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ABSTRACT

An iterative least square estimation algorithm is derived

and applied to the problem of state estimation of ballistic

trajectories with angle only measurements. A filter initiation

procedure is suggested. The application of trajectory a_ priori

knowledge for improving the estimate is discussed and solved as

a constrained estimation problem. A Monte Carlo simulation study

was conducted to evaluate these techniques. It was found that the

iterative least square filter achieves the Cramer-Rao bound and

it performs better than the extended Kalman filter when the

sensor is on a free-falling platform. When the sensor is on a

stationary platform however, both estimators asymptotically

achieve the Cramer-Rao bound.
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1. INTRODUCTION

The state estimation of a ballistic trajectory with angle

only measurements is a challenging problem. The problem becomes

even more complex when the sensor is placed on a free-falling

platform. It is difficult to initiate a filter for such systems.

Furthermore, the extended Kalman filter (EKF) is expected to perform

poorly since the EKF performance is conditioned on being able to

linearize the system about accurate state estimates.

In two previous reports, [(] and [2], the Cramer-Rao

lower bound on the covariance of the trajectory estimates was

presented for stationary sensor platforms [1] as well as free-

falling sensor platforms [2].. Since this bound is calculated using

the information matrix (the inverse of the covariance matrix) and

it is not tied with any specific estimator, the results can be

easily calculated and they are not restrained by the filter initi-

ation problem. Issues remaining to be addressed include: how tight

is this bound? can any filter achieve this bound?

In this report, we present an iterative least square (ILS)

algorithm for estimating the state of nonlinear deterministic systems

with nonlinear noisy measurements. It is known that the exo-

atmospheric part of ballistic trajectories can be described by 4'
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nonlinear differential equations with zero process noise. This

fact enables the above algorithm to be applied to the problem

of tracking with angle-only measurements. We have also derived

a procedure using a polynomial fit and vehicle-sensor dynamics

for calculating filter initial conditions. We apply this

procedure to initialize both ILS and EKF filters and evaluate

their performances using a Monte Carlo simulation.

Since the angle-only tracking system is only "weakly"

observable*, the resulting estimation error is inevitably large.

It is suspected that trajectory a priori knowledge (e.g.,

constraints on velocity,energy, angles, etc.) may be helpful for

improving the estimates. This constitutes a constrained estimation

problem. We formulate this problem and present a solution

procedure.

This report is organized as follows. In the next

section, we state the trajectory equation of motion. In the

third section, we derive the iterative least square algorithm.

Also, presented are initiation and constrained estimation

procedures. In the fourth section we present a numerical example

illustrating the ILS and EKF performances and compare them with

the Cramer-Rao bound.

*Since range is not measured.
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2. TRAJECTORY EQUATION OF MOTION

Tracking with angle-only measuremsnts is primarily

concerned with exo-atmospheric trajectories. Gravity is

therefore the most significant force term on the target. For

the case of a free-falling sensor platform, the difference of

gravity on the sensor and on the target produces curvature in

the relative sensor-target trajectory and is the information en-

abling the target state to be estimated. For these reasons, we

consider the gravity as the only driving force on the trajectory.

Furthermore, we use a spherical earth model to simplify the

mathematics.

Consider a Cartesian coordinate with origin at the

center of the earth. The trajectory differential equations of

motion are

.. x Re2

X= -g 0  2 2 2)3/27
( +y +Z

y 2 Y R

y -go0 X2 y2 +2 3/2 (2.1)

2 2 e/

"(x +y +z

where go is the gravity at sea level and Re is the radius of the0i

earth.
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The sensor measures azimuth (A) and elevation (E)

angles of the target relative to the sensor, i.e.,

-1 x
A = tan X

(2.2)

E = tan-

where the states used in (2.2) are the difference of the target

state xT and the sensor state xs, i.e., Eq. (2.2) is evaluated at

x -X T s (2.3)

When the sensor is stationary, xs is a fixed point in space.

When the sensor is free-falling, xs is described by the same

differential equation of motion Eq. (2.1) as that used for targets.

The sensor measurement noise is assumed to be a white

noise sequence with covariance

1 0

R = cov(E,A) a02 (2.4)

4,

where a is the sensor angle measurement standard deviation.

44



Equations (2.1) - (2.4) will be used as system and

measurement equations in the iterative least square algorithm to

be described in the next section. Trajectory equations of motion

described in the sensor coordinates will be found useful in computing

an initial guess for the iterative least square algorithm. We

therefore state them below. If the sensor is free-falling, the

target differential equations of motion in the sensor (R,A,E,)

coordinates are

R (i2÷i2cos2 E) goR 2 sin E R (R+R ssin E) 1 .
R- s2 E RT n E ] (2 .5a)

"A R2 cos E + AE tan E (2.5b)
R

ý2 g0Re2 Co (rIR3 '
"A 2 [sin 2E- o s [ - J (2.5c)E -2R R R 2 T\J (.o

where R is the distance between target and sensor, N, is the

distance between target and the earth center, and Rs is the distance

between sensor and the earth center. The RT is related to R

and Rs by

RT (R2 + R s2 + 2RRs sin E)1/2 (2.6)

Notice that the gravity appears only in R and E. The target-

sensor geometry is illustrated in Fig. 2.1.

5
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If the sensor is stationary, the gravity term on range

(gR and elevation (gE) are modified as

2

gR =-go 0 23(R+R ssin E)RT

(2.7)

R 2e

E= -go R RsCoS ER RT

If the sensor is stationary and the target is relatively

close to the sensor, a flat earth model may suffice. The gravi-

tational terms for the flat earth are

ga= -go sin E

(2.8)
go

g = - cos E

6.
6)
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Og = TR'gSR

TE "9 SE
To Earth Center

Fig. 2.1. Target-sensor geometry and relative
gravity accelerations.
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3. ESTIMATION ALGORITHM

In the first subsection, we describe an iterative

lodat square algorithm applicable to state estimation with

deterministic nonlinear discrete systems. The convergence of the

iterative least square algorithm is dependent upon a particular

application and the initial guess (initial state) for the itera-

tive procedure. In the second subsection, we demonstrate a method

for computing an initial state by using a batch of angle measurements.

In the ballistic trajectory estimation problem, several

variables (e.g., re-entry velocity, re-entry angle, etc.)

are known to within a certain range of values. Incorporating this

a priori information with measurements to obtain a "combined"

estimate constitutes a constrained estimation problem. In the third

subsection, we present algorithms for calculating the constrained

estimate. In the fourth subsection, we combine these analyses to

present two algorithms for ballistic trajectory tracking applications.

3.1. An Iterative Least Square Algorithm

Consider the following nonlinear discrete system and

measurement equations:

X n+1 = f(X n) n-l,... (3..1) .4'

Yn+l ( + Yn+l (3.2)

where x is the state vector, • is the measurement vector, • is

the noise corrupted measurement vector, v is the measurement

8
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noise vector and n is the discrete time index. We assume that vn

is a time-wise uncorrelated random sequence which is Gaussian

with zero mean and covariance Rn. Notice that we do not include

(1) process noise and (2) unknown time-varying parameters* in,

Eq. (3.1). These assumptions are valid for exoatmospheric

trajectories. If we relax these assumptions, then the simplicity

of the ensuing algorithm will be lost,

We emphasize that Eq. (3.1) is a convenient and suffi-

cient way of representing the trajectory estimation -r-blem being

considered. When the trajectory is described by a differential

equation of motion, i.e.,

S= •(x) ; x(t 0 ) (3.1a)

then one can always obtain an equivalent discrete system by using

numerical integration to evaluate

t n+I

X(tn 1 ) X(tn) + f(x)dt (3.1b)

t n

= f(xn)

The least square algorithm to be described works with a

batch of measurements. Let %o •I''' 4 N denote a batch of N

*The ensuing algorithm is applicable to systems with unknown
constant parameter vectors.

9
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measurements. One would like to obtain an estimated state sequence

cn, n=l, ... , N so that

J TRn_1.3

n-Xn n(nYn)13)
n=1

is minimized subject to constraint Zqs. (3.1) and (3.2). Since

there is no process noise assumed in (3.1), one is only required

to estimate the initial state (corresponding to n=l) x1. Further-

more, if an inverse function of fo, i.e.,

L = (x n+l) (3.4)

can be found, the optimal estimate of the entire trajectory can

be obtained if one minimizes (3.3) with respect to a state

vector along the trajectory. In our trajectory estimation applica-

tion the f-l( ) function merely corresponds to integration back-

wards in time. We cantherefore minimize (3.3) with respect to

any state along the trajectory. For the purpose of convenience,

we minimize (3.3) with respect to the initial state x1.

Before minimizing (3.3) can be made tractable, we

introduce approximations to the system and measurement equations. V^o'

Let Xn denote an initial guess (estimate) of the true state x

10
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we approximate the measurement equation by using a first order

Taylor series expansion about xn,

AS n

S h(Xn) h(X ) + H' (Xn-x ) (3.5)

where H n is the Jacobian matrix of h(xn) ) evaluated at x°n Using

the system Eq. (3.1) and iterating n times' yields

(3.6a)_'n = fn(Xl) ( .a

Note that if (3.1) is a linear system then f( ) is the product

of n transition matrices and if (3.1a) is used then

t

~~~n~ (x1) d xt) f (dt (3.6b)
ti1

Let xI denote the initial guess (estimate) of x1, then it is

related to the x0 used in (3.5) by-n

0 0

fn f n (X1) (3.7)

Approximating the system equation by using a first order Taylor

series expansion about x, yields

11
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n = ) fn(l ) + F (3.8)

where F0 is the Jacobian matrix of f ( ) evaluated at x 0

n -n-1

We now minimize (3.3). Substituting (3.5), (3.7), and

(3.8) in (3.3) yields

N
+0- 

T  -R(n -n[h(nO nOF (X Sl-) ] n

n=l1

(3.9)

"- [h(^ 0 ) + H°F°(xn - - n n - -

Taking the derivative of J with respect to xI and solving for x1

yields

N N
1= 0 + E n nn n nl J n n n ( hn-h ]

n=l n=l
(3.10)

12
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Notice that we have used the notation x to replace x1. This

algorithm, if it converges, produces an estimate x which is better
AO A

than the initial guess x1. If we use x in the place of the ini-

tial guess and go through the calculation again, we will receive

a further-improved estimate (provided that the algorithm converges).

Thus we have obtained an iterative algorithm,

Ak+l A k ' k Tk T -lk kl1 k hT- .1 x kL F n H n n Hn n n Hn R n - -,n

(3.11)

Ak+l

and the covariance of is

cov(X ) = F n Rn HnFn (3.12)

The iteration is terminated when the difference of two successive

performance indices (Eq.. (3.3)) is below a certain threshold.

We make the following remarks:

1. This iterative algorithm processes a batch (N points)
of data. It is iterating over the same batch of data in
attempting to minimize the weighted least square error. If
it converges and is terminated with a finite number of
iterations, it produces near optimum estimates. This
algorithm is fundamentallyTdifferent from the commonly known
recursive algorithms such as the extended Kalman filter (EKF).

t,
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2. The convergence property of this algorithm is
determined by a) the properties of f( ) and h( )
and b) the initial guess ?. Deriving an analytical
convergence criterion for the above algorithm is a
rather complicated problem. In our angle-only tracking
application, numerical experiences indicate that if the
measuremen8 noise is sufficiently low then a properly
computed x always converges to the optimal mate "i"

3. The covariance equation Eq. (3.12) has the
identical functional form as the Cramer-Rao lower bound
on the covariance of trajectory estimation (Refs. [1]
and [2]). The difference is that the Cramer-Rao bound
is evaluated using the true states while Eq. (3.12)
is evaluated using the estimated states. This implies
that if the least square estimate converges asympotically
(when the number of measurements is large) then its
covariance approaches the Cramer-Rao bound.

4. The covariance equation is apparently related to
the observability condition for nonlinear discrete
systems. We note that this subject is an area still not
very well understood. Notice that the matrix to be
inverted in (3.12) may be singular. If it is
singular for all N, then this algorithm fails and the
system is not observable in the weighted Euclidean norm
sense.

5. Once the estimate at the initial time is found, one
may calculate state estimates at any arbitrary time by
simply applying Eq. (3.1). The associated covariance
can be approximated by using

coy (n = Fn coy (X1 ) Fn (3.13)

The above procedure is valid because there is no process
noise associated with the system dynamics. If one attempts
to generalize the above algorithm by introducing process
noise, a much more complicated optimization problem results.
Fortunately, for the exo-atmospheric trajectory estimation
problem, the process noise is negligible.

It

14,,,

.777



6. One may use the above procedure to compute an
initial estimate for a general recursive tracking
filter such as the Extended Kalman filter. In the
angle-only measurement trajectory estimation problem,
track initiation is often difficult. The above
procedure seems to provide a reasonable approach
for this application.

7. Due to its simplicity, we suggest the
following procedure for tracking application.

7.1 Use the smallest N, so that the matrix
in the bracket of (3.12) is nonsingular, to compute
an estimate at initial time. The estimate at any
arbitrary time can be obtained by applying the
trajectory equation.

7.2 When the (N+l)st measurement is available,
use the estimate obtained in (6.1) above as an initial
guess then apply the algorithm. Because this initial
guess is the optimum estimate for N measurements, it
converges to the optimal estimate for N+l measure-
ments very quickly.

We will demonstrate an algorithm for computing the

initial guess used in (6.1) for the angle-only measurement case

in the next subsection.

3.2. Initial Guess Calculation

In the above section, we have illustrated an iterative

least square algorithm which can be used to estimate states of

ballistic trajectories with angle only measurements. This algorithm,

if it converges, gives near optimum estimates. Its convergence

is, however, hinged on properly choosing an initial guess. In this

section, we suggest a procedure for computing an initial guess

using a batch of data.

15
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This procedure is illustrated in Fig. 3.1. A batch of

angle measurements, (W' n n), n1, ... , N, is first smoothed by a

second order polynomial to obtain their derivatives. The poly-

nomial fit procedure can be found in many standard textbooks. A

brief but fairly general analysis was presented in an earlier

report [1]. We simply state the applicable results below. Let

en, n=l, ... , N denote N angle measurements (which can be either
AA A

A's or E's), then the e, 0, and 6 corresponding to the center of

the data interval can be obtained by

3 (3N 2 -7) L4

4 T(N-2)N-(-4-+2) n
n=l

30 E T2 (n-1 (N-2)) 2 n

T2 (N-2)N (N+2) n Tl 2 (3.14a)

N
t 12 (N -1) ~

e=a T(n-1- 2 6 n (3.14b)
T2(N-)N(N+l) n=l

-30

T 2(1-2)1(!4+2) a n
n=l

N
720 ' 2 (N-1) 2n+4 Lv T (n-1 (3.14c)

T (N-2) (N-1)N(N+l(N+2) n=1

where T is time between measurements.

16



A batch of measurements 1 LTN 79-1(3.1)_ 1

'and 's . .Get

Another

Measurement

Polynomial Fit

A , A , , E , ,

Solv fDoes
Solvelefor R and not converge

Iteratively

Converges

Transform to the

Filter Coordinate

Initial Guess for

The Iterative Least Square Algorithm

Fig. 3.1. Initial guess calculation procedure.
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With the smoothed angles, one may apply eqs. (2.5b) and

(2.5c) to compute R and •. These two equations are restated below.

A= -2 cos E + tan E (3.15a)
R

R A2  g [ 3 2 c
E = A sin 2E - 2e (T)3 E i (3.15b)R R s RT

Notice that the above are two simultaneous nonlinear equations with

two unknowns, R and R.* They may be solved using iterative algorithms

such as Picard's method or Newton's method [4]. The details are

omitted here.

There is another method useful for solving R and R. This

second method seems to have better convergence property and it is

the algorithm used in the simulation study. This is to use the

fact that the total energy of a ballistic object is unchanged

throughout its exoatmospheric flight. Let Et denote the normalized

(by mass) average total energy of a intercontenental ballistic

missile, it is equal to the sum of its kinetic energy (Ek) and

potential energy .(E p).

lVT2 R-R
E Ek + Ep T + go Re (-T-) (3.16)

*If the term involving go is absent, the equations c9ntain only
the combination R/R and cannot be solved for R and R separately.

18
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where VT is the target velocity, g0 the gravitational constant,

Re the radius of the earth and RT the distance between the target

and the center of the earth. Let

FTl The target velocity vector in a

YT 4 Iearth centered Cartesian coordinate

The sensor velocity vector in a

s= earth centered Cartesian coordinate

then

x5 + aR~
VT ys + bR (3.17)

8~ + CR

where a cos E sin A - sin A sin E + Acos E cos A

b = cos E cos A -Ecos A sin E -Asin A cos E

c = sin E + E cos E (3.18)
VR

Substituting (3.18) and (3.17) in (3.16) and using average total

missile energy, one may solve for R and R together with Eq. (3.15a).

19



With R, R, A, A E, E, one may calculate the state vector

in a sensor centered Cartesian coordinate using the following

equations

x = R sin A cos E

y = R cos A cos E

z = R sin E

= Rcos E sin A - R sin A sin E +R cos E cos A

y= Rcos E cos A - R A cos A sin E -R sin A cos E

z = R sin E +R csE (3.19)

* T
where c = [x,y,z,x,y,z] is the state vector in sensor centered

Cartesian coordinates. It is then transformed to earth

centered Cartesian coordinate by

XT x+X (3.20)

where xT and x s are target and sensor states in earth centered

Cartesian coordinates, respectively.

In the next section, we illustrate a technique of J

incorporating the trajectory a priori knowledge with the state

estimate by means of constrained estimation.

20



3.3. Incorporating A Priori Knowledge

In the ballistic trajectory estimation problem, several

trajectory variables such as re-entry velocity, re-entry angle,

etc., are known to within a certain range of values. Incorporating

this a priori information with measurements to obtain a "combined"

estimate constitutes a constrained estimation problem. We will

discuss the constrained estimation problem in Sec. 3.3.1. Previous

analytical studies [1,21 indicated thatthe re-entry velocity

constraint is the most significant a prior knowledge and it

precludes all other constraints. For this reason an algorithm for

explicitly incorporating the velocity constraint is discussed in

Sec. 3.3.2.

3.3.1. Constrained Estimation

Let 2 denote a known constraint set which the state

vector x must satisfy. The constrained estimate of x based upon

both Sz and measurements Yl ' "' YN is the x satisfying

min [ (n-n)T Rn 1 (Yn-yn) (3.21)

subject to system and measurement Eqs. (3.1) and (3.2). Notice

that the summation in the bracket is identical to Eq. (3.3).

21
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The above minimization can be decomposed into two steps:

1) obtain the unconstrained estimate and covariance and 2) modify

the unconstrained estimate using the constraint set. This decom-

position procedure is optimal only for linear systems. We never-

theless adopt it here because the optimal solution for nonlinear

systems is very difficult to obtain.

Let x and P denote the state estimate and covariance

obtained by the algorithm described in Sec. 3.1, the constrained

estimate x is the solution of

min -x)T P (X-x (3.22)

The above equation indicates that the optimal estimate is a state

vector in & which has the shortest weighted distance to the un-

AAconstrained estimate x. If x isi ,te .If is

outside of Q., then x is on the boundary of 2 . We illustrate a

two-dimensional constrained estimation in Fig. 3.2. Notice that

the optimal estimate x may not be the closest to x measured by

using the conventional distance. This is because that the distance

implied in (3.22) is weighted by the covariance of x.

If ý is an unbiased estimate of x and is Gaussian, then

"x obtained in using (3.22) is the maximum likelihood estimate of

"x based upon both measurement and constraint set Q. If a

22
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Constraint Area

' "1TN. 79-1l(3.2) 1

Fig. 3.2. Constrained estimation.
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distribution of x in 0 is known, one may also use the minimum
A

mean square error estimator for computing x. Since the minimum

mean square error estimation requires a distribution of x in n,

and it is also more difficult to compute, we will not discuss it

here. Discussions on the constrained estimation problem can be

found in Ref. [6).

In the trajectory estimation application, a constraint

set can be specified by bounds on velocity (v), heading angle (0),

and re-entry angle (y)*. We denote the constraint set by

ix: V 1 - V2 ; x1 < <Y 2;0 < 0 < '2ý (3.23)

where these quantitites are related to the coordinates in a

east (x) - north (y) - up (z) oriented Cartesian coordinate by

*(2 + i2 + z2)1/2

7= tan- +y +

y = la- (x = 0 when heading north)

6 = sin" 1 z (3.24)v

As we discussed before, when x is outside of 0, then the

optimal solution lies on the boundary of 0. Using (3.23), it is

*One may also include energy bounds Q. This does not change
the generality of the ensuing discussions.

24



evident that the segment of the boundary which contains x is a

subset of variables in (3.23) achieving equality. Such a subset

can be found by searching through all possible combinations

of variables achieving equalities. This procedure is tedious

but straightforward. Let f(x) = c denote such a subset, then the

minimization problem described in (3.22) becomes

S^T 1-i T^A
min[J = (x-x) P (-x) + (f(x)-c)] (3.25)

where X is the vector of Lagrange multipliers. The necessary

conditions for minimizing J are

A^ T ^

-2P- (x-x) + ax = 0 (3.26)
-- - ax -

A

f(x) c (3.27)

An algorithm solving (3.26) and (3.27) by including the

constraint set described in (3.23) can be quite involved,. Previous

analytical studies [1), [2] indicate that constraints on the angles

are very loose compared with the velocity constraints. Later

25



numerical results will also substantiate this fact. For this

reason we derive an algorithm by only considering the velocity

constraint in the next subsection.

3.3.2. Incorporating the Velocity Constraint

The velocity constraint can be rewritten as

= {x: v 2 < xTsx < v2} (3.28)

where x is the state vector in Cartesian coordinates with comr-

ponents S s is a matrix defined as

[0 3x3 03x3

S = r -- ....

0 3x3 , 3x3J

and I is an identity matrix. Assuming • is not contained in

Sand

T 2
x Sx = 2

26
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where vo may be equal to either vI or v 2 , then Eqs. (3.26) and

(3.27) become

-P (ý-x) + x Sx` 0 (3.26a)

AT A 2
x Sx v 0  (3.27a)

Solving for x in (3.26a) yields

x = (p- + xS)-1 P-lx (3.29)

Substituting (3.29) in (3.27a) yields

•Tp-I(pRI+xs)- s(P- +xS)-Ip-• = Vo2  (3.30)

One must solve for X using (3.30) then substitute it into (3.29)

to obtain the final constrained estimate x. We use Newton's

method to solve for X in (3.30). Let

27
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I~T PI( 1 1x) 1 -1 1 P-1 xV 2
• s)-S(P +XS)Px Vo (3.31)

and

f'(X) df-) (3.32)

""_T -1 -l - -l 1 -l -l

=-2x P (P +XS) S(P 0XS) P x

The recursive solution for X is

f(Xn

Xl - n (3.33)n-I- n f'(X n

Results of applying the above algorithm to the angle-

only measurement trajectory estimation problem will be shown

in the numerical results section.

We emphasize that although the constraint equation is only

explicitly applied to the velocity components of the state, it is

expected that both position and velocity estimates can be improved

due to the fact that they are correlated through the covariance

matrix P. This point can be made clear by examining (3.29). Notice

that all components of x are changed by the constraint if X @ 0.

Later numerical results will also substantiate this fact.

3.4. Overall Estimation Algorithms

We now combine the above analyses to present two angle-

only tracking algorithms. One of which is strictly using the

iterative least square estimator and the other one is using the

28
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extended Kalman filter with the initial conditions provided by

the ILS estimator. These two algorithms are illustrated in

Figs. 3.3 and 3.4.

Notice that both algorithms use the initial guess

calculation method presented in Section 3.2. After the

initial guess has been obtained, the ILS algorithm proceeds to

recursively apply the ILS estimator. Notice that the initial guess

calculation method of Section 3.2 does not suggest ways of calculating

the initial covariance matrix. In order to initiate the EKF

algorithm, we first apply ILS to obtain both initial state and

covariance then proceed to recursively apply the EKF estimator.

This makes the ILS and EKF initial estimates identical. Later

numerical results will show this effect.

Since there are a number of iterative processes in these

algorithms, these following rather arbitrary check points are

established to detect divergence:

(1) For more than 15 iterations, AI=Ik+l-Ik is still
larger than 10-8 where

AkT kl A k
I k X P X

(2) Estimated altitude is larger than 1010 km.

(3) It takes more than 1200 seconds to impact

If the estimated state satisfies any one of the above

check points, one additional data point is obtained and the

initiation procedure is started over again. We emphasize that
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Fig. 3.3. Angle-only track algorithms: The iterative least
square estimator.
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we are using an expandin data window to include more data points

in the initiation process as oppose to using a sliding window.

In the numerical example section, we will use an example to illustrate

-the convergence frequency as a function of measurement standard

deviation and number of pulses used in the initiation process.

Notice also that the constrained estimate is not used

in the feedback loop. That is, it is applied only at the output

of the overall algorithm.
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4. NUMERICAL RESULTS

In this section, we present a numerical example to

illustrate our results. Both the free-falling and stationary

sensor platform cases are considered. The sensor and target

initial state vectors in an arbitrarily oriented earth centered

Cartesian coordinate are

TT

xT = [2000., 3500., 7000. ,-1.5,-3.,-2.]T •in km and km/s

S= (O[, 4 2 00',65OOO.' 2 "-I.']T in km and km/s

For a free-falling sensor platform, the sensor is following the
same differential equation of motion (eg. (2.1)) with the above x as

the initial state. For a stationary sensor platform. The sensor

position remains constant at the above values. This could be

achieved by thrusting the sensor platform to cancel gravity and

velocity.

We assume that the sensor measurement standard deviation

is 10 Prad. Notice from Eq. (3.12), the estimation covariance

is linearly related to measurement standard deviations. We can

therefore scale our results using this fact. Higher measurement

standard deviations will however, result in difficulties in

covergence. This point will be illustrated later.
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We apply velocity constraints at the filter output

to improve our estimates. Two levels of velocity bounds are used

to examine the sensitivity. They are +.5 km/s and +.125 km/s at

the true velocity.

The simulation program is run in a Monte Carlo fashion

to accumulate the error statistics. Root-mean-square (RMS) errors

using 20 Monte Carlo runs are computed.

The RMS position errors of ILS and EKF estimates for

the moving sensor platform case are presented in Figs. 4.1 and

4.2, respectively. Also shown is the unconstrained Cramer-Rao

bounds, Ref. (11, [2]. It is evident that the ItS achieves the

Cramer-Rao lower bounds while the EKF does not*. it is also in-

teresting to note that constrained estimates have substantially

smaller errors than the unconstrained estimates when the track

time is short. When the track time is Icng, however, i.e., where

there are sufficient data to provide velocity estimates with

errors better than- the bound, the advantage of constrained

estimation is lost.

The RMS position errors of ILS and EKF estimates for

the stationary sensor platform case are presented in Fig3. 4.3 and

4.4 respectively. Notice that both ILS and EKF achieve the Cramer-

Rao bound. The estimation error of a stationary sensor is much

*The fact that both EKF and ILS are below the C.R. Bound for short
times is artificial and is due to assumptions equivalent to a
velocity bound for initialization.
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Fig. 4.1. Position estimation error: The ILS estimator with
a free-falling sensor.
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Fig. 4.2. Position estimation error: The EKF algorithm with
a free-falling sensor.

36

i'
• ': " ". 'i," "' ''' •'}'.• "• •' .. '' :'. " " ' ' " " ' . •""" * ,,*"*' , *1 -,"J "



100 " nconstraiI TN 79-1(4.3) I

ILS Estimator

50 A-V - . 125km
40

30

C. R. Bound
20

L..

0 10 
,

V-

L.•

S5

4 ae 10 prad

10

.es0• . eons .

FigV: Velocityt Consaint at True Velocity wt2 ~ 20 Monte Carlo Runs ,.

1 -.... '... I ' .. . ' .. I I'

20 30 40 50 60 7080 90100 150 200

Time - Second

Fig. 4.3. Position estimation error: The ILS estimator with
a stationary sensor (notice the vertical scale change with r
Figs. 4.1 and 4.2).
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Fig. 4.4. Position estimation error: The EKF algorithm with
a stationary sensor (notice the vertical scale change with
Figs. 4.1 and 4.2).
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smaller than that of a free-falling sensor (notice the change of

vertical scale). A stationary sensor platform is apparently

"enhancing" the system "observability" and this pushes the EKF

much closer to the optimum (in the Cramer-Rao bound sense)

performance. Furthermore, the velocity constraints seem to make

very little improvement over the unconstrained estimates.

Figs. 4.5 and 4.6 present track initiation success

frequencies for free-falling and stationary platforms, respectively.

The success frequency for the stationary sensor platform case is

much higher than that fur the free-falling sensor platform case

under the same conditions. Notice that the success frequency

drops quickly as a6 increases. For a given a, the success

frequency increases for increasing number of pulses used in the

initiation process. The expanding window algorithm suggested in

Section 3.4 therefore insures a near 100% success frequency for

a given aoV

I3
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Fig. 4.5. Track initiation success frequency: Free-falling
sensor platform.
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Fig. 4.6. Track initiation success frequency: Stationary
sensor platform.
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S. CONCLUSIONS

We have derived an iterative least square (ILS) esti-

mation algorithm and applied it to the problem of ballistic tra-

jectory estimation with angle-only measurements. We have also

suggested an initiation scheme which is applicable to initiating

either the ILS or the extended Kalman filter (EKF) algorithm.

Methods forconstrained estimation are presented to incorporate

a priori trajectory constraints with state estimates.

There are still basic open issues in this

area. For example, theories of the conditions for which

the ILS will converge, the relationships among observability of

nonlinear systems, the Cramer-Rao bound , and the iterative least

square algorithm, among others, have not bedh explored.

It is found that a stationary sensor platform achieves

substantially smaller estimation errors than the free-falling

sensor. This suggests that there may exist an optimum control

strategy for the sensor platform such that the estimation error

is minimized. This is also an open area for further research.

In addition to the above discussions, we draw the fol-

lowing conclusions.

(1) For the free-falling sensor platform case,
the ILS estimator achieves the Cramer-Rao lower
bound on the covariance of trajectory estimates while
the EKF does not.

(2) For the stationary sensor platform case,
both ILS and EKF achieve the Cramer-Rao lower bound
and the estimation error is much smaller than that
for the free-falling sensor platform case.

42I
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(3) For sufficiently small measurement standard
deviations, the suggested initiation procedure seems to
have fine convergence properties.

(4) An extremely good velocity bound (i.e., the +.125 km/a
case) only gives marginal improvement over unconstrained estimates
after tracking for 150 seconds, for the free-falling sensor
platform case. For the stationary platform case, the velocity
constraints make very little effect over.the unconstrained
estimates.
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