SYNTHESIS OF A
THIOPHENE-CONTAINING BISBENZIL
AND A DERIVED POLYQUINOXALINE

February 1979

Approved for public release; distribution unlimited.

ARMY MATERIALS AND MECHANICS RESEARCH CENTER
Watertown, Massachusetts 02172
The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an official indorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS
Destroy this report when it is no longer needed.
Do not return it to the originator.
Title: Synthesis of a Thiophene-Containing Bisbenzil and a Derived Polyquinoxaline

Author(s): Domenic P. Macaione and Stanley E. Wentworth

Performing Organization Name and Address:
Army Materials and Mechanics Research Center
Wentworth, Massachusetts 02172
DRXMR-RA

Controlling Office Name and Address:
U.S. Army Materiel Development and Readiness Command, Alexandria, Virginia 22333

Distribution Statement (of this report):
Approved for public release; distribution unlimited.

Abstract

(SEE REVERSE SIDE)
ABSTRACT

The development of polyphenylquinoxaline (PPQ) polymers as high-temperature-resistant materials has been hindered, in part, by the high cost of one resin component, 1,4-bis(phenylglyoxaloyl)benzene (PGB). A low-cost synthesis of PGB or PGB-type compounds to be substituted for PGB in the synthesis of PPQ-type polymers is therefore desirable.

This report deals with the synthesis of 1,4-bis(2-thienylglyoxaloyl)benzene (THGB) by the benzoin condensation route in the search for a low-cost replacement for PGB, and its reaction with 3,3'-diaminobenzidine (DAB) to prepare poly(2-thienyl)quinoxaline (PTHQ). Some of the properties of the polymer have been determined and are discussed.
INTRODUCTION

Since the initial report by Hergenrother and Levine\(^1\) in 1967, polyphenylquinoxaline (PPQ) polymers have been regarded as a promising class of thermally resistant resins. The development of PPQ polymers has been hindered partly by the high cost of one resin component, 1,4-bis(phenylglyoxaloyl)benzene (PGB), which is prepared from expensive starting materials via a multistep synthesis.

![Chemical structure of 1,4-bis(phenylglyoxaloyl)benzene](image)

The classical approach to aromatic \(\alpha\)-diketones, the benzoin condensation and subsequent oxidation, is an obvious direct synthetic route. However, this method has not been generally extended to the synthesis of aromatic bis-\(\alpha\)-diketones. Attempts to condense benzaldehyde with terephthalaldehyde in the presence of cyanide ion have not been successful\(^2\) (Equation 1).

\[
2 \text{CHO} + \text{OHC} \rightarrow \text{CN}^\ominus \rightarrow \text{CH-C-} \quad \text{(1)}
\]

This reaction results in a mixture of products, apparently benzoin and unidentified oligomers undoubtedly arising from the self-condensation of terephthalaldehyde.

A report by Jones et al.,\(^3\) has shown that this synthetic approach can be successful with certain aldehydes as when furan-2-carboxaldehyde is condensed with terephthalaldehyde to produce, after oxidation, 1,4-bis(2-furylglyoxaloyl)benzene (BFGB) (Equation 2).

\[
2 \text{CHO} + \text{OHC} \rightarrow \text{CN}^\ominus \rightarrow \text{EtOH/H}_2\text{O} \rightarrow \text{(2)}
\]

Cherill and Wentworth\(^4\) reported the attempted condensation of terephthalaldehyde with the three isomeric monocarboxaldehydes of pyridine (II-IV). Although

\(^4\) CHERILL, R. J., and WENTWORTH, S. E. Attempted Synthesis of Pyridine Containing Bis-\(\alpha\)-Diketones via the Benzoin Condensation. Army Materials and Mechanics Research Center, AMMRC TR 76-13, April 1976.
they investigated a variety of conditions, none could be found for preparation of the desired bis-benzoins. This report describes a further extension of the benzoin route in pursuit of a low-cost replacement of PGB. Thiophene-2-carboxaldehyde has been successfully condensed with terephthalaldehyde in a classical benzoin condensation. Oxidation affords the corresponding bis-a-diketone by the cupric sulfate-hexamethylphosphoric triamide method which we previously reported for the conversion of labile benzoins to benzils. A review of the literature revealed no prior report of the synthesis of this bis-a-diketone.

EXPERIMENTAL

Materials

The thiophene-2-carboxaldehyde (Aldrich) was redistilled, in vacuo, prior to use and stored under argon with refrigeration. Terephthalaldehyde (Aldrich) was crystallized from water/ethanol prior to use. The 3,3'-diaminobenzidine (DAB) was obtained from Whittaker, R&D, San Diego, CA, recrystallized according to Hergenrother and stored under argon at -15 C. The m-cresol was distilled prior to use. All other materials were used as received.

Synthesis — 1,4-bis(2-thienylglyoxaloyl)benzene (THGB)

To a stirred solution of thiophene-2-carboxaldehyde, (6.7 g, 0.05 mole) and terephthalaldehyde (11.2 g, 0.1 mole) in ethanol was added a solution of potassium cyanide (3 g, 4.6 x 10^{-2} mole) in 20 ml of water. The mixture turned dark brown immediately. After refluxing with stirring for one hour, the reaction mixture was cooled to ambient temperature. With due caution, (HCN, HOOD!) 6 ml concentrated hydrochloric acid was added to the mixture which was stirred for an additional hour and chilled in an ice bath. The orange precipitate which formed was isolated, washed with ethanol, and dried in vacuo for 16 hours.

This bisbenzoin intermediate was not readily soluble in most common solvents, therefore the entire crude product was subjected to oxidation. Appropriate amounts of cupric sulfate pentahydrate and hexamethylphosphoric triamide were stirred in a flask while a stream of oxygen was bubbled through for a period of 30 minutes. The intermediate bisbenzoin was added to the mixture in one portion, and the contents of the flask turned reddish at once.

The reaction mixture was allowed to stir at ambient temperature, under oxygen, for 48 hours during which time the color changed to bright green and the solution viscosity increased. The mixture was poured into distilled water, stirred, and

the resulting precipitate was isolated, washed with water, air dried, and finally, dried in vacuo for 16 hours. To remove any oligomeric species present, the product was extracted for a minimum of 24 hours with chloroform and the solvent removed to yield a yellow product. Material of suitable purity for confirmation of structure was obtained by chromatography on an 18x1/2-inch column packed with silica gel with benzene/ethyl acetate (9:1) as the eluent. Such treatment resulted in a bright yellow crystalline product melting at 172 to 175°C, yield was 4.3 g (25%).

Polymerization — Poly(2-thienyl)quinoxaline (PTHQ)

Stoichiometric amounts of recrystallized 3,3'-diaminobenzidine (DAB) and 1,4-bis(2-thienylglyoxaloyl)benzene (THGB) were placed in a 3-neck flask and dissolved in sufficient distilled m-cresol to produce a 10% concentration of reactants. A stream of inert gas (argon or nitrogen) was admitted and the mixture was stirred at ambient temperature for 72 hours. Over the period of the reaction, the color of the mixture became more intense and the solution viscosity increased to such an extent that small volumes of m-cresol were added to the reaction flask periodically to maintain a fluid state. The final concentration of the reaction mixture was thus reduced to 2.5%. The reaction mixture was poured into an excess of stirred methanol and the resulting suspension gently stirred for 16 hours. The precipitated polymer was isolated by filtration through a medium glass frit, washed twice with hot methanol, extracted for 60 hours with fresh methanol to remove occluded m-cresol, and finally dried in vacuo at 85°C for 24 hours to yield a yellow-orange solid product.

RESULTS

Structural Confirmation of THGB

The structure of the presumed bis-α-diketone obtained from the oxidation of the intermediate bisbenzoin was confirmed by means of infrared spectroscopy, elemental analysis, and the proton nuclear magnetic resonance spectrum of the pure compound. The infrared spectrum was determined in KBr on a Perkin-Elmer Model 137 spectrophotometer. The bands of major interest are a doublet at 1739 cm⁻¹ (5.75 μ) and 1642 cm⁻¹ (6.09 μ) representative of the α-diketone structure. The bands at 1515 cm⁻¹ (6.60 μ), 1408 cm⁻¹ (7.10 μ), and 1348 cm⁻¹ (7.42 μ) are characteristic of the 2-thiophene ring-stretching vibrations. Elemental analysis was conducted by Galbraith Laboratories, Incorporated, Knoxville, TN.

Calculated for C₁₈H₁₀O₄S₂, molecular weight 354.4:

<table>
<thead>
<tr>
<th></th>
<th>%C</th>
<th>%H</th>
<th>%S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated</td>
<td>61.00</td>
<td>2.82</td>
<td>18.11</td>
</tr>
<tr>
<td>Found</td>
<td>61.18</td>
<td>2.93</td>
<td>17.92</td>
</tr>
</tbody>
</table>

The proton nuclear magnetic resonance spectrum was determined with a Perkin-Elmer Model R-32 NMR spectrometer relative to TMS:

δ (ppm)

- 7.2 2 proton triplet
- 7.9 4 proton doublet
- 8.15 4 proton singlet

In accord with spectra of known compounds, the following proton assignments were made:

\[\begin{align*}
 &H_a & 7.2 \text{ ppm}, & H_{b,c} & 7.9 \text{ ppm}, & H_d & 8.15 \text{ ppm} \\
\end{align*} \]

These results are consistent with the reaction sequence

\[\begin{align*}
 2 \text{ S-CHO} + \text{OHC-CHO} & \xrightarrow{\text{KCN, EtOH/H}_2\text{O}} \text{CH-C-C-CH} \text{C-C} \text{O=C-C} \text{OH} \\
 & \xrightarrow{\text{CuSO}_4, \text{HMPA}} \text{C-C-C-C-C} \text{S-S} \\
\end{align*} \]

Characterization of PTHQ

Several properties of poly(2-thienyl)quinoxaline (PTHQ) have been determined:

a. Polymer Decomposition Temperature (PDT)

The decomposition temperature of PTHQ was determined with a DuPont Model 951 thermogravimetric analyzer at a heating rate of 10 C/min in air at a flow rate of 50 cc/min. The PDT for PTHQ under these conditions is 585 C, taken as the intersection of the extrapolation of the two linear portions of the weight loss curve.

b. Isothermal Aging

Isothermal aging was conducted with the DuPont Model 951 thermogravimetric analyzer. A sample of PTHQ was held at 400 C in static air, and weight loss was measured as a function of time. Under these conditions the half-life (T50) for PTHQ is approximately 10 hours.

c. Elemental Analysis

The elemental analysis of PTHQ was conducted by Galbraith Laboratories, calculated for \(C_{30}H_{16}N_4S_2 \):

\[
\begin{array}{cccc}
 \text{C} & \text{H} & \text{N} & \text{S} \\
 \text{Calculated} & 72.56 & 3.25 & 11.28 & 12.91 \\
 \text{Found} & 71.19 & 3.29 & 11.00 & 12.29 \\
\end{array}
\]
The development of polyphenylquinoxaline (PPQ) polymers as high-temperature-resistant materials has been hindered, in part, by the high cost of one resin component, 1,4-bis(phenylglyoxaloyl)benzene (PGB). A low-cost synthesis of PGB or PGB-type compounds to be substituted for PGB in the synthesis of PPQ-type polymers is therefore desirable. This report deals with the synthesis of 1,4-bis(3-thienylglyoxaloyl)benzene (THGB) by the benzoin condensation route in the search for a low-cost replacement for PGB, and its reaction with 3,3'-diaminobenzidine (DAB) to prepare poly(2-thienyl)quinoxaline (PTHQ). Some of the properties of the polymer have been determined and are discussed.
The development of polyphenylquinoxaline (PPQ) polymers as high-temperature-resistant materials has been hindered, in part, by the high cost of one resin component, 1,4-bis(phenylglyoxaloyl)benzene (PGB). A low-cost synthesis of PGB or PGB-type compounds to be substituted for PGB in the synthesis of PPQ-type polymers is therefore desirable. This report deals with the synthesis of 1,4-bis(2-thienylglyoxaloyl)benzene (THGB) by the benzoin condensation route in the search for a low-cost replacement for PGB, and its reaction with 3,3'-diaminobenzidine (DAB) to prepare poly[2-thienyl]quinoxaline (PTQ). Some of the properties of the polymer have been determined and are discussed.
d. Intrinsic Viscosity

The determination of intrinsic viscosity was conducted at 30 °C in m-cresol solution with a Cannon-Ubbelohde dilution viscometer. An intrinsic viscosity value of 1.42 dl/g was obtained for PTHQ, indicative of a polymer of substantial molecular weight.

e. Thermal Crosslinking and Torsional Braid Analysis

The thermal crosslinking and torsional braid analysis study of PTHQ was conducted in a manner identical to work which we reported earlier. The results of measuring the change in glass transition temperature \(\Delta T_g \) (defined in Reference 8) as a function of the conditioning temperature for PTHQ are shown in Table 1, and graphically in Figure 1, with standard PPQ for comparison. These results clearly indicate an enhanced crosslinkability for PTHQ relative to PPQ.

<table>
<thead>
<tr>
<th>Conditioning Temperature (°C)</th>
<th>(T_g) (°C)</th>
<th>(\Delta T_g) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTHQ *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient</td>
<td>372</td>
<td>-</td>
</tr>
<tr>
<td>250</td>
<td>373</td>
<td>1</td>
</tr>
<tr>
<td>300</td>
<td>380</td>
<td>8</td>
</tr>
<tr>
<td>350</td>
<td>393</td>
<td>21</td>
</tr>
<tr>
<td>400</td>
<td>416</td>
<td>44</td>
</tr>
<tr>
<td>450</td>
<td>>487</td>
<td>>115</td>
</tr>
<tr>
<td>PPQ†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient</td>
<td>350</td>
<td>-</td>
</tr>
<tr>
<td>350</td>
<td>370</td>
<td>20</td>
</tr>
<tr>
<td>400</td>
<td>390</td>
<td>40</td>
</tr>
<tr>
<td>450</td>
<td>414</td>
<td>64</td>
</tr>
</tbody>
</table>

*This study
†Wentworth and Macalone

Figure 1. Change of glass transition with temperature.

DISCUSSION

There are several points which should be stated regarding the results. First, it is to be understood that by the very nature of the benzoin condensation reaction one must postulate the formation of isomeric bisbenzoin species even though no attempt was made to isolate and identify individual isomers. Such an undertaking would be difficult under optimum conditions. The intrinsic simplicity of our synthetic approach resides in the fact that upon oxidation all isomeric forms are converted to the same tetraketone. However, the problems arising from the self-condensation of thiophene-2-aldehyde and terephthalaldehyde which can occur under the conditions of the reaction to form 2,2'-thenil and a series of oligomers, respectively, are not so easily solved. Application of the modified benzoin condensation after Kratzer et al.,2 is being investigated as a means of circumventing these problems.

With regard to the characterization of the PTHQ polymer, a PDT of 585 °C is slightly lower than the PDT of standard PPQ, and would indicate a somewhat lower thermo-oxidative stability for PTHQ. This is affirmed by the results of the isothermal aging experiments where the T$_{50}$ of standard PPQ is nine times greater than that of PTHQ. Finally, although the change in T$_{g}$ as a function of conditioning temperature is markedly greater for PTHQ than for PPQ, as shown in Figure 1, the results of the isothermal aging experiment indicate an insufficient thermal resistance to endow PTHQ with an extended service lifetime at elevated temperature.

ACKNOWLEDGMENT

The authors wish to thank R. Cherill, M. Humora, and D. Larsen for their technical assistance during the course of this investigation.
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Commander, Defense Documentation Center, Cameron Station, Building 5, 5010 Duke Street, Alexandria, Virginia 22314</td>
</tr>
<tr>
<td>1</td>
<td>Metals and Ceramics Information Center, Battelle Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201</td>
</tr>
<tr>
<td></td>
<td>Office of the Deputy Chief of Staff for Research, Development, and Acquisition, Washington, D. C. 20310</td>
</tr>
<tr>
<td>2</td>
<td>ATTN: DAMA-ARZ</td>
</tr>
<tr>
<td></td>
<td>Commander, Army Research Office, P. O. Box 12211, Research Triangle Park, North Carolina 27709</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: Information Processing Office</td>
</tr>
<tr>
<td></td>
<td>Commander, U. S. Army Materiel Development and Readiness Command, 5001 Eisenhower Avenue, Alexandria, Virginia 22333</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: DRCLDC, Mr. R. Zentner</td>
</tr>
<tr>
<td></td>
<td>Commander, U. S. Army Electronics Research and Development Command, Fort Monmouth, New Jersey 07703</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: DRDCO-GG-DD</td>
</tr>
<tr>
<td>1</td>
<td>DRDCO-GG-DM</td>
</tr>
<tr>
<td></td>
<td>Commander, U. S. Army Armament Research and Development Command, Dover, New Jersey 07801</td>
</tr>
<tr>
<td>2</td>
<td>ATTN: Technical Library</td>
</tr>
<tr>
<td>1</td>
<td>DRDAR-SCM, Mr. J. D. Corrie</td>
</tr>
<tr>
<td></td>
<td>Director, U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland 21005</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: DRDAR-TSB-S (STINFO)</td>
</tr>
<tr>
<td></td>
<td>Commander, U. S. Army Natick Research and Development Command, Natick, Massachusetts 01760</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: Technical Library</td>
</tr>
<tr>
<td></td>
<td>Commander, Harry Diamond Laboratories, 2800 Powder Mill Road, Adelphi, Maryland 20783</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: Technical Information Office</td>
</tr>
<tr>
<td></td>
<td>Commander, Picatinny Arsenal, Dover, New Jersey 07801</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: SARPA-RT-S</td>
</tr>
<tr>
<td>1</td>
<td>SARPA-FR-M-D, Plastics Technical Evaluation Center (PLASTEC), A. M. Anzalone</td>
</tr>
</tbody>
</table>
No. of Copies To

Commander, Redstone Scientific Information Center, U. S. Army Missile Research and Development Command, Redstone Arsenal, Alabama 35809
4 ATTN: DRDMI-TB

Commander, U. S. Army Foreign Science and Technology Center, 220 7th Street, N. E., Charlottesville, Virginia 22901
1 ATTN: Mr. Marley, Military Tech

Commander, U. S. Army Environmental Hygiene Agency, Edgewood Arsenal, Maryland 21010
1 ATTN: Chief, Library Branch

Naval Research Laboratory, Washington, D. C. 20375
1 ATTN: Dr. J. M. Krafft - Code 8430

Chief of Naval Research, Arlington, Virginia 22217
1 ATTN: Code 471

Commander, Naval Surface Weapons Center, Silver Spring, Maryland 20910
1 ATTN: Dr. J. M. Augl

Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio 45433
2 ATTN: AFML/MXE/E. Morrissey
1 AFML/LC
1 AFML/LLP/D. M. Forney, Jr.
1 AFML/MBC/Stanley Schulman

National Aeronautics and Space Administration, Washington, D. C. 20546
1 ATTN: Mr. B. G. Achhammer
1 Mr. G. C. Deutsch - Code RW

National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama 35812
1 ATTN: R. J. Schwinghamer, EH01, Director, M&G Laboratory
1 Mr. W. A. Wilson, EH41, Building 4612

National Aeronautics and Space Administration, Lewis Research Center, 21000 Brookpark Road, Mail Stop 49-1, Cleveland, Ohio 44135
1 ATTN: W. B. Alston

National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia 23365
1 ATTN: Mr. P. M. Hergenrother

1 Materials Sciences Corporation, Blue Bell Office Campus, Merion Towle House, Blue Bell, Pennsylvania 19422

1 The Charles Stark Draper Laboratory, 68 Albany Street, Cambridge, Massachusetts 02139
Lockheed-Georgia Company, 86 South Cobb Drive, Marietta, Georgia 30063
1 ATTN: Materials & Processes Engrg. Dept. 71-11, Zone 54

1 Dr. R. J. Jones, TRW Defense and Space Systems Group, Bldg. 01,
One Space Park, Redondo Beach, California 90278

1 Dr. N. Bilow, Hughes Aircraft Company, Culver City, California 90230

1 Dr. C. Hughes, AVCO/Lowell, 2 Industrial Avenue, Lowell, Massachusetts 01851

Lockheed Missile & Space Company, P. O. Box 504, Sunnyvale, California 94008
1 ATTN: D81-12B154, Dr. Kim Bailie

Director, Army Materials and Mechanics Research Center,
Watertown, Massachusetts 02172

2 ATTN: DRXMR-PL
1 DRXMR-WD
2 Authors