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ABSTRACT

An iterative least square estimation algorithm is derived
and applied to the problem of state estimation of ballistic
trajectories with angle only measurements. A filter initiation
procedure is suggested. The application of trajectory a priori
knowledge for improving the estimate is discussed and solved as
a constrained estimation problem. A Monte Carlo simulation study
was conducted to evaluate these techniques. It was found that the
iterative least square filter achieves the Cramer-Rao bound and
it performs better than the extended Kalman filter when the
sensor is on a free-falling platform. When the sensor is on a
gstationary platform however, both estimators asymptotically

achieve the Cramer-Rao bound.
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1. INTRODUCTION

The state estimation of a ballistic trajectory with angle

only measurements is a challenging problem. The problem becomes
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even more complex when the sensor is placed on a free~falling
platform. It is difficult to initiate a filter for such systems.
Furthermore, the extended Kalman filter (EKF) is expected to perform
poorly since the EKF performance is conditioned on being able to
linearize the system about accurate state estimates.

In two previous reports, [1l] and [2], the Cramer-~Rao
lower bound on the covariance of the trajectory estimates was
presented for stationary sensor platforms [1l] as well as free-
falling sensor platforms [2].. Since this bound is calculated using
the information matrix (the inverse of the covariance matrix) and
it is not tied with any specific estimator, the results can be
easily calculated and they are not restrained by the filter initi-
ation problem. Issues remaining to be addressed include: how tight
is this bound? can any filter achieve this bound?

In this report, we present an iterative least square (ILS)
algorithm for estimating the state of nonlinear deterministic systems
with nonlinear noisy measurements. It is known that the exo-

atmospheric part of ballistic trajectories can be described by
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nonlinear differential equations with zero process noise. This
fact enables the above algorithm to be applied to the problem
of tracking with angle~only measurements. We have also derived
a procedure using a polynomial fit and vehicle-sensor dynamics
for calculating filter initial conditions. We apply this
procedure to initialize both ILS and EKF filters and evaluate
their performances using a Monte Carlo simulation.

Since the angle-only tracking system is only "weakly"
observable*, the resulting estimation error is inevitably large.
It is suspected that trajectory a priori knowledge (e.g.,
constraints on velocity,enerqgy, angles, etc.) may be helpful for
improving the estimates. This constitutes a constrained estimation
problem. We formulate this problem and present a solution
procedure.

This report is organized as follows. In the next
section, we state the trajectory equation of motion. 1In the
third section, we derive the iterative least square algorithm.
Also, presented are initiation and constrained estimation
procedures. In the fourth section we present a numerical example
illustrating the ILS and EKF performances and compare them with

the Cramer-Rao bound.
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2. TRAJECTORY EQUATICN OF MOTION

Tracking with angle~only measuremsnts is primarily
concerned with exo~atmospheric trajectories. Gravity is
therefore the most significant force term on the target. For
the case of a free-falling sensor platform, the difference of
gravity on the sensor and on the target produces curvature in
the relative sensor-target trajectory and is the information en-

abling the target state to be estimated. For these reasons, we

Furthermore, we use a spherical earth model to simplify the
mathematics.
Consider a Cartesian coordinate with origin at the

center of the earth. The trajectory differential equations of

motion are

- b 4 R 2

X = =g
° (x +y +22)3/2

- Y R 2

y = «~g (2.1)
o} (x +y +Z2)3/2

*‘ . sz

z = "gom

(x“+y“+2z7)

where 95 is the grévity at sea level and Re is the radius of the

earth.
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consider the gravity as the only driving force on the trajectory.
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The sensor measures azimuth (A) and elevation (E)

angles of the target relative to the sensor, i.e.,

(2.2)

where the states used in (2.2) are the difference of the target

state %, and the sensor state Xgr i.e., Eq. (2.2) is evaluated at

T

(2.3)

When the sensor is stationary, Xg is a fixed point in space.

When the sensor is free-falling, Xy 18 described by the same

differential equation of motion Eq. (2.1) as that used for targets.

The sensor measurement noise is assumed to be a white

noise sequence with covariance

1 0

R = COV(E,A) = o° (2.4) |
0 L e

coszE 3 -

where o is the sensor angle measurement standard deviation.
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Equations (2.1) - {2.4) will be used as system and
measurement equations in the iterative least square algorithm to
be described in the next section. Trajectory equations of motion
described in the sensor coordinates will be found useful in computing
an initial guess for the iterative least square algorithm. We
therefore state them below. If the sensor is free-falling, the

target differential equations of motion in the sensor (R,A,E,)

coordinates are

2 . 2 .
goRe sin E Rs (R+R531n E)

R = R(E%+A%cos?E) - . 5 -1| (2.5a)
R8 RT sin E
A = =2 % A cos E + AE tan E (2.5b)
. s2 g R 2cos E R_\3
E = -283 g ~-Bginog- 2 _ _|{-8)-1 (2.5¢c)
R 2 3 Ry

RRS

where R is the distance between target and sensor, RT is the
distance between target and the earth center, and Rs is the distance

between sensor and the earth center. The RT is related to R

and R8 by

R, = (R®+ R + 2RR sin g)1/2 (2.6)

Notice that the gravity appears only in R and E. The target-
sensor geometry is illustrated in Fig. 2.1.
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If the sensor is stationary, the gravity term on range

(gR) and elevation (gE) are modified as

R 2
= g 2 i
gR = go 3 (R+RSS.‘Ln E)
R
T
(2.7)
Rez
9 = -9, 3 R cos E
R RT

If the sensor is stationary and the target is relatively
close to the sensor, a flat earth model may suffice. The gravi-

tational terms for the flat earth are

In = “9 sin E
(2.8)
g
gE = -R—-o—cosE
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Fig. 2.1. Target-sensor geometry and relative
gravity accelerations.
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3. ESTIMATION ALGORITHM

In the firat subsection, we describe an iterative
least square algorithm applicable to state estimation with
detarministic nonlinear discrete systems. The convergence of the
iterative least square algorithm is dependent upon a particular
application and the initial guess (initial state) for the itera~-
tive procedure. In the second subsection, we demonstrate a method 5
for computing an initial state by using a batch of angle measurements.

In the ballistic trajectory estimation problem, several y
variables (e.g., re-entry velocity, re-entry angle, etc.)
are known to within a certain range of values. Incorporating this o
a priori information with measurements to obtain a "combined" é
estimate constitutes a constrained estimation problem. 1In the third !
subsection, we present algerithms for calculating the constrained
estimate. In the fourth subsection, we combine these analyses to

present two algorithms for ballistic trajectory tracking applications.

3.1. An Iterative Least Square Algorithm

Consider the following nonlinear discrete system and ‘

measurement equations: |
. {

{

{

(3.1)

>
f
h
<
sv
e}
Li§
-

n+l

(3.2) a

+ :
Yn+l ot

N
Yne1 = Bl¥py)

N , n
where x 1is the state vector, y is the measurement vector, y 1s

the noise corrupted measurement vector, v is the measurement

0 3,
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noise vector andn is the discrete time index. We assume that v,
is a time-~wise uncorrelated random sequence which is Gaussian
with =zero mean and covariance R . Notice that we do not include
(1) process noise and (2) unknown time-varying parameters* in.
Eq. (3.1). These assumptions are valid for exoatmospheric
trajectories. If we relax these assumptions, then the simplicity
of the ensuing algorithm will be lost.

We emphasize that Eg. (3.1) is a convenient and suffi-
cient way of representing the trajectory estimation »r~blem being

considered. When the trajectory is described by a differential

equation of motion, i.e.,
x = g(x)i xl(t) (3.1a)

then one can always obtain an equivalent discrete system by using

numerical integration to evaluate

t

n+l
?-(‘tn+l) = ;_c(tn) +f g(x)dt (3.1b)
t
n

= f(x,)

The least square algorithm to be described works with a

batch of measurements, Let yo, ?l,...yN denote a batch of N

*The ensuing algorithm is applicable to systems with unknown
constant parameter vectors.
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measurements.
X, n=l, ..., N so that
N -1,
J = (¥~ R (¥, y,) (3.3)
n=1
is minimized subject to constraint Egs. (3.1) and (3.2). Since

there is no process noise assumed in (3.1), one is only required
to estimate the initial state (corresponding to n=1l) Xy Further-

more, if an inverse function of f£(), i.e.,

-1

Xn = P T (Fpy) (3.4)

can be found, the optimal estimate of the entire trajectory can

be obtained if one minimizes (3.3) with respect to any state

One would like to obtain an estimated state sequence

vector along the trajectory. In our trajectory estimation applica-

tion the f“l( ) function merely corresponds to integration back-
wards in time. We cantherefore minimize (3.3) with respect to
any state élong the trajectory. For the purpose of convenience,
we minimize (3.3) with respect to the initial state x,.

Before minimizing (3.3) can be made tractable, we
introduce approximations to the system and measurement equations.

Let 52 denote an initial guess (estimate) of the true state x ,

10
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we approximate the measurement equation by using a first order

A
Taylor series expansion about 53,

~

Y, = h(x) = h(x) +H (x -x7) (3.5)

where Hg is the Jacobian matrix of h(x ) evaluated at §g. Using

the system Eq., (3.1) and iterating n timesvyields

X, = £,(x;) (3.6a)

Note that if (3.1) is a linear system then £ ( ) is the product

of n transition matrijces and if (3.la) is used then

t
n
£.(%) = x(t)) +f g(x)dt (3.6b)
1
Let 5? denote the initial guess (estimate) of x,, then it is
related to the 53 used in (3.5) by
e o)
x, = £, (3.7)

Approximating the system equation by using a first ordef Taylor

gseries expansion about 52 yields

11
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¥, = fh(%)) e £(x)) + Fp(x)-%) (3.8)

where Fg is the Jacobian matrix of £ ( ) evaluated at gg.
We now minimize (3.3). Substituting (3.5), (3.7), and

(3.8) in (3.3) yields

12 @, - G T 8,

(3.9)

(3, - [g(gg) + n§p§<§l-£§>1

Taking the derivative of J with respect to x; and solving for x,;

yields

N N
~1

2 _ ‘o 2: oT,oT_ =~1.0,0 2: oT,oT, ~1 o
2 o= 5t Fo Hn Rp "HyFp Fn Hy Rp (¥y~B{E,)

n=1 n=1

(3.10)
12
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Notice that we have used the notation x; to replace X,- This

~

algorithm, if it converges, produces an estimate X, which is better
than the initial guess gg. If we use gl in the place of the ini-
tial guess and go through the calculation again, we will receive
a further-improved estimate (provided that the algorithm converges).

Thus we have obtained an iterative algorithm,

T.T -1 T, T
ck+l _ ’k k" kT o=-1 ko k | S e RV ~k
351 = &t E : Fn Hy Ry HyFy jf: Fn Hn Ry (Yp-h(xp))
n=1 n=1
(3.11)
and the covariance of £§+1 is
N
T, T -1
ck+l,  _ E : kT kTo-1 ko ok
cov (x;°7) = F, H R HF (3.12)
n=

The iteration is terminated when the difference of two successive
performance indices (Eq. §3.3)) is below a certain threshold.

We make the following remarks:

1. This iterative algorithm processes a batch (N points)
of data. It is iterating over the same batch of data in
attempting to minimize the weighted least square error. If
it converges and is terminated with a finite number of
iterations, it produces near optimum estimates. This
algorithm is fundamentally different from the commonly known
recursive algorithms such as the extended Kalman filter (EKF).

13
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2. The convergence property of this algorithm is
determined by a) the properties of £( ) and h( )
and b) the initial guess £{. Deriving an analytical
convergence criterion for the above algorithm is a
rather complicated problem. In our angle-only tracking
application, numerical experiences indicate that if the.
measurement noise is sufficiently low then a properly
computed gl always converges to the optimal estimate 81.

3. The covariance equation Eq. (3.12) has the
identical functional form as the Cramer-Rao lower bound
on the covariance of trajectory estimation (Refs. (1]
and [2]). The difference is that the Cramer-Rao bound
is evaluated using the true states while Eq. (3.12)
is evaluated using the estimated states. This implies
that if the least square estimate converges asympotically
(when the number of measurements is large) then its
covariance approaches the Cramer-Rao bound.

4. The covariance equation is apparently related to
the observability condition for nonlinear discrete
systems. We note that this subject is an area still not
very well understood. Notice that the matrix to be
inverted in (3.12) may be singular. If it is
singular for all N, then this algorithm fails and the
system is not observable in the weighted Euclidean norm
sense. :

5. Once the estimate at the initial time is found, one

may calculate state estimates at any arbitrary time by
simply applying Eq. (3.1). The associated covariance

can be approximated by using

~ ~ T
cov (x.) = F cov (x;) F, (3.13)

The above procedure is valid because there is no process

noise asgociated with the system dynamics. If one attempts .
to generalize the above algorithm by introducing process :
noise, a much more complicated optimization problem results. i
Fortunately, for the exo-atmospheric trajectory estimation j
problem, the process noise is negligible.

14

S . e . . . » #“', - .




= e T

6. One may use the above procedure to compute an
initial estimate for a general recursive tracking
filter such as the Extended Kalman filter. In the
angle-only measurement trajectory estimation problem,
track initiation is often difficult. The above
procedure seems to provide a reasonable approach
for this application.

7. Due to its simplicity, we suggest the
following procedure for tracking application.

7.1 Use the smallest N, so that the matrix
in the bracket of (3.12) is nonsingular, to compute
an estimate at initial time. The estimate at any
arbitrary time can be obtained by applying the
trajectory equation.

7.2 When the (N+1l)st measurement is available,
use the estimate obtained in (6.1) above as an initial
guess then apply the algorithm. Because this initial
guess is the optimum estimate for N measurements, it
converges to the optimal estimate for N+l measure-
ments very quickly.

We will demonstrate an algorithm for computing the
initial guess used in (6.1) for the angle-only measurement case

in the next subsection.

3.2. Initial Guess Calculation

In the above section, we have illustrated an iterative
least square algorithm which can‘be used to estimate states of
ballistic trajectories with angle only measurements. This algorithm,
if it converges, gives near optimum estimates. Its convergence
is, however, hinged on properly choosing an initial guess. In this
section, we suggest a procedure for computing an initial guess

using a batch of data.
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This procedure is illustrated in Fig. 3.l1. A batch of
angle measurements, (Xn, En)' n=1l, ..., N, ig first smoothed by a
second order polynomial to obtain their derivatives. The poly-
nomial fit procedure can be found in many standard textbooks. A
brief but fairly general analysis was presented in an earlier
report [l]. We simply state the applicable results below. Let
gn, n=l, ..., N denote N angle measurements (which can be either
X's or %'s)r then the 6, 8, and 8 corresponding to the center of

the data interval can be obtained by

3
2 I\
~ 3 (3N“=7)
8 = 7~ TW=-2)N({{+2) }E: én
n=1
| - (N-1) 2 0
30 2 N-1).2 °n
- T (n~-1 - =220 (3.14a)
T2 (N=2) N (N+2) ;é; 2 z”
N
S 12 4oL (N=1). % :
8 = :E: T(n-1 - =5=-) 6 (3.14b)

2
T (N-1)N(N+1) =1

¢

o,

B B
14 (N-2) N (W+2) £=1

[a>2

L

N
220 2 (N-1).2 %n
+ T (n~1 - 2==%) (3.14c)
4 (N-2) (N=1)N (N+1 (N+2) :E: 2 z

n=1

where T is time between measurements.

16
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A batch of measurements
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N 79-1(3)

Get
Another

D

Polynomial Fit

Solve for R and R
fteratively

Measurement

A

Does
not converge

lCon verges

Transform to the
Filter Coordinate

llnitial Guess for

The Iterative Least Square Algorithm

Fig. 3.1. Initial guess calculation procedure.
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With the smoothed angles, one may apply egs. (2.5b) and

(2.5¢) to compute R and R. These two equations are restated below.

A = =2 % AcCos E+ AE tan E (3.15a)
. R . I.\?‘ goRezcos E Rs 3
E = =-2=E - sin 2B - —————— (=)~ -1 (3.15b)
R 2 R R 2 Ry

Notice that the above are two simultaneous nonlinear equations with
two unknowns, R and R.* They may be solved using iterative algorithms
such as Picard's method or Newton's method {4]. The details are
omitted here.

There is another method useful for solving R and R. This
second method seems to have better convergence property and it is
the algorithm used in the simulation study. Tﬁis is to use the
fact that the total energy of a ballistic object is unchanged
throughout its exoaﬁmospheric flight. Let E, dencte the normalized
(by mass) average total energy of a intercontenental ballistic
missile, it is equal to the sum of its kinetic energy (Ek) and

potential energy_(Ep).

R.,~R
= = 1 2 T e
E = E, + E = EVT + go Re ("—-ﬁ';-) (3.16)

*If the term involving = is absent, the equations contain only
the combination R/R and cannct be solved for R and R separately.

18
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where VT is the target velocity, 9y the gravitational constant,
Re the radius of the earth and RT the distance between the target

and the center of the earth. Let

D, S

%
.T The target velocity vector in a
Yo = |¥qp| =
. earth centered Cartesian coordinate
Zp
. The sensor velocity vector in a
Y = Y =
8 8 earth centered Cartesian coordinate
z
L S
then
;cs + aR
Vp = |Yg * DR (3.17)
zg + CR
where a = % cos E 8in A - E sin A sin E + i cos E cos A
b = % cos Ecos A -E cos A sinE - A sin A cos E
g
é ¢ = g sin E + E cos E (3.18)

Substituting (3.189 and (3.17) in (3.16) and using average total

migsile energy, one may solve for R and R together with Eq. (3.1l5a).

19
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With R, ﬁ, A, i, E, ﬁ, one may calculate the state vector

in a sensor centered Cartesian coordinate using the following

equations

X = R sin A cos E
Yy = R cos A cos E
z = R s8in E

cos E sin A - RE sin A sin E+ R A cos E cos A

*
)]
w.

Yy = Rcos EcosA~-RE cos AsinE - R A sin A cos E

Z = RsinE + RE cos E (3.19)

-

where x = [x,y,z,i,&,é]T is the state vector in sensor centered
Cartesian coordinates. It is then transformed to earth

centered Cartesian coordinate by

X = X + X (3.20)

where x, and x  are target and sensor states in earth centered

Cartesian coordinates, respectively.

In the next section, we illustrate a technique of
incorporating the trajectory a priori knowledge with the state

estimate by means of constrained estimation.

20
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3.3. Incorporating A Priori Knowledge

In the ballistic trajectory estimation problem, several
trajectory variables such as re-entry velocity, re-entry angle,
etc., are known to within a certain range of values. Incorporating
this a priori information with measurements to obtain a "combined"
estimate constitutes é constrained estimation problem. We will
discuss the constrained estimation problem in Sec. 3.3.1. Previous
analytical studies [1,2] indicated thatthe re-entry velocity
constraint is the most significant a prior knowledge and it
precludes all other constraints. For this reason an algorithm for

explicitly incorporating the velocity constraint is discussed in

Sec. 3.3.2.

3.3.1. Constrained Estimation

Let { denote a known constraint set which the state
vector x must satisfy. The constrained estimate of X based upon

. v Y
both { and measurements y, , ..., Yy is the x satisfying

N
min z -y T R (F -y (3.21)
_x_ﬂ 2, n=1

subject to system and measurement Egs. (3.1) and (3.2). Notice

that the summation in the bracket is identical to Eq. (3.3).

21
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The above minimization can be decomposed into two steps:
1) obtain the unconstrained estimate and covariance and 2) modify
the unconstrained estimate using the constraint set. This decom-
position procedure is optimal only for linear systems. We never-
theless adopt it here because the optimal solution for nonlinear

systems 1ls very difficult tou obtain.

Let g and P denote the state estimate and covariance
obtained by the algorithm described in Sec. 3.1, the constrained

egtimate g is the solution of

min [(§—§)T p~t (?_é-J_E)] (3.22)
Re

The above equation indicates that the optimal estimate is a state
vector in Q which has the shortest weighted distance to the un-

. . N N, . A
constrained estimate x. If x is in Q, then x = 2. If E is
outside of {., then x is on the boundary of @ . We illustrate a
two-dimensional constrained estimation in Fig. 3.2. Notice that

the optimal estimate x may not be the closest to X measured by

using the conventional distance. This is because that the distance

implied in (3.22) is weighted by the covariance of g.
If ¥ is an unbiased estimate of x and is Gaussian, then
g obtained in using (3.22) is the maximum likelihood estimate of

x based upon both measurement and constraint set {. If a

ac

22
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distribution of x in @ is known, one may also use the minimum
mean square error estimator for computing g. Since the minimum
mean square error estimation requires a distribution of x in &,
and it is also more difficult to compute, we will not discuss it
here. Discussions on the constrained estimation problem can be
found in Ref. [6].

In the trajectory estimation application, a constraint

set can be specified by bounds on velocity (v), heading angle (9),

and re-entry angle (y)*. We denote the constraint set by

Q = {x: vy < v < Vai Al LS B PF 61 <8 < 62} (3.23)

where these quantitites are related to the coordinates in a

east (x) - north (y) - up (z) oriented Cartesian coordinate by
v o= (iz + 92 + %2)1/2
Yy = tan”t g (y = 0 when heading north)
8 = sin’t 2 (3.24)
v

As we discussed before, when % is outside of Q, then the

optimal solution lies on the boundary of Q. Using (3.23), it is

*One may also include energy bounds Q2. This does not change
the generality of the ensuing discussions,

24
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evident that the segment of the boundary which contains x is a
subset of variables in (3.23) achieving equality. Such a subset
can be found by searching through all possible combinations

of variables achieving equalities. This procedure is tedious

but straightforward. Let f(x) = ¢ denote such a subset, then the

minimization problem described in (3.22) becomes

min(d = (3-07T p7HF-x) + 2T (£(x)-0)] (3.25)

where )\ is the vector of Lagrange multipliers. The necessary

conditions for minimizing J are

-1, ° af” (g) _
-2 (E-x) + Ml =0 (3.26)
£(x) = ¢ (3.27)

An algorithm solving (3.26) and (3.27) by including the

constraint set described in (3.23) can be quite involved. Previous

analytical studies (1], [2] indicate that constraints on the angles

are very loose compared with the velocity constraints. Later
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numerical results will also substantiate this fact. For this
reason we derive an algorithm by only considering the velocity

constraint in the next subsection.

3.3.2. Incorporating the Velocity Constraint

The velocity constraint can be rewfitten as
Q = X: v2 < X'8Sx <V } (3.28)
o=l == 2 *

where x is the state vector in Cartesian coordinates with com-

&

ponents (x,y,z,%X,¥,2), S is a matrix defined as

and I is én identity matrix. Assuming %_is not contained in

QV and

T = o2
g X Sx Vo
26
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where v, may be equal to either vy or v, then Egs. (3.26) and

(3.27) become

P lRx) + 1 8% = 0

Solving for % in (3.26a) yields

1 -lz

Ll +astp

x>
[

r

Substituting (3.29) in (3.27a) yields

¥ p~laas) s (p~teas) “lpm 1y

One must solve for A using (3.30) then substitute it into (3.29) F
|

to obtain the final constrained estimate x.

method to solve for A in (3.30). Let
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We use Newton's
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(3.26a)

(3.27a)

(3.29)

(3.30)



ng

1.~-1

£y = ¥eTheTlas) rspmlas) Tlely - v (3.31)
and
: _df()
£ ) (3.32)

= -2%Tp"L(p7teas) “Ls (p~teas) TLpT LY

The recursive solution for X is

(3.33)

Results of applying the above algorithm to the angle-
only measurement trajectory estimation problem will be shown
in the numerical results section.

We emphasize that although the constraint equation is only
explicitly applied to the velocity ccmponents of the state, it is
expected that both position and velocity estimates can be improved
due to the fact that they are correlated through the covariance
matrix P. This point can be made clear by examining (3.29). Notice
that all components of g are changed by the constraint if A # 0.

Later numerical results will also substantiate this fact.

3.4. Overall Estimation Algorithms

We now combine the above analyses to present two angle-
only tracking algorithms. One of which is strictly using the

iterative least square estimator and the other one is using the
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extended Kalman filter with the iritial conditions provided by

the ILS estimator. These two algorithms are illustrated in
Figs. 3.3 and 3.4.

Notice that both algorithms use the ini;ial guess
calculation method presented in Section 3.2. After the
initial guess has bheen obtained, the ILS algorithm proceeds to
recursively apply the ILS estimator. Notice that the initial guess
calculation method of Section 3.2 does not suggest ways of calculating
the initial covariance matrix. In order to initiate the EKF
algorithm, we first apply ILS to obtain both initial state and
covariance then proceed to recursively apply the EKF estimator.
This makes the ILS and EKF initial estimates identical. Later
numerical results will show this effect.

Since there are a number of iterative processes in these
algorithms, these following rather arbitrary check points are

established to detect divergence:

(1) For more than 15 iterations, AI=Ik+l-—Ik is still
larger than 10-8 where

~, T —lA"
Ik = xk Pk xk

(2) Estimated altitude is larger than 10%% km.

(3) It takes more than 1200 seconds to impact

If the estimated state satisfies anyvone of the above
check points, one additional data pocint is obtained and the

initiation procedure is started over again. We emphasize that

29

T e T



A batch of Ai's and E,'s (N)

J*

' X as initial guess

Fig. 3.3. Angle~only track algorithms:
square estimator.
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we are using an expanding data window to include more data points
in the initiation process as oppose to using a sliding window.
# In the numerical example section, we will use an example to illustrate
the convergence frequency as a function of measurement standard
deviation and number of pulses used in the initiation process.

Notice also that the constrained estimate is not used
in the feedback loop. That is, it is applied only at the output

of the overall algorithm.

B 2 A 4L b S Sy e et o -
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4, NUMERICAL RESULTS

In this section, we present a numerical example to
illustrate our results. Both the free-falling and stationary
sensor platform cases are considered. The sensor and target

initial state vectors in an arbitrarily oriented earth centered

Cartesian coordinate are

L]

[2000., 3500., 7000.,~1.5,~3.,-2.]7 in km and km/s

éx

K

[0.,4200.,6500.,0.,2.,-1.17 © in km and km/s |

For a free-falling sensor platform, the sensor is following the

(2.1)) with the above x as :

same differential equation of motion (eq.
the initial state. For a stationary sensor platform. The sensor
position remains constant at the above values. This could be
achieved by thrusting the sensor platform to cancel gravity and
velocity.

We assume that the sensor measurement standard deviation
is 10 urad. NoticeAfrom Eq. (3.12), the estimation covariance ; !
is linearly related to measurement standard deviations: We can ; L
therefore scale our results using this fact. Higher measurement

standard deviations will however, result in difficulties in

covergence. This point will be illustrated later.
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We apply velocity constraints at the filter output
to imprové our estimates. Two levels of velocity bounds are used
to examine the sensitivity. They are +.5 km/s and +.125 km/s at
the true velocity.

The simulation program is rxun in a Monte Carlo fashion
to accumulate the error statistics. Root-mean-square (RMS) errors
using 20 Monte Carlo runs are computed.

The RMS position errors of ILS and EKF estimates for
the moving sensor platform case are presented in Figs. 4.i and
4.2, respectively. Also shown is the unconstrained Cramer-Rao
bounds, Ref. [1l], [2]. It is evident that the ILS achieves the
Cramer-Rao lower bounds while the EKF does not*. 1t is also in-
teresting to note that constrained estimates have substantially
smaller errors than the unconstrained estimates when the track
time is short. When the track time is lcng, however, i.e., where
there are sufficient data to provide velocity estimates with
errors better than the bound, the advantage of constrained
estimation 1is lost.

The RMS poéition errors of ILS and EKF estimates for
the stationary sensor platform case are presented in Figs. 4.3 and
4.4 respectively. Notice that both ILS and EXF achieve the Cramer-

Rao bound. The estimation error of a stationary sensor is much

*The fact that both EKF and 1LS arebelow the C.R. Bound for short
times is artificial and is due to assumptions equivalent to a
velocity bound for initialization.
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Unconstrained

Lo

C. R. Bound

AV = +

N AV = +.125 km/s

40 4 0y = 10 prad
Measurement Interval = 10 seconds

RMS Position Error - KM
3
1

20 Monte Carlo Runs

AV : Velocity Constraint at True Velocity

T[N 79-1(4.1) |
ILS Estimator

10 r Y

Time - Second

Fig. 4.1. Position estimation error:
a free-falling sensor.
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Fig. 4.2. Position estimation error: The EKF algorithm with
a free-falling sensor.
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] ILS Estimator
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40
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C. R. Bound
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31  av: velcity Constraint at True Velocity
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Fig. 4.3. Position estimation error: The ILS estimator with
a stationary sensor (notice the vertical scale change with
Figs. 4.1 and 4.2). :
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Fig. 4.4. Position estimation error: The EKF algorithm with
a stationary sensor (notice the vertical scale change with

Figs. 4.1 and 4.2).
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smaller than that of a free-falling sensor (notice the change of

vertical scale). A stationary sensor platform is apparently

"enhancing" the system "observability" and this pushes the EKF
much closer to the optimum (in the Cramer-Rao bound sense)
performance. Furthermore, the velocity coﬁstraints seem to make
very little improvement over the unconstrained estimates.

Figs. 4.5 and 4.6 present track initiation success
frequencies for free~falling and stationary platforms, respectively.
The success frequency for the stationary sensor platform case is
much higher than that for the free-falling sensor platform case
under the same conditions. Notice that the success frequency
drops quickly as Og increases., For a given Og s the success
frequency increases for increasing number of pulses used in the
initiation process. The expanding window algorithﬁ suggested in‘

Section 3.4 therefore insures a near 100% success frequency for

a given Og
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Fig. 4.5. Track initiation success frequency: Free-falling
sensor platform.

a0

—— S ———




[nitiation Success Frequency - 7

LN 79-1(4.6) |

100
90 ~
No. of Pulses
80 - Used in the
Initiation =
70 4
w -
w -
40 -
30 -
20 -
10 ~
0 ¥ ) ¥ T LRI " : L § L L4 ] Tr ¥ Ij]
10 2 30 40 50 100 200 300 400500 1,000
0, - urad
Fig. 4.6. fTrack initiation success frequency: Stationary

sensor platform. _ -
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5. CONCLUSIONS ;

We have derived an iterative least square (ILS) esti~
mation algorithm and applied it to the problem of ballistic tra-
jectory estimation with angle-only measurements. We have also
suggested an initiation scheme which is applicable to initiating
either the ILS or the extended Kalman filter (EKF) algorithm. {
Methods for constrained estimation are presented to incorporate
a priori trajectory constraints with state estimates.

There are still basic¢ open issues in this 1
area. For example, theories of the conditions for which o

the ILS will converge, the relationships among observability of

nonlinear systems, the Cramer-Rao bound ; and the iterative least
square algorithm, among others, have not been explored.

It is found that a stationary sensor platfoim achieves
substantially smaller estimation érrors than the free-falling
sensor. This suggests that there ma;'exist an optimum control
strategy for the sensor platform such that the estimation error

is minimized. This is also an open area for further research.

In addition to the above discussions, we draw the fol-

lowing conclusions.

P (1) For the free~falling sensor platform case,
the ILS estimator achieves the Cramer-~Rao lower

bound con the covariance of trajectory estimates while
the EKF does not.

(2) For the stationary sensor platform case,
| both ILS and EKF achieve the Cramer—-Rao lower bound .
and the estimation error is much smaller than that
for the free-falling sensor platform case.
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(3) For sufficiently small measurement standard
deviations, the suggested initiation procedure seems to

have fine convergence properties.

(4) An extremely good velocity bound (i.e., the +.125 km/s
case) only gives marginal improvement over unconstrained estimates
after tracking for 150 seconds, for the free-falling sensor
platform case. For the stationary platform case, the velocity
constraints make very little effect over the unconstrained

estimates.
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