FIGURE 205. CECCO MMP-330 VANE PUMP 97-07-P1 STEADY STATE TEST 35 GPM 120°F

FIGURE 206. CECCO MMP-330 VANE PUMP 97-07-Q1 STEADY STATE TEST 35 GPM 120°F
Figure 207. CECO MFP-330 Vane Pump 97-07-(P2-P3) Steady State Test
35 GPM 120°F

Figure 208. CECO MFP-330 Vane Pump 97-07-(P2-P3) Steady State Test
35 GPM 120°F

163
Q\text{LEAK} = Q\text{MAX} - Q\text{OVB}

where

\begin{align*}
Q\text{MAX} &= \text{maximum pump flow at current RPM} \\
Q\text{OVB} &= \text{pump outlet flow}
\end{align*}

from Figure 205 at 15000 RPM

\begin{align*}
Q\text{MAX} &= 250 \text{ CIS} \\
Q\text{OVB} &= 34.2\times3.85 = 131.67 \text{ CIS}
\end{align*}

Therefore, Q\text{LEAK} is about 118 CIS. The vane stage pressure rise was the difference between outlet and inlet pressure or about 650 psid. The leakage coefficient is then calculated as

\begin{align*}
\text{COEF}_{\text{LEAK}} &= \frac{Q\text{LEAK}}{AF_v} = \frac{118}{650} = .18 \text{ CIS/PSI}
\end{align*}

for 15000 RPM. Unfortunately this term was not constant for throughout the on-control speed range. Also a different leakage term was computed for the non-controlled portion of the pump speed range. Leakage rates also varied for different flow test conditions. No reasonable value or expression for the vane internal leakage could be computed from the test data that was available.
The leakage flow calculation is dependent on the balance piston position which gives a direct readout of the cam position. The cam position at any RPM was converted to a maximum flow rate through a table (supplied by CECO) relating cam position to maximum pump flow. The measured steady state cam position obviously were not the correct values. This was evident from the way the balance piston positions were calibrated. The zero cam position was set when the pump was off. This was a static calibration which was subject to offset errors once the pump was started. The balance piston positions are only capable of showing relative changes in cam position and not discrete cam locations. Leakage coefficients in the HYTRAN and ESTIM pump models were assumed from data supplied by CECO.
SECTION V
HYDRAULIC MOTOR MODEL DEVELOPMENT AND VERIFICATION

A fixed displacement axial piston motor manufactured by Aero Hydraulics, Inc. was tested in the Hydraulic Performance Analysis Facility. The motor has a 0.62 CIR displacement and a rated operating speed of 8100 rpm. The maximum no-load flow through the unit at rated speed is 18.5 gpm with 415 psid across the motor ports. The motor used in the testing was controlled by a servo valve which together with the motor dropped about 2000 psid at the maximum no-load flow rate.

The objective of the test was to verify steady state, frequency, and transient math models of the motor unit. Tests were made with MIL-H-5606B hydraulic fluid. The test unit was an off-the-shelf item (Figure 210) with no special instrumentation requirements. Threaded ports were installed in lieu of the quill tubes normally used to couple the motor to the F-18 Leading Edge Flap servovalve package.

Figure 211 is a schematic of the test stand. The motor was powered by an F-15 pump and controlled by a servo valve unit. Pump noise and pressure ripple were isolated from the test unit by using a commercial Pulsco Hydraulic Acoustic Attenuator. The test specimen temperature was controlled by an industrial type heat exchanger in the return line. An independent pressure source was used to pressurize the F-4 reservoir. The test section consisted of the motor and the lines connecting it to the servo valve unit. Time and budget constraints precluded the inclusion of static and inertial loading in the test set-up. Internal motor inertia proved sufficient to verify transient effects, as expected, however the lack of a static load prevented the acquisition of meaningful frequency response data.
FIGURE 210
HYDRAULIC MOTOR
FIGURE 211
HYDRAULIC MOTOR TEST SCHEMATIC
1. FREQUENCY RESPONSE MODEL AND VERIFICATION

a. Motor Model

The HSFR piston motor model uses the same calculations as the pump model. The input data requirements are also similar. The motor subroutine is programmed to perform both an inlet (pressure side) and outlet (return side) analysis. The motor ignores the overboard flow supplied by the load valve and computes its own flow during the AC portion of the program. The motor does not require an input steady state flow and there is no steady state balancing. Appendix F details the required input data for the HSFR motor model and gives a technical description of the subroutine.

b. Verification Tests and Results

The inlet and outlet lines from the motor to the servo valve were to be mapped. Total pressure pulsations and fundamental frequency pulsations were to be plotted versus a motor speed sweep for fixed and roving pressure transducer locations. Motor speed was controlled by moving the servo valve control spool which varied the inlet flow and thus the motor's rpm. However, no reliable data could be produced from this arrangement. With no load on the motor, shaft rotation was very unstable causing the plotter to oscillate along the rpm axis. Without a good rpm signal the spectrum analyzer could not work properly. This is illustrated in Figures 212 and 213 which are the fundamental and second harmonic at the PI pressure transducer location in Figure 211. No distinct fundamental or harmonics can be found on these plots with the motor set-up. Based on this information, the decision was made not to proceed with the frequency motor tests. The test stand however was modeled with the HSFR computer program. Table 20 presents a listing of the HSFR input data. The results of the simulation are shown in Figures 214 and 215.

Figure 214 shows the peak pressure pulsations at the inlet port plate of the motor and Figure 215 is the comparable location on the outlet. Predicted and measured pressure pulsations on either side of the motor were very low, less than 20 psi peak-peak. The computed resonant rpm's for the short line circuit were 2600, 5200 and 7800 rpm. No direct comparison of these results with test data could be made.
FIGURE 212. P1 FUNDAMENTAL PRESSURE

FIGURE 213. P1 2ND HARMONIC
TABLE 20. HSFR INPUT DATA

MOVTOR 15.26 AUG 09, '78

<table>
<thead>
<tr>
<th>24</th>
<th>1</th>
<th>25</th>
<th>150</th>
<th>1400</th>
<th>400</th>
<th>1.10</th>
<th>.9</th>
<th>.8</th>
<th>.49</th>
<th>.784</th>
<th>.490</th>
<th>.00736</th>
<th>.219</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>10000</td>
<td>100</td>
<td></td>
<td></td>
<td>1.19</td>
<td>20.0</td>
<td>1.10</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>200</td>
<td>00</td>
<td></td>
<td></td>
<td>1.19</td>
<td>20.0</td>
<td>1.10</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>200</td>
<td>00</td>
<td></td>
<td></td>
<td>1.19</td>
<td>20.0</td>
<td>1.10</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>200</td>
<td>00</td>
<td></td>
<td></td>
<td>1.19</td>
<td>20.0</td>
<td>1.10</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>200</td>
<td>00</td>
<td></td>
<td></td>
<td>1.19</td>
<td>20.0</td>
<td>1.10</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>200</td>
<td>00</td>
<td></td>
<td></td>
<td>1.19</td>
<td>20.0</td>
<td>1.10</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 21A. MOTOR INLET FUNDAMENTAL PRESSURE
2. TRANSIENT MODEL AND VERIFICATION

a. HYTRAN Motor Model - A HYTRAN motor model was written to simulate the operation of a constant displacement hydraulic motor. The MTR56 subroutine accounts for case drain and cross port leakages, in addition to the motor inertia, damping and breakaway torque. Appendix F presents the HYTRAN user and technical sections of the MTR56 subroutine.

b. Verification Tests and Results - Test conditions were established to determine factors which would affect motor performance. The testing was done on a 1/2" line system (Figure 211) with MIL-H-5606A hydraulic fluid. A photograph of the system is shown in Figure 216. A summary of the transient test runs are shown in Table 21. For each test the following data was recorded:

Motor Port Pressures (P1 & P2)
Motor Case Drain Port Pressure (P3)
Servo Valve C1 Port Pressure (P4)
Servo Valve C2 Port Pressure (P5)
Servo Valve Position (XY)
Upstream Source Pressure (P6)
Return Pressure (P7)
Motor RPM (MS)
FIGURE 216
HYDRAULIC MOTOR TEST BENCH
TABLE 21 HYDRAULIC MOTOR TRANSIENT TEST RUNS

<table>
<thead>
<tr>
<th>STEADY STATE FLOW (GPM)</th>
<th>MOTOR ROTATION</th>
<th>MOTOR INLET TEMPERATURE (°F)</th>
<th>RESERVOIR PRESSURE (Psi)</th>
<th>RUN NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH</td>
<td>LOW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CCW</td>
<td>119</td>
<td>62</td>
<td>98-03+</td>
</tr>
<tr>
<td>+2</td>
<td>CCW</td>
<td>120</td>
<td>62</td>
<td>98-04-</td>
</tr>
<tr>
<td>5</td>
<td>CCW</td>
<td>123</td>
<td>62</td>
<td>98-05-</td>
</tr>
<tr>
<td>+5</td>
<td>CCW-CW</td>
<td>122</td>
<td>62</td>
<td>98-06-</td>
</tr>
<tr>
<td>10</td>
<td>CCW</td>
<td>120</td>
<td>62</td>
<td>98-07-</td>
</tr>
<tr>
<td>+10</td>
<td>CCW-CW</td>
<td>120</td>
<td>62</td>
<td>98-08-</td>
</tr>
<tr>
<td>15</td>
<td>CCW</td>
<td>121</td>
<td>62</td>
<td>98-09-</td>
</tr>
<tr>
<td>+15</td>
<td>CCW-CW</td>
<td>122</td>
<td>62</td>
<td>98-10-</td>
</tr>
<tr>
<td>18</td>
<td>CCW</td>
<td>120</td>
<td>62</td>
<td>98-11-</td>
</tr>
<tr>
<td>+18</td>
<td>CCW-CW</td>
<td>120</td>
<td>62</td>
<td>98-12-</td>
</tr>
</tbody>
</table>

Notes: 1. + indicates a turn-on transient
 2. - indicates a turn-off transient
 3. R indicates a motor reversal

The hydraulic motor was not loaded for the testing. The relief valves in the motor lines were set for a 4000 psig cracking pressure. Hydraulic pump speed was limited to 2000 rpm so as not to overspeed the motor beyond the design flowrate of 18 GPM. During the testing the transient pressures were monitored to assure that they did not exceed the cracking pressure of the relief valves.

The motor speed pick-up was an AC type unit. The signal was converted to a DC level to facilitate recording and playback. The conversion process introduced a lag in the signal. In addition because of the high frequency of the signal (23 tooth gear yields 2300 Hz at 6000 rpm) the electronics would roll off the peak values and smooth out the transient signal. Consequently, the measured motor rpm was only good for steady state values.

The turbine flowmeter (Q1) had the same problems, but had better response characteristics because of the lower operating frequencies (20 gpm = 175 Hz).
After completing the transient test series, the relief valves were rechecked for the proper setting. The relief valve in the line that contains the Pl and P4 pressure transducers had a cracking pressure around 1500 psig. The relief valve in the other line started leaking at 250 psig but did not fully open until 4300 psig. This introduced variables in the test runs that were not adequately measured. The leakage flows through the relief valves were not recorded. Also pressure histories downstream of the relief valves are not available. Without known boundary conditions a computer simulation of a test run is impractical. No meaningful correlation could be accomplished. However, a computer simulation of the test system was made to determine if the valve was operating correctly.

iv. HYTRAN SIMULATION AND DISCUSSION

A HYTRAN schematic of the motor test set-up is shown in Figure 217. A turn-off transient at 38.5 CIS flow was the first simulated run. The computer input data is presented in Table 22. Figures 218, 219 and 220 show the inlet and outlet port pressures and the motor RPM respectively. In Figure 219 the motor outlet pressure falls below the fluid vapor pressure because there is no cavitation model at the port. The initial steady state flow was 62.2 CIS. The steady flow after the valve closure was 3.85 CIS.
TABLE 22. HYTRAN INPUT DATA FOR MOTOR

***Motor Model - Max Rate Turn-On Transient ***

The transient response is from $t=0$ to $t=7.500$ seconds at time intervals of $\Delta t=0.0035$ with output points plotted at intervals of $\Delta t=0.0030$ seconds.

Fluid Data

- Fluid: H20, 5000 lb./hr.
- Initial conditions: 3100.0 PSIG, 720.0 deg F.
- Output data plotted at intervals of 0.0030 seconds.

Steady State Data

<table>
<thead>
<tr>
<th>Line No.</th>
<th>Line No.</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input Data

- **Temperature:**
 - Inlet: 100.0 deg F
 - Outlet: 100.0 deg F

- **Pressure:**
 - Inlet: 20 PSIG
 - Outlet: 20 PSIG

- **Flow Rate:**
 - Inlet: 1000000 gal/min

- **Density:**
 - Inlet: 0.0010
 - Outlet: 0.0010

Output Data

- **Temperature:**
 - Inlet: 100.0 deg F
 - Outlet: 100.0 deg F

- **Pressure:**
 - Inlet: 20 PSIG
 - Outlet: 20 PSIG

- **Flow Rate:**
 - Inlet: 1000000 gal/min

LEG Connection Input Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- **Elements in Leg:**
 - 1:
 - 2:
 - 3:
 - 4:
 - 5:
 - 6:
FIGURE 218. MOTOR INLET PRESSURE

FIGURE 219. MOTOR OUTLET PRESSURE

177
3. STEADY STATE TESTS

Three Steady State Tests were performed on the motor in the Hydraulics Lab. The first test was to start with equal port pressures and by lowering one of the pressures, record the pressure at which the motor drive shaft begins to rotate at no load conditions. Table 23 presents the data for this test.

TABLE 23. HYDRAULIC MOTOR BREAKOUT PRESSURE TEST RESULTS

<table>
<thead>
<tr>
<th>PRESSURE (PSIG)</th>
<th>INLET</th>
<th>OUTLET</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>60-65</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>85-90</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>110-115</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>220-220</td>
<td></td>
</tr>
<tr>
<td>740</td>
<td>325-330</td>
<td></td>
</tr>
<tr>
<td>930</td>
<td>425-450</td>
<td></td>
</tr>
<tr>
<td>1210</td>
<td>550-575</td>
<td></td>
</tr>
<tr>
<td>1610</td>
<td>760-990</td>
<td></td>
</tr>
<tr>
<td>1340</td>
<td>890-925</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>975-1035</td>
<td></td>
</tr>
</tbody>
</table>
As the inlet pressures increased the pressure drop at which the shaft would begin to rotate also increased. The internal static friction coefficient for the motor may be determined by plotting the pressure differential versus the return pressure (Figure 221).

Once rotation was achieved during the test the pressure difference gradually decreased until rotation ceased. Unfortunately this occurred transiently and the pressure difference across the motor when the shaft stopped rotating could not be read on the test bench gages. This value would have helped to determine the internal friction coefficient which the motor was running. Thus it was necessary to assume a value for use in the HYTRAN program.
The motor leakage characteristics were determined by locking the motor shaft and letting the return and case drain lines be vented to atmosphere. Pressure was then applied to the inlet and the flows in the return and case lines were measured. Figure 222 is a plot of the pressure drop versus flow for both port to port and port to case leakage. The leakage coefficients used in the HYTRAN motor model program were obtained from this data.
The steady state pressure drop versus flow characteristics for the motor were recorded on the transient test stand (Figure 211) by slowly cycling the servo valve. Figure 223 shows a plot of the pressure differential across this motor versus flow for a clockwise motor rotation. The steady state case drain pressure versus system flow characteristics is shown in Figure 224.

A plot of motor speed versus motor flow is shown in Figure 225. This plot and Figure 223 were used to generate a graph of pressure drop across the motor versus motor speed (Figure 226). The slope of the resulting curve defines a dimensionless damping coefficient. The curve sweeps upward indicating that the pressure depends on higher powers of motor speed and is caused by the flow resistance of the motor's internal passages.

![Figure 223. AERG HYDRAULIC MOTOR 98-02-(P1-P2) STEADY STATE TEST CW SHAFT END 125°F](image)
FIGURE 224. AERO HYDRAULIC MOTOR 98-02-P3 STEADY STATE TEST
CW SHAFT END 125°F

FIGURE 225. AERO HYDRAULIC MOTOR 98-02-MS STEADY STATE TEST
CW SHAFT END 125°F
FIGURE 226. AERO HYDRAULIC MOTOR
SECTION VI
SUMMARY AND CONCLUSIONS
1. HYDRAULIC LINE MECHANICAL RESPONSE PROGRAM
a. Program Objectives
Development and verification of a computer program for predicting line mechanical response due to predicted pump pulsations was achieved, but to a limited degree. The computer program (Appendix B) developed was based on simplified beam analysis, but included coupling mode effects. Computer analysis of the straight pipe produced excellent correlation to test results. The one and two 90° bend configurations provided good correlation but required the use of simplifying assumptions.

The program can be used to determine the mode shape and frequency of fundamental line responses. Higher modes of line response, which were the predominant responses in the lines tested, are predicted accurately for certain configurations. However, these solutions could not be generalized, thereore a general purpose line response computer program was not achieved.

The present program, along with other analytical techniques and design aids developed, can be used to study the frequency response of a particular line installation. This capability can provide useful information in avoiding line resonance conditions in the hydraulic pump operating regime, particularly for certain fundamental line responses which can lead to rapid fatigue failure of a line.

Ultimate usefulness of a line mechanical response computer program to the system designer will require prediction of line deflections and resulting line stress. This capability would allow the designer to avoid configurations which may result in early fatigue failure of a line installation.

Wearout of line clamp nuts, clamps, and clamp mounting structure are long-range problems resulting from pulsation induced line motion. Prediction of line motion amplitude and direction is needed to allow more judicious placement of line clamps on the central system lines. This approach would place clamps at locations where axial line motion is low, thereby increasing clamp life.
A general purpose HLMR program will require considerably more test verification work and better mathematical techniques. In recent years the finite element method has been developed. The basic idea is to divide a complex problem into a series of simpler interrelated problems. Thus, the whole is modeled as an assemblage of discrete parts of finite elements. Presently a number of disciplines are using this method to solve problems normally associated with stress analysis and solid mechanics, but also those connected to electromagnetics and fluid-flow networks.

b. Test Results
- Line specimens were excited by hydraulic resonances, and resulted in complex mechanical responses for which analytical tools are not presently available.
- No fundamental mechanical line responses were encountered in the pump operating regime.
- The elastomeric clamp produced only a minor effect by slightly lowering the peak "g" levels of the unclamped configuration. There was no significant change in mode shapes.
- Peak pressures and accelerations were out of phase for the straight pipe, near mid-span, and for the two-elbow pipe between the elbows. They were in-phase for the one-elbow pipe in the vicinity of the elbow.

c. Line Data Reduction
The use of single-axis accelerometers necessitated the re-run of the pump speed sweeps for each of the three orthogonal axes. Large amounts of data had to be coordinated and reduced for the multiple accelerometer locations and associated pump speeds. This was time consuming. The mode shapes were calculated and plotted for each significant pump speed to provide an overall view of the motion of the pipe and for mode identification. The large amount of time devoted to the testing, data reduction, and subsequent data presentation and correlation limited the time available to investigate better general mathematical techniques.
d. Control of Line Mechanical Response

This effort and other MCAIR experience shows that destructive mechanical response of central hydraulic system lines is definitely the result of internal excitation by pump pulsations and the resultant resonant hydraulic response of the system. Reduction of pump pulsation energy produces a reduction in line motion. Unfortunately, pressure pulsation level cannot be accurately correlated to line mechanical response, which varies widely based on the specific line installation/configuration. Development and use of effective wide band pulsation attenuators offers an attractive and perhaps more cost effective alternative than development of a general purpose HLMR program. The use of an analytical definition for an optimum line configuration may be nullified by installation constraints which usually dictate routing, clamp locations, length, bends, etc.

Current design requirements for line clamp type and spacing address steady state loads and externally applied vibration loads from the airframe or engine. Cusoned line clamps do not significantly alter line response due to internal hydraulic excitation. They, therefore, must be designed to give good life with whatever line motion exists.

2. F-15 PISTON PUMP MODEL VERIFICATION

a. Objectives - The primary objective of this portion of the follow-on contract was to investigate means for improving and expanding the capabilities of the HSFR and HYTRAN pump computer models. This was accomplished by conducting frequency response and transient tests at 4400 psi pump outlet pressure to verify model simulation at higher operating pressure, installation of a case pressure transducer to improve the pump model calculation of case pressure at 3000 and 4400 psi pump outlet pressures, and model changes to improve the damping characteristics of the pump.

b. Test Article - The F-15 pump used in the original AFAPL contract was reworked by the supplier and used in this verification. The wiped port place and cylinder barrel were replaced and, a case drain pressure tap was installed, and the pump was outfitted with new O' rings. Steady state tests were run to recheck the case pressure/flow and heat rejection characteristics.

c. Model Changes - The computation for pump hanger actuator leakage was updated using an equation for fully developed laminar steady flow between stationary flat plates. The computation for describing the flow forces on the compressor valve was investigated. A parametric study was performed to determine the sensitivity of input data in the computer simulation. The parameters investigated were hanger damping, actuator displacement, coefficient of pump leakage, and case volume.
Conclusions -

1. When frequency response test data at 4400 psi was overplotted on HSFR computer output for comparison, the plots show excellent frequency correlation for the second and third system resonant frequency, however, much higher peak pressures were predicted by HSFR than were measured. The period of the standing pressure waves shows excellent correlation between computed and measured results, but again the measured amplitudes are much lower than the HSFR program predicts. Data is not available from the 3000 psi testing for direct comparison at the high flow rate required to keep the pump control stable at 4400 psi. The HSFR pump model is capable of accurately predicting system resonant frequency locations for system pressures up to 4400 psi. However, amplitude prediction is not accurate, the level of inaccuracy being about the same as that obtained at 3000 psi pressures.

2. The computed and measured results during transient tests at 3000 and 4400 psi compare well in most cases. The general computed vs. measured data correlation is better for the turn-on transients. Both amplitude and period characteristics of the data fit much better than for the turn-off case. It is concluded the HYTRAN pump model can predict transients as accurately for system operating pressure up to 4400 psi as for 3000 psi system pressure.

3. Of the pump model changes investigated, the hanger damping term has the most significant effect on yielding good correlation between computed and measured test results. Time did not permit determination of an algorithm for hanger damping that fits all cases. The installation of the case drain transducer enabled the study of case pressure/hanger dynamic relationships.

3. VANE PUMP MODEL DEVELOPMENT AND VERIFICATION

a. Vane Pump Pressure Pulsations

Total pulsations in the vane pump outlet line of a simulated system reached a maximum of 210 psi peak-peak at 14,000 - 14,500 rpm with an outlet flow and pressure of 8 gpm and 343 psig. Pressure pulsations at this speed in the upstream control line are very strong, reaching about 1000 psi peak-peak.
The relatively low impedance (low acoustic reflections) of the metering valve allows resonant responses from all the test circuit lines down to the load valves, and probably even to the reservoir, to be exhibited in the main flow line from the pump outlet. Therefore, measured resonant pulsations in the outlet line are numerous.

b. Vane Pump HSFR Model

The vane pump model is compatible with the HSFR program and can be used to predict flow and pressure pulsations in a vane pump system. The vane pump subroutine models the detailed motion and pumping action of the CECO vane pump. Although much of it is applicable to vane pumps in general, the complex variable geometry of the CECO design is hard modeled. Modeling of variable rpm geometry and outlet port configuration and timing for other designs would require changes to the vane pump subroutine.

Cam geometry and outlet porting are key factors in the prediction of pulsation amplitudes.

c. Vane Pump HSFR Model Verification

Resonant frequencies in the closed end sensing lines were predicted quite accurately. The best accuracy was obtained for resonant frequencies in the upstream sensing line. Simulation of the sensing line terminations inside the pump is a source of error. Predicted amplitudes were about twice measured values. Predictions of pressure pulsations in the outlet line are less conclusive. The test circuit was first modeled down to the metering valve and then to the load valves, and still does not seem to produce all the resonant responses present in the outlet line. Predicted amplitudes in the outlet line were generally about 2 times measured values.

d. Vane Pump HYTRAN Model Verification - The computer predicted values for turn-on and turn-off transients compare favorably with the measured test data. In setting up the simulation care must be taken in selecting the proper steady state operating characteristics, otherwise a transient will occur when the 3000 section of the HYTRAN program begins. The transient response predicted by the PUMP52 model is good. Lags between measured and computed data are dependent on the actuator extend and retract volumes. The cam loads on the actuators determine the extend and retract pressures which are not simulated well. A better definition of these loads might improve the calculated pressures.
4. HYDRAULIC MOTOR MODEL DEVELOPMENT AND VERIFICATION

a. Motor HSFR Model & Verification

The motor model was readily adapted from the pump model. The lack of a static loading capability prevented the acquisition of extensive frequency test data. However, the limited test results and the pulsations predicted by the model showed very low amplitudes, less than 20 psi peak-peak. The motor model performs both inlet and outlet system acoustic analyses when used with the HSFR program.

b. Motor HYTRAN Model & Verification

Some verification of a basic transient motor model was achieved within the limits of budget and schedule. The model is applicable to in-line axial piston motors. Computer results were good without simulating load inertia. Motor internal inertia is high compared to reflected load inertia in high gear reduction applications such as the F-18 leading edge maneuvering flap system. However, load inertia is high in direct drive applications such as a gun drive.

The present model is adequate for transient analysis of motor driven utility functions controlled by separate selector valves. The motor model must be integrated with a servo control model to use it in simulations of servo controlled motor driven systems. MCAIR wrote a servo motor model for the Shuttle Orbiter rudder/speed brake and is working on a model for the F-18 leading edge flap drive. However, no direct verification of a servo controlled motor drive has been accomplished. This would require a specially instrumented servo motor drive package and static/inertial load simulation. Analysis of high response servo motor driven systems provides an excellent application for the HYTRAN program and should justify future modeling/verification effort.

Tests with high load inertia would enhance model verification for gun drive type applications. The present model includes internal leakage characteristics.
SECTION VII
RECOMMENDATIONS

1. HYDRAULIC LINE MECHANICAL RESPONSE PROGRAM
 For long range activities it is recommended that the development of a digital computer program be initiated utilizing the matrix concept of the finite element method with a concurrent effort to further evaluate the ultimate usefulness of such a program to the design of hydraulic system installations. For short term activities a continuing program of test data accumulation and refinement of empirical solutions is recommended. The following are recommended for future efforts:
 - Investigate the feasibility of applying a finite element method (possibly the NASTRAN program) to predict mode shapes and frequencies.
 - Conduct tests on present tested specimens using strain gages to determine the relationship between stresses, hydraulic/mechanical resonances, and previously measured accelerations.
 - Determine the effect of increasing clamp flexibility by using F-15 type production clamps in the three previous test installations.

2. F-15 PISTON PUMP MODEL
 Further investigation of the pump damping characteristics and its modeling is recommended. Tests should be conducted on another pump configuration, such as the F4 pump, to verify the adaptability of the pump model to pumps of other sizes and more conventional response characteristics.

3. CECO VANE PUMP
 The pump and/or engine manufacturer should determine if the high pulsations in the upstream control line are contributing to pump or line failure modes. These pulsations could be reduced by the use of a larger control line e.g. 3/8 vs. 1/4 or an orifice in the control line at the main line junction. However, these techniques might adversely affect the control loop response.
a. **HSFR MODEL** - To improve the HSFR simulation a detailed knowledge of the pump's internal leakage characteristics is desirable. This would more accurately define the precompression characteristics and provide better correlation between outlet flow and cam position.

b. **HYTRAN MODEL** - The addition of an empirically derived actuator load versus stroke curve at various outlet pressures would improve the PUMP52 computation of actuator extend and retract pressures. More detailed testing is required to generate this data.

4. **HYDRAULIC MOTOR MODELS**

a. **HSFR MODEL** - Further tests on frequency hydraulic motors should include a static loading system for the motor. Tests with inertial load simulation should be conducted to further verify the HYTRAN motor model for direct drive applications.

b. **HYTRAN MODEL** - Modeling and verification of a complete servovalve motor package with simulated static and inertial loads is recommended to provide direct model capability of aerodynamic control surface applications.
APPENDIX A

BIBLIOGRAPHY OF FLUID-LINE COUPLING ANALYSES

 Paper deals with vibrations caused by cross winds on large (30-inch) diameter steel pipe lines supported above ground at 66 ft intervals. The analytical investigation, based on simple beam theory, assumed that the pipe is simply supported (pinned-pinned) and calculations made for a number of flow rates. The fundamental frequency was determined to be 3.54 Hz and would be approximately constant for the practical limits of fluid flows. No relationship was made between winds and frequencies other than to state that any transient aerodynamically induced excitation could be handled by energy dissipation of the fluid motion.

 Identical title as the Ashley-Haviland paper, with additional analytical study involving the coupling of vibration modes. It shows that little or no damping can result in large amplitudes, and that at a high critical velocity (380 ft/sec) the fluid flow can cause a dynamic instability. However, such a fluid speed is not realistic, being 25 times as large as the normal flow. Since amplitudes depend on the amount of damping in the system and the magnitude of the exciting force, a vibration problem can develop which is similar to the Tacoma Narrows bridge case. The collapse of the bridge was caused by lack of built-in damping. A condition of no flow in the pipes would require a transverse, exciting force of 13 lb/ft to cause undesirable effects. Such a force rate was considered unreasonable and not attainable. No axial excitations were taken into consideration. Unanswered is the size of the aerodynamic force developed when air flows by a cylinder located near the ground.

The equations of motion derived in Housner's paper are solved by means of a power-series approximation for specific boundary conditions. These conditions depend on the type of supports for the pipeline, i.e., fixed-fixed, pinned-pinned, or fixed-free.

The pinned-pinned experimental investigation was performed using a 120.03 in. long low-carbon-steel pipe, one-inch OD, and a wall thickness of 0.037 in. The natural frequency of the pipe containing water at zero velocity was determined to be 5.65 Hz. The frequency remained at this value as the water flow increased to 35 ft/sec. Independent unpublished experimental work on a similar tube was made at Cal Tech and reported in this paper which indicates that a ten-fold increase in fluid velocity reduced the natural frequency of the pipe by 3.2 percent.

Tests on fixed-fixed and fixed-free pipe end conditions using a one-inch OD, .073 in. wall thickness, 57.95-in long, SAE 4130 steel tubing filled with water produced reasonable agreement between the analytical and experimental results.

The significant results of the tests indicate that fluid flow has a small effect in reducing the frequency.

The primary objective of the tests was to determine the frequency response of small perturbations in pressure and fluid (JP-4 fuel) velocity in a long (68-ft) hydraulic line. The results indicated that the dynamic behavior of the line depended mainly on the elastic constants and inertia of the line and fluid, and on impedance. In addition, the longitudinal frequency of the pipe had a marked effect on the inlet impedance frequency response.

Tests were conducted on a 68-ft line, with a sharp bend at midpoint. The line was supported in a manner that allowed for longitudinal motion of the downstream half. Sinusoidal perturbations were imposed by oscillating a valve about a partially open position. The fluid used was JP-4 fuel. The method of analysis assumed the mechanical pipe vibrations as a spring-
mass system with viscous damping. The results of the analysis
was considered to be in good agreement with the tests.

6. A. Bold, "Determination of Stresses in Fluid System Tubing Under
Conditions of Pressure and Flexure" NAEC-AML-2243, 19 August 1965
The purpose of these tests was to determine the stresses developed
in tubing while under pressure, or due to bending, or both, in order
to establish a method to measure stresses in tube-fitting assemblies.
The report concludes that the method outlined produced more accurate
results than the procedure in MIL-F-15280B because it includes longitudinal
as well as lateral changes in the tubing.

7. J. H. Ginsberg "The Dynamic Stability of a Pipe Conveying a Pulsatile
pp. 1013-1024.
The analysis deals with small displacements of a pipe conveying
a pressurized fluid with a fluctuating harmonic velocity. Equations
of motion are derived for the case of a pinned-pinned pipe. The
pulsating flow causes the pipe to have regions of dynamic instability
which increases proportionally to the amounts of fluctuation. The
paper indicates that the results have great similarity to beams
carrying pulsating end forces.

8. F. J. Shaker, "Effect of Axial Load on Mode Shapes and Frequencies
An investigation was conducted into the effects of axial load
on the natural frequencies and mode shapes of uniform beams for
various end conditions. The results are shown in a series of graphs
so that frequency as a function of axial load can readily be determined.
Another series of graphs shows the effect of axial load on mode shapes.

of Columns under Periodic Axial Loads" Journal of Sound and Vibration,
1974, 33(2), 211-221.
This paper is a theoretical study into resonances of columns under
periodic axial loads for four boundary conditions. These were (a) a
column pinned at both ends, (b) fixed at both ends, (c) fixed-pinned,
and (d) fixed-free. It concluded the region for first mode resonance
may not necessarily be the most important region for columns under loading. Higher modes and combination resonances may be of equal or more importance.

The authors studied the dynamics of a pipe conveying a pulsating fluid. The pipe hangs down vertically in a fixed-free configuration. Although much of the study was devoted to this case, a fixed-fixed condition was also analyzed. The conclusions were that for the fixed-fixed case, combination resonances are associated with the sum of the eigenfrequencies, while for the fixed-free case they are associated with the difference. It stated that the conclusions were in qualitative agreement with experiments. These experiments are to be reported at a later date.

The study reported on experiments performed on a straight 52.8-foot long, 2.375-in. O.D, 0.067-in. wall thickness, copper nickel tube. The water-filled pipe was suspended horizontally by soft rubber loops and the ends were closed by membranes. It was determined that there was large coupling between water vibrations and pipe wall bending vibrations, so that longitudinal excitation of the water column resulted in wall motions of large amplitude. This is due to the large diameter-to-wall thickness ratio not encountered in aircraft applications. Bending modes were found to be more numerous than other modes and causing transmission of noise.

A 78.28-in. long pipe, 4.5-in OD, copper-nickel pipe, with a 90-deg. elbow at midpoint, was filled with oil with a bulk modulus of 238,000 psi. The exciting force consisted of an external source driving a piston linked to the elbow. The results were reported graphically in terms of mobility (velocity/force) vs. frequency and showed good agreement.

195
between computed and measured results over a frequency range between 20 Hz and 2000 Hz.

A piping assembly consisting of straight sections and uniform bends in a non-planar arrangement containing a liquid was analyzed and tested. The analysis indicated coupling between compressional wave of the liquid and mechanical responses of the pipe. Tests generally confirmed existence of the coupling but not the frequency characteristics.

A rigorous mathematical development of liquid-filled elbows and straight pipes is detailed. The analysis is based on the previous studies by the same Navy group as a continuing interest in the problem of noise transmission through liquid-filled piping systems. The study indicates that in straight pipes no liquid-to-structure coupling should occur which is contrary to the findings of other investigators. Experiments using four-in. diameter pipes, three to four feet in length, showed that the coupling phenomenon was suppressed. Among the recommendations made were the following:

(a) The development of analytical models of other pipe components
(b) A design guide to analyze piping systems

Allegations of defects and deficiencies in the F-14A aircraft design, manufacture, testing, and management, were made after a crash occurred on its second test flight.

Accident investigation revealed that the causes were fatigue fractures in the hydraulic control system tubing as a result of ripple vibrations of the hydraulic pumps.

The findings of the subcommittee indicated that the failure of all three control systems could be laid on faulty and inadequate design and possibly incomplete testing. In addition, the evidence did disclose basis for most of the allegations.

The study mentions in its introduction "the crash of an advanced fighter-aircraft prototype", presumably the F-14 aircraft, and the failure of the hydraulic line due to pump pressure pulsations.

The experimental investigation involved the use of two types of attenuators. One involved the use of a closed-end tube (standpipe) normal to the main pipe. The other, was a commercial damper with an intricate internal flow arrangement. The conclusions indicated that the commercial damper attenuated pressure pulsations over a wider frequency range than the standpipes.

This paper describes the ground vibrations tests and procedures that Vought Aeronautics Company performed on the XC-142A and A-7E aircraft. The company decided to resolve empirically the problems associated with complex installations which were considered not amenable to design analysis. Over a thousand surveys were made which resulted in 338 modifications to the aircraft components. The paper claims that the results of all these efforts virtually eliminated hydraulic leaks and intermittent connector failures.
APPENDIX B
HLMR COMPUTER PROGRAM
AND
SAMPLE RESULTS

B1. PROGRAM LISTING

B2. LIST OF SYMBOLS
A list of symbols with description and units used in the sample computer runs.

B3. SAMPLE COMPUTER RUNS
Tables B3 through B4 summarize the results of computer runs for the straight pipe, one-elbow pipe, and two-elbow pipe, respectively.
TABLE B

MLIR PROGRAM LISTING

11:24 MAY 01, '74

<table>
<thead>
<tr>
<th>0:1000</th>
<th>FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:1100</td>
<td>DATA PRINT, T, X(1), C0(1), C2(1), C3(1), C4(1), C5(1), C6(1), C7(1)</td>
</tr>
<tr>
<td>0:1200</td>
<td>DATA PRINT, T, X(2), C0(2), C2(2), C3(2), C4(2), C5(2), C6(2), C7(2)</td>
</tr>
<tr>
<td>0:1300</td>
<td>DATA PRINT, T, X(3), C0(3), C2(3), C3(3), C4(3), C5(3), C6(3), C7(3)</td>
</tr>
<tr>
<td>0:1400</td>
<td>DATA PRINT, T, X(4), C0(4), C2(4), C3(4), C4(4), C5(4), C6(4), C7(4)</td>
</tr>
<tr>
<td>0:1500</td>
<td>DATA PRINT, T, X(5), C0(5), C2(5), C3(5), C4(5), C5(5), C6(5), C7(5)</td>
</tr>
<tr>
<td>0:1600</td>
<td>DATA PRINT, T, X(6), C0(6), C2(6), C3(6), C4(6), C5(6), C6(6), C7(6)</td>
</tr>
<tr>
<td>0:1700</td>
<td>DATA PRINT, T, X(7), C0(7), C2(7), C3(7), C4(7), C5(7), C6(7), C7(7)</td>
</tr>
<tr>
<td>0:1800</td>
<td>DATA PRINT, T, X(8), C0(8), C2(8), C3(8), C4(8), C5(8), C6(8), C7(8)</td>
</tr>
</tbody>
</table>

This page is best quality practicable from copy furnished to Del
CALL BASCD(A,B1,A1,A2,a1,a2,a3,A1,A2,R3,V1,D,T,R1,AL,R2)
F1=1-2*T
F1=R2/R1
D2=1/2/(D**2-P1**2)
F0=(22.4/(2*PI))*SQRT((L*B1*G)/(K3*AL**4))
F2=(61.7/22.4)*F0
F3=(121/22.4)*F0
F4=(200/22.4)*F0
F5=(ADN/AL)/SQRT(1+D1*D2)
5 IF(BEN.EQ.0.0) GO TO 6
0070 PRINT,'MAGNIFICATION FACTORS INPUT DATA'
0072 PRINT,'ENTER THE PIPE LENGTH'
0074 READ,AL
0076 PRINT,'ENTER THE NUMBER OF POINTS'
0078 READ,N1
0079 DO 55 N=1,N1
0080 WRITE(6,N4)
54 FORMAT(9H INPUT X,(X,1,1N))
0081 T0=90
0082 R=3
0084 READ,S
0085 PRINT,'ENTER THE DISTANCE BETWEEN SUPPORTS'
0088 READ,R0
0091 CALL BASCD(A,B1,A1,A2,a1,a2,a3,A1,A2,R3,V1,D,T,R1,AL,R2)
0095 S3=(L*B1*G)/(R2*A2+R1*A1)
0097 S6=SQRT(SR)
0099 DO 8 H=1,10
0100 C3=(N**PI)**2)*S6/((180/(N+1))**2)
0105 F5=A2*SQRT(P1**2+P2**2)
0106 F7=((R2/G)/A1)*(Q1**2+Q2**2)
0107 F8=SQRT(Q1**2+Q2**2)/A2
0110 R0=F6/F7
0115 IF(R0.LT.500) GO TO 9
0110 9 T1=T0/57.29578
0115 J0=F6*(1-COS(T1))
0120 J1=F7*(1-COS(T1))
0125 J2=F6*SIN(T1)
0130 J3=F7*SIN(T1)
0135 Q3=J2+J3
0140 Q8=J1+J0
200
01000 Y9=39/((tan(3/4) \times C3(1)) \times 2)
01010 \alpha = \sqrt{3} \times \beta_1
01020 \alpha = 4/C3(1)
01030 \alpha = 3/C3(1)
01040 \alpha = 1-\alpha \times 2A3 \times 2
01050 \text{IF}(D9, D0, D) \text{GO TO} 6
01100 C1=\text{F6}/2
01110 \text{DO} 10 \text{N}=1, N1
01120 C2(1)=0
01130 \text{DO} 10 \text{J}=1, J1
01140 \text{IF}(\text{G3}(1) \times \text{PI}(C3(1))/30) \times \text{SIN}(\text{J} \times \text{PI}(C3(1))/60))) / \text{AB}(\text{J}^4 \times 30-1)
01150 C1(J)=C2(\text{N})+v9
01160 C6(\text{N})=Y9 \times C2(\text{N})
01170 \text{GO TO} 6
01180 \text{C0(1)}=\text{ABS}(C2(1))
01190 \text{CONTINUE}
01200 \text{C0(1)}=C0(1)
01210 \text{CONTINUE}
01220 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 12
01230 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 13
01240 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 12
01250 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 13
01260 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 12
01270 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 13
01280 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 12
01290 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 13
01300 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 12
01310 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 13
01320 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 12
01330 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 13
01340 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 12
01350 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 13
01360 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 12
01370 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 13
01380 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 12
01390 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 13
01400 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 12
01410 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 13
01420 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 12
01430 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 13
01440 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 12
01450 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 13
01460 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 12
01470 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 13
01480 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 12
01490 \text{IF}(C3(1), G0 \times 10) \text{GO TO} 13
01500 \text{DO} 16 \text{J}=1, 24
01510 \text{Y(J)}=\text{FIRST(J)} \times \text{XI**5} + \text{FOURTH(J)} \times \text{XI**4} + \text{THIRD(J)} \times \text{XI**3} + \text{SECOND(J)} \times \text{XI**2} + \text{FIRST(J)} \times \text{XI} + \text{RED(J)}
01520 \text{Y(J)}=\text{Y(J)} + \text{FIRST(J)} \times \text{XI} + \text{RED(J)}
01530 \text{CO(1)=C0.}
01540 \text{C}=1
01550 \text{A}=1
01560 \text{DO} 17 \text{J}=1, 47
01570 \text{DELTA}=\text{C}+1
01580 \text{A}=\text{A}+1
01590 201
IF (I .GT. CA.IF(A) AND H .GT. L.CAR64))

Y(50) = (Y(C) + Y(DELTA)) / 2

A = A + 1

B = B + 1

IF (Y(50), N.E. 0) GO TO 57

A = A + 1

17 C = C + 1

57 K = Y(50) * ((L * BI * G) / (1.3 * H1 * 3)) ** .5

F9 = F9 / (2 * PI)

G2 = F9 / .15

H(1) = 15.4

H(2) = 50.0

H(3) = 104.0

AL4 = (AL1 + AL2) - R*(2 - PI / 2)

DO 19 N = 1, 3

1810 IF (AL1.EQ.0) GO To 20

1820 C6(N) = C0(N) * A3 / SQRT(C0(N)**2 + A3**2)

1830 20 IF (AL2.EQ.0) GO To 19

1840 C3(N) = C2(N) * A6 / SQRT(C2(N)**2 + A6**2)

1850 19 CONTINUE

1370 CALL OUTPT1(L, D, T, AL, R1, R2)

1380 CALL OUTPT8(AL2, AL1, H1, R)

1390 CALL OUTPT2(B1, AL4, AL1, A2, H1, A2)

1400 CALL OUTPT3(L1, R)

1410 CALL OUTPT9(A3, A6, C0(1), C2(1), C6(1), C3(1), X1, Y(1), O2, N5, F9,

1411 A31, A61)

1420 GO To 15

1430 3 PRINT, 'TWO ELDON PIPE INPLANE AND OUT OF PLANE VIBRATIONS'

1440 PRINT, 'ENTER THE PIPE LENGTH IS AL1, AL2, AL3'

1450 REAL, AL1, AL2, AL3

1460 PRINT, 'ENTER THE BEND RADIUS'

1470 REAL, R

1480 CALL HASCOD(B1, AL1, A2, AL2, AL3, G, P3, P1, O, T, R1, AL, R2)

1490 AL4 = (AL1 + AL2 + AL3) - R*(4 - PI)

1500 LL = AL1 + AL2

1510 IF (LL.EQ.0) GO To 71

1520 X4 = 6 * BI * (1 + AL2 / AL1)/(AL2*(2*AL1*2**2 + 3*AL3**2))

1530 GO To 22

1540 21 X4 = 0

1550 22 X2 = (PI**A1 + PI*A2) * 25*(AL1+AL2+2*AL3)

1560 X3 = 1/(2*PI)**SQRT(G*X4/X2))

1570 ENDSQRT(3*E/PI)

1580 GO To 22

1590 20 X4 = 0

202
FM=.4375*((R1*AL1)+(.67*R2*A2))
H(1)=15.4
H(2)=50.0
H(3)=104.0
DO 23 N=1,3
IF(AL1.EQ.0)GO TO 24
C0(N)=H(N)*EM*SQRT(R1)*SQRT(BI/FM)/(2*PI*AL1**2)
GO TO 25
24 C0(N)=0
IF(AL2.EQ.0)GO TO 26
C2(N)=H(N)*EM*SQRT(R1)*SQRT(BI/FM)/(2*PI*AL2**2)
GO TO 27
26 C2(N)=0
C3(N)=G1*CO(N)/SQRT(GL**2+CO(N)**2)
C6(N)=Gl*C7(N)/SQRT(GL**2+C2(N)**2)
G1=.25*(R1+R2*A2)
OM=1.5*GM
OM=SQRT(G*EM*BI)/(2*PI)
B7(1)=22.4
B7(2)=61.7
B7(3)=121
DO 28 N=1,3
2310 C7(N)=0.
IF(AL1.NE.0.)C7(N)=(OM/SQRT(GL))*((H(N)/AL1**2)
2330 C8(N)=0.
IF(AL2.NE.0.)C8(N)=(OM/SQRT(GL))*((H(N)/AL2**2)
2350 DM(N)=0.
IF(AL3.NE.0.)DM(N)=(OM/SQRT(GL))*B7(N)/(AL3**2)
2370 DO 28 CONTINUE
DO 34 N=1,3
2390 DO 34 J=1,3
2400 U(N,J)=(C7(N)*DM(J))/SQRT(C7(N)**2+DM(J)**2)
2410 V(N,J)=(C8(N)*DM(J))/SQRT(C8(N)**2+DM(J)**2)
2420 DO 34 CONTINUE
IF(AL2.EQ.0)GO TO 35
2440 DL=(AL1/AL2)**3*AL3/(1+(AL1/AL2)**3)
2450 GO TO 36
2460 DL=0
IF(LL.EQ.0)GO TO 37
2480 EL=DL/(AL1/AL2)**3
2490 GO TO 38*
2500 IF(LL.EQ.0)GO TO 39
2520 IF(LL.EQ.0)GO TO 39
2530 IF(LL.EQ.0)GO TO 39
2540 IF(LL.EQ.0)GO TO 39
2550 TOAD=SQRT(GL)
2560 T2=1.71265891*OM/TOAD
2570 T3=T2/AL1**2
2580 T5=T2/AL2**2
2590 W5=4*GL*AL3
203
B8=1.73205081*OM/SQRT(W6)*SQRT((AL1+AL2)**3/(AL1**3*AL2**3))

02610 GO TO 40
02620 39 FL=0
02630 GL=0
02640 T2=0
02650 T3=0
02660 T5=C
02670 B8=0
02680 40 DO 41 N=1,3
02690 B9(N)=OM/SQRT(HM)*(1/(AL1+AL2)**2+B7(N)**2)
02700 41 C9(N)=B8*B9(N)/SQRT(B8**2+B9(N)**2)
02710 PRINT,'TWO ELBOW PIPE VIBRATIONS'
02720 CALL OUTPT1(E,D,T,AL,R1,R2)
02730 CALL OUTPT10(R,AL1,AL2,AL3)
02740 CALL OUTPT12(B1,AL4,AL1,AL2,AL3)
02750 CALL OUTPT11(W3,X4,FN,GH,DL,GL,GL,AL1,AL2,AL3)
02760 ZC7(1),C8(1),X3,GO(1),U(1,1),V(1,1),E3,TS,T,BS(1),FL,C9(1)
02770 GO TO 15
02780 15 WRITE(5,52)
02790 52 FORMAT(31HDO YOU WISH TO CONTINUE? Y OR N)
02800 READ,53R
02810 IF(DER)53,53,51
02820 53 CONTINUE
02830 END
02840 SUBROUTINE INPTDA(D,T,R1,R2,E)
02850 PRINT,'GENERATED DATA SECTION'
02860 PRINT,'INPUT THE MATERIAL CODE OF THE PIPE'
02870 PRINT,'CODE # MATERIAL'
02880 PRINT,' 1 TITANIUM'
02890 PRINT,' 2 ALUMINUM'
02900 PRINT,' 3 STEEL'
02910 PRINT,' 4 OTHER'
02920 READ,8
02930 GO TO(42,43,44,45),B
02940 42 E=16E.6
02950 R1=.16
02960 GO TO 46
02970 43 E=45E.6
02980 R1=.1
02990 GO TO 46
03000 44 E=30E.6
03010 R1=.283
03020 GO TO 46
03030 45 PRINT,'ENTER THE MODULUS OF ELASTICITY'
03040 READ,E
03050 PRINT,'ENTER THE PIPE DENSITY'
03060 READ,P
03070 46 PRINT,'INPUT THE SIZE CODE OF THE PIPE'
03080 PRINT,'CODE # PIPE DIMENSIONS'
03090 PRINT,' 1 1X.051'
03100 PRINT,' 2 .625X.032'

204
03110 PRINT,"3 1.25X.065'
03120 PRINT,"4 OTHER'
03130 READ,A
03140 GO TO(56,47,48,49),A
03150 56 D=1
03160 T=.051
03170 GO TO 50
03180 47 D=.625
03190 T=.032
03200 GO TO 50
03210 48 D=1.25
03220 T=.065
03230 GO TO 50
03240 49 PRINT,'ENTER THE PIPE DIAMETER'
03250 READ,D
03260 PRINT,' ENTER THE WALL THICKNESS'
03270 READ,T
03280 50 PRINT,'ENTER THE FLUID DENSITY'
03290 READ,R2
03300 RETURN
03310 END
03320 SUBROUTINE BASCDA(B1,A1,A2,W1,W2,W3,G,R3,Pi,D,T,R1,AL,R2)
03330 B1=(PI/64)*(D**4-(D-2*T)**4)
03340 A1=(PI/4)*(D**2-(D-2*T)**2)
03350 A2=(PI/4)*(D**2-(D-2*T)**2)
03360 W1=R1*A1*AL
03370 W2=R2*A2*AL
03380 W3=W1+W2
03390 G=386
03400 R3=R1*A1+.25*R2*A2
03410 RETURN
03420 END
03430 SUBROUTINE OUTPT1(E,D,T,AL,R1,R2)
03440 WRITE(6,190)
03450 100 FORMAT(///,10HINPUT DATA/,9X,1HE,11X,1HD,11X,1HT,11X,1HL,10X.
03460 2HHRH,9X,4HFRHO/,9X,3HPS1,10X,2HIN,10X,2HIN,10X,2HIN,7X,7HBS/IN3,
03470 26X,7HLBS/IN3)
03480 WRITE(6,101)E,D,T,AL,R1,R2
03490 101 FORMAT(2X,6E12.4)
03500 RETURN
03510 END
03520 SUBROUTINE OUTPT2(B1,AL4,A1,A2,W1,W2).
03530 WRITE(6,96)
03540 96 FORMAT(/,10HUSAC DATA)
03550 WRITE(6,102)
03560 102 FORMAT(9X,1HI,10X,3CLL,8X,5HAREA,7X,5HAREA,8X,3HWT,9X,3HWT;
03570 WRITE(6,90)
03580 90 FORMAT(8X,3HIN,10X,2HIN,9X,3HIN,2,9X,3HIN,9X,3HLS,9X,3HLS)
03590 WRITE(6,101)B1,AL4,A1,A2,W1,W2
03600 101 FORMAT(2X,6E12.4)
03610 RETURN
SUBROUTINE OUTPT3(W3)

WRITE(6,103)W3

RETURN

END

SUBROUTINE OUTPT4(AL,F0,F2,F3,F4,F5)

WRITE(6,104)AL

104 FORMAT(//,11iiOUTPUT DATA,/,35HINPLANE AND OUT OF PLANE VIBRATIONS, /, 22HPIPE LENGTH,1E12.4,2X,2HHIN,/, /, 22H N TRANS FREQ(H2) LONG FREQ(H2),/)

J=1

WRITE(6,124)J,F0,F2,F5*2,F3,F5*3,F4,F5*4

124 FORMAT(I2,3X,1E12.4,3X,1E12.4,/,2H2,3X,1E12.4,3X,1E12.4,/,2H3,3X,

WRITE(6,126)Z1E12.4,3X,1E12.4,/,2H4,3X,1E12.4,3X,1E12.4)

RETURN

END

SUBROUTINE OUTPT5(TO,R,P1,P2,Q1,Q2,W0,C1,S,M)

WRITE(6,106)

106 FORMAT(/,7X,5HTHETA,9X,1HR,10X,2HP1,1OX,2HP2,1OX,2HQ1,1OX,2HQ2)

WRITE(6,91)TO,R,P1, P2,Q1,02

91 FORMAT(8X,2HN0,10X,3HCEE,9X,2HSK,1IX,1EJM)

WRITE(6,99)W0,C1,S,M

99 FORMAT(2X,4E12.4)

RETURN

END

SUBROUTINE OUTPT6(W3,C3,F7,Q8, F8, W9, F6,1,0, PT)

BASE=C3(1)/(2*PT)

WRITE(6,97)BASE,F7,Q8,F8,BALL

97 FORMAT(//,8X,4HWTOT,8X,2H+/-,10X,2HFQ,10X,2HFH,9X,4HFVYL,9X,2HWWW)

4000 FORMAT(//,8X,2HWWW)

4000 FORMAT(//,8X,3HLBS,9X,2HWWW,10X,2HHZ,1OX,2HHZ,10X,2HHZ,10X,2HHZ)

4000 FORMAT(//,8X,4HWWW)

4000 FORMAT(2X,4E12.4)

RETURN

END

SUBROUTINE OUTPT7(C0,C2,C6,C3,PI,W1)
DIMENSION C0(1), C2(1), C6(1), C3(1)

WRITE(6,108)
-format(//,1110,OUTPUT DATA)

WRITE(6,66)

FORMAT(2X,5IX(IN),7X,4HSUMF,5X,5H(IN),5X,1HN,5X,8HF(N)(HZ))

DO 125 J=1,N1

WRITE(6,109) C0(J), C2(J), C6(J), J, C3(J)/(2*PI)

FORMAT(F8.4, 2X, F9.4, 2X, F8.4, 3X, 12, 1X, F11.4)

DO 105 J=L,1'

FORMAT(F8.4, 2X, F9.4, 2X, F8.4, 3X, 12, 1X, F11.4)

CONTINUE

N=L+1

FORMAT(4P1.0, 2EI2.4, 3X, I, E10.4, 3E12.4)

FORMAT(4P1.0, 2EI2.4, 3X, I, E10.4, 3E12.4)

END

SUBROUTINE OUTPT8(AL2, AL1, H1, R)

WRITE(6, 110) AL2, AL1, H1, R

FORMAT(//, 18HINPLANE VIBRATIONS, //)

WRITE(6, 112)

WRITE(6, 113)

SUBROUTINE OUTPT9(A3, A6, C0, C2, C6, C3, T0, Y, O2, W5, F9, A31, A61)

WRITE(6, 114)

RETURN

END

SUBROUTINE OUTPT31X, J, E10.4, 3E12.4)

RETURN

END
SUNDOUT FORMAT(/,,/) RETURN
04670 SUBROUTINE OUTP10(R,AL1,AL2,AL3)
04680 WRITE(6,115)R,AL1,AL2,AL3
04690 115 FORMAT (/9X,1H13,10X,2H1L1,10X,2H1L2,10X,2H1L3,10X,2H1H,10X,2H1H,
04700 10X,2H1H,10X,2H1H,2X,4E12.4)
04710 RETURN
04720 SUBROUTINE OUTP11(M3,X1,F1,GM, HM, DL, LL, GL, M6, C0, C2, C3, C5, C6, C7, C8, X3,
04730 DIMENSION C0(1),C2(1),C3(1),C5(1),C6(1),C7(1),C8(1),DM(3),U(3,3),V(3,3)
04740 DIMENSION B9(1),C9(1)
04750 WRITE(6,116)
04760 116 FORMAT(/8X,4H12T0T,8X,3HXTK,9X,4H11UCR,8X,4H11UCF,8X,4H11UFF,8X,3H13A)
04770 WRITE(6,132)
04780 132 FORMAT(8X,3HL6S,8X,5HL2/IN,7X,5HL6/IN,7X,5HL3/IN,7X,5HL3/IN,8X,
04790 8H1N)
04800 WRITE(6,58)R3,X4,F4,GM, HM, DL
04810 58 FORMAT(3X,6,12.4)
04820 WRITE(6,59)
04830 59 FORMAT(,,8X,3H1XTK,9X,4H11UCR,8X,4H11UCF,8X,4H11UFF,8X,3H13A)
04840 WRITE(6,60)
04850 60 FORMAT(/8X,2H1H,10X,2H1H,9X,5HL6/IN,8X,3H13A)
04860 WRITE(6,61)EL,FL,GL,M6
04870 61 FORMAT(2X,4E12.4)
04880 WRITE(6,62)
04890 62 FORMAT(/,11:OUTPUT DATA,/,11:FIRST VIBRATIONS,/)।
04900 WRITE(6,119)X3,CL,DM(1),DM(2),DM(3)
04910 119 FORMAT(7X,6HL:FPQ,6X,6HAXFPQ,4X,9HL3:FFF(1),3X,9HL3:FFF(2),3X,
04920 29HL3:FFF(3),/9X,2HHz,10X,2HHz,10X,2HHz,10X,2HHz,10X,2HHz,2X,
04930 25E12.4)
04940 WRITE(6,117)
04950 117 FORMAT(/1X,1H4J,4X,9HL1:CPF(J),3X,9HL2:CPF(J),3X,9HL1:CPF(J),3X,
04960 29HL1:CPF(J),3X,9HL2:CPF(J),3X,9HL2:CPF(J),/9X,2HHz,10X,2HHz,10X,2HHz)
04970 22HHz,10X,2HHz,10X,2HHz,10X,2HHz)
05000 DO 127 J=1,3
05010 WRITE(6,113)J,C0(J),C2(J),C3(J),C6(J),C7(J),C8(J)
05020 113 FORMAT(12,6,12.4)
05030 DO 127 CONTINUE
05040 127 WRITE(6,120)
05050 120 FORMAT(/1X,1H4J,1X,14HL1:L3FREQ(1,J),2X,14HL1:L3FREQ(2,J),2X,
05060 14HL1:L3FREQ(3,J),2X,14HL2:L3FREQ(1,J),2X,
05070 14HL2:L3FREQ(2,J),2X,14HL2:L3FREQ(3,J))
05080 WRITE(6,63)
05090 63 FORMAT(/9X,2HHz,14X,2HHz,14X,2HHz,14X,2HHz,14X,2HHz,14X,2HHz)
05100 DO 128 J=1,3
05110 WRITE(6,121)J,U(J),U(2,J),V(1,J),V(2,J),V(3,J)
05120 121 FORMAT(12,6,12.4)
05130 CONTINUE
05140 WRITE(6,122)B8,T3,T5
05150 122 FORMAT(/, 23HJOJEF PLANOE VIBRATIONS, /, 7X, 5HL3: DF, 7X, 5HL1: TF, 7X,
05160 25HL2: TF, /, 8X, 2HIZ, 10X, 2HIZ, 10X, 2HIZ, /, 2X, 3L12.4, /, 1X, 1LJ, 4X,
05170 27HL3DF(J), 4X, 9HL1: CPA(J), 3X, 5HL2: CPA(J), 2X, 10HL1: L23F(J))
05180 DO 67 J=1, 3
05190 WRITE(6, 123)J, C9(J), C3(J), C6(J), B9(J)
05200 123 FORMAT(1X, I1, 4L12.4)
05210 67 CONTINUE
05220 WRITE(6, 30)
05230 30 FORMAT(/, //)
05240 RETURN
05250 END
TABLE B2

LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>COMPUTER PROGRAM PRINT OUT</th>
<th>DESCRIPTIONS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Pipe Modulus of Elasticity</td>
<td>LB/IN.(^2)</td>
</tr>
<tr>
<td>RHO</td>
<td>Pipe Density</td>
<td>LB/IN.(^3)</td>
</tr>
<tr>
<td>FRHO</td>
<td>Fluid Density</td>
<td>LB/IN.(^3)</td>
</tr>
<tr>
<td>D</td>
<td>Pipe Outside Diameter</td>
<td>IN.</td>
</tr>
<tr>
<td>T</td>
<td>Pipe Wall Thickness</td>
<td>IN.</td>
</tr>
<tr>
<td>N</td>
<td>Mode Number</td>
<td>--</td>
</tr>
<tr>
<td>THETA</td>
<td>Bend Angle</td>
<td>DEG.</td>
</tr>
<tr>
<td>L(_1), L(_2), L(_3)</td>
<td>Length of pipe segments</td>
<td>IN.</td>
</tr>
<tr>
<td>L</td>
<td>Total pipe length, L(_1) + L(_2)</td>
<td>IN.</td>
</tr>
<tr>
<td>I</td>
<td>Second Moment of Inertia</td>
<td>IN.(^4)</td>
</tr>
<tr>
<td>PAREA</td>
<td>Pipe Cross-sectional area</td>
<td>IN.(^2)</td>
</tr>
<tr>
<td>FAREA</td>
<td>Flow Area</td>
<td>IN.(^2)</td>
</tr>
<tr>
<td>PWT</td>
<td>Pipe Weight</td>
<td>LB.</td>
</tr>
<tr>
<td>wF</td>
<td>Fluid Weight</td>
<td>LB.</td>
</tr>
<tr>
<td>WTOT</td>
<td>Total Weight, pipe + fluid</td>
<td>LB.</td>
</tr>
<tr>
<td>ALPHA</td>
<td>Frequency Factor</td>
<td>--</td>
</tr>
<tr>
<td>NCF</td>
<td>Natural Circular Frequency</td>
<td>RAD/SEC</td>
</tr>
<tr>
<td>FREQ</td>
<td>Natural Frequency</td>
<td>HZ</td>
</tr>
<tr>
<td>SPEED</td>
<td>Pump Speed</td>
<td>RPM</td>
</tr>
<tr>
<td>X</td>
<td>Bend Radius</td>
<td>IN.</td>
</tr>
<tr>
<td>CL</td>
<td>Centerline length</td>
<td>IN.</td>
</tr>
<tr>
<td>L(_1):AXF,L(_2):AXF</td>
<td>Axial frequency, leg 1 and leg 2, respectively</td>
<td>HZ</td>
</tr>
<tr>
<td>L(_1):F(I),L(_2):F(I)</td>
<td>Bending frequency, fixed-rimmed, mode(I), leg 1 and leg 2, respectively</td>
<td>HZ</td>
</tr>
<tr>
<td>L(_1):F(I),L(_2):F(I)</td>
<td>Coupled axial-bending frequency, mode(I), leg 1 and leg 2, respectively</td>
<td>HZ</td>
</tr>
<tr>
<td>G</td>
<td>Acceleration of gravity</td>
<td>IN/SEC.(^2)</td>
</tr>
<tr>
<td>XTK</td>
<td>Translational spring rate</td>
<td>LB/IN.</td>
</tr>
<tr>
<td>MUGP</td>
<td>Weight per unit length, fixed-pinned end conditions</td>
<td>LB/IN.</td>
</tr>
<tr>
<td>MUGF</td>
<td>Weight per unit length, fixed-free</td>
<td>LB/IN.</td>
</tr>
<tr>
<td>MUFF</td>
<td>Weight per unit length, fixed-fixed</td>
<td>LB/IN.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Units</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>L3A, L3B</td>
<td>Torsional moment arms</td>
<td>IN.</td>
</tr>
<tr>
<td>L1K, L2K</td>
<td>Torsional spring rate</td>
<td>LB/IN.</td>
</tr>
<tr>
<td>LI EW</td>
<td>Crosspipe effective weight</td>
<td>LB.</td>
</tr>
<tr>
<td>XTFREQ</td>
<td>Translational frequency</td>
<td>HZ</td>
</tr>
<tr>
<td>AXFREQ</td>
<td>Axial frequency</td>
<td>HZ</td>
</tr>
<tr>
<td>L1:CPP(I), L2:CPP(I)</td>
<td>Bending frequency, fixed-pinned, mode (I), leg 1 and leg 2, respectively</td>
<td>HZ</td>
</tr>
<tr>
<td>L1:CPA(I), L2:CPA(I)</td>
<td>Coupled axial-bending frequency, mode(I), leg 1 and leg 2, respectively</td>
<td>HZ</td>
</tr>
<tr>
<td>L1:CF(I), L2:CF(I)</td>
<td>Bending frequency, fixed-free, mode (I), leg 1 and leg 2, respectively</td>
<td>HZ</td>
</tr>
<tr>
<td>L3:FFF(J)</td>
<td>Bending frequency, fixed-fixed, mode (J), leg 3</td>
<td>HZ</td>
</tr>
<tr>
<td>L1:L3FREQ(I,J)</td>
<td>Coupled frequency, leg 1 and leg 3</td>
<td>HZ</td>
</tr>
<tr>
<td>L2:L3FREQ(I,J)</td>
<td>Coupled frequency, leg 2 and leg 3</td>
<td>HZ</td>
</tr>
<tr>
<td>L1:TF, L2:TF</td>
<td>Torsional frequency</td>
<td>HZ</td>
</tr>
<tr>
<td>L1:BF</td>
<td>Bending frequency, leg 3 as a concentrated weight</td>
<td>HZ</td>
</tr>
<tr>
<td>L1:L2BF(J)</td>
<td>Bending frequency, leg 1 and leg 2 as distributed weights</td>
<td>HZ</td>
</tr>
<tr>
<td>BNDF(J)</td>
<td>Coupled frequency, leg 3 with legs 1 and 2</td>
<td>HZ</td>
</tr>
</tbody>
</table>
STRAIGHT PIPE COMPUTER RUN

Table 33

<table>
<thead>
<tr>
<th>Input Data</th>
<th>E</th>
<th>D</th>
<th>T</th>
<th>L</th>
<th>H6C</th>
<th>F40C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI</td>
<td>1500E+03</td>
<td>1000E+01</td>
<td>5100E-01</td>
<td>5320E+02</td>
<td>1600E+00</td>
<td>3140E-01</td>
</tr>
</tbody>
</table>

Basic Data

<table>
<thead>
<tr>
<th>I</th>
<th>CLL</th>
<th>LCLC</th>
<th>F40B</th>
<th>F40A</th>
<th>F60C</th>
<th>F60A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.717E-01</td>
<td>5320E+02</td>
<td>1520E+00</td>
<td>5330E+00</td>
<td>1294E+01</td>
</tr>
</tbody>
</table>

Output Data

In-Pipe and Out Of Place Vibrations

Pipe Length: 5320E+02 in

<table>
<thead>
<tr>
<th>TRANS FREQ(12) LONG FREQ(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
MAGNIFICATION FACTORS

TABLE B3 (CONTINUED)

<table>
<thead>
<tr>
<th>DATA</th>
<th>f</th>
<th>s</th>
<th>r</th>
<th>t</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>IN</td>
<td>IN</td>
<td>IN</td>
<td>IN</td>
<td>LSS</td>
<td>LSS/IN</td>
</tr>
<tr>
<td>.1600L+06</td>
<td>.1900L+01</td>
<td>.5106L-01</td>
<td>.5320L+02</td>
<td>.1600L+03</td>
<td>LSS/IN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA</th>
<th>f</th>
<th>s</th>
<th>r</th>
<th>t</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>IN</td>
<td>IN</td>
<td>IN</td>
<td>IN</td>
<td>LSS</td>
<td>LSS/IN</td>
</tr>
<tr>
<td>.9000L+02</td>
<td>.3000L+01</td>
<td>.3000L+04</td>
<td>0.</td>
<td>.7700E+01</td>
<td>0.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA</th>
<th>f</th>
<th>s</th>
<th>r</th>
<th>t</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>IN</td>
<td>IN</td>
<td>IN</td>
<td>LSS</td>
<td>LSS/IN</td>
<td></td>
</tr>
<tr>
<td>.1500L+04</td>
<td>.2650L+02</td>
<td>.1290L+04</td>
<td>0.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PA, IN DATA

<table>
<thead>
<tr>
<th>DATA</th>
<th>f</th>
<th>s</th>
<th>r</th>
<th>t</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>IN</td>
<td>IN</td>
<td>IN</td>
<td>LSS</td>
<td>LSS/IN</td>
<td></td>
</tr>
<tr>
<td>.1717E-01</td>
<td>.5329L+02</td>
<td>.1529L+00</td>
<td>.6338L+00</td>
<td>.1294E+01</td>
<td>.1055L+01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA</th>
<th>f</th>
<th>s</th>
<th>r</th>
<th>t</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>IN</td>
<td>IN</td>
<td>IN</td>
<td>LSS</td>
<td>LSS/IN</td>
<td></td>
</tr>
<tr>
<td>.3351E+01</td>
<td>.2713E+02</td>
<td>0.</td>
<td>.1900L+04</td>
<td>.1216L+02</td>
<td>U.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA</th>
<th>f</th>
<th>s</th>
<th>r</th>
<th>t</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>IN</td>
<td>IN</td>
<td>IN</td>
<td>LSS</td>
<td>LSS/IN</td>
<td></td>
</tr>
<tr>
<td>.1900L+04</td>
<td>.1503L+04</td>
<td>.1069L+02</td>
<td>.8631E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTLET DATA

<table>
<thead>
<tr>
<th>DATA</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>2.0000</td>
<td>2.0000</td>
<td>2.0000</td>
<td>2.0000</td>
</tr>
<tr>
<td>3.0000</td>
<td>3.0000</td>
<td>3.0000</td>
<td>3.0000</td>
</tr>
<tr>
<td>4.0000</td>
<td>4.0000</td>
<td>4.0000</td>
<td>4.0000</td>
</tr>
<tr>
<td>5.0000</td>
<td>5.0000</td>
<td>5.0000</td>
<td>5.0000</td>
</tr>
<tr>
<td>6.0000</td>
<td>6.0000</td>
<td>6.0000</td>
<td>6.0000</td>
</tr>
<tr>
<td>7.0000</td>
<td>7.0000</td>
<td>7.0000</td>
<td>7.0000</td>
</tr>
<tr>
<td>8.0000</td>
<td>8.0000</td>
<td>8.0000</td>
<td>8.0000</td>
</tr>
<tr>
<td>9.0000</td>
<td>9.0000</td>
<td>9.0000</td>
<td>9.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA</th>
<th>Z</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0000</td>
<td>4.0000</td>
<td>5.0000</td>
<td>6.0000</td>
</tr>
<tr>
<td>6.0000</td>
<td>7.0000</td>
<td>8.0000</td>
<td>9.0000</td>
</tr>
<tr>
<td>9.0000</td>
<td>10.0000</td>
<td>11.0000</td>
<td>12.0000</td>
</tr>
<tr>
<td>12.0000</td>
<td>13.0000</td>
<td>14.0000</td>
<td>15.0000</td>
</tr>
<tr>
<td>15.0000</td>
<td>16.0000</td>
<td>17.0000</td>
<td>18.0000</td>
</tr>
<tr>
<td>18.0000</td>
<td>19.0000</td>
<td>20.0000</td>
<td>21.0000</td>
</tr>
<tr>
<td>21.0000</td>
<td>22.0000</td>
<td>23.0000</td>
<td>24.0000</td>
</tr>
<tr>
<td>24.0000</td>
<td>25.0000</td>
<td>26.0000</td>
<td>27.0000</td>
</tr>
<tr>
<td>27.0000</td>
<td>28.0000</td>
<td>29.0000</td>
<td>30.0000</td>
</tr>
<tr>
<td>30.0000</td>
<td>31.0000</td>
<td>32.0000</td>
<td>33.0000</td>
</tr>
<tr>
<td>33.0000</td>
<td>34.0000</td>
<td>35.0000</td>
<td>36.0000</td>
</tr>
</tbody>
</table>

213
ONE ELBOW PIPE COMPUTER RUN

TABLE B4

INPUT DATA

<table>
<thead>
<tr>
<th>E</th>
<th>D</th>
<th>T</th>
<th>L</th>
<th>RHO</th>
<th>FREQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0.160E+06</td>
<td>1.000E+01</td>
<td>5.100E-01</td>
<td>5.450E+02</td>
<td>1.600E+00</td>
</tr>
<tr>
<td>L2</td>
<td>3.725E+02</td>
<td>3.725E+02</td>
<td>1.000E+01</td>
<td>1.000E+01</td>
<td></td>
</tr>
</tbody>
</table>

BASIC DATA

<table>
<thead>
<tr>
<th>I</th>
<th>CI</th>
<th>PAIA</th>
<th>PAIA</th>
<th>PUT</th>
<th>PUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>5.321E+02</td>
<td>1530L+00</td>
<td>6.333L+00</td>
<td>1.132L+01</td>
<td>1.564L+01</td>
</tr>
</tbody>
</table>

OUTPUT DATA

INFRARED VIBRATIONS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hz</td>
<td>Hz</td>
<td>Hz</td>
<td>Hz</td>
<td>Hz</td>
<td>Hz</td>
<td>Hz</td>
</tr>
<tr>
<td>1.0</td>
<td>0.8512L+03</td>
<td>0.8512L+03</td>
<td>1.264L+03</td>
<td>2.564L+03</td>
<td>2.564L+03</td>
<td>2.564L+03</td>
</tr>
<tr>
<td>3.53</td>
<td>1.018L+04</td>
<td>1.018L+04</td>
<td>2.859L+03</td>
<td>5.997L+03</td>
<td>6.046L+03</td>
<td>6.046L+03</td>
</tr>
</tbody>
</table>

OUT OF PLANE VIBRATIONS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hz</td>
<td>Hz</td>
<td>Hz</td>
<td>Hz</td>
<td>Hz</td>
<td>Hz</td>
<td>Hz</td>
</tr>
<tr>
<td>0.9099L+02</td>
<td>1.532L+02</td>
<td>2.825L+03</td>
<td>2.795L+03</td>
<td>4.178L+02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TWO ELBOW PIPE COMPUTER RUN

TABLE B5

<table>
<thead>
<tr>
<th>INPUT DATA</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI</td>
<td>.1600E+08</td>
<td>.1000E+01</td>
<td>.5100E-01</td>
<td>.5450E+02</td>
<td>.1600E+00</td>
<td>.3140E-01</td>
</tr>
<tr>
<td>IN</td>
<td>L1</td>
<td>L2</td>
<td>L3</td>
<td>L4</td>
<td>L5</td>
<td>L6</td>
</tr>
<tr>
<td>IN</td>
<td>.3000E+01</td>
<td>.1830E+02</td>
<td>.1830E+02</td>
<td>.1830E+02</td>
<td>.2410E+03</td>
<td>.2410E+03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BASIC DATA</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IN4</td>
<td>.1717E+03</td>
<td>.5232E+02</td>
<td>.1520E+00</td>
<td>.6333E+00</td>
<td>.1326E+01</td>
<td>.1034E+01</td>
</tr>
<tr>
<td>LBS</td>
<td>.2410E+01</td>
<td>.1076E+03</td>
<td>.1647E+01</td>
<td>.1105E+00</td>
<td>.1656E-01</td>
<td>.9150E+01</td>
</tr>
<tr>
<td>IN</td>
<td>.9150E+01</td>
<td>.1345E+03</td>
<td>.1345E+03</td>
<td>.8091E+00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE B5 (CONTINUED)

OBTAINED DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.665E+02</td>
<td>5.337E+03</td>
<td>7.131E+03</td>
<td>4.213E+04</td>
<td>1.659E+04</td>
<td>9.312E+03</td>
<td>7.163E+03</td>
<td>7.153E+03</td>
<td>6.840E+04</td>
</tr>
</tbody>
</table>

OUT OF PLANE VIBRATIONS

<table>
<thead>
<tr>
<th>L1:CPF</th>
<th>L1:CPA</th>
<th>L2:CPF</th>
<th>L2:CPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.149E+02</td>
<td>2.106E+02</td>
<td>1.062E+02</td>
<td>2.062E+02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.005E+03</td>
<td>4.307E+03</td>
<td>1.017E+03</td>
<td>2.136E+03</td>
<td>5.014E+03</td>
<td>5.621E+03</td>
<td>6.256E+03</td>
<td>1.150E+04</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C

DERIVATION OF EQUATIONS

HYDRAULIC LINE MECHANICAL RESPONSE COMPUTER PROGRAM

C1. ONE-ELBOW PIPE, OUT-OF-PLANE, VIBRATIONS

Analysis determines the fundamental out-of-plane frequency of a one-elbow pipe with ends fixed. A force, \(F \), is applied at the elbow normal to the plane defined by the centerlines of the pipes. The force then causes a downward deflection of the elbow. A free-body diagram in Figure C-1 shows that a single bend pipe can be split into two cantilever pipes with the appropriate forces and cancelling moments. These are depicted for leg 1 and the reverse would be applicable to leg 2 by use of different subscripts.

There are three conditions to be considered:

1. torsional rotation due to a moment
 \[\theta_T = \frac{TL}{GJ} \] \hspace{1cm} (C-1)
 where \(\theta_T \) is the angle of rotation, radians
 \(T \) is the torsional moment, in-lbs
 \(L \) is the pipe length under torsion, in.
 \(GJ \) is the pipe torsional rigidity, lb-in.

2. rotations due to a force and due to a moment applied at the free end
 \[\theta_F = \frac{FL^2}{2EI} \] \hspace{1cm} (C-2)
 \[\theta_M = \frac{ML}{EI} \] \hspace{1cm} (C-3)
 where \(M \) is the bending moment, in-lbs

3. deflections due to a force and due to a moment applied at the free end
 \[\delta_F = \frac{FL^3}{3EI} \] \hspace{1cm} (C-4)
FIGURE C-1

ONE-ELBOW PIPE OUT-OF-PLANE LOADING
\[\delta_m = \frac{ML^2}{2EI} \]

where \(\delta \) is the deflection, inches.

For compatibility of end rotations, the general relationship for the pipe legs defined by lengths \(L_1 \) and \(L_2 \) is

\[\Theta_1 + \Theta_m = \Theta_F \]

Consequently the expressions for each leg is obtained by substituting equations C-1 thru C-3 with appropriate subscripts.

For leg 1,
\[M_1 = \frac{F_{1L_1}}{GJ_2} + \frac{M_1L_1}{EI_2} = \frac{F_{1L_1}^2}{2EI_1} \]

For leg 2,
\[M_2 = \frac{F_{2L_1}}{GJ_1} + \frac{M_2L_1}{EI_2} = \frac{F_{2L_1}^2}{2EI_2} \]

Solving equations C-7 and C-8 for \(M_1 \) and \(M_2 \), respectively.

\[M_1 = \frac{F_{1L_1}}{2} \left[\frac{1}{\left(\frac{EI_1}{GJ_2} \right) + 1} \right] \]

\[M_2 = \frac{F_{2L_1}}{2} \left[\frac{1}{\left(\frac{EI_1}{GJ_2} \right) + 1} \right] \]

For compatibility of end deflections, the net deflection for leg 1 must equal that for leg 2.

Thus,

\[\delta = \delta_1 = \frac{F_{1L_1}^3}{3EI_1} - \frac{M_1L_1^2}{2EI_1} \]

\[\delta = \delta_2 = \frac{F_{2L_1}^3}{3EI_2} - \frac{M_2L_1^2}{2EI_2} \]

Considering that there is no change in physical characteristics from one leg to another, the second moment of inertia for both legs are the same, and the polar inertia for a circular cross-section pipe is twice that of the second moment of inertia. By substituting equations C-9 and C-10 into C-11 and C-12 respectively, the expression for the deflections are

\[\delta = \frac{F_{1L_1}^3}{2EI} \left[1 - \frac{3/4}{1 + \frac{F_{1L_1}}{2GJ_2} \left(\frac{L_1}{L_2} \right)} \right] \]
Solving equations C-13 and C-14 for the components of the applied force results in

\[F_1 = \delta \left\{ \frac{3EI}{L_1^3 \left[1 - \frac{3/4}{1 + \frac{E}{2G} \left(\frac{L_2}{L_1} \right)} \right]} \right\} \] C-15

\[F_2 = \delta \left\{ \frac{3EI}{L_2^3 \left[1 - \frac{3/4}{1 + \frac{E}{2G} \left(\frac{L_1}{L_2} \right)} \right]} \right\} \] C-16

Noting that the applied force is defined as

\[F = F_1 + F_2 \] C-17

The deflection due to the applied force can be written as

\[\frac{\delta}{F} = \frac{1}{\frac{3EI}{L_1^3 \left[1 - \frac{3/4}{1 + \frac{E}{2G} \left(\frac{L_2}{L_1} \right)} \right]} + \frac{3EI}{L_2^3 \left[1 - \frac{3/4}{1 + \frac{E}{2G} \left(\frac{L_1}{L_2} \right)} \right]} \] C-18

A simplification is made by setting the ratio of leg lengths to be unity which means that each leg length is equal to half of the total pipe centerline length. In addition, by assuming the bending rigidity to be approximately equal to the torsional rigidity, equation C-18 reduces to

\[\frac{\delta}{F} = \frac{1}{\frac{3EI}{L_1^3 \left(1 - \frac{3/4}{1 + \frac{E}{2G} \left(1/2 \right)} \right)} + \frac{3EI}{L_2^3 \left(1 - \frac{3/4}{1 + \frac{E}{2G} \left(1/2 \right)} \right)}} = \frac{3}{3EI} \left(\frac{1^3}{3EI} \right) \] C-19

It is interesting to note that Reference (c) indicates that the maximum deflection of a pinned-pinned beam with uniform weight distribution is identical to equation C-19.

The spring rate of the single bend pipe is defined by the inverse of equation C-19 or

\[K = \frac{3EI}{3EI} \left(\frac{E}{3EI} \right) \] C-20

The natural frequency of a system is given by:

\[f = \frac{1}{2\pi} \sqrt{\frac{K}{\mu}} \] C-21
where K is the spring rate, lb/in.

g is the acceleration of gravity, 386 in/sec2

W_e is the effective weight, lbs.

f is the natural frequency, Hz.

The next step is to determine the effective weight of a one-elbow pipe. It would be reasonable to assume that the effective weight is the average of the effective weights of a cantilever pipe (W_{ec}) and that of a pipe with fixed ends (W_{ef}).

To determine these effective weights the expressions for the respective deflection for the cantilever beam is given as a quarter sine wave

$$y_c = y_0 \left(1 - \cos \frac{\pi x}{2L}\right)$$ \hspace{1cm} C-22

where y_0 is the maximum deflection

x is the distance measured along the beam from the fixed end

L is the length of the cantilever beam.

The effective weight is obtained by evaluating the following integral

$$W_e = \frac{W}{L} \int_0^L \left(\frac{y}{y_0}\right)^2 dx$$ \hspace{1cm} C-23

Applied to the cantilever beam results in

$$W_{ec} = \frac{W}{L} \int_0^L \left(1 - \cos \frac{\pi x}{2L}\right)^2 dx$$

$$= \frac{W}{L} \left[\frac{x}{L} - \frac{4L}{\pi^2} \sin \frac{\pi x}{2L} + \frac{x}{2} + \frac{L}{2\pi} \sin \frac{\pi x}{L} \right]_0^L$$

$$= W \left[\frac{3}{2} - \frac{4}{\pi^2} \right] = 0.23 W$$ \hspace{1cm} C-24

Similarly, Reference C1 defines the deflection of a fixed-fixed beam as a cosine wave

$$y_F = \frac{y_0}{2} \left(1 - \cos \frac{2\pi x}{L}\right)$$ \hspace{1cm} C-25

and the effective weight is determined by substituting equation C-25 into C-23.
Consequently the effective weight for the one-elbow pipe with equal length legs is

\[W_{ef} = \frac{W}{21} \int_{0}^{L} (1 - \cos \frac{2\pi x}{L})^2 \, dx \]

\[= \frac{W}{4L} \left[x - \frac{L}{\pi} \sin \frac{2\pi x}{L} + \frac{x^2}{2} + \frac{L}{8\pi^2} \sin \frac{4\pi x}{L} \right]_0^L \]

\[= \frac{W}{4L} \left[L + \frac{L}{2} \right] = \frac{3}{8} W \]

Consequently the effective weight for the one-elbow pipe with equal length legs is

\[W_e = \frac{W_{ec} + W_{ef}}{2} = \frac{0.23W + 0.375W}{2} = 0.303W \]

substituting equations C-20 and C-27 into C-21, the fundamental natural frequency is

\[f = \frac{1}{2\pi} \sqrt[3]{\frac{364}{5} \frac{E}{A} \frac{L}{W} (\alpha W/303W)} = \frac{\alpha}{2\pi} \sqrt[3]{\frac{EIG}{WL^3}} \]

where the frequency factor \(\alpha = \frac{\sqrt[3]{384}}{\sqrt[3]{\pi(9.923)}} = 15.9 \) (90-deg bend angle),

and the remaining parameters are identical to those used in beam theory.
To define the fundamental frequency variation as a function of the bend angle, the special case of equal leg lengths provides the lower boundary of the frequency factors and in turn similarly affect the natural frequency. Thus for the case of a zero bend angle, shown in Figure C-2, the natural frequency is obtained from Reference Cl. for a dual cantilever pipe.

\[
f = \frac{3.52 \sqrt{E(2I)^2}}{2\pi \sqrt{W(\frac{1}{2})^3}} = \frac{\alpha}{2\pi \sqrt{\frac{EI}{W_0^3}}}
\]

C-29

where the frequency factor \(\alpha = 14.1 \) (zero-deg bend angle).

Similarly, for a 180-deg bend angle (a straight pipe with fixed ends) the frequency factor of 22.4 is obtained directly from Reference Cl.

The upper frequency factor boundary is defined by having the ratio of \(L_2/L_1 = 0 \) which means again a straight pipe with a 22.4 frequency factor. Thus with the limits established the intermediate values can be estimated. The results are summarized in Figure C-3. The computer program based on the above analysis is shown in Appendix B.

FIGURE C-2. ONE-ELBOW PIPE OUT-OF-PLANE VIBRATIONS
EFFECT OF BEND ANGLE L2/L1 = 1.0

223
FIGURE C-3 FUNDAMENTAL OUT-OF-PLANE FREQUENCY PIPE WITH A BEND

C.2. TWO-ELBOW PIPE VIBRATIONS

Ca. Torsional Mode - This mode is an out-of-plane rocking motion of the crosspipe, Figure C-4, caused by the bending of the other two legs. Thus, the deflections δ_1 and δ_2 are defined as

$$\delta_1 = \delta_2 \left(\frac{a}{b} \right) = \frac{FL}{3EI}$$ \hspace{1cm} (C-30)

The corresponding spring rates for each leg are as follows

$$L1K = \frac{3EI}{L_1^3} \hspace{1cm} L2K = \frac{3EI}{L_2^3}$$ \hspace{1cm} (C-31, C-32)

considering the effective weight to be

$$MUCF = 0.25 \left[\rho \text{H} \text{A} + \frac{\rho}{2} \text{H} \text{A} \right]$$ \hspace{1cm} (C-33)
The natural frequencies due to torsional mode are

$$L_1: T_K = \frac{1}{2\pi} \sqrt{\frac{386* L_1 K}{MUCF}}$$ C-34

$$L_2: T_K = \frac{1}{2\pi} \sqrt{\frac{386* L_2 K}{MUCF}}$$ C-35

Cb. Crosspipe Translation - This mode is an in-plane motion of the crosspipe as depicted in Figure C-5. Neglecting deformations due to tension and compression in the members, and considering only bending, section AB is bent by two moments of equal magnitude but in opposite direction.
These moments are defined as

\[M_A = V_0 L_1 = \frac{FL_2}{1 + \frac{L_2}{L_1}} \]

\[M_B = V_2 L_2 = \frac{FL_2}{1 + \frac{L_2}{L_1}} \]

which cause rotation angles about points A and B. These rotation angles are determined, from Reference 39, by the method of superposition, to be equal and opposite and of the form

\[\alpha_c = \alpha_A = -\alpha_B = \frac{FL_2 L_3}{2EI(1 + \frac{L_2}{L_1})} \]
The total deflection, δ, is composed of the deflection due to bending of legs L_1 and L_2, and the deflection due to rotation at joints A and B. Thus,

$$\delta = \frac{V_0 L^3}{3EI} + \alpha L_3 = \frac{FL_2(2L_1^2 + 3L_3^2)}{6EI(1 + L_2/L_1)}$$ \hspace{1cm} \text{(C-39)}

The corresponding spring rate is given by

$$XTK = \frac{F}{\delta} = \frac{6EI(1 + L_2/L_1)}{L_2(2L_1^2 + 3L_3^2)}$$ \hspace{1cm} \text{(C-40)}

For the special case of equal leg lengths, $L = L_1 = L_2 = L_3$, the spring rate becomes

$$XTK = \frac{12EI}{5L^3}$$ \hspace{1cm} \text{(C-41)}

Considering the effective weight of the system to be defined by

$$XTWE = 0.25 \times (\rho \times \text{PAREA} + \rho \times \text{FAREA}) \times (L_1 + L_2 + 2 \times L_3)$$ \hspace{1cm} \text{(C-42)}

The natural frequency is determined by substituting C-40 or C-41, and C-42 into

$$XTFREQ = \frac{1}{2\pi} \sqrt{\frac{386 \times XTK}{XTWE}}$$ \hspace{1cm} \text{(C-43)}

C.3. REFERENCES

APPENDIX D
F-15 PUMP MODEL CHANGES

CARD NUMBER 4

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>E10.0</td>
<td>Theoretical Maximum Pump Displacement</td>
<td>IN**3/REV</td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td>Maximum Actuator Displacement @ Maximum Flow</td>
<td>IN</td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td>Minimum Actuator Displacement @ Minimum Pump Flow (-ve)</td>
<td>IN</td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td>Flat Depth</td>
<td>IN</td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td>Minimum Actuator Engagement</td>
<td>IN</td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td>Coefficient of Pump Leakage</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td>Coefficient of Leakage from Case to Inlet</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td>Case Volume</td>
<td>IN**3</td>
</tr>
</tbody>
</table>

EXAMPLE CARD
SUBROUTINE PUMP51 (D,DT,CDL)

C **** REVISIRED MARCH 25, 1970 ****
X VERSION OF THE PUMP 51 SUBROUTINE 7 APR 76
C
COMMON NELPL,NDELPL,PFI,IPFTIP,INFTI,RELTN,INEL,DELPL,NELPL,DELPL,REMPL,REML,
1 PDELE(90,12),LCS(90,10),LDE(140),PMH(90),CML(90,100),
2 CMLX(90,12),PNC(90,10),PN(90,100),PNCX(90,12),CML(90,12),
3 PM(300),NH(20),ZEH(20),NVE(20),BULK(20),TEMP(20),PAP(20),
4 ATM(10),DELT(10),PFL(10),PMFT(10),LEM,ICUN,
5 REN(0,10),ELENT(10,10),VFTIGHT(10,10),CPLC,INX,INZ,
6 NIN,STEP*MNLS,EL,IN,INTERM,HLINE,IEL,IN,INTERM,HLINE,IEL,MEML,NNODE,NNODE
C
C ANLPL,ROS
C DIMENSION C(37),DT(?,001),DDI11(113)
C INTEGER ARCM,WIDTH,FLOPC,COEVLI,COELV2,ARACT,PSPRIZ,PSPRY%
1 PACC,PFZPR,PFLPR,PDSAC,PDAMP,DISP,DPVAC,
2 DISAM,DISAN,COELK,COEALM,COELK,COELM,COEIVL,POVACS,POMIN,
3 PCEO,POCPR,POHEF,FLAG,ACTV,ACTO,POMTO,
4 PCASE,INLET,COELV,COEV2,BULK,VELAC,DISACT,DISVAC,
5 COALZ,COEALZ,DELP13,DELP23,COEAS,POUT,OUTK,COEOSO
C
C IF I ARARY ****
C DATA DP10A/0.,1NPS1/24.,ARC09/2.,WIDTH/6.,FINPEC/7.,FVOLV/6.,
1 PPC/90.,PFL/110.,PMHT/10.,PSPRZ/110.,
2 PFLP/110.,PFLP/110.,PFLP/110.,PFLP/110.,
3 DISP/17.,DISAM/6.,DISAN/19.,COEALV/23.,COEALM/23.,
4 COEIVL/23.,POVACS/24.,POMIN/23.,PPOHEF/26,,
5 COEOSO/27.,DISAY/29.,FVOLV/29.,INERT/30.,VOLACT/31.,VOLOUT/32,
C
C DF I ARARY ****
C DATA PBEY/7.,POHEF/24.,FLAG/3.,COEUL/4.,COEUL/5.,
1 ACTV/10.,PMPT/10.,PCASE/27.,PCASE/27.,PCASE/27.,
2 BULK/13.,VELAC/14.,DISACT/15.,DISVAC/15.,K0/27.,COEALV/27.,
3 COEALZ/27.,COEALZ/27.,POHT/27.,DELP13/27.,DELP23/27.,BULK/27,
4 INLET/27.,OUTK/27.,ITUP/27.,ITUP/28.,BULKA/28.,PCASE/29,
C
C
C IF (INTRA) 1500,2000,3000
C 1000 CONTINUE
C 1000 CONTINUE
C DO 1001 T=0.9
C 1001 DT=E+0.0
C W=INTRA(IN)
C IF (T+IN=10) VISC FOR MIL-H-5202 AT 100 F
C POWER=VISC*10.0**2.3
C DT(BULK)=DT(BULK)+DEL(DIVOLCAS)
C DT(VELAC)=DT(VELAC)+DEL(DIVOLCAS)
C DT(VOLOUT)=DT(VOLOUT)+DEL(DIVOLCAS)
C DT(TEMP)=DT(TEMP)+DEL(DIVOLCAS)
C DT(COEALV)=1.8*3.3*2*(12.0*VISC*10.0**2.3*20*TEMPS(IND)*1.1)**3
C DT(COEALZ)=1.8*3.3*2*(12.0*VISC*10.0**2.3*20*TEMPS(IND)*1.1)**3
C DT(INERT)=1.8*3.3*2*(12.0*VISC*10.0**2.3*20*TEMPS(IND)*1.1)**3
C IF (TINEAR) T INEAR TO 1200
C DT(POH)=DT(POH)+1/12.*VISC*10.0**2.3*20*TEMPS(IND)*1.1
C IF (TIEAR) T INEAR TO 1200
C DT(POH)=DT(POH)+1/12.*VISC*10.0**2.3*20*TEMPS(IND)*1.1
C DT=DP10A/0.,1NPS1/24.,ARC09/2.,WIDTH/6.,FINPEC/7.,FVOLV/6.,
C DT=DP10A/0.,1NPS1/24.,ARC09/2.,WIDTH/6.,FINPEC/7.,FVOLV/6.,
C 229
PUMP 51 SUBROUTINE LISTING (Cont.)

DIGITS

DIPSPRIM = (DIPSPRIM - D(PSPRIM)) / (DISAM)
DIPACCP = (DIPACCP - D(TACCP)) / (DISAM)
DIPDISAC = (DIPDISAC - D(PDISAC)) / (DISAM)
DIPPRES = (DIPPRES - D(PSLPM)) / (DISAM)

1250 DT(GACCT) = (D(PSPRIM) + D(PDISAC)) / (D(TACCP))

C***

THIS SECTION CALCULATES THE STEADY STATE CHARACTERISTICS.

C

IF THE PUMP OUTPUT PRESSURE VERSUS FLOW.

C

DT(PINLET) = 120000 + 2.0

1260 DT(GACCT) = D(TACCT) + D(FACT)

1270 DT(DSPRIM) = D(PSPRIM) - D(DISAC) - D(TACCP) + D(PACCP)

C***

C

RETURN

C

STEADY STATE CALCULATION SECTION

IND. COMPONENT # = INEL CONNECTION # = INEL-LEG #

CON # = INLET CON #2 = OUTLET CON #3 = CASE DRAIN

THE INLET IS A NOMAL POINT IN THE SYSTEM

1300 IF(INEL = 2) 1310 1320 1330 1340

1510 DT(GACCT) = D(ACCT) = D(TACCT) = D(FACT)

1700 DT(GACCT) = D(TACCT) = D(FACT)

2300
PUMP 3 SUBROUTINE LISTING (Cont.)

C *** 2000 SECTION
2030 C CONTINUE ICOUNT = 0
C C CALCULATE TRANSIENT RESPONSE OF PUMP
POWER = 0.0
L2 = L1
L2 = L1
C1 = C1
C3 = C1
VOLUME = VELACT
DPSAMP = CDAMP
DPSAMP = D(VACT)/((DAMP + D(INERT))
DT = DACT
DT = DACT
PACTU = DT(PACTU)
PO30 = DT(PCT) + DT(VELACT) + DT(L2)
PO30 = DT(PCT) + DT(VELACT) + DT(L2) + DT(V04)
1 + DT(DP + D(PINLET)) + DT(PINLET) + DT(DP + D(INERT))
2 + DT(DP + D(PINLET)) + DT(PINLET) + DT(DP + D(INERT))
DT(DP + D(INERT)) + DT(DP + D(INERT))

3230
PUMP 51 SubROUTINE LISTING (Cont.)

```
3210 DIS = (DT(POUTLT) - POUTMI) * 0(INPSI)
      DIS = DIS / (DFLORC) * DT(POUTLT) * DT(PACTU) + 1.0
3215 IF (POUTLT.EQ.0.0) GO TO 3216
      CONA = (DIS / (DT(COEV1)) + 2 / (2. * COELKA))
      CONA = ABS(DT(POUTLT) - DT(PCASE)) * COELKA / CONA
      DT(QACTU) = CONA * SQRT(DS + CONB) - 1.0
      WRITE (6, 997) CONA, CONB, COELKA, DT(PCASE), DT(COEV1), DT(POUTLT)
997 FORMAT (1D12.5) GO TO 3217
3216 CONTINUE
      A = DIS / (DT(COEV1))
      DT(PACTU) = A**2 / 2 * A / 2 * SQRT((A + B)**2 + 4 * (DT(POUTLT) - DP1))
      DT(POUTLT) = DT(PACTU) - DT(PPCASE) / A**2
      IF (A = 0.0) GO TO 3230
      DT(POUTLT) = DT(POUTLT) + DT(TUP) + DT(TDUP)
      I = CNT + I = CNT + 1
      WRITE (6, 998) ICOUNT
      IF (ICOUNT.EQ.25) GO TO 3217
      FORMAT (10X, 2F9.9) ICOUNT
998 IF (ICOUNT.EQ.25) GO TO 3230
      GO TO 3210
5 FLOW FROM ACTUATOR PISTON TO CASE
3220 POUTMI = D(PVAC) + DT(PCASE)
      IF (POUTMI.EQ.0.0) GO TO 3230
      DIS = (POUTMI - POUTMX) * INPSI
      DIS = DIS / (DT(PACTU) - DT(PCASE)) * (DFLORC) + 1.0
      DIS = DIS / (DFLORC) * DIS / (DISVM) DIS = DIS / (DISVM)
3226 CONTINUE
      A = DIS / (DT(COEV2))
      DT(QACTL) = A**2 / 2 * A / 2 * SQRT((A + B)**2 + 4 * DP2)
3230 IF (POWERN.EQ.0.0) GO TO 3250
      FORMAT (10X, 2F9.9) ICOUNT
5 TEST PISTON DISPLACEMENT AGAINST MAXIMUM STROKE
3320 OACTC = (DT(PCASE) - DT(PCASE) / (DT(PACTU) * DT(PACTU) + 100) * (BULK4)
      OACTC = OACTC / DT(VAC) - 1 / (DT(VAC) + 10)
      DT((DISACT) = DT((DISACT) / (DT(VAC)) = 1 / (DT(VAC)) / (DT(VAC)) + 10)
      CALL XEMIT((DISACT) = DT((DISACT) / (DT(VAC)) = 1 / (DT(VAC)) + 10)
      IF (POWERN.EQ.0.0) GO TO 2450
      QPUP = (POWERN) * DT(PVAC) * DT((DISACT)
QUP = 0.0
3240 IF (POWER.EQ.1.0) GO TO 3220
      DT(QACTL) = 0.0
      DT(QACTU) = DT(PCASE)
      QAEL = 0.0
      GO TO 3220
3250 DT(PACTU) = DT(PCASE) + DT(ACTU) / COELKA
3320 OACTC = OACTC / DT(PCASE)
3320 OACTC = OACTC / DT(PCASE)
3320 OACTC = OACTC / DT(PCASE)
QUP = (QUP + DT(OUTLT)) * (DT(PVAC) + DT(OUTLT) + DT(VAC) * OUTLT)
```

PUMP 51 SUBROUTINE LISTING (Cont.)

```
DT(POUTLT) = C(L2) - Q(L2)*Z(L2)
PE(L2) = DT(POUTLT)
QCASDR = PLEAK + QACTLK + DT(QACTC) - D(ARACT) + DT(VELACT) - QCASIN - QOSIN*2.
DT(Q) = QCASDR
ALPHA = DT(QCASDR)
BETA = Z(L3) + DT(BULKC)
CHI = DT(PCASE) + QCASDR + DT(BULKC) - C(L3)
Q(L3) = BETA + SQRT(BETA**2 + 4*ALPHA*ABS(CHI))/(2*ALPHA)
PL3 = C(L3) - Q(L3)*Z(L3)
DT(PCASE) = 2*DT(PCASE) - DT(PCASE)
C
POWER = (Q(L2)*(P(L2) - P(L1)))/6600.
DT(PPower) = POWER + DT(PPower)
IF(DT(Power) .LT. DT(Power)) WRITE(6,3310) T, IND
DT(31) = 0.5
RETURN
3310 FORMAT(2X,36H******** PUMP CAVITATION ONSET AT T = *.E12.5, END
```

233
APPENDIX E

VANE PUMP MODELS

'SFR USER MANUAL (AFAPL-TR-76-43, VOL. III)

2.3.10 Pumps (Variable Displacement, Vane)

When a pump model is used, it should always be the first element in the system and identified as an NTYPE "9" element. This number is the general pump element designator. To specify the vane pump model a KTYPE "15" must be entered in columns 6-10 of the first pump data card.

The complete vane pump model (SUBROUTINE VPUMP) is based on actual physical dimensional data of the pump. Physical data for a given pump is read into the element data list in the same manner as for the other system elements.

Input data for the complete vane pump model requires two data cards. In addition, a BLOCK DATA section must be loaded after the "END" statement of the main SFR program to provide other vane pump parameters. Required card input data is described in the following tables.

Input data for the vane pump model must include a description of the system pressure drop characteristics. The following generalized equation for system flow and pressure is used in the model:

\[AP = CK_1 + CK_2 \times Q + CK_3 \times Q^2 + 1.75 + CK_4 \times Q^2 \]

Where

- \(AP \) = Vane stage pressure rise + reservoir pressure
- \(Q \) = Pump overboard flow (CIS)
- \(CK_1, CK_2, CK_3, CK_4 \) = System coefficients described on input data cards

The data cards are supplemented by the use of a BLOCK DATA attached to the end of the main SFR program. The BLOCK DATA initializes arrays providing cam position versus pump flow and the rate of change in vane bucket volume versus rotation angle. A listing of BLOCK DATA is shown in Figure 2-6. The arrays in BLOCK DATA are:
CAMP() = Cam position (IN)
CQMAX() = Max flow at cam position (CIR)
ANGLE() = Vane angle rotation (DEG)
DVOL() = $\frac{d}{dt}$ Volume at vane angle (IN**3/SEC)

NA(1) = Number of input DVOL at each cam setting
NA(2) = Number of different cam settings (The cam settings are stored at the end of the ANGLE() array)
CAMPI() = Inverse of CAMP() array
CQMAXI() = Inverse of CQMAX() array
<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>I5</td>
<td>NTYPE = 9</td>
<td>-</td>
</tr>
<tr>
<td>6-10</td>
<td>I5</td>
<td>KTYPE = 15 (VANE PUMP)</td>
<td>-</td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td>BLANK</td>
<td>-</td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td>SLOTWO (CAM SLOT WIDTH-OUTLET)</td>
<td>IN</td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td>COEPLK (COEFFICIENT OF PUMP LEAKAGE)</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td>THPRS (VANE PRESSURE SLOT START ANGLE)</td>
<td>DEG</td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td>THPRE (VANE PRESSURE SLOT END ANGLE)</td>
<td>DEG</td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td>THSUCS (VANE SUCTION SLOT START ANGLE)</td>
<td>2-7 DEG</td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td>THSUCE (VANE SUCTION END ANGLE)</td>
<td>DEG</td>
</tr>
</tbody>
</table>
VANE PUMP MODEL INPUT DATA

Card Number 2

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>E10.0</td>
<td>LPRESS (INLET PRESSURE)</td>
<td>PSI</td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td>SZCAM (INITIAL ZCAM POSITION)</td>
<td>IN</td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td>VVOL (MAXIMUM VANE VOLUME)</td>
<td>IN³</td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td>PQOVBD (OVERBOARD FLOW)</td>
<td>CIS</td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td>CK1 (SYSTEM CONSTANT PRESSURE RISE)</td>
<td>PSI</td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td>CKL (SYSTEM LAMINAR TERM)</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td>CKT (SYSTEM TURBULENT TERM)</td>
<td>PSI/CIS**1.75</td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td>CKV (METERING VALVE TERM)</td>
<td>PSI/CIS**2</td>
</tr>
</tbody>
</table>

Example Card

```
123
```
FIGURE 2-6

VANE PUMP BLOCK DATA INITIALIZATION

238
FIGURE 2.7
VANE PUMP CAM BLOCK PARAMETERS
APPENDIX E (CONT.)
HSFR TECHNICAL MANUAL (ATACL-TR-16-41, VOL. IV)

3.6 BLOCK DATA - MAIN PROGRAM

BLOCK DATA is used to initialize values in labels COMMON/VANE/. The
labeled COMMON is used to pass the initialized data to the VANE PUMP
SUBROUTINE.

The arrays in COMMON/VANE/are:

CAMP() = Cam position (1M)
CMAX() = Max flow at cam position (CIP)
ANGLE() = Vane angle rotation (PSC)
DVOL() = dVolu at vane angle (MAX*SEC)
NA(1) = Number of input DVOL at each cam setting
NA(1) = Number of different cam settings (The cam settings are stored as the end of the ANGLE() array)
CAMPI() = Inverse of CAMP() array
CMAXI() = Inverse of CMAX() array
3.8.1 BLOCK DATA - LISTING

```
Blok D4at

C

C0MMON VANC/C8M11) CNMAX(II11) ANG1E(301) DVL1 B111 NA(2)
+ Bloc 61(11) CN1NAX(II11) 
DATA C76,0.08,71,0.0765,0.73,0.069,0.62,0.05,0.0415,0.027,
+ 0.014,0.01 
DATA D At/0,0.0187,0.0375,0.0813,0.1375,0.225,0.3375,0.4875,0.5667,
+ 0.7875,0.875 
DATA CNM111/0,0.014,0.027,0.0415,0.053,0.062,0.069,0.073,0.0765,
+ 0.0813,0.0875 
+ 0.0187,0.01 
DATA ANG1E/0,0.1,0.15,0.2,0.22,0.3,0.4,0.5,0.6,0.63,0.7,0.8,0.9 .
+ 1,0,1.12,1.135,1.138,1.14,1.145,1.15,1.16,1.17,1.175,1.18.
```

THIS PAGE IS BEST QUALITY PRACTICABLE

FROM DRAFT PUBLISHED TO OCR
4.15 VANE PUMP SUBROUTINE

4.15.1 Introduction and Flow Diagram

SUBROUTINE VPUMP is a general, detailed model of a balanced variable displacement vane pump. The model computes the ability of the pump to deliver flow against an output pressure by modeling the nonlinear relationship between pump output flow and pressure in the time domain. The main program calculates the harmonic load impedance of the circuit, and this provides the linear phase and gain relationship between the harmonic flows into the load and the corresponding pressures across the load, in the frequency domain. The balance is obtained in the time domain, although a check is performed in the frequency domain.

The vane pump model accounts for valving areas, precompression, steady state cam position, fluid bulk modulus, pump internal leakage, circuit termination flow and vane motion. Steady state cam position is calculated as a function of pump internal leakage, circuit overboard flow, and pump speed. If the cam position is a minimum corresponding to maximum pump flow, the steady state pressure is calculated at each RPM. The dynamics of the cam controlling circuit are not included in the model.

Vane bucket pressure at the beginning of precompression is assumed constant and equal to one plus the input steady state inlet pressure. Piston pressure is then computed continuously until the end of the compression stage.
Figure 4-6 is a general flow chart of the VPUMP subroutine. The specification section includes initialization of variables from input data, and the calculation of several constants. Specification statements are followed by the initialization of pump variables from the input data and calculates the vane indexing positions for 180° of vane revolution. These operations are performed only once, when VPUMP is called on the first pump speed. Steady state pump outlet pressure and overboard flow for a cam position are then calculated. The subroutine will next determine if the pump is on control at the given RPM and assign a value to the control indicator - ICTL. After this is accomplished the precompression pressures are computed. Pump outlet flow is calculated for each incremental bucket volume and then a Fourier Analysis is done of the resulting computed forms. If the pump is on control, the corrected cam position is determined. The Fourier Analysis is completed to calculate harmonic flows up through the user input harmonic. Harmonic pressure and flow are then balanced dynamically by reconstructing the time dependent output pressure and recomputing flow from Section 4. Pump outlet flow and pressure for the harmonic of interest are then returned to the main program.

The VPUMP subroutine is divided into seven sections. Each section is discussed and a listing provided in subsequent paragraphs.
FROM MAIN PROGRAM

Call Arguments
- Pump Start Speed (WSTART)
- Pump Speed for Current Calculation (Y)
- Outlet Load Impedance for Each Harmonic (ZIP)
- Harmonic of Interest (NHARM)
- Steady State Flow Rate (POOVBD)
- Steady State Output Pressure (PRESS)
- Pump Speed Increment (WINC)
- No. of Vanes (PISTNO)
- Inlet Load Impedance for Each Harmonic (ZAP)

Specification Statements

Check Speed

Y = WSTART

Y = WSTART

Initialize Pump Variables from Input Data Array Parm (.)

Section 1: Compute Valving Index Positions

Section 2: Calculate Steady State Pressure and Overboard Flow for a Cam Position

Section 3: Test if Pump is on Control

LEAK = QMAX-POOVBD

QMAX ≥ POOVBD + LEAK

On Control
ICTL = 1

Not on Control
ICTL = 0

Calculate Precompression Pressures

FIGURE 4-8
HSFR VANE PUMP
Subroutine Flow Chart

244
Section 4 - Correct Pump Outlet Flow

Section 5 - Perform Fourier Analysis of Outlet Flow

Check for Dynamic Balancing

K K

= 1

Recompute Cam Position (ZCAM)

= 0

Calculate Harmonic Outlet Flows Up through Harmonic of Interest

Section 6 - Calculate Harmonic Pressures Up through Harmonic of Interest

Section 7 - Reconstruct Time Dependent Harmonic Outlet Pressure

Outlet Flow and Pressure for Harmonic of Interest

TO MAIN PROGRAM

FIGURE 4-8 (Continued)
HSFR VANE PUMP
Subroutine Flow Chart
Variable Names

Variable names unique to the PUMP subroutine are listed below. Common variables are discussed in the main program paragraph.

3.1.6.1

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AINC</td>
<td>Incremental shaft rotation angle</td>
<td>DEGREES</td>
</tr>
<tr>
<td>AN</td>
<td>Temporary variable</td>
<td>-</td>
</tr>
<tr>
<td>BULKP</td>
<td>Bulk modulus during precompression</td>
<td>PSI</td>
</tr>
<tr>
<td>C</td>
<td>Temporary variable used in Fourier calculation</td>
<td>-</td>
</tr>
<tr>
<td>CAVOL</td>
<td>Piston cavitation volume</td>
<td>IN**3</td>
</tr>
<tr>
<td>CKL</td>
<td>System laminar coefficient</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>CKT</td>
<td>System turbulent coefficient</td>
<td>PSI/CIS**1.75</td>
</tr>
<tr>
<td>CKV</td>
<td>Metering valve coefficient</td>
<td>PSI/CIS**2</td>
</tr>
<tr>
<td>CK1</td>
<td>System constant pressure rise</td>
<td>PSI</td>
</tr>
<tr>
<td>COEF</td>
<td>Temporary variable used in Fourier calculation</td>
<td>-</td>
</tr>
<tr>
<td>COEPLK</td>
<td>Coefficient of pump leakage</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>CORR</td>
<td>Dummy variable</td>
<td>-</td>
</tr>
<tr>
<td>CI</td>
<td>Temporary variable used in Fourier calculation</td>
<td>-</td>
</tr>
<tr>
<td>DANG</td>
<td>Incremental shaft rotation angle used in precompression calculation</td>
<td>RAD</td>
</tr>
<tr>
<td>DELVOL</td>
<td>Change in vane bucket volume for rotation through (DANG)</td>
<td>IN**3</td>
</tr>
<tr>
<td>DLEAK</td>
<td>Leakage from one vane during rotation through incremental angle (DANG)</td>
<td>IN**3</td>
</tr>
<tr>
<td>DPRESF</td>
<td>Pressure change in cylinder during precompression</td>
<td>PSI</td>
</tr>
<tr>
<td>DT</td>
<td>Incremental time for rotation through incremental angle (DANG)</td>
<td>SEC</td>
</tr>
<tr>
<td>DTERM</td>
<td>Temporary variable</td>
<td>-</td>
</tr>
<tr>
<td>DTHETA</td>
<td>Temporary variable</td>
<td>-</td>
</tr>
<tr>
<td>DV</td>
<td>Incremental vane volumes for rotation through (DANG)</td>
<td>IN</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>DESCRIPTION</td>
<td>UNITS</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>DVDT</td>
<td>Change in vane volume per unit time</td>
<td>CIS</td>
</tr>
<tr>
<td>D9CAM</td>
<td>Delta cam position</td>
<td>IN</td>
</tr>
<tr>
<td>ETA(J)</td>
<td>Percentage error between predicted and resulting Jth harmonic pressure</td>
<td>X</td>
</tr>
<tr>
<td>FNTZ</td>
<td>Temporary variable used in Fourier analysis</td>
<td>-</td>
</tr>
<tr>
<td>FQ1(I, KK)</td>
<td>Complex output flow of the Ith harmonic, for the KKth test, from Fourier analysis</td>
<td>CIS</td>
</tr>
<tr>
<td>FQ1(KK, 1)</td>
<td>Complex flow for the next harmonic, KKN, equals the last Fourier flow for the next harmonic, calculated from the final KK=3 test balanced flow from the last harmonic-FQ1(KKN, 1) = FQ1(KKN, 3)</td>
<td>CIS</td>
</tr>
<tr>
<td>FQ11 (-, -)</td>
<td>Complex inlet flow</td>
<td>CIS</td>
</tr>
<tr>
<td>HPRESS</td>
<td>Pump outlet steady state pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>i</td>
<td>Integer counter</td>
<td>-</td>
</tr>
<tr>
<td>ICTL</td>
<td>Pump control indicator (1 = on control, 0 = off control)</td>
<td>-</td>
</tr>
<tr>
<td>IERR</td>
<td>Error indicator</td>
<td>-</td>
</tr>
<tr>
<td>IFL</td>
<td>Integer counter for number of steady state balance loop iterations</td>
<td>-</td>
</tr>
<tr>
<td>ITRM</td>
<td>Integer indicator</td>
<td>-</td>
</tr>
<tr>
<td>ITER, I1, I3, J</td>
<td>Integer counters</td>
<td>-</td>
</tr>
<tr>
<td>K, K, KN</td>
<td>Integer counter for dynamic balancing test, Order of harmonic (1, 2, 3, ----)</td>
<td>-</td>
</tr>
<tr>
<td>LEAK</td>
<td>Constant for piston lap leakage</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>LKI - LK8</td>
<td>Temporary variables used in flow calculations</td>
<td>-</td>
</tr>
<tr>
<td>LPRESS</td>
<td>Input data-steady state inlet pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>LPPRESS</td>
<td>Piston pressure in precompression calculation</td>
<td>PSI</td>
</tr>
<tr>
<td>LVOL</td>
<td>Piston volume in precompression calculation</td>
<td>IN**3</td>
</tr>
<tr>
<td>M, N</td>
<td>Integer counters</td>
<td>-</td>
</tr>
<tr>
<td>NAPP</td>
<td>Number of active pistons pumping</td>
<td>-</td>
</tr>
<tr>
<td>NAPS</td>
<td>Number of active pistons sucking</td>
<td>-</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>DESCRIPTION</td>
<td>UNITS</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>NDEGI</td>
<td>Integer counter for stepping cylinder rotation 1/4 degree increments, beginning with NDEG+1</td>
<td>-</td>
</tr>
<tr>
<td>NHARM</td>
<td>Integer form of WHARM</td>
<td>-</td>
</tr>
<tr>
<td>NM</td>
<td>Index position of vane bucket during flow calculation</td>
<td>-</td>
</tr>
<tr>
<td>NPRSOP</td>
<td>Index position when vane slot starts to open to pressure slot</td>
<td>-</td>
</tr>
<tr>
<td>NPROP</td>
<td>Index position when vane slot is fully open to pressure slot</td>
<td>-</td>
</tr>
<tr>
<td>NPRSCL</td>
<td>Index position when vane slot starts to close to pressure slot</td>
<td>-</td>
</tr>
<tr>
<td>NPRCL</td>
<td>Index position when vane slot is fully closed to pressure slot</td>
<td>-</td>
</tr>
<tr>
<td>NSUSOP</td>
<td>Index position when vane slot starts to open to suction slot</td>
<td>-</td>
</tr>
<tr>
<td>NSUOP</td>
<td>Index position when vane slot is fully open to suction slot</td>
<td>-</td>
</tr>
<tr>
<td>NSUSCL</td>
<td>Index position when vane slot starts to close to suction slot</td>
<td>-</td>
</tr>
<tr>
<td>NSUCL</td>
<td>Index position when vane slot is fully closed to suction slot</td>
<td>-</td>
</tr>
<tr>
<td>NSTEPP</td>
<td>Number of steps in precompression calculation</td>
<td>-</td>
</tr>
<tr>
<td>NVANG</td>
<td>Number of steps in one bucket</td>
<td>-</td>
</tr>
<tr>
<td>ORF</td>
<td>Orifice coefficient of valve</td>
<td>IN2/SEC/LB.5</td>
</tr>
<tr>
<td>PISTNO</td>
<td>Number of pumping vanes</td>
<td>-</td>
</tr>
<tr>
<td>PP()</td>
<td>Internal pressure in pistons 1, 2, 3, or 4 at a given index position</td>
<td>PSI</td>
</tr>
<tr>
<td>PPI()</td>
<td>-</td>
<td>PSI</td>
</tr>
<tr>
<td>PISPFR</td>
<td>Bucket pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>PPM(I)</td>
<td>Magnitude of the Ith harmonic peak pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>PLEAK</td>
<td>Leakage out of bucket</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>PP(I)</td>
<td>Phase angle of the Ith harmonic peak pressure</td>
<td>RAD</td>
</tr>
<tr>
<td>PPT()</td>
<td>Time dependent amplitude of pump output pressure for each rotation index position during output cycle</td>
<td>PSI</td>
</tr>
<tr>
<td>PQVBD</td>
<td>Total overboard state leakage from main program</td>
<td>CIS</td>
</tr>
<tr>
<td>PQL(I,KK)</td>
<td>Complex output test pressure of the Ith harmonic, for the KKth test in dynamic balancing</td>
<td>PSI</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>DESCRIPTION</td>
<td>UNITS</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>PQII(I,KK)</td>
<td>Complex inlet test pressure of the i^{th} harmonic</td>
<td>PSI</td>
</tr>
<tr>
<td>PRESS</td>
<td>Input data for steady state pump output pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>QERR</td>
<td>Steady state flow error</td>
<td>CIS</td>
</tr>
<tr>
<td>QMAX</td>
<td>Maximum flow capability at cam position</td>
<td>CIS</td>
</tr>
<tr>
<td>QOUT</td>
<td>Flow out of bucket</td>
<td>CIS</td>
</tr>
<tr>
<td>QOVBD</td>
<td>Overboard flow for steady state</td>
<td>CIS</td>
</tr>
<tr>
<td>QQFC(I)</td>
<td>COSINE peak amplitude of pump output (inlet) flow from Fourier analysis for i^{th} harmonic</td>
<td>CIS</td>
</tr>
<tr>
<td>QQFS(I)</td>
<td>SINE amplitude of pump output (inlet) flow from Fourier analysis for i^{th} harmonic</td>
<td>CIS</td>
</tr>
<tr>
<td>QQ(T(N)</td>
<td>Time dependent output flow from pump</td>
<td>CIS</td>
</tr>
<tr>
<td>Q1, Q2</td>
<td>Temporary variables</td>
<td>-</td>
</tr>
<tr>
<td>RTHETA</td>
<td>Temporary variable in area calculation</td>
<td>-</td>
</tr>
<tr>
<td>S</td>
<td>Temporary variable in Fourier analysis</td>
<td>-</td>
</tr>
<tr>
<td>SLEAK</td>
<td>Leakage into bucket</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>SLOTWO</td>
<td>Slot width of outlet</td>
<td>IN</td>
</tr>
<tr>
<td>SRCAM</td>
<td>Input cam position</td>
<td>IN</td>
</tr>
<tr>
<td>TERM</td>
<td>Temporary variable</td>
<td>-</td>
</tr>
<tr>
<td>THPRS</td>
<td>Input data cam pressure slot start angle</td>
<td>DEG</td>
</tr>
<tr>
<td>THPRE</td>
<td>Input data cam pressure slot end angle</td>
<td>DEG</td>
</tr>
<tr>
<td>THSUCS</td>
<td>Input data cam suction slot start angle</td>
<td>DEG</td>
</tr>
<tr>
<td>THSUCE</td>
<td>Input data cam suction slot end angle</td>
<td>DEG</td>
</tr>
<tr>
<td>THETA</td>
<td>Angular position of vane centerline</td>
<td>DEG</td>
</tr>
<tr>
<td>THEOLD</td>
<td>Last Angular position of vane centerline</td>
<td>DEG</td>
</tr>
<tr>
<td>TQMAX</td>
<td>Temporary variable</td>
<td>-</td>
</tr>
<tr>
<td>UO,U1,U2,U3</td>
<td>Temporary variables used in Fourier analysis</td>
<td>-</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>DESCRIPTION</td>
<td>UNITS</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>VA</td>
<td>Bucket volume at a given index position</td>
<td>IN**3</td>
</tr>
<tr>
<td>VAREA</td>
<td>Cylinder slot flow area at each index position, 0-360° in 1/2° increments</td>
<td>IN**2</td>
</tr>
<tr>
<td>VVOL</td>
<td>Maximum vane volume</td>
<td>IN**3</td>
</tr>
<tr>
<td>WINC</td>
<td>Input data pump speed increment</td>
<td>RPM</td>
</tr>
<tr>
<td>W</td>
<td>Harmonic frequency (same as A in main program)</td>
<td>RAD/SEC</td>
</tr>
<tr>
<td>WSTART</td>
<td>Input data first pump speed calculation point</td>
<td>RPM</td>
</tr>
</tbody>
</table>
| XA() | $X_A(1) = vane\ angle$
 | $X_A(2) = cam\ position$ | DEG | |
| Y | Current calculation pump speed (same as W in main program) | RPM |
| ZO | Pump shunt impedance for I^{th} harmonic | PSI/CIS|
| ZIP() | Complex impedance of load on pump outlet for each harmonic | PSI/CIS|
| ZAP() | Complex impedance of load on pump inlet for each harmonic | PSI/CIS|
| ZCAM | Cam position | IN |
SUBROUTINE VPUMP(START, ZIP, NHARM, PQDVBD, PRESS, WINC, PISTNO, +ZAP)

***** CFC0 VANE PUMP MODEL ***** MAY 8, 1978

VARIABLE TYPES, DIMENSIONS, COMMONALITY

REAL LPRESS, LPRESL, LVOL, LECk, LK1, LK2, LK3, LK4, LK5, LK6, LK7, LK8
COMPLEX ETA, G, P, Q, Z, ZIP, ZAP, P3, FQ1, POI
COMMON ETA, G, P, Q, Z, ZIP, ZAP, P3, FQ1, POI
COMMON G, P, Q, Z, ZIP, ZAP, P3, FQ1, POI

IN, PI, IEl, NEL, KTYPE(40)
COMMON /VAVE/CAMP(11), COMAX(11), ANGLF(30), DVOL(81), NA2(2)
DIMENSION G1(2,2,40), PARM(4,40), P(40), Q(40), XA(2), DQ(11)
DIMENSION DQ(11), P(91), Q(91), G(11), PPA(11), PPR(11)
DIMENSION ZAP(10), ZIP(10), P(1400)
DIMENSION FQ1(10,3), POI(10,3), ETA(10)
DATA PS/1400*0.0/

INITIALIZE VARIABLES FROM INPUT DATA OR MAIN PROGRAM

IF(NE, START) GO TO 140
TERM = PARM(1,1)
SLTW0 = PARM(2,1)
CDEPLK = PARM(3,1)
THPR = PARM(4,1)
TDW= PARM(5,1)
THSUCs = PARM(6,1)
THSUC = PARM(7,1)
LPRESS = PARM(1, NEL+1)
SICAM = PARM(2, NEL+1)
VWOL = PARM(3, NEL+1)
PQDVBD = PARM(4, NEL+1)
CK7 = PARM(5, NEL+1)
CKL = PARM(6, NEL+1)
CKU = PARM(7, NEL+1)
CKV = PARM(8, NEL+1)
ZCAP = 0.0
IF(SICAM .GT. 0.0) ZCAP = SICAM
NAPP = (THPR + THPR)/PISTNO+1
NAPS = (THSUCs - THSUCs)/PISTNO+1
Q1 = 10.
4.15.2 Section 1 - Compute Valve Index Positions

Figure 4-7 illustrates modeling parameters for a vane pump. Section 1 calculates the angular increment based on the number of vanes to produce 720 divisions per 180 degrees of revolution. In addition, the index positions for the beginning and end of the CAM pressure and Sultan slots are computed.

4.15.2.1 Section 1 - Listing

```c
SECTION 1
COMPUTE VALVING INDEX POSITIONS
VANG = 360.0 / PISTNO
AINC = 4.0 / PISTNO
MDEG1 = 180.0 / AINC + 0.001
NVANG = VANG / AINC + 0.001
NVANG1 = NVANG + 1
NPRSOP = TMPRS / AINC + 1
NPROP = NPRSOP / NVANG + 1
NPRSCL = (90.0 - THPRES) / AINC + 1
NPRCL = NPRSCL + NVANG + 1
NSUSOP = 190.0 + THSUC + AINC + 1
NSUSCL = 180.0 - THSUC - AINC + 1
NSTOR = MDEG1 + 1
WRITE (6, 840) NPRSOP, NPROP, NPRSCL, NPRCL, NSUSOP, NSUSCL, NSUSCL
840 FORMAT (8(5X, 15)I25)
```
FIGURE 4-7
VANE PUMP CAM BLOCK PARAMETERS
4.15.3 Section 2 - Steady State Output Pressure Calculation

Section 2 calculates the steady state outlet pressure and flow as a function of cam position, pump speed, and pump internal leakage rate.

On the first call to VPUMP the orifice flow coefficient (ORF) is calculated, the first incremental bucket volume is initialized to pump inlet pressure and the bucket cavitation volume is set to zero. These calculations are bypassed on all subsequent calls of VPUMP. Each time VPUMP is called for a new pump speed and the cam position (ZCAM) is estimated as a function of incremental and maximum pump RPM.

4.15.3.1 Math Model

Two equations are solved to obtain pump overboard flow and outlet pressure. Equation (1) describes the system pressure drop characteristics input by the user:

\[
HFRESS = CKI + CKI \cdot QI + CKI \cdot QI \cdot 1.75 + CKV \cdot 2 \quad (1)
\]

Where

- PRESS = Pump outlet pressure (PSI)
- QI = Pump overboard flow (CIS)

The second equation describes the pump outlet flow in terms of max flow rate at the current RPM (QMAX) minus a leakage flow. Leakage is assumed to be directly proportional to the vane stage pressure rise as shown in Equation (2):

\[
QI = QMAX - (HPRESS - LPRESS) \cdot COEPLK \quad (2)
\]

Equation (2) is solved for HPRESS and substituted into Equation (1). Newton's method of finding successive approximations to a real root (OR) of the resulting equation is used. When the error between successive iterations is less than 0.001 CIS the value of overboard flow is used in Equation (2) to find HPRESS.
4.15.3.2 Section 2 - Listing

SECTION 2 ZCAM POSITION AND STEADY STATE OUTPUT PRESSURE CALCULATION

PISPR(NUCL1) = LPRESS
CNTL = 0.00
QRF = 6.8*QRT(2.0/PH0)

140 CONTINUE
ITER = 0
CALL INTFRP(ZCAM,CAMP(1),CMAX(1),10,11,OMAX,IERR)
QMAX = QMAX + 160.

145 QMAX = QMAX + 160.
ITER = ITER + 1
TERM = CK1 + CKT*Q1**1.75 + CKV*Q1*Q1 - LPRESS*(Q1 - QMAX)/COEPLK
CTR = CK1 + CKT*Q1**1.75 + CKV*Q1*Q1 - LPRESS*(Q1 - QMAX)/COEPLK
Q1 = Q1 - TERM/TERM
IERR = QF - Q1
IF (ABS(IERR) LT 0.001) GO TO 150
IF (ITER EQ 50 AND IERR LT 0.001) GO TO 150

9000 FORMAT (15X,EXCEEDED 50 ITERATIONS IN PUMP SS.FLOW BALANCE*)
IF (ITER EQ 50) STOP
GO TO 145

150 CONTINUE
QOF(0.0, DT, P00VBD) = 0.00
HLPRESS = (OMAX - QOF(0.0, DT, P00VBD))/COEPLK
QMAX = QMAX + HLPRESS
QMAX = QMAX + HLPRES
4.15.4 Section 3 - Bucket Precompression Calculation and Control Test

Section 3 determines if the computed flow capacity for a given cam position and RPM is sufficient to provide the demanded flow with a given pump leakage flow. If the pump can supply this flow, the control indicator is set to one (ICT1 = 1).

Prior to the precompression pressure calculation, the maximum bucket volume is adjusted. The change in volume is added to the total volume as the vane increments, NVANG times starting from the point where the leading edge of a vane is just closed to the inlet.

The remainder of Section 3 calculates the bucket pressure which exists before the vane starts to open the bucket to the pressure slot. This pressure is the result of precompression in the bucket during that portion of rotor rotation when the bucket is blocked by the cam block between the suction and pressure slots.

4.15.4.1 Math Model - The change in bucket volume is a function of the cam position and angular displacement of the rotor as shown in Figure 4-8. Total bucket volume is the sum of the volume changes for increasing bucket volume and minus the changes for decreasing volume. A pressure dependent factor for leakage from each vane to inlet is estimated for bucket pressures above input suction pressure as

\[
P_{\text{LEAK}} = \frac{C_{\text{OPLK}}}{(2.*N_{\text{APP}})}
\]

Leakage from inlet to each bucket is

\[
S_{\text{LEAK}} = -P_{\text{LEAK}}
\]

Any cavitation volume in the bucket is calculated and tracked throughout the bucket revolution. Bucket pressures are stored for each position throughout the calculation. Time dependent oscillatory outlet pressure is initialized to zero PSI.
LEAD VANE ANGULAR POSITION THETA (DEG)

FIGURE 4-8

dVolume

VERSUS VANE ANGLE

dt
4.15.4.2 Assumptions - The bucket is assumed to be completely filled on the suction stroke and the initial cylinder is assumed to be one plus the input steady state value. Pressure dependent leakage is assumed, bulk modulus is recalculated at each step based on the last step incremental bucket pressure, and the bulk modulus formula used in fluid.

4.15.4.3 Computation Method - The calculation is performed in DANG increments with the initial vane centerline angle computed from the suction slot end angle (THSUCE) and the bucket angle (VANC). The number of calculation steps (NSTEPP) is calculated based on index positions defining the end of the suction slot plus NVANG and the beginning of the pressure slot in the cam block.
4.15.4.4 Section 3 — Listing

SECTION 3 — PISTON PRECOMPRESSION CALCULATION

TEST IF ON CONTROL
Continues LEAK=OMAK=0QVBD
ICTL=1
IF [OMAX. GE. POQVBD*LEAK) ICTL=1
NSTEP+NPRESS*NSCUL
NP. (VANG-THSUCE)/AIMC+1
DPSQ=0.0
LPRESS=NPR(S)NSCUL)
PLEAK=COPLK/(2.*NAPP)
PLEAK=PRESS
DANG=AINC
THETA=VANG-THSUCE
DT. = AIMC/16.*Y)
XA(11) = THSUCE
XAI2) = ZCAM
11*NSCUL
2*ND1G
ITEM = XA
LVOL = LVOL
I5 = 0

CALCULATE VOLUME FOR ONE BUCKET
166 DO 169 1=1112
13 = 11
XAII) = XA(I)+DANG
CALL LUCUP(I) = NA(I), ANGLE(1), QVOL(1), XA(I), DVDT*K+3E+3E44
168 CONTINUE
IF (LTER.EQ.11) GO TO 169
ITEM = 1
IT = 1
13 = 0
XAI) = DANG
GO TO 166
169 I = 0
13 = 0
LPRESS = LPRESS + 1.0
Computation PRECOMPRESSION TO PRESSURE SLOT
163 DO 160 1 = 111 NSTEP
IF (LPRESS = LPRESS) GO TO 162
DLEAK = (LPRESS - LPRESS)*PLEAK*DT
GO TO 164
164 DLEAK = (LPRESS - LPRESS)*PLEAK*DT
154 RULP = RULP + 1.0 + (LPRESS - PRESS)
XAI) = XA(I)*THETA+DANG
THETA = XA(I)
CALL LUCUP(I) = MA(I), ANGLE(1), QVOL(1), XA(I), DVDT*K+3E+3E44
161 IF (XAI2 GT 911) 13 = 1
13 = 13
DV(13) = QVOL - PVOL
LVOL = QVOL - QVOL
DPSQ = (QVOL-DLEAK-CAVOL)/LVOL*BULKP
LPRESS = LPRESS + DPSQ
NP = NP + 1
IF (LPRESS.GT.0.1) GO TO 165
CAND = CAVOL + DELVOL + DLEAK
IF (CAND .GT. 0.E+9) CAVOL = 0.0
LPRESS = 0.01
DPRESS = 0.0
GO TO 167
165 CAVOL = 0.0
167 LPRESS = 0.0
C IF (XAI2 GT 931) CAVOL = LPRESS*DVI11313*DELVOL1
91 DO 150 CONTINUE
150 CAVOL = CAVOL + DELVOL
THEG0 = THETA
DC 151 N = 1. NVANG1
151 PFT1N = 0.0
KKN = 1
K = 1
170 CONTINUE
4.15.5 Section 4 - Pump Outlet Flow Calculation

Section 4 calculates the total output flow from the pump for one cycle. Each of the active pumping buckets (NAPP) is sequentially incremented through steps. The outlet flow is determined from summing the flow from each bucket per side. The total flow is then multiplied by two since each side of the pump supplies approximately one half of the flow. The calculation is started one index step after the precompression ends. Pressure in the first bucket is initially the final precompression value. Pressure in the other open buckets is equal to the sum of the previously calculated steady state output pressure (HPRESS) and time dependent oscillating pressure (PPT). Bucket pressure and outlet flow computed at each step account for bucket leakage, pressure drop across the cam block, vane motion and fluid compressibility. QOT(I) is set equal to QOT(NVANGI) to reduce the effects of calculation start-up discontinuity, caused by the assumed initial cylinder pressures.

4.15.5.1 Math Model - The math model derivation is almost identical to that for the piston pump discussed in section 4.5.1. The only significant change occurs in equation (22). The pressure loss due to fluid flow over a time DT is estimated as four times the flow rate, because there is one equation for each slot in the cam block. Equation (22) now becomes

\[\Delta P_f = \frac{((DT*\text{BULK})/(VA*LK1))}{4*Q}=4*LK3*Q \]

Following through on the substitution into equations (23) and (24), equation 25 is

\[Q^2+2*LK5*Q-LK6 \] \hspace{1cm} (25)

Where

\[LK5 = LK4 * LK3 *2 \] \hspace{1cm} (26)

The solution for Q in equation (25) remains the same.
Before computing the vane outlet flow, the outlet flow area is calculated. As the leading edge vane of the bucket rotates through the outlet slot on the cam block, the arc length of the bucket exposed to the outlet is computed as

\[VAREA = 0.60935 \times \Delta\theta / 57.3 \]

This value is then multiplied by the cam block slot width to obtain the vane outlet flow area for one slot.

\[VAREA = VAREA \times \text{SLOTWO} \]

The outlet flow calculation also tracks a cavitation volume if it should occur on the outlet. Outlet flow is computed for one output cycle of NVANG increments regardless of the increment size.
4.15.5.2 Section 4 - Listing

SECTION 4 - PUMP OUTPUT FLOW CALCULATION

CAVOL = CAVOLD
VA = LVOL
THETA = THEOLD
R1(Z) = ZCAH
R1(THETA) = VANG
DO 180 N = 1, NVANG
180 QNT(N) = 0.0
WRITE(6, 192) N, CAVOL, LPRES, VA, THETA
925 FORMAT(I9, 10, E12.5)
NM = NPSR
DO 200 M = 1, NAPP
DO 190 N = 1, NVANG
NM = NM + 1
IF(NMK <= NM) GO TO 190
210 THETA = DANG
THE = XA(II)
CALL LUCUP(NM, NA(I), ANGLE(I), CAVOL(I), XA(I), DROT, K, IF, NFXTR)
190 CONTINUE
IF(II.GT.01) I = 1
DVI(II) = DVT
VA = VA + DVI(II)
DELVOL = DVI(II)

C COMPUTE WASTE OUTLET FLOW AREA
DTHETA = THETA - THTR
IF(DTHETA < -THTR) DTHETA = THTR - DTHETA
IF(DTHETA > THTR) DTHETA = THTR - DTHETA
IF(DTHETA < 0.) DTHETA = THTR - DTHETA
DAREA = DAREA + DTHETA

IF(CAVOL <= 0.0) GO TO 187
RULK = BULKI + 2.0*PSPR(KM-1)*PRESS
IF(PSPR(KM-1) .GE. LPRESS) GO TO 186
LEAK = LEAK + (L*1000) + LEAK*DT/VA
GO TO 186
186 LEAK = LEAK

185 EK2 = EPSPR(KM-1) + BULKP/VA*(DELVOL)/L1
L3 = BULKP/VA*L1
L4 = (DFP*VA2)^2*F3
L5 = L3*L4
L6 = L4 + L5 + LPRESS - PPT(N)
L7 = L5 * SQRT(L6)
L8 = -(L5 + SQRT(L7))
QOUT = .SIG(II)*L6*
PSPR(KM) = L6 - QOUT + LK1
PSPR(KM) = L6 - QOUT + LK2 + LK3
IF(PSPR(KM) .GT. 0.0) GO TO 188
187 CONTINUE
LEAK = LEAK
QOUT = 10.0*VARA*SQR(L6*(HPRESS - PPT(N1)))/RHO1)
PSPR(KM) = 0.0
CAVOL = CAVOLD - DELVOL - LEAK*DT/VA + QOUT + 0.01
188 QNT(N) = QNT(N) + QOUT
190 CONTINUE
200 CONTINUE
201 CONTINUE
927 FORMAT(5X, I9, 5X, 10E12.5)
262
4.15.6 Section 5 - Fourier Analysis of Pump Outlet Flow

Section 5 performs a harmonic analysis of the time dependent pump total output flow calculated in Section 4. Flow is computed over the cycle period for each harmonic from the fundamental up to and including the input harmonic.

If the pump is on control, the overboard flow is used to adjust the cam position (ZCAM). Harmonic flows (FQl(I,KK)) are then calculated from the steady state conditions.

The steady state cam position calculation is bypassed during subsequent dynamic balancing in Section 6.

4.15.6.1 Section 5 - Listing

```fortran
      4.15.6 SECTION 5 - FOURIER ANALYSIS OF PUMP OUTPUT FLOW
      ANP=ANG/VINO/2.*
      NP=ANP+1.
      C1=JC69163*COEF
      S1=JUN(C1)
      S=0.0
      C=0.0
      J=7
      210 U2=0.0
      UI=0.0
      I=2
      C    FOURIER COEFFICIENTS RECURSIVELY
      U1=1.0
      220 U=U0+U2*C3+U2*C0+U2*C7
      U1=1.0
      230 U=U0+U2*C3+2.7329*U=+2.7329*U=+U2*C7
      U1=1.0
      240 U=U0+U2*C3+2.50*U=+2.50*U=+U2*C7
      U1=1.0
      250 U=U0+U2*C3+2.7329*U=+2.7329*U=+U2*C7
      U1=1.0
      C    STAIR STATE FLOW ERROR
      U=0.0000 TO 999
      C    POSTPONE ON IN THE
      U=1.000 TO 999
      C    POSTPONE ON IN THE
      U=1.000 TO 999
      C    FOURIER ANALYSIS
      U=1.000 TO 999
      250 U=U0+U2*C3+2.7329*U=+2.7329*U=+U2*C7
      U1=1.0
      260 U=U0+U2*C3+2.7329*U=+2.7329*U=+U2*C7
```
4.15.7 Section 6 - Outlet Pressure - Flow Balance Calculation and Listing

Section 6 of the vane pump model is identical to Section 6 of the axial piston pump model described in Paragraph 4.7.
4.15.8 Section 7 - Reconstruction of Time Dependent Pressures and Listing

Section 7 computes the time dependent outlet pressure (PPT) from each estimate of complex dynamic output pressure (P3) in Section 6. This section is identical to Section 7 in the axial pump model described in Paragraph 4.8.

C

SECTION 7 - RECONSTRUCTION OF TIME DEPENDENT OUTLET PRESSURE

TERM = (2.*PI)/NVANG
DB 330 J = 1, NVANG
THETA = (J-1)*TERM
PPT(J) = PPT(J) + REAL(P3)* SIN(THETA) + IMAG(P3)* COS(THETA)
IE = PPT(J) - HPRESS
PPT(J) = HPRESS
330 CONTINUE
KK = KK + 1
GO TO 170
335 CONTINUE
WRITE(6,901) CAM, QMAX, HPRESS, PRESS, QQFC(1), QQWPD, Y, ICTL
901 FORMAT(6,927) (PROMP(1,1), 1 = 31, 416)
Q(1) = F01(NHARM, 3)
P(1) = PO1(NHARM, 3)
RETURN
END
8.6 **SUBROUTINE LUCUP**

Subroutine LUCUP provides linear interpolation of data points for a three-dimensional table. Two coordinate points are input and LUCUP returns the third value.
8.6.1 SUBROUTINE LUCP-LISTING

SUBROUTINE LUCP (X1, XA, Z, NA, IE, NXP)

M = NA(1)
I2 = NA(1)
T = NA(1)

IF (T = X1) GO TO 90, 96
CONTINUE

IF (T > X1) GO TO 100

IF (T < X1) GO TO 110
CONTINUE

10

IF (T = X1) GO TO 110

110 CONTINUE

IT = 2
IT = 1

GO TO 110

120 CONTINUE

IF (T = X1) GO TO 130

130 CONTINUE

200 CONTINUE

END
6.52 TYPE #52 VANE PUMP

The CECO main fuel pump (MFP) is simulated by the PUMP52 subroutine. The variable displacement sliding vane pump is double acting with radial pressure balance. The pump is controlled by coupling an external metering valve to a single stage spool valve within the pump housing. The valve regulates pump displacement as required to meet metering valve area changes and speed changes.

The PUMP52 subroutine is written to work with an external metering valve (subroutine VALV26) supplying the control signals to the four way servo valve, which functions essentially as a null-type differential pressure sensor. The MFP
model will sense the signal pressures and adjust the outlet flow and pressure accordingly.

The transient pump model must be initialized at reasonable steady state values. Otherwise the resulting discontinuity between the steady state and transient sections of pump subroutine will cause a transient before the user selected time.

The MFP model requires the input of actuator stroke versus pump outlet flow and actuator load. The valve stroke versus flow area is also input.

Though the vane pump model was specifically written to model the CECO MFP, other variable displacement vane pumps may be modeled with this subroutine.
CARD NUMBER 1

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>15</td>
<td>Component Number</td>
</tr>
<tr>
<td>6-10</td>
<td>15</td>
<td>Type Number = 52</td>
</tr>
<tr>
<td>11-15</td>
<td>15</td>
<td>Number of Real Data Cards =</td>
</tr>
<tr>
<td>16-20</td>
<td>15</td>
<td>Line Number (with sign) attached to Connection 1 (Inlet)</td>
</tr>
<tr>
<td>21-25</td>
<td>15</td>
<td>Line Number (with sign) attached to Connection 2 (Outlet)</td>
</tr>
<tr>
<td>26-30</td>
<td>15</td>
<td>Line Number (with sign) attached to Connection 3 (High Control Pressure)</td>
</tr>
<tr>
<td>31-35</td>
<td>15</td>
<td>Line Number (with sign) attached to Connection 4 (Low Control Pressure)</td>
</tr>
<tr>
<td>36-40</td>
<td>15</td>
<td>Number of Servo Valve Positions</td>
</tr>
<tr>
<td>41-45</td>
<td>15</td>
<td>Number of Actuator Positions</td>
</tr>
<tr>
<td>46-50</td>
<td>15</td>
<td>Number of Outlet Pressures</td>
</tr>
<tr>
<td>51-55</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>56-60</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>61-65</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>66-70</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>71-75</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>76-80</td>
<td>15</td>
<td>Temperature/Pressure Code (See Page 4.0-2)</td>
</tr>
</tbody>
</table>

EXAMPLE CARD

270
CARD NUMBER 2

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>E10.0</td>
<td>Servo Valve Area</td>
<td>In²</td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td>Servo Valve Spring Rate</td>
<td>Lb/In</td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td>Servo Valve Spring Preload</td>
<td>Lb</td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td>Servo Valve Mass</td>
<td>Lb·sec/In</td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td>Servo Valve Damping</td>
<td>Lb·sec/In</td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0C</td>
<td>Servo Valve Discharge Coefficient</td>
<td>--</td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td>Minimum Valve Displacement</td>
<td>In</td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td>Maximum Valve Displacement</td>
<td>In</td>
</tr>
</tbody>
</table>

EXAMPLE CARD
CARD NUMBER 3

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>E10.0</td>
<td>Actuator Extend Area</td>
<td>In²</td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td>Actuator Retract Area</td>
<td>In²</td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td>Maximum Actuator Stroke</td>
<td>In</td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td>Unison Ring Damping Factor</td>
<td>Lb-sec/In</td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td>Servo Valve Overlap</td>
<td>In</td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td>Extend Actuator Volume @ Zero Stroke</td>
<td>In³</td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td>Retract Actuator Volume @ Zero Stroke</td>
<td>In³</td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td>Pump RPM</td>
<td>RPM</td>
</tr>
</tbody>
</table>

EXAMPLE CARD
<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>E10.0</td>
<td>Coefficient of Pump Leakage</td>
<td>CIS PSI</td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td>Initial Actuator Position</td>
<td>In</td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td>Coefficient of Servovalve Leakage @ Null Position and 100°F</td>
<td>-</td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td>Outlet Volume</td>
<td>In³</td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td>Initial Steady State Outlet Flow</td>
<td>CIS</td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td>Initial Steady State Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td>Maximum Pump Flow @ Operating RPM</td>
<td>CIS</td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE CARD
CARD NUMBER 5

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>E10.0</td>
<td>First Actuator Position</td>
<td>In</td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td>Enter as Many Values As</td>
<td>"</td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td>Listed in Columns 41-45 of</td>
<td>"</td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td>Card No. 1</td>
<td>"</td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td>Last Actuator Position</td>
<td>"</td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td>Outlet Pressure for Cam Load</td>
<td>PSI</td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td>(Enter as Many Values as</td>
<td>"</td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td>Listed in Columns 46-50 of Card No. 1</td>
<td>"</td>
</tr>
</tbody>
</table>

EXAMPLE CARD

274
CARD NUMBER 6

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>E10.0</td>
<td>Cam Load On Actuator at First Outlet Pressure</td>
<td>Lb</td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td>(Enter Number of Actuator)</td>
<td>"</td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td>Positions Times Number of Outlet Pressure Values</td>
<td>"</td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td>Outlet Pressure Values</td>
<td>"</td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td>Last Cam Load On Actuator</td>
<td>"</td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td>Ideal Pump Flow for First Actuator Position</td>
<td>G1R</td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td>(Enter as Many Values as Listed in Columns</td>
<td>"</td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td>41-45 of Card No. 1</td>
<td>"</td>
</tr>
</tbody>
</table>

EXAMPLE CARD

275
<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>E10.0</td>
<td>First Servovalve Position (Positive Direction Only)</td>
<td>In</td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td>(Enter as many values as listed in)</td>
<td></td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td>Columns 36-40 of Card No. 1)</td>
<td></td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td>Last Servovalve Position</td>
<td></td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td>Servovalve Flow Area Correspond To First Position</td>
<td>in²</td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td>(Enter as many values as)</td>
<td></td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td>Servovalve Positions)</td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE CARD

```
276
```
6.24 TYPE #24 TWO-WAY CONTROL VALVE TO BE USED WITH TYPE #52 VANE PUMP

TYPE #24 is a specially modified TYPE21 valve that is used with the PUMP52 subroutine. The valve uses an externally controlled time history input. The valve opening area is derived from the tabulated data input or the third and fourth cards. The total number input on both the time and area tables must be equal to the number input in column 70 of the first data card.

Care must be taken in choosing the proper metering valve areas for the initial steady state pressure and flow conditions input with the PUMP52 subroutine.
CARD NUMBER 1

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>15</td>
<td>Component Number</td>
</tr>
<tr>
<td>6-10</td>
<td>15</td>
<td>Type: Number = 24</td>
</tr>
<tr>
<td>11-15</td>
<td>15</td>
<td>Number of Real Data Cards = 3 or more</td>
</tr>
<tr>
<td>16-20</td>
<td>15</td>
<td>Line Number (with sign) attached to Connection 1</td>
</tr>
<tr>
<td>21-25</td>
<td>15</td>
<td>Line Number (with sign) attached to Connection 2</td>
</tr>
<tr>
<td>26-30</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>31-35</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>36-40</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>41-45</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>46-50</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>51-55</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>56-60</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>61-65</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>66-70</td>
<td>15</td>
<td>Number of data points in table.</td>
</tr>
<tr>
<td>71-75</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>76-80</td>
<td>15</td>
<td>Temperature/Pressure Code (See Page 4.0-2)</td>
</tr>
</tbody>
</table>

EXAMPLE CARD

278
<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td>Valve Discharge Coefficient</td>
<td>11-20</td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CARD NUMBER 3

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>E10.0</td>
<td>First Time Value (Must be 0.0)</td>
<td>SEC</td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td>(Enter as many time values as</td>
<td></td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td>required using as many columns and</td>
<td></td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td>cards as necessary. Final time must</td>
<td></td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td>be greater than or equal to final</td>
<td></td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td>calculation time.</td>
<td></td>
</tr>
<tr>
<td>61-70</td>
<td>E10.C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE CARD
CARD NUMBER 4

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>E10.0</td>
<td>Initial Metering Valve Area @ T=0.0</td>
<td>In²</td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td>(Enter as many valve areas as</td>
<td></td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td>time values)</td>
<td></td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE CARD
6.52 SUBROUTINE PUMP52

Subroutine PUMP52 was set up to model a variable displacement vane pump of the type used as the main fuel pump on the F-15.

The vane pump is a double-acting pump with 100 percent radial pressure balance. The internal vane track contour provides for two inlet and discharge ports per revolution. Pump flow control is achieved by hydraulically coupling an external metering valve to an internal single stage hydraulic servovalve.

The servovalve regulates pump displacement as required to meet valve area changes and speed changes. A schematic of the variable displacement vane pump is shown in Figure 6.51-1. The pump is shown in a maximum flow condition. The pumping element consists of a rotor, vane and shaft assembly and two vane track cam blocks. Two side plates at each end (not shown) are required to complete the seal of the pump volume. A cage and unison ring assembly is used to support the cam blocks and control their position.

The cage restrains the cam blocks vertically while allowing horizontal motion. The horizontal motion is controlled by the angular position of the unison ring and the relationship between the two inwardly protruding surfaces on it and the external cam surface that contacts it. The volumetric displacement of the pump is determined by the allowable vane accelerations that will insure continuous vane contact with the vane track.

6.52.1 Math Model

To compute the transient response of the pump, the control characteristics are modeled using simplified calculation techniques. The pump supplies fluid flow in response to metering head pressure differential. Summing forces on the flow control servo valve in Figure 6.52-1 yields equation (1).

\[
\text{DT(ACCEL)} = (\text{PNI} \times \text{D(ARVAL)} - \text{D(BVAL)} \times \text{VLST} - \text{D(KSPG)} \times \text{XLST}) / \text{D(MVAL)}
\]

(1)

where

- \text{DT(ACCEL)} = \text{VALVE ACCELERATION}
- \text{PNI} = \text{CONTROLLING FORCE INPUT}
- \text{D(ARVAL)} = \text{VALVE DAMPING COEFFICIENT}
- \text{D(BVAL)} = \text{PREVIOUS VALVE VELOCITY}
- \text{D(KSPG)} = \text{VALVE SPRING CONSTANT}
- \text{XLST} = \text{PREVIOUS VALVE POSITION}
- \text{D(MVAL)} = \text{VALVE MASS}
FIGURE 6.52-1

SCHEMATIC OF BALANCED VARIABLE DISPLACEMENT VANE PUMP AND CONTROLLER
The servo valve displacement for the current time step is computed using a corrected Euler method. The calculation of actuator flows is based on a combination of the servo valve orifice equations and the volumetric impedance. The exact formulation of equations changes depending on whether the actuator is retracting - decreasing pump outlet flow, or the actuator is extending - increasing the pump outlet flow.

An equivalent diagram for the flows entering and leaving an extending actuator is shown in Figure 6.52-2. The pressure drop for the Q1 flow is written as

\[DT(\text{POULT}) - DT(\text{PACTE}) = Q1 \cdot \frac{1}{\text{DT(BULKE)}} + Q1^2 \cdot \frac{1}{\text{COEV1}}. \] (2)

A similar expression can be written for the Q2 flow. The subsequent quadratic equations are then solved to obtain Q1 and Q2, the flows entering and leaving the actuator as it is extending. The flow values are doubled because there are two actuators controlling the cams in the pump.

The actuator velocity is then calculated using the equivalent network given in Figure 6.52-2. The network is solved for the piston velocity DT(VELACT). A damping term and actuator load are included in the calculation. The load is based on the previous or last time step value of the actuator velocity.

The network accounts for the volumetric effects of the two actuator cavities, under the assumption that a portion of the flow is lost to or obtained from these volumes due to changes in pressure within the cavities. The basic network equations are:

\[DT(\text{VELACT}) \cdot D(\text{AEXT}) = -Q1 - DT(\text{BULK}) \cdot (\text{OPACTE} - DT(\text{PACTE})) \] (3)
\[DT(\text{VELACT}) \cdot D(\text{ARET}) = +Q2 + DT(\text{BULK}) \cdot (\text{OPACTR} - DT(\text{PACTR})) \] (4)
\[DT(\text{VELACT}) \cdot D(\text{DAMP}) = -DT(\text{PACTE}) + D(\text{AEXT}) + DT(\text{PACTR}) \cdot D(\text{ARET}) + \text{ALOAD} \] (5)

Solving EQUATIONS (3) and (4) for DT(\text{PACTE}) and DT(\text{PACTR}) and substituting into Equation (5) yields

\[DT(\text{VELACT}) = \frac{\text{FDRIE}}{\text{ZN}} \] (6)
where

\[
F_{\text{drive}} = \frac{Q_2}{G_2} + \text{OPACTR} \times D(\text{ARET}) - \frac{Q_1}{G_1} - \text{OPACTE} \times D(\text{AEXT}) + \text{ALOAD}
\]

\[
Z_N = D(D\text{AMP}) + D(\text{AEXT}) + D(\text{ARET})
\]

\[
G_1 = \frac{\text{DT}(\text{BULKE})}{D(\text{AEXT})}
\]

\[
G_2 = \frac{\text{DT}(\text{BULK})}{D(\text{ARET})}
\]

Once the actuator velocity is obtained the stroke is computed as:

\[
\text{DT}(\text{ASTROKE}) = \text{DT}(\text{ASTROKE}) + (\text{AVELO} + \text{DT}(\text{VELACT})) \times \text{DELT}/2. \tag{7}
\]

where

\[
\text{AVELO} = \text{the previous time step value of actuator velocity}
\]

The actuator stroke is directly related to pump flow. The actuator pressures may be computed for the current time step.

\[
\begin{align*}
\text{DT}(\text{PACTE}) &= \text{DT}(\text{PACTE}) + (Q_1 + \text{AVELO} \times D(\text{AEXT})) / \text{DT}(\text{BULKE}) \\
\text{DT}(\text{PACTR}) &= \text{DT}(\text{PACTR}) + (Q_2 - \text{AVELO} \times D(\text{ARET})) / \text{DT}(\text{BULK})
\end{align*}
\]

Equivalent circuit schematics of the pump's inlet and outlet are shown in Figure 3.5-3. Solving for \text{DT}(\text{PINLET}) yields

\[
\begin{align*}
\text{DT}(\text{PINLET}) = & \left(\frac{C(L_1)}{Z(L_1)} + \text{DT}(\text{POUT}) \times D(COEPLK) \right. \\
& \left. + \text{DT}(Q\text{OACT}) - \text{DT}(Q\text{MAX})/(1/1Z(L_1) + D(COEPLK)) \right)
\end{align*} \tag{8}
\]

The pump outlet flow is

\[
Q_{\text{OUT}} = -(\text{DT}(Q\text{MAX}) - D(COEPLK) \times (\text{DT}(\text{POUT}) - \text{DT}(\text{PINLET})) \\
- \text{DT}(Q\text{ACT}) - \text{DT}(\text{BULK}) \times (\text{DT}(\text{F.OUT}) - \text{OPOUTLT})) \tag{9}
\]

and the outlet pressure is then

\[
\text{DT}(\text{POUTLT}) = C(L_2) - Q_{\text{OUT}} \times Z(L_2) \tag{10}
\]
FIGURE 6.52-2

ACTUATOR PRESSURE AND FLOW CIRCUIT DIAGRAM

FIGURE 6.52-3

INLET AND OUTLET CIRCUIT DIAGRAMS
6.52-2 ASSUMPTIONS

The vane pump is a symmetrical unit, thus actuator loads were assumed identical. Once the actuator flows were calculated they were simply doubled to obtain the total flows that were recycling through the unit. Friction and stiction in the actuators were ignored.

The pump internal leakage is assumed to be directly proportional to the pump pressure rise. The model also does not incorporate the high pressure relief valve or the wash flow filter shown in Figure 6.52-1. The dynamic effects of these elements are negligible during normal pump operation.

6.52-3 COMPUTATIONS

1000 SECTION

In this section pump constants are initialized for use in the subroutine.

1500 SECTION

Steady State Calculations

The pump has four connections. The two metering pressure connections are handled as zero flow legs and they are not part of the steady state flow pressure balance. Only the inlet and outlet connections are used.

The user inputs the initial steady state pump outlet flow, pressure, and actuator position for the given flow. The pump vane stage pressure rise is derived from an equation incorporating maximum and overboard flow and the coefficient of pump leakage.

\[\Delta P (\text{OUT}) = \frac{\Delta P (\text{QMAX}) - \Delta P (\text{QOVBD})}{\text{COEPLK}} \]

To initialize the actuator pressures an iterative procedure is used. The pressures are dependent on the actuator load at the initial stroke and the leakage through the servo valve.

2000 SECTION

Actuator stroke and velocity, predicted outlet pressure, valve acceleration, velocity and displacement, and valve set spring pressure are initialized in the 2000 section.

3000 SECTION

In the 3000 section, the pump transient response is calculated. A flow chart for this section is shown in Figure 6.52-4. First control servo valve flows and pressures are computed. The valve acceleration is determined using a force balance on the spool. Integrating the acceleration equation yields the following equation for control valve velocity:
Figure 6.52-4 CECO MPP Math Model Flow Diagram
DT(VAVEL) = VLST + (DT(ACCEL) + ALST)*DELT/2.

The integration of the velocity equation results in an equation for valve displacement:

DT(VDIS) = XLST + (DT(VAVEL) + VLST)*DELT/2.

If the absolute value of the valve displacement is less than the valve overlap, the leakage flow through the valve is set to zero. If the valve displacement is greater than the valve overlap, the program will compute orifice characteristics of the valve from subroutine INTERP.

For decreasing flow, (actuator retracting), the program will compute pressures and flows for pump inlet and outlet. If the flow is increasing, (actuator extending), another set of equations is used to calculate the pressures and flow rates. Actuator piston position is determined by integrating the actuator velocity equation. Pump flow can then be computed using the INTERP subroutine. Equations relating leakage coefficients and pump flows yield pump inlet and outlet pressures. A predicted pump outlet pressure is computed for the next time step. The cam load is computed in subroutine LUCUP and is a function of actuator stroke and outlet pressure. The final step in this section defines the pressures and flows at the inlet and outlet lines of the pump.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(ACCEL)</td>
<td>Valve Acceleration</td>
<td>IN/SEC**2</td>
</tr>
<tr>
<td>D(AEXT)</td>
<td>Actuator Extend Area</td>
<td>IN**2</td>
</tr>
<tr>
<td>ALOAD</td>
<td>Last Actuator Load</td>
<td>LBS</td>
</tr>
<tr>
<td>ALST</td>
<td>Last Valve Acceleration</td>
<td>IN/SEC**2</td>
</tr>
<tr>
<td>D(ARET)</td>
<td>Actuator Retract Area</td>
<td>IN**2</td>
</tr>
<tr>
<td>D(ARVAL)</td>
<td>Control Servovalve Area</td>
<td>IN**2</td>
</tr>
<tr>
<td>ASIGN</td>
<td>Sign of Valve Velocity</td>
<td>--</td>
</tr>
<tr>
<td>ASTRO</td>
<td>Last Actuator Stroke</td>
<td>IN</td>
</tr>
<tr>
<td>DT(ASTROKE)</td>
<td>Actuator Stroke</td>
<td>IN</td>
</tr>
<tr>
<td>AVDIS</td>
<td>Absolute Value of Valve Displacement</td>
<td>IN</td>
</tr>
<tr>
<td>AVELO</td>
<td>Last Actuator Velocity</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>B</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(BULKE)</td>
<td>Actuator Extend Compressibility</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(BULKG)</td>
<td>Pump Outlet Compressibility</td>
<td>PSI</td>
</tr>
<tr>
<td>D(BVAL)</td>
<td>Servovalve Damping</td>
<td>--</td>
</tr>
<tr>
<td>D(COEPLK)</td>
<td>Coefficient of Pump Leakage</td>
<td>--</td>
</tr>
<tr>
<td>D(COEVL1)</td>
<td>Coefficient of Valve Leakage (Open Valve)</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>D(COEVL2)</td>
<td>Coefficient of Valve Leakage (Laminar)</td>
<td>CIS/PSI</td>
</tr>
<tr>
<td>COEV1</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>CON</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>D(DAMP)</td>
<td>Unison Ring Damping Factor</td>
<td>LBS/IN/SEC</td>
</tr>
<tr>
<td>DELTAP</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>DELTP</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>FDRIVE</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>FF</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>FRIC</td>
<td>Actuator Friction</td>
<td>LBS</td>
</tr>
<tr>
<td>G1</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>G2</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>I</td>
<td>Counter</td>
<td>--</td>
</tr>
<tr>
<td>IE</td>
<td>Error Indicator</td>
<td>--</td>
</tr>
<tr>
<td>IERR</td>
<td>Error Indicator</td>
<td>--</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Dimension</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>IFAIL</td>
<td>Iteration Fail Indicator</td>
<td></td>
</tr>
<tr>
<td>ILOC</td>
<td>Array Location Indicator</td>
<td></td>
</tr>
<tr>
<td>ILOC1</td>
<td>Array Location Indicator</td>
<td></td>
</tr>
<tr>
<td>D(ISTR)</td>
<td>Initial Actuator Position</td>
<td>IN</td>
</tr>
<tr>
<td>ITER</td>
<td>Iteration Counter</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>KSPG</td>
<td>Spring Rate</td>
<td>LBS/IN</td>
</tr>
<tr>
<td>D*(LOAD)</td>
<td>Actuator Load</td>
<td>LBS</td>
</tr>
<tr>
<td>LOC</td>
<td>Array Location Indicator</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>Dummy Variable</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>Dummy Variable</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>Dummy Variable</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>Dummy Variable</td>
<td></td>
</tr>
<tr>
<td>D(MAVDIS)</td>
<td>Maximum Valve Displacement</td>
<td>IN</td>
</tr>
<tr>
<td>DT(MHSET)</td>
<td>Servovalve Set Spring Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>D(MIVDIS)</td>
<td>Minimum Valve Displacement</td>
<td>IN</td>
</tr>
<tr>
<td>D(MSTROKE)</td>
<td>Maximum Actuator Stroke</td>
<td>IN</td>
</tr>
<tr>
<td>D(MVAL)</td>
<td>Servovalve Mass</td>
<td>(LBS-SEC**2)/IN</td>
</tr>
<tr>
<td>N</td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td>L(NAST)</td>
<td>Number of Tabulated Actuator Strokes</td>
<td></td>
</tr>
<tr>
<td>L(NPR)</td>
<td>Number of Reference Load Pressures</td>
<td></td>
</tr>
<tr>
<td>L(NVDIS)</td>
<td>Number of Tabulated Valve Displacements</td>
<td></td>
</tr>
<tr>
<td>OPACTE</td>
<td>Last Actuator Extend Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>OPACTR</td>
<td>Last Actuator Retract Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>OPOUTLT</td>
<td>Last Outlet Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>OQ1</td>
<td>Temporary Variable</td>
<td></td>
</tr>
<tr>
<td>OQ2</td>
<td>Temporary Variable</td>
<td></td>
</tr>
<tr>
<td>DT(PACTE)</td>
<td>Extend Actuator Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PACTR)</td>
<td>Retract Actuator Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(PINLET)</td>
<td>Inlet Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>PPSI</td>
<td>Sense Line Pressure Differential</td>
<td>PSI/PSID</td>
</tr>
<tr>
<td>DT(POUTLT)</td>
<td>Outlet Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(POUTUT)</td>
<td>Predicted Outlet Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>D(PRESS)</td>
<td>Pump Outlet Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Dimension</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>D(PRPM)</td>
<td>Pump RPM</td>
<td>REV/IN</td>
</tr>
<tr>
<td>QAREA</td>
<td>Servovalve Opening Area</td>
<td>IN**2</td>
</tr>
<tr>
<td>DT(QAREA1)</td>
<td>Valve Orifice Constant</td>
<td>--</td>
</tr>
<tr>
<td>DT(QIACT)</td>
<td>Flow to Actuator</td>
<td>CIS</td>
</tr>
<tr>
<td>QLOSS</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>DT(QMAX)</td>
<td>Maximum Pump Flow</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(QOACT)</td>
<td>Flow from Actuator</td>
<td>CIS</td>
</tr>
<tr>
<td>QOUT</td>
<td>Flow Out of Pump</td>
<td>CIS</td>
</tr>
<tr>
<td>D(QOVWI)</td>
<td>Initial Pump Outlet Flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QPUMP</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>Q1</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>Q2</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>D(SPLAOD)</td>
<td>Spring Preload</td>
<td>LBS</td>
</tr>
<tr>
<td>DT(VDIS)</td>
<td>Valve Displacement</td>
<td>IN</td>
</tr>
<tr>
<td>DT(VELACT)</td>
<td>Actuator Velocity</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>VLST</td>
<td>Last Valve Velocity</td>
<td>IN/SEC</td>
</tr>
<tr>
<td>D(VOLAP)</td>
<td>Servovalve Overlap</td>
<td>IN</td>
</tr>
<tr>
<td>D(VOLE)</td>
<td>Extend Actuator Volume at Zero Stroke</td>
<td>IN**3</td>
</tr>
<tr>
<td>D(VOLOUT)</td>
<td>Outlet Volume</td>
<td>IN**3</td>
</tr>
<tr>
<td>D(VOLR)</td>
<td>Retract Actuator Volume at Zero Stroke</td>
<td>IN**3</td>
</tr>
<tr>
<td>XDD</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>XDDS</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>XST</td>
<td>Last Valve Displacement</td>
<td>IN</td>
</tr>
<tr>
<td>ZN</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
</tbody>
</table>
*** LISTING 6.52-5 ***

DECORATION

COM

DATA

DESCRIPTION

CONTINUE

FUNCTION

IF

INCLUDE

NAME

PARAMETER

READ

READ

RETURN

STATE

STOP

THE

TITLE

VALUE

WRITE

WORLD

X

Y

Z

DIMENSION

EXEC

FOR

IF

READ

RETURN

STATE

STOP

THE

TITLE

VALUE

WRITE

WORLD

X

Y

Z
1510 DSUPINLET=POLG(INEL,1)
 DIFC(PINLET,LT,30).0T(PINLET)=30.
 GO TO 1600

*** DETERMINE PUMP OUTLET PRESSURE

1520 IF(INXK.6E-3) GO TO 1700
 C(T=P0LF(INEL,11)*POLG(INEL,2)
 SPOUT=0T(PSPOUT)
 IF(DIN.GT.0T(MAX)) IN=DIN(0T(MAX)
 DIFC(PINLET)*DIN(OCOEPLX)
 C(T=PSPOUT)*.5*QT(D(PSPOUT)+SPOUT)
 DIFC(PSPOUT)*(CT(MAX)-2*(QINV001))/D(OCOEPLX)
 POLG(INEL,1)*POLG(INEL,3)*DIFC(PSPOUT)
 LST(INEL.1)=
 POLG(INEL,11)*POLG(INEL,11)*DIFC(PSPOUT)
 DIFC(PINLET)*POLG(INEL,11)
 GO TO 1-600

*** INITIALIZE SERVOVALVE PRESSURES

1530 CONTINUE
 IF(NEL.EQ.3) RETURN
 DN0C=0.01*1.25+L(NAST)*L(NPR)
 OPL=C(NEL.0Q3)*(POQ2)
 CALL INTERRUPTPUMP(C(LIC),D(25),L(NAST),D(TA(0STROKE))+IEPP)
 XA(1)*O1(pstr)
 XA(2)*DIFC(PSPOUT)

*** CALL LOAD FUNCTION

1540 CONTINUE
 ILDC=L(NAST)+25+L(NPR)
 CALL LUCUPIN(L(NAST),D(25),D(ILDC),XA(1),D(TLOAD),K,NFR,NE2TP)
 IF(C(100D0+0.01)) D(TLOAD)=0.0
 C(TLOAD)=C(TLOAD)/2.

*** ACTUATOR PRESSURES

1550 CONTINUE
 ITP=1
 SP(TACFE)=0.06,
 C=C(CCEVL.F0.D(VOLAP)
 G1=1.
 N01=1.
 NO2=1.

1560 CONTINUE
 IT=DAfricaC1+(D(PACTF)*D(D(EXT)=D(T(LD)=D(PACTF)
 OLOSS=G1/2)(APST)+D(EFT)-1;
 D(TACFE)+D(TACFE)*D(PINLET)+D(TPINTL)+D(OLOSS)*D(TAP=TAP)*G1/2.0
 C(TPINTL)=D(TPINTL)*D(TAP)*G1
 C(The)=D(The)*D(TAPEL)*2
 D(TAP)=D(TAP)+2.
 C=TAP=1
 ITP=IT+1
 IF(ITEP.GE.25) GO TO 1690
 GO TO 1440
 C(NO.FM=1)
 IF(D(IFC.G1.75)GO TO 1690
 GO TO 1640

1570 IF(D(IFC.G1.75)GO TO 1690
 GO TO 1640
 GO TO 1440
6.52-5 LISTING (CONTINUED)
6.52-5 LISTING (CONTINUED)

C *** VALVE PPA FUNCTION
C
C ILOC=LOC4+1(*AVC)
C IF(LOC=LNVDIS)
C CALL INTERPPAVUIS(0(ILOC),0(ILOC),10*(NVDIS),0(APEA),0(ERR))
C CALL CV(LOCFLV),0(APEA)
C IF(NVDIS=1)CT(LOC)
C GT(0*VLOC),GT(1(VLAP))GU TO 3200
C
C *** DECRAISING FLOW - ACTUATOR RETRACTING(+ DIP)
C
A1(1/COEF1)**2
R1=1/4(1/HLK*)
CON=DT(POULT)-DTPINLT)
IF(CON.LT.0.1)CON=0.
Q11=(-B-0.03F2+T14.*ACON)/(2.75)
R11=Q1
R11=P*F(PULPK)
CON=DT(POULT)-DTPACT
IF(CON.LT.0.1)CON=0.
Q12=(-B-0.03F2+T14.*ACON)/(2.75)
R12=Q1
GO TO 3500
C
C *** INCREASING FLOW - ACTUATOR EXTENDING(- DIP)
C
3020 CONTINUE
A1(1/COEF1)**2
R1=1/4(1/HLK*)
CON=DT(POULT)-DTPACT
IF(CON.LT.0.1)CON=0.
Q11=(-B-0.03F2+T14.*ACON)/(2.75)
R11=Q1
R11=P*F(PULPK)
CON=DT(POULT)-DTPINLT)
IF(CON.LT.0.1)CON=0.
Q12=(-B-0.03F2+T14.*ACON)/(2.75)
R12=Q1
GO TO 3500
C
C *** COMPUTE VALVE LEAKAGE FLOWS
C
3010 CONTINUE
DTC(ACT)*0.0
DTG(CACT)*0.0
Q1=E+1.
Q2=C+1.
3030 CONTINUE
G1=P*F(POULKE)*P(AEXT)
G2=P*F(PULPK)*P(AEXT)
Z1=P*F(PULPK)*P(AEXT)*G1+D(TACT)*G2
RCLP=Q2+D(POACT)+D(AEXT)-Q1/G1-0(DACT)*D(AEXT)
FDIR=F(VLUT)+4LD
FT(VLACT)=F(VLUT)
C
CALL CPF(FORC(VELACT),AVELD,XDQ,XDCS,FRIC,1,1,1)
IF(VLUT(VLACT).LT.0.61)DT(VLACT)=0.0
C
C *** ACTUATOR FISTON POSITION
C
DT(ASTROKE)=D1(ASTROKE)+AVELD(DT(VLACT))*CFLD/2.
CALL KLIMT(DT(ASTROKE),DT(VLACT)+ASIGN,0.6,0.62)
296
6.52-5 LISTING (CONTINUED)

PUMP FLOW

```plaintext
CALL INTERP(DT(ACROKE),D(25),L(LCC),L(NAST),GUMP,TETP)
```

PUMP INLET PRESSURE

```plaintext
CT(PINLET)*(C(L1)/Z(L1)+DT(PINLET)*O(C(DPLK)+CT(OACT))
+ -DT(OMAX)/(1./Z(L1)+D(C(DPLK)))
```

PUMP OUTLET PRESSURE

```plaintext
DTOUT=-(DT(OMAX)-D(C(DPLK))*(DT(POUT)-CT(PINLET)-DT(OIAC))
+ -DT(BULKO)+(DT(POUT)-CTPOUT))
```

CAN LOAD FUNCTION

```plaintext
X(L1)=CT(ACROKE)
X(L2)=CT(POUTL)
```

DEFINE PUMP EXTERNAL PARAMETERS

```plaintext
P(L1)=CT(PINLET)
Q(L1)=(C(L1)-P(L1))/Z(L1)
```

297
APPENDIX F

HYDRAULIC MOTOR MODELS

HSFR USER MANUAL (AFAPL-TR-76-43, VOL. III)

2.3.11 MOTOR (Piston, Constant Displacement)

The motor is identified as an NTYPE "9" element, with a KTYPE designator of "25". The motor model should always be the first element in the system.

The piston motor model is based on the axial piston pump model and it requires similar input data. Three data cards are required in the sequence described in the following pages. Figures 2-8 and 2-9 should be referred to for the physical description data. Physical data for a given motor is read into the element data list in the same manner as for the other system elements. Motor outlet pressure is input on the second general control data record (para. 2.2). Motor inlet pressure is input on the second motor data record.
CARD NUMBER 1

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>I5</td>
<td>NTYPE = 9</td>
<td></td>
</tr>
<tr>
<td>6-10</td>
<td>I5</td>
<td>KTYPE = 25 Hydraulic Motor</td>
<td></td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td>R1 = Cylinder Slot Radius</td>
<td>IN</td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td>SLOTW = Cylinder Slot Width</td>
<td>IN</td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td>RV = Cylinder and Valve Plate Slot Centerline Radius</td>
<td>IN</td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td>RBORC = Cylinder Centerline Radius</td>
<td>IN</td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td>DIAPIS = Piston Diameter</td>
<td>IN</td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td>POVOL = Oil Volume Between Piston at Mid-stroke and Port Face</td>
<td>IN**3</td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td>R2 = Valve Plate Outlet Slot Radius</td>
<td>IN</td>
</tr>
</tbody>
</table>

EXAMPLE CARD

```plaintext

```
<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>E10.0</td>
<td>R4 = Valve Plate Inlet Slot Radius</td>
<td>IN</td>
</tr>
<tr>
<td>11-26</td>
<td>E10.0</td>
<td>SWASH = SWASH Angle</td>
<td>DEC</td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td>TLEAK = Motor Internal Leakage to Case at Steady State Pressure</td>
<td>CIS</td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td>THPRS = Valve Plate Outlet Slot Start Angle</td>
<td>DEC</td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td>THPRE = Valve Plate Outlet Slot End Angle</td>
<td>DEC</td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td>THSUCS = Valve Plate Inlet Slot Start Angle</td>
<td>DEC</td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td>THSUCE = Valve Plate Inlet Slot End Angle</td>
<td>DEC</td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td>LPRESS = Motor Inlet Steady State Pressure</td>
<td>PSIG</td>
</tr>
</tbody>
</table>

EXAMPLE CARD
<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>E10.0</td>
<td>CPRESS = Steady State Case Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td>CSPRZSS = Case to outlet Pressure Difference at Zero Case Drain Flow</td>
<td>PSI</td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE CARD

301
FIGURE 2-6
MOTOR CYLINDER BLOCK PARAMETERS

302
FIGURE 2-9
MOTOR VALVE PLATE PARAMETERS
4.16 MOTOR SUBROUTINE

4.16.1 Introduction and Flow Diagram

SUBROUTINE MOTOR is a general, detailed model of a rotating, axial, nine piston, constant displacement hydraulic motor. The model computes dynamic inlet and outlet pressures and flows. The main program calculates the harmonic load impedances of the rest of the circuit, and this provides the linear phase and gain relationship between the harmonic flows into and from the loads and the corresponding pressures across the loads in the frequency domain. A pressure and flow balance is performed in the time domain between the motor and system. A check of the balance is performed in the frequency domain.

The motor model considers valving areas, precompression, decompression, fluid bulk modulus, and piston motion. Piston pressure at the beginning of precompression is assumed constant and equal to the input steady state inlet pressure. Piston pressure is then calculated continuously for the full motor revolution.

Figure 4-9 is a general flow chart of the MOTOR subroutine. The specification section includes initialization of variables from input data and the calculation of several constants. At the start RPM the motor indexing variables are calculated for the plate porting and the valve port areas are computed for a full 360° revolution. In Section 2, the precompression pressures are computed followed by the calculation of motor outlet flow. A Fourier analysis is performed to calculate harmonic flows up through the harmonic of interest. Harmonic pressure and flow are then balanced dynamically by reconstructing the time dependent outlet pressure and recomputing flow from Section 3.

For the inlet side, piston decompression and inlet flow are calculated. A Fourier analysis of inlet flow is performed, followed by dynamic balancing of inlet flow with the supply system load. Inlet and outlet flow and pressure for the harmonic of interest are returned to the main program.

The MOTOR subroutine is divided into eleven sections. Each section is discussed and a listing of that section is presented individually in subsequent paragraphs.

4.16.1.1 Variable Names - The variable names used in the MOTOR subroutine are the same and have the identical meaning as those used in the PUMP subroutine. Some of the PUMP variables have been deleted. The variables are discussed in the PUMP subroutine paragraph 4.1.6.
FROM MAIN PROGRAM

Call Arguments
- Motor Start Speed (WSTART)
- Motor Speed for Current Calculation (Y)
- Outlet Load Impedance for Each Harmonic (ZIP)
- Harmonic of Interest (NHARM)
- Steady State Output Pressure (PRESS)
- Motor Speed Increment (WING)
- No. of Pumping Pistons (PIST NO)
- Inlet Code No. (NINLT)
- Inlet Load Impedance for Each Harmonic (ZAP)

Specification Statements

Y ≠ WSTART
Y = WSTART
Initialize Motor Variables from Input Data Array Param (%)

Section 1: Calculate Valve Port Areas for 360°

Section 2: Calculate Precompression Pressures

Section 3: Motor Outlet Flow Calculation

Section 4: Fourier Analysis of Motor Outlet Flow

Calculate Harmonic Flows Up Through Harmonic of Interest

Section 5: Calculate Harmonic Pressures Up Through Harmonic of Interest
KK = 1, 2

Section 6: Reconstruct Time Dependent Harmonic Outlet Pressure
KK = 3
Inlet Analysis

Section 7: Piston Decompression Calculation

FIGURE 4-9
HSCF COMPUTER PROGRAM
Motor Subroutine Flow Chart
Section 8 - Calculate Motor Inlet Flow

Section 9 - Fourier Analysis of Motor Inlet Flow

Section 10 - Calculate Inlet Harmonic Pressures Up Through Harmonic of Interest
 KK = 1, 2

Section 11 - Reconstruct Time Dependent Harmonic Inlet Pressure

Return - Inlet and Outlet Flow and Pressure for Harmonic of Interest

TO MAIN PROGRAM

FIGURE 6-9 (Continued)

HSFR COMPUTER PROGRAM
 Motor Subroutine Flow Chart
4.16.1.2 Specifications and Initialization - Listing

```
SURROUSINE MOTOR (WSTAA, TIP, NMAP, PRESS, WINC, PISTNM, +MUL2, ZAP)

*VARIABLE TYPES, DIMENSIONS, COMMONALITY*
REAL LWEIX, LGC, LZ, LK1, LK2, LK3, LK4, LK5, LK6, LK7, LKN
COMPLEX RLA, LRT, LIT, LVT, LTT
COMMON RRT, RLA, LZ, LK1, LK2, LK3, LK4, LK5, LK6, LK7, LKN

DIMENSION C(2, 5, 4), P(4, 2), D(40, 1), P(140, 1), Z(40)
DIMENSION GTIP, GT, GOPC(11), QVCC(11), GOF(11), PPM(11), IPP(11)
DIMENSION ZIP, ZIP(10, 1)
DIMENSION DC(10, 1), ZC(16, 1), ZEC(10), ETA(10)
DIMENSION DIP(140, 1), GS(11), HAN(1), PDI(1)
DIMENSION QWCC(11), QGCC(11), GOC(11), PCC(11, 16, 3), PCC(16, 3)
DATA VARFA/14000, 0, 0, 10/PISF/14000, 0, 0

*SOLUTION METHOD*

*INITIALIZE VARIABLES FROM INPUT DATA TO MAIN PROGRAM*

IF (WSTAA) GO TO 140
P1 = PDM(1, 1)
S1 = PDM(1, 2)
V1 = PDM(1, 3)
R1 = PDM(1, 4)
Q1 = PDM(1, 5)
R2 = PDM(1, 6)
P2 = PDM(1, 7)
S2 = PDM(1, 8)
V2 = PDM(1, 9)
R3 = PDM(1, 10)
THRES = PDM(1, 11)
THRE = PDM(1, 12)
THUCC = PDM(1, 13)
THSUCC = PDM(1, 14)
PRES = PDM(1, 15)
CSRES = PDM(1, 16)
ASW = SCW/27.3
NP1 = PI1
NAX = 51
S1 = S11
MAPS = (0, 2, 5, 1)
```

This page is best quality possible from copy produced to 160.
4.16.2 Section 1 - Valve Area Calculation

Figures 4-10 and 4-11 illustrate the modeling parameters for a typical aircraft rotating piston hydraulic motor, including those required for area calculation.

Section 1 of the motor model is identical to Section 1 of the pump model. Consult paragraph 4.2 for a description of this section.

4.16.2.1 Section 1 - Listing

SECTION 1 VALVE AREA CALCULATION FOR FULL 360 DEGREES REVOLUTION

COMPUTE VALVING INDEX POSITIONS FOR EIGHTY FLOW INCREMENTS

AINC = 3/4/PISTON
NPCSOP = THPPSLTHAG/AINC+1
NPCSCL = THPPSLTHAG/AINC+1
NSUCL = THPPSLTHAG/AINC+1
NSUCR = THPPSLTHAG/AINC+1
NSUSCR = THPPSLTHAG/AINC+1
NSUCR = THPPSLTHAG/AINC+1
NSUCL = THPPSLTHAG/AINC+1

NO = 0
NDSTP = 0

VAREA(NINC) = 0.0

410 CONTINUE

VAREA(NINC) = 0.5*PI*(P1 + P2 - R1 - R2) - 2.*R1*P3

420 CONTINUE

VAREA(NINC) = 0.0

430 CONTINUE

VAREA(NINC) = 0.0

440 CONTINUE

VAREA(NINC) = 0.0

450 CONTINUE

VAREA(NINC) = 0.0

460 CONTINUE

VAREA(NINC) = 0.0

470 CONTINUE

VAREA(NINC) = 0.0

480 CONTINUE

VAREA(NINC) = 0.0

490 CONTINUE

VAREA(NINC) = 0.0

500 CONTINUE

VAREA(NINC) = 0.0

510 CONTINUE

VAREA(NINC) = 0.0

520 CONTINUE

VAREA(NINC) = 0.0

530 CONTINUE

VAREA(NINC) = 0.0

540 CONTINUE

VAREA(NINC) = 0.0

550 CONTINUE

VAREA(NINC) = 0.0

560 CONTINUE

VAREA(NINC) = 0.0

570 CONTINUE

VAREA(NINC) = 0.0

580 CONTINUE

VAREA(NINC) = 0.0

590 CONTINUE

VAREA(NINC) = 0.0

600 CONTINUE

VAREA(NINC) = 0.0

610 CONTINUE

VAREA(NINC) = 0.0

620 CONTINUE

VAREA(NINC) = 0.0

630 CONTINUE

VAREA(NINC) = 0.0

640 CONTINUE

VAREA(NINC) = 0.0
DO 650 NDEG=NPPCL*NSUSOP
VAREA(NDEG)=0.0
650 CONTINUE
IF (RVL-CT>SLTW) RVL=SLTW
IF (RVL==R2-RVL)
GO TO 540
IF (RVL-LE-NDEG-NSUSOP) AINC/57.3
RETURN
DO 750 NDEG=NDEG-1
CONTINUE
IF (RVL-CT>SLTW) RVL=SLTW
IF (RVL==R2-RVL)
GO TO 540
ALPHA-(PC*+R1*+R2**2)/(2.0*R2**2)
ABETA-(RL*+R1*+R2**2)/(2.0*R2**2)
IF (ALPHA>0.000001) ABETA=99999 GO TO 670
ABETA=AOC(S(ABETA))
ALPHA=AOC(S(ALPHA))
VAREA=PI*PI*(ABETA-SIN(ABETA)SOS(ABETA))
VAREA(NDEG)=R2*P2*(ALPHA-SIN(ALPHA)*COS(ALPHA))+2
CONTINUE
VAREA(NDEG)=R2*P2*(ALPHA-SIN(ALPHA)*COS(ALPHA))+2
GO TO 700
700 CONTINUE
DO 750 NDEG=NDEG+NSUSCL
CONTINUE
750 CONTINUE
DO 860 NDEG=ND7-ND6
CONTINUE
DO 860 NDEG=ND7-ND6
CONTINUE
860 CONTINUE
WRITE(*,855) VAREA(J),J
855 FORMAT(C10.5)
WRITE(*,860) N1,N2,N3,N4,N5,N6
860 CONTINUE
WRITE(*,870) (F10.4,7X,13X)
870 CONTINUE
HPRESS=PRESS
309
FIGURE 4-10
MOTOR CYLINDER BLOCK PARAMETERS
FIGURE 4-11
MOTOR VALVE PLATE PARAMETERS
4.16.3 Section 2 - Calculation of Piston Precompression Pressure

Section 2 calculates the cylinder pressure which exists just before the cylinder slot starts to open to the valve plate outlet (pressure) slot. This pressure is the result of piston motion during that portion of cylinder block rotation when the cylinder slot is blocked by the valve plate, between the inlet and outlet slots.

4.16.3.1 Math Model

Piston motion is sinusoidal and due to the fixed swash (SWASH) angle of the hanger. A pressure dependent factor for leakage from each cylinder to case is estimated for cylinder pressure above the input case pressure as

\[P_{\text{LEAK}} = \frac{T_{\text{LEAK}}}{P_{\text{PRESS}} \times N_{\text{APP}}} \]

Leakage from the case to each cylinder for cylinder pressures below case pressure is estimated from

\[S_{LEAK} = -\frac{T_{\text{LEAK}}}{N_{\text{APS}} \times \sqrt{C_{\text{PRESS}}}} \]

Cavitation volume in the cylinder, if any, is calculated and tracked throughout the cylinder block revolution. Piston pressures are stored for each position throughout the 360° calculation. Time dependent oscillatory outlet pressure is initialized to zero PSI.

4.16.3.2 Assumptions - For the first calculation rpm, the piston is assumed to be completely filled on the inlet stroke and the initial cylinder pressure is assumed to be the input steady state value. The remainder of the simulation uses the initial cylinder pressure of the last speed calculation. Pressure dependent leakage, and sinusoidal piston motion are assumed. Bulk modulus is recalculated at each step based on the last step cylinder pressure, and the bulk modulus formula used in FLUID.

4.16.3.3 Computation Method - The calculation is performed in 3° degree increments (DANG) with the initial cylinder slot centerline angle (THETA) computed from the inlet slot end angle (THSUCE) and the cylinder slot half-angle (SLTHAG). The number of calculation steps (NSTEP) is computed based on index positions defining the end of the inlet slot and the beginning of the outlet slot in the valve plate.
4.16.3.4 Section 2 - Listing

SECTION 2 - PISTON PRECOMPRESSION CALCULATION

C
PIA=DOTAPS*2*P/P440
PS=PSNULCL*LPRESS
CAVOL=0.06
SAMS=0.05*C*TAN(SWASH/57.3)
OMAX=0.3*SAMS*PIA
DTF=2.0P(RH)
ORF=5.5*SORT(ORF)
CONTINUE
SELD=OMAX*Y
179 MSTEP=ND1+ND9-ND8-2
DPRESS=0
LPRESS=0PRES(NSUCI)
THETA=SLTHAG-THSUSE/57.3
PLEAK=LEAK/(PRES*APP)
PLEAK=LEAK/NAPS/SORT(CSRES)
SHING=INC/57.3
DT=ALC/XY
SABOR=OR=TAN(SWASH)
XLAST=SACOS(THETA)
WRITE(6,9.5) CAVOL,NSUCI,LPRES*,XLAST,THETA
GO 160 I=1,MSTEP
IF(I*LPRESS-ECPRESS) GO TO 162
PLEAK=(LPRESS+DPRESS/2.-CRESS)*PLEAK*DT
GO TO 164
162 PLEAK=PRES(1*LPRESS-LEAK)*PLEAK*DT
164 RUPK=RUCK+12.*((LPRESS+DRESS)
THETA=THETA+DANE
XNEW=X+X*COL(THETA)
DX=6NEW-XLAST
DVOL=XPVIA
DPRESS=(CIVOL-DEAK-CAVOL)/LVOL+RUKP
XLAST=8NEW
LPRESS=LPRES+DRESS
NP=NSUC1+1
IF(NP=GE:NDG+1) NP=NP-ND9
IF(LPRES+DD.01) GO TO 166
CAVOL=CAVOL-DVOL-DLEAK
LPRESS=0.01
DPRESS=0
GO TO 169
166 CAVOL=0
169 PPS=LPRESS
IF(Y.EQ.50.) GO TO 161
161 PPS=EPS.3000.) GO TO 161
GO TO 166
161 WRITE(6,GO3) CAVOL,ND1,LIPRESS
+XLAST,OR,DLVOL,DEAK,DLPK,THETA
160 CONTINUE
CAVOL=CAVOL
XLO=XLAST
THENO=SINTHETA
DO 150 N=1,1
150 PPS=0.0
KK=1
170 CONTINUE
4.16.4 Section 3 - Motor Outlet Flow Calculation

The calculation of motor outlet flow is identical to that described in Section 4 of the pump model, paragraph 4.5. The initial calculation is based on the input steady state outlet pressure.

4.16.4.1 Section 3 - Listing

```
SECTION 3 - MOTOR OUTLET FLOW CALCULATION

CAVOLD=CAVOLD
XLAST=XLAST
THETA=THETA
DO INI N=1,61

GOT(N)=0.6
WRITE(6,925) CAVOLD, NP, LPRFSP, XLAST, THETA
DO 200 M=1,NQP
DO 190 M=1,RO
NK=PPRCP(NP+1)*AD
THETA=THETA+DANG
KNEW=SA+CS(THETA)
DX=XNEW-XLAST
VA=POVOL-XNEW*PIA

180 IIF(CAVOLD.GT.0.01) GO TO 187

181 RK=SIGM*(PISPR(NK-1)+PRESS)
IF(PISPR(NK-1).GT.0.01) GO TO 185

183 LEAK=PK*LEAK/VA

184 LEAK=PK*LEAK/VA

186 LEAK=PK*LEAK/VA

187 OUT=OUT+2.0*(HPRSS+PPT(N))/H0)

188 OUT=OUT+2.0*(HPRSS+PPT(N))/H0)

190 IIF(YNE.500,0) GO TO 190

191 WRITE(6,925) CAVOLD, NP, LPRFSP, XLAST, DX, VA,

192 CONTINUE

200 CONTINUE

GOT(R1)=GOT(N)
```
4.16.5 Section 4 - Fourier Analysis of Motor Outlet Flow

The motor outlet flow is mathematically analyzed as described in Section 5 of the hydraulic pump model, paragraph 4.6. The steady state balancing in the pump model is not done for the motor.

4.16.5.1 Section 4 - Listing

```c
SECTICN 4- FOURIER ANALYSIS OF MCTNOUTLET FLOW

COEF=62469
C1=0.7753
C2 =SIN(C1)
C3 =COS(C1)
C =1.0
FMT2=QOT(1)

210 C2=0.0
211 C1=0.0
212 I = 1

220 IFM FOURIER COEFFICIENTS RECUSIVELY
221 U0=QOT(I)+2.0*C*U1-U2
222 U1=U0
223 I=I-1
230 IF(I-1) 230,230,230
231 COFS(J)=COEF*FMT2+C*U1-U2
232 IF(J-NHARM+1) 240,250,250
234 U3=C1*U1+C2*U2
235 C =U3
236 J = J+1
250 QOTC(I)=QOTC(I)*0.5
251 IF(QOTC(I),LE,0.01) QOTC(I)=0.01

COMPUTE HARMONIC FLOWS FROM FOURIER ANALYSIS

255 DO 260 I=1,NHARM
256 F0(I,1,KK) = CMPLX(QOFS(I+1), QOTC(I+1))
260 CONTINUE

```
4.16.6 Section 5 - Outlet Pressure - Flow Balance Calculation

The motor outlet flow is dynamically balanced as described for the pump outlet flow in Section 6 of the pump model, paragraph 4.7.

4.16.6.1 Section 5 - Listing

```
C  SECTION 5 - OUTLET PRESSURE-FLOW BALANCE CALCULATION

270 CONTINUE
I = KK, IF (KK = 0) 280, 290, 300
280 CONTINUE
W = (PIN/N) + PK*KK/30.
Z0 = 10*F5/10 (Z0 + 1)
POI(I, KK) = F0(I, KK)*Z0 + ZIP(I)/10.0
PG = CABSPC1(I, KK)*5.0
IF (Y, ME = 50000, ) GC TO 281
WRITE(I, 1682) PG, QECF(I)
281 P3 = POI(I, KK)
J = 0
TO = -45
NQ = 10
PQ(M, I) = CABSPQ1(I, KK)
GO TO 32C
290 CONTINUE
Z0 = POI(I, KK-1)/F01(I, KK-1) - F01(I, KK)
PO1(I, KK) = F01(I, KK-1)*Z0 + ZIP(I)/(Z0 + ZIP(I))
PG = CABSPQ1(I, KK)*5.0
IF (Y, ME = 50000, ) GC TO 291
WRITE(I, 1682) PG, QECF(I)
291 P3 = POI(I, KK-1) - PO1(I, KK)
PPM(I) = ATAN2(AIMAG(PQ1(I, KK+1)), REAL(PQ1(I, KK+1)))
PPW(I) = CABSPQ1(I, KK+1)
GO TO 32C
300 CONTINUE
J = KK
PK1(J, KK) = ZIP(J) + F01(J, KK)
P6 = CABSPQ1(J, KK)
IF (Y, ME = 50000, ) GC TO 301
WRITE(I, 1682) PG, QECF(I)
301 CONTINUE
ETAN(J) = CABSPQ1(OCC (+ (POI(J, KK) - PO1(J, KK-1)) / PO1(J, KK))
KK = KK + 1
IF (KKN, GT+NHARM) GC TO 308
KK = 1
FG1(KKN, I) = PO1(KKN, I)
GO TO 270
320 CONTINUE
```

4.16.7 Section 6 - Reconstruction of Time Dependent Outlet Pressure

Motor outlet dynamic pressures are reconstructed as described for the pump outlet pressure in Section 7, paragraph 4.8. Balanced outlet flow \(Q(1) \) and pressure \(P(1) \) are stored and control is passed to the piston decompression section.

4.16.7.1 Section 6 - Listing

```plaintext
SECTION 6.- RECONSTRUCTION OF TIME DEPENDENT OUTLET PRESSURE
CO 330 J=1,A1
THETA= (J-1)*0.07854
PPT(J) = PPT(J) + REAL(P3)* SIN(THETA) + AIMAG(P3)* COS(THETA)
TE(PPT(J),LT,HPRFSS) PPT(J) = HPRFSS
330 CONTINUE
KK = KK + 1
GO TO 170
335 CONTINUE
ASWAST=ASWASH+57.3
WRITE(6,900) ASWAST,SWASH,HPRESS,PRESS,QQFC(1),
+FLOW,LEAK,YY
900 FORMAT(/,7(F4.3X,1,F2X),/)
Q(1)=Q0(1-N4*RM,3)
P(1)=PQ1(1-N4*RM,3)
```

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FORWARDED TO DDG
4.16.8 Section 7 - Piston Decompression Calculation

The calculation of piston pressure during decompression is identical to the precompression calculation described in Section 4.16.3. Index numbers for the decompression portion of the block revolution are used. Cylinder cavitation volume is tracked continuously. Piston pressure is limited to .01 psi if the cylinder cavitates.

4.16.8.1 Section 7 - Listing

```
SECTION 7 - PISTON DECOMPRESSION CALCULATION

LPRESD=PISP(NPRCL)
HSTEP=DSDSP-NPRCL
DPRESD=Q-L
WRITE(6,925) CAVOL,NPRCL,LPRESD,XLAST,THETA
GO TO 1000
IF(LPRESD.DLT-0.01) GO TO 360
DLEAK=LPRESD+DPRESD/2.-CPRESS)*P+LEAK*DT
GO TO 365
360 DLEAK=LPRESD-0.01
GO TO 365

925 BULK=BULK+12.*(PRESD-DPRESD)
THETA=THETA+ANG
XNEW=SA*COS(THETA)
DX=XNEW-XLAST
DVOL=DX*PIA
LVOL=PVOL-XNEW**PIA
LPRESD=(DVOL-DLEAK-CAVOL)/LVOL*BULK*
XLAST=XNEW
LPRESD=LPRESD+DPRESD
NP=NP+1
IF(LPRESG.GT.0.01) GO TO 918
CAVOL=CAVOL-DVOL+DLEAK
LPRESD=0.0
GO TO 920

918 CAVOL=0.0
920 PISP(NP),LPRESD
IF(Y.EQ.50.0) GO TO 922
IF(Y.EQ.100.0) GO TO 922
IF(Y.EQ.5000.0) GO TO 922
GO TO 920

922 WRITE(6,930) CAVOL,NP,LPRESDN

930 FORMAT(10.,5X,13.5X,F8.2,F2.2X,F(1C,6.2X),F10.0,5X,2(F1C,6.2X))
922 FORMAT(10.,5X,13.5X,F8.2,F2.2X,F(1C,6.5X),F10.3)

CONTINUE
CAVOL=CAVOL
XOLD=XLAST
THELD=THETA
KKN=1
KK=1
GO 1050,1,81
1050 CONTINUE
```

318
4.16.9 Section 8 - Motor Inlet Flow Calculation

Section 8 calculates the total inlet motor flow for one cycle (40° of cylinder block rotation for a nine piston motor). Each of the active pistons sucking (NAPS) is sequentially incremented through 80 steps. The total outlet flow is determined by summing that from each piston. The calculation is started on the index step after the decompression ends. Pressure in the first cylinder is initially the final decompression value. Pressure in the other open cylinders is equal to the sum of the previously calculated steady state inlet pressure (LPRESS) and time dependent oscillating pressure (PPT). Cylinder pressure and flow calculated at each step account for piston and valve plate leakage, pressure drop across the valve, piston motion, and fluid compressibility. The math model of this section is identical to the pump inlet flow calculation. See Section 9, paragraph 4.10 for details of the equation derivation.
SECTION 8 - MOTOR INLET FLOW CALCULATION

CAVOL=CAVOL
XLAST=OLD
THETA=THETAFINAL
DO 1150 N=1,A1
1150 G01(N)=G01
WRITE(6,*025) CAVOL,NP,LPRESD,XLAST,THETA
DO 1400 M=1,LAPS
DO 1400 N=1,60
REM=N USCET*N*(N-1)/2
IF(NP.GE.NSUCET) GO TO 1400
THETA=THETA+ANG
XNEW=SA*COS(THETA)
X=NEW-XLAST
VA=POVOL-NEW*PIA
XLAST=NEW
IF(CAVOL.GT.EC) GO TO 1370
BULKP=PARL+12.*(PISSP(NP-1)-PRESS)
BULKP=PARL+12.*(PISSP(NP-1)+PRESS) GO TO 1360
LEAK=SLF
LK1=1.*SRT(BULKP)*LEAK*DT/VA
GO TO 1365
1360 LEAK=SLF
LK1=1.*SRT(BULKP)*LEAK*DT/VA
1365 LK2=(PISSP(NP-1)+BULKP/VA*XPIA)/LK1
LK2=(BULKP/VA*XPIA)/LK1
LK3=BULKP*DT/VA/LK2
LK3=(BULKP/VA*XPIA)/LK1
LK4=STF*VARFA(NK)***2
LK5=L3+K4/10.
LK6=LK4+LK2-LPRESS*PP(N)
LK7=0.5*ABS(LK6)
LK8=-LK5+SORT(LK7)
QIN=STF*(LK9+LK6)
PISSP(NP-1)=LK2+QIN*LK3
IF(PISSP(NP-1).GT.G1) GO TO 1390
1390 CONTINUE
LEAK=SLF
QIN=-0.65*VARFA(NK)*SORT(2.**(LPRESS+PP(N))/R40)
PISSP(NP-1)=Q1
CAVOL=CAVOL+DP*TA+SLF*DT*PRESS*Q1
IF(CAVOL.LE.0.99 CAVOL=0.99
1380 G01(N)=G01+Q1
WRITE(6,*025) X,new,XLAST,THETA
+x_NEW=SA*COS(THETA)
1400 CONTINUE
1400 CONTINUE
G01(B1)=G01(1)
Section 9 - Fourier Analysis of the Motor Inlet Flow

Section 9 performs a mathematical harmonic analysis of the time dependent motor total inlet flow calculated in Section 8 of the motor model. Flow is calculated over the cycle period for each harmonic from the fundamental up to and including the input harmonic of interest. See Section 10, paragraph 4.11 of the pump model for details of the calculations.

Section 9 - Listing

```
CC SECTION 9- FOURIER ANALYSIS OF MOTOR INLET FLOW
CC
COFF=G2469
C1=O1783
S1=SIN(C1)
C1=COS(C1)
S=-1.0
FNT=G01(I)
J=1

1610 U2=0.0
U1=0.0
T=1.0

CC FORM FOURIER COEFFICIENTS RECURSIVELY

1620 UG=G01(I)+2.0*C*U1-U2
U2=U1
U1=UG
J=J+1

1630 OFC(J)=COFF*(FNT+C*U1-U2)
IF(J-NHARM-1) 1640,1650,1660
1640 U3=C1*C-S1*S
S=C1*S+S1*C
C=U3
J=J+1

1650 OIFC(I)=OIFC(I)*.5

CC COMPUTE HARMONIC FLOWS FROM FOURIER ANALYSIS

1655 DO 1660 I=1,NHARM
1660 IF(I=K) = COMPLX(OIFS(I+1), OIFC(I+1))
CONTINUE
```
4.16.11 Section 10 - Inlet Pressure - Flow Balance Calculation

After the calculation of pump inlet flow and its Fourier analysis in Sections 8 and 9, Section 10 estimates the shunt impedance (Z0). Shunt impedance is then combined with the system supply load impedance (ZIP) to give the total impedance seen by the pump. This value is then used in the dynamic pressure-flow balance calculation. The math model is identical to Section 6, paragraph 4.7 of the PUMP subroutine.

4.16.11.1 Section 10 - Listing

```
470 CONTINUE
   IF (KK = 2) 1680, 1690, 1700
1680 CONTINUE
   W = PISTNDP * KK/70.0
   Z0 = 1.0E5 * (Z0 - 1)
   P01I(I, KK) = P01I(I, KK) * 20 + ZAP(I) / (Z0 + ZAP(I)) / 5.0
   P5 = CABS(P01I(I, KK))
   PB = P PRESS(P5)
   IF (YF NE 5000.) GO TO 1681
   PB = PA1(P5, L)
   WRITE(6, 1682) PB, QFEC(I)
1690 CONTINUE
   PB = P01I(I, KK)
   GO TO 1700
1699 CONTINUE
   Z0 = P01I(I, KK - 1) / (P01I(I, KK - 1) - P01I(I, KK))
   P01I(I, KK) = P01I(I, KK - 1) * Z0 + ZAP(I) / (Z0 + ZAP(I))
   P5 = CABS(P01I(I, KK))
   IF (YF NE 5000.) GO TO 1691
   WRITE(6, 1682) P5, QFEC(I)
1691 P3 = P01I(I, KK) - P01I(I, KK - 1)
   P01I(I, KK) = P01I(I, KK) - P01I(I, KK - 1)
   PPO(I) = ATAN2(AIMAG(P01I(I, KK + 1)), REAL(P01I(I, KK + 1)))
   GO TO 1700
1700 CONTINUE
   J = KK
   P01I(J, KK) = ZAP(J) * P01I(J, KK)
   P5 = CABS(P01I(J, KK))
   PB = P PRESS(P5)
   IF (YF NE 5000.) GO TO 1715
   WRITE(6, 1716) PB, QFEC(I)
1715 IF (YF LE 300.) GO TO 340
   IF (KK + T.NNADW) GO TO 340
   KK = 2
   P01I(KKN, J) = P01I(KKN + 1)
   GO TO 1670
1720 CONTINUE
```
4.16.12 Section 11 - Reconstruction of Time Dependent Inlet Pressure

Section 11 computes the time dependent inlet pressures (PET) from each estimate of complex dynamic inlet pressure (P3) from Section 10. The dynamic balance counter (KK) is incremented and control is returned to Section 8 until dynamic balancing is completed. Complex pump inlet flow Q (NINLT) and pressure P (NINLT) for the harmonic of interest are then stored for returning to the main program.

The math model for Section 11 is identical to that for Section 12, paragraph 4.13 in the pump model.

4.16.12.1 Section 11 - Listing

```
C C SECTION 11 - RECONSTRUCTION OF TIME DEPENDENT INLET PRESSURE
C
CO 1730 J=1,59
THETA= (J-1)*2*3.14/65
PP1(J)=PD(J) + REAL(P3)* SIN(THETA) + IMAG(P3)* COS(THETA)
IF(PP1(J)-LPRESS) PP1(J)=LPRESS
1730 CONTINUE
WK = KK + 1
GO TO 1100
940 CONTINUE
Q(NINLT)=POI(NHARM,3)
P(NINLT)=POI(NHARM,5)
RETURN
END
```

This page is best quality available from copy crashed to disk
6.56 **TYPE #56 - HYDRAULIC MOTOR**

Type #56 motor is used to simulate a constant displacement hydraulic motor. In developing the model it has been necessary to estimate certain leakage characteristics and assume a viscous damping coefficient.
CARD NUMBER 1

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>15</td>
<td>Component Number</td>
</tr>
<tr>
<td>6-10</td>
<td>15</td>
<td>Type Number = 56</td>
</tr>
<tr>
<td>11-15</td>
<td>15</td>
<td>Number of Real Data Cards = 2</td>
</tr>
<tr>
<td>16-20</td>
<td>15</td>
<td>Line Number (with sign) attached to Connection 1 (Inlet)</td>
</tr>
<tr>
<td>21-25</td>
<td>15</td>
<td>Line Number (with sign) attached to Connection 2 (Outlet)</td>
</tr>
<tr>
<td>26-30</td>
<td>15</td>
<td>Line Number (with sign) attached to Connection 3 (Case Drain)</td>
</tr>
<tr>
<td>31-35</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>36-40</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>41-45</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>46-50</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>51-55</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>56-60</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>61-65</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>66-70</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>71-75</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>76-80</td>
<td>15</td>
<td>Temperature/Pressure Code (See Page 4.0-2)</td>
</tr>
</tbody>
</table>

EXAMPLE CARD
<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>E10.0</td>
<td>Motor Displacement</td>
<td>IN3/REV</td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td>Case Drain Leakage Coefficient</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td>Case Drain Constant Pressure Drop</td>
<td>PSI</td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td>Viscous Damping Coefficient</td>
<td>--</td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td>Motor Inertia</td>
<td>IN-LB-SEC2</td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td>Breakout Torque</td>
<td>IN-LBS</td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td>Motor Constant Pressure Drop</td>
<td>PSI</td>
</tr>
<tr>
<td>81-80</td>
<td>E10.0</td>
<td>Motor Leakage Coefficient</td>
<td>PSI/CIS</td>
</tr>
</tbody>
</table>

EXAMPLE CARD

326
Card Number 3

<table>
<thead>
<tr>
<th>COLUMN</th>
<th>FORMAT</th>
<th>DATA</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>E10.0</td>
<td>LOAD TORQUE</td>
<td>IN-LBS</td>
</tr>
<tr>
<td>11-20</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-30</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-40</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-50</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-60</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61-70</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-80</td>
<td>E10.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example Card
6.56 SUBROUTINE MTR 56

MTR 56 simulates a fixed displacement piston motor. Figure 6.56-1 shows an axial piston motor having a stationary hanger and using valve plate porting. The valve plate ports inlet fluid to half of the cylinder barrel, and the pistons receiving the fluid are forced against the inclined fixed hanger. This causes the cylinder, which is connected to the output shaft, to rotate.

The HYTRAN motor model accounts for internal leakage to case which is directly proportional to motor pressure. The dynamic analysis of the load and case flows and port pressures are functions of motor inertia, volumetric displacement, viscous damping, friction, and shaft rotation.

FIGURE 6.56-1
6.56.1 MATH MODEL

MATH56 simulates a simple hydraulic motor. Figure 6.56-2 shows the various torques acting on the motor.

\[T_1 = T_g - T_i - T_d - T_f \]

where
- \(T_1 \) = resisting load torque on the motor (in lb)
- \(T_g \) = generated motor torque
- \(T_i \) = resisting torque due to motor inertia
- \(T_d \) = resisting torque due to damping
- \(T_f \) = resisting torque due to friction

The load torque \((T_1) \) is set to zero. The other torques are defined as:
- \(T_g = D\pi^*(P1-P2) \)
- \(T_i = \text{ALPHA}\pi = (\text{RPS}-\text{RPS}_{\text{last}})\pi/\tau \)
- \(T_d = CD^*(DM)^*\pi\times\text{RPS} \)
- \(T_f = \frac{\text{RPS}^* \pi^*\pi\times(\text{P1}+\text{P2})}{|\text{RPS}|} \)
where,

\[
\begin{align*}
DM & = \text{motor displacement (IN}^3/\text{RAD)} \\
P1 & = \text{inlet pressure (PSIA)} \\
P2 & = \text{outlet pressure (PSIA)} \\
RPS & = \text{motor speed (RAD/SEC)} \\
RPS_{\text{last}} & = \text{last time step calculation of motor speed (RAD/SEC)} \\
CD & = \text{damping coefficient} \\
\mu & = \text{fluid viscosity (IN}^2/\text{SEC)} \\
CF & = \text{coefficient of dynamic friction} \\
t & = \text{calculation time step (SEC)} \\
I & = \text{motor inertia (LB*IN*SEC}^2) \\
\end{align*}
\]

Using the last time step's calculation of P1, P2 and RPS, a value for the friction torque may be calculated.

\[
T_f = \frac{RPS_{\text{last}}}{RPS_{\text{last}}} * CF * DM * (P1 + P2) = DFRIC
\]

Grouping of the inertia and damping components of the torque equation allows further simplification.

\[
T_d + T_1 = CD * DM * \mu * RPS + (RPS - RPS_{\text{last}}) * I / \Delta t
\]

By defining the variables:

\[
\begin{align*}
DAMP & = CD * \mu * DM * I / \Delta t \\
CINERT & = RPS_{\text{last}} * I / \Delta t
\end{align*}
\]

The torque balance becomes

\[
T_1 = DM * (P1 - P2) - RPS * DAMP + DFRIC + CINERT
\]

with P1, P2 and RPS being the unknowns.

The flow diagram for the motor, Figure 6.56-3 gives the following flow relationships:
Q1 = (C1-P1)/Z1
Q2 = (C2-P2)/Z2
Q3 = QC1+QC2 = (C3-P3)/Z3
QM = RPS*DM
QC1 = (P1-P3)/ZCASE
QC2 = (P2-P3)/ZCASE

where
ZCASE = case leakage coefficient (Psi/CIS)
P3 = case drain pressure (PSIA)

Initially assuming QC1 and QC2 are zero one can write
P1 = C1 - DM * RPS * Z1
P2 = C2 + DM * RPS * Z2
having found P1 and P2 in terms of RPS, the torque balance becomes

$$T_L = DM \,(P1-P2) + CINERT - DPRIC \,- RPS \,*DAMP$$

the solution of which is:

$$RPS = (DM \,(P1-P2) + CINERT - DPRIC - 5RPS \,* T_L)/DAMP$$

where

$$T_L = \text{Load Torque}$$

All the motor flows may now be calculated and P3 determined using the values of P1, P2 and C3.

6.56.2 ASSUMPTIONS

Breakout pressure drop is assumed to follow the relationship

$$\Delta P_{brk} = 0.5p_{inlet} + 30$$

which was derived from the test results.

The coefficient of dynamic friction is assumed to be 0.106.
6.56.3 COMPUTATIONAL METHOD

1000 SECTION

In the 1000 section, all DT variables are initialized to zero and the leakage terms are corrected for viscosity.

1500 SECTION

A check is made for the leg under calculation (pressure, return, case drain), by which control is routed to one of three areas.

If the motor connection in the leg is number one (pressure), DT(PI) is set equal to the upstream node pressure and control is returned to the program.

If the motor connection is number 2 (return), new values of the upstream pressure and laminar flow coefficient are calculated using the leg flow and cross port leakage term. DT(P2) is set equal to the upstream pressure.

If the leg under calculation is connected to the case drain port, the leg flow and case drain leakage term are used to calculate new values of upstream pressure and laminar flow coefficient. DT(P3) is set equal to the upstream pressure.

2000 SECTION

The 2000 section corrects cross port and case drain impedances for viscosity and calculates the constant DT(DAMP).

3000 SECTION

Predicted values of P1, P2, and P3 are made based on the line equations. These values are used to calculate the dynamic friction force, the motor delta P for a breakout check, and case drain parameters.

From the predicted pressures, values of the temporary variables are calculated.

A check is then made, using the predicted values of P1 and P2, to see if the pressure drop across the motor is sufficient for breakout.

If the last calculation of RPS is zero and the predicted value of the pressure drop is less than that required for breakout, flows and pressures are calculated using the leakage characteristics of the motor.

If breakout conditions are met, a new value of RPS is calculated, from which flows and pressures are calculated.
6.56.4 APPROXIMATIONS

Case drain flow is calculated based on a predicted value of case
pressure from the previous time step. Since cross port leakage is negligible,
it is neglected when the motor is moving.

6.56.5 LIMITATIONS

The sign of the dynamic friction term is determined from the last time
steps calculation of RPS. This will cause a slight inaccuracy when the
model passes through zero RPS during a reversal.

6.56.6 VARIABLE NAMES

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>DESCRIPTION</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARPS</td>
<td>Absolute Value of Motor Speed</td>
<td>RAD/SEC</td>
</tr>
<tr>
<td>BRAKEP</td>
<td>Breakout Pressure Drop</td>
<td>PSI</td>
</tr>
<tr>
<td>D(BRAKET)</td>
<td>Breakout Torque</td>
<td>IN-LB</td>
</tr>
<tr>
<td>D(CASE)</td>
<td>Case Drain Leakage Coefficient</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>CIN/COUT</td>
<td>Temporary Variables</td>
<td>--</td>
</tr>
<tr>
<td>CINERT</td>
<td>Torque Due to Inertia</td>
<td>--</td>
</tr>
<tr>
<td>D(CDROP)</td>
<td>Motor Pressure Drop Coefficient</td>
<td>IN-LB-RAD</td>
</tr>
<tr>
<td>DT(DAMP)</td>
<td>Inertia Damping</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>DELT</td>
<td>Calculation Time Interval</td>
<td>IN-LB-SEC²</td>
</tr>
<tr>
<td>DELIF</td>
<td>Motor Pressure Drop</td>
<td>SEC</td>
</tr>
<tr>
<td>DFRIC</td>
<td>Torque Due to Dynamic Friction</td>
<td>PSI</td>
</tr>
<tr>
<td>D(DM)</td>
<td>Motor Displacement</td>
<td>IN-LB/RAD</td>
</tr>
<tr>
<td>D(INERT)</td>
<td>Inertia of Motor</td>
<td>IN³/RAD</td>
</tr>
<tr>
<td>D(L1, L2, L3)</td>
<td>Dummy Variables</td>
<td>IN-LB-SEC</td>
</tr>
<tr>
<td>D(LTQ)</td>
<td>Load Torque</td>
<td>--</td>
</tr>
<tr>
<td>DT(P1)</td>
<td>Inlet Pressure</td>
<td>IN-LB</td>
</tr>
<tr>
<td>DT(P2)</td>
<td>Outlet Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>DT(P3)</td>
<td>Case Drain Pressure</td>
<td>PSI</td>
</tr>
<tr>
<td>QA</td>
<td>Flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QS</td>
<td>Flow Sign</td>
<td>--</td>
</tr>
<tr>
<td>QC1</td>
<td>Inlet to Case Flow</td>
<td>CIS</td>
</tr>
<tr>
<td>QC2</td>
<td>Outlet to Case Flow</td>
<td>CIS</td>
</tr>
<tr>
<td>DT(RPS)</td>
<td>Motor Speed</td>
<td>RAD/SEC</td>
</tr>
<tr>
<td>D(VIDAMP)</td>
<td>Viscous Damping Coefficient</td>
<td>--</td>
</tr>
<tr>
<td>DT(ZCASE)</td>
<td>Case Drain Impedance</td>
<td>PSI/CIS</td>
</tr>
<tr>
<td>Z1</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>Z2</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
<tr>
<td>Z3</td>
<td>Temporary Variable</td>
<td>--</td>
</tr>
</tbody>
</table>

334
SUBROUTINE MTR56(DD,DD,L)
*
* DIMENSION D(20), DT(10), DD(11), L(5),
* COMMON NTFLP,NTPL,P,P,T,POINTPT,INEL,KNEL,NTOPL,NLPLT(61,3),
* 1POLEG(90,13), LCLS(90,10), LLEG(140C), PLEG(90), QN(90),
* COMMON SLRPAPM(15C,9), PAP(1500), CM(1500), P(3CC), C(300),
* 1&PAPM(15C), PAP(1500), CM(1500), P(3CC), C(300),
* 2&DT,PPM,PPM,PPM,PPM,PPM,PPM,PPM,PPM,PPM,PPM,PPM,PPM,PPM,
* 3&KTEM(90), LSTART(15C), NL(150), LTYPE(99), NC(99), INX,INZ,
* 4&NT,STEP,MT,LNI,TNL,NOS,FMMP,MNL,LNR,LPMP,MPNP,
* 5&NLPLPPT,NST,
* INTEGER DM,CASE,CDRPT,VINAX,DAMP,PICASE,ZLEAK,P1,P2,P3,P5,
* 1BREAKT,PDRT,PONT,PGFCS,CDRPP
*
DATA DM/1/,CASE/2/,PDCASE/2/,VIDAMP/4/,INERT/5/,BREAKT/6/
* /CDRPP/7/,PDCRPP/8/,LTMP/9/
*
C*** 1D ARRAY VARIABLES **
*
DATA RPS/1/,P1/2/,P2/3/,P3/4/,P5/5/,CASE/6/,ZLEAK/7/
*
DATA T0/1000000/2000/3000/
*
C*** 1000 SECTION
1000 CONTINUE
*
1010 DD(1) = 0.0
*
C*** LEAKAGE COEFFICIENT VISCOSITY CORRECTION ***
C*** VISCOSITY OF MIL-H-7616F AT 125 F = .8213 ***
DMP=DICM/(2.*PI)
RETURN
*
C** STOADY STATE SECTION
*
100 CONTINUE
*
1030 DT(1) = 15.3
*
1300 CONTINUE
*
C*** 2000 SECTON
2000 CONTINUE
*
RETURN
C*** 3000 SECTION
*
RETURN
3000 SECTION

```
C** **3000 SECTION
3600 CONTINUE

L3 = (1)
L2 = (1)
L1 = (1)

PCAV = 4AP(K:MP)(K)
ARPS = ARS(DT(RPS))
SPDS = SPN(DT(DPS))
CINR = DT(RPS) + DT(PPS)
CRIC = 1.6*(C1)+D(T(P1))*D(T(P2)) + SRPS
DELD = D(T(P1)) - D(T(P2))
PUT = D(T(P2))
IF(IPLT(DP(L)))) PUT = D(T(P1))
IF(ARGCR - C1) THEN = PUT + P
IF(RPSLT(DP(L)) = P.DN = ARPS..LE.10) GO TO 3010

C1 = C1 (L1)
COUT = C(C1(L2))
CIN = C1 (L2)
ROUT = 7(L2)
PIN = L1.-(L1)@DT(RPS)*ZIK
POUT = OUT(L1)*DT(RPS)*ICUT
CT(DPS)*C(D1)*D(PIN) = C1(C1)*C1(DT(DPS))
GO TO 3010

C10 CT(DPS) = 0
CT(P1) = 7(L1)*7(L1)*/D(T(ZCASE))
CT(P1) = 7(L1)/7(L1)*7(L1)/D(T(ZCASE))
CT(P2) = 7(L1)*7(L1)*7(L1)*7(L1)*D(T(ZCASE))
CT(P2) = 7(L1)*7(L1)*7(L1)*7(L1)*D(T(ZCASE))
P(L3) = T(L3)
PL3 = T(L3)
GI(L1) = CT(L1) = LT(P1)) = Z(L1)
G1(L2) = CT(L2) = LT(P2)) = Z(L2)
L1 = 1(L1)
C(L3) = C1(L2)*C1(L1)
C10 RETURN

3040 CONTINUE

P(L1) = T(P1)
P(L2) = T(P2)
F1(L3) = T(P3)
F1(T) = T(P3)*T(PPS)
F1(L1) = T(L1)*T(P3)*T(PPS)
F1(L2) = T(L2)*T(P3)*T(PPS)
F1(L3) = T(L3)*T(P3)*T(PPS)
GO TO 3100

3070 CT(L3) = 7(L3)*7(L3)*7(L1)*7(L1)
CT(C1) = 7(L3)*7(L1)*7(L1)*7(L1)
IF(DTP3. LT. PCAV) THEN = T(P3) = PCAV
IF(DTP3. LT. PCAV) THEN = T(P3) = PCAV
IF(DTP3. LT. PCAV) THEN = T(P3) = PCAV
GO TO 3100

3010 Q(L3) = C1(L3) = Q(L1) = Q(L2) = Q(L1)
RETURN
```

3100 Section

```
C10 CONTINUE

F1(L1) = T(P3) = T(PPS)
F1(L2) = T(P3) = T(PPS)
F1(L3) = T(P3) = T(PPS)
GO TO 3100

3100 Q(L3) = C1(L3) = Q(L1) = Q(L2) = Q(L3)
RETURN
```

326
REFERENCES