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CALCULATION OF A SUPERSONIC FLOW
AROUND A COOLABLE SPHERE U'SING THE
COMPLETE NAVIER-STOKES EQUATIONS
B. M. Pavliov

This work [1] presents a stetement and a numerical solution for
a problem of a stationary flow around blunt solids by a super-
sonic flow of a low-density gas. The method is based on a finite-
difference approximation of the complete nonstationary Navier-8tokes
equations for a compressible gas and on finding a stationary solu-
tion as a result of the determination. Works [1]-[3] present the
initial calculation results and examine certain methodological
problems which characterize the numerical algorithm. Work [4]
contains the calculation results for a flow past a heat-insulated
sphere. Thils work discusses a pattern of flow around a coolable
sphere under the conditions of small Reynolds numbers.

S

Designations: r, 8 - spherical polar system of coordinates

(Fig. 1L); - sphere radius; W - flow velocity vector; u, v - its
components with respect to » and 6; p, h, T, p - density, enthalphy,
temperature, and pressure; A, U = coefficients of heat conductivi-
ty and shear viscocity; <y - ratio of specific heats; g - heat

flow to the wall; Tt - friction tension; F - force of resistance;

CD - coefficlient of total resistance; Cf - friction coefficient; ;

1 - mean free path of molecules; Re, Mo, Kn, Pr - numbers of
Reynolds, Mach, Knudsen, and Prandl: d, I - thickness and intensi-

ty of a shock wave; pp - stagnation pressure behind a normal shock;




r, — sonic line; subscripts: «® = In an incident flow, w - on the

sphere surface, s - behind a normal inviscid shock, 0 - flow stag-
nated adiabatically and isentropically, MC - in a boundary layer,

CM - in a free-molecular flow; superscripts: O - in the leading

critical point, # - along the boundary ray 6¥.

1. An examination is made of a viscous gas flow, which is uniform
and supersonic at infinity, around a sphere. The problem concerning
the calculation of the flow field is solved under the following
assumptions: 1) the gas flowing past the sphere is thermically and
calorically ideal, 2) the coefficients A and p are power functions
of enthalpy (~h®,05<w<1), 3) the flow has a laminar nature at
small Reynolds numbers, and 4) under these conditions of flow the
Navier-Stokes equations for the compressible gas are valid in the
entire area outside the sphere.

Conditions 1):and 2) lead to constant values of the numbers ¥y

and Pr. Dimensionless variables are used: linear dimensions per;
tain to ry, velocities - to Wew, density -zto P, enthalpy - toawm, o B
pressure and tension of frictlon - to poWew, heat flow = to PeWw,

and force of resistance - to 1/2nrip.W.

Work [1] shows the initial system of equations in a dimension-
less form relative to the unknowns p, u, v, h, p, and u in the
system of coordinates r, 6. Since with a laminar nature the flow
has a symmetry relative to the 6=0 axis, it is sufficient to seek
a solution for the problem in the region r:l, 0g<b6gm. According to
the systematic investigations, which are described briefly in [1]
and [3], numerical integration can be accomplished in the end region
(Fig. 1) 1srsRp, 0<0<06¥*, where R2=R2(6) - given equation for the
surface of rotation (in this case, of an ellipnsoid whose left focal
point is congruent with the center of the sphere), 6% - position
of the boundary ray (0<6¥gm).

Let us formulate the boundary conditions of the nroblem. The
conditions of the uniformity of the flow at an infinite distance
from the sphere are removed to the surface R2(e), 0<B<68¥*, On the
sphere the enthalpy (temperature) of the surface coincides with
the enthalpy of gas and is equal to the value hw (there 1is no jump
in temperature) and both velocity components are equal to zero




(there is no slip). On the axis 6=0, 6=m we use the conditions of
symmetry of the flow. If 6¥<y, it 1s necessary to assign conditions
for the functions u, v, h along the ray 6=6%¥. By means of series

of calculations with a varied position of the angle 6%,0<6¥<m it

was established that, when assigning the approximate conditions
for these functions in the form of ¢%*f/362=0 (i. e., a linear change
in f in the vicinity of the ray 6%) there is an insignificant reverse
effect of the flow. In this case the density p(r, 6%) can be found
from an analogous condition or from a continuity equation.

The finite-difference approximation of the initial ecuations and
boundary conditions, and also the peculiarities of the numerical
algorithm, are described in [1]-[3].

2. The study of the super- and hypersonic flow around blunt solids
with the cooling of their surface (hw<ho) is of practical interest
in connection with the problem of heat protection for a flying
vehicle. Below we'll discuss the characteristic peculiarities of
the viscous gas flow near the sphere placed in a supersonic flow
of a diatomic ideal gas (y=1, 4 Pr=0.72, w=3/4, hw=0.3). The ef-
fect of the Mw and Rex numbers has been studied on the flow pattern
under the conditions of flow and heat exchange, which are indicated
in the table. The same table shows the Knudsen Kn and Revnolds Res
(calculated using the parameters behind the normal shock) numbers
which characterize the degree of rarefcation of the incident flow:

B - B- ME | 2y— (= 1)/ML
el ol e WSy A
0=t "..Kn-— e 5 Re_

Re,=-21wre _ Rew _ _Reo [ ps(y+1) ]"

With an increase in rarefaction there is an increase in the Kn
number and a decrease in Res. In most calculations e*=99°.

Let's briefly describe the behavior of the gas-dynamic parameters
at the leading critical point in the area where the shock wave is
thickened and in a compressed layer behind it, and also along the
surface of the sphere. Since the calculations were accomplished
for the flow conditions which occupy the intermediate position




between the flows of the solid and free-molecular media, it is of

interest to compare the results of the calculation with the corres-
ponding theoretical results and experiments in rarefied gases.
, 1. Leading critical point. The solid line in Fig. 2, a repre-
‘ sents the behavior of the ratio pS/pé, which characterizes the
deviation of the calculated pressure from the pressure in an in-

viscid flow, as a function of ReVp, . With a decrease in the
parameter n==RqPq: (introduced for a convenience of the compari-

son with the experimental data [5], shaded area in this figure) the
values of pS/pé begin to increase approximately from n=100, which
is in good agreement with the experiments and the theory of free-
molecular flows [6] (with Res=0, y=1l.4 and totally diffused deflec-~
tion of the molecules from a hard, very cold wall the ratio pcm/pé

attains a value equalling to 1.087). An increase in pressure is
the result of merging of the thickened boundary layer and shock
wave.

The solid line In Flg. 2, b shows the behavior of the ratio
qﬁ/qgc as a function of the Res number. This ratio characterizes
the difference in heat transfer in a flow of rarefied gas and in
flows with large Reynolds numbers. The value qgc was calculated
by the Fay and Riddell formula [7], and

%® =g (r5-), 0<0<0"

According to the theory of free-molecular flow q8M=1/2 and the
o] o] i j

ratio qCM/qnc, which 1s proportional to V Re., approaches zero with

an increase in rarefaction. The same figure shows the following:

the shaded area - data of a series of experiments (borrowed from

[5], the dot-dash line - qgm/qgc. the dashed line - the curve

4o/ ghc=1+0,52/V Re., obtained in [8] by processing the measurements
(the conditions of this experiment are close to the conditions of
these calculations: Me=2, U4, 6; 2Q§Resg800, Tw/Toz0.33). In most

of the experiments carried out to determine heat transfer the

value qs/qgc has the followling nature of change: with a decrease

in Re, (0€Re, €10 this value increases, here @&>¢, , attains
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a maximum at certain Re, (lO:ék_e,glo’) , and then decreases

(d@<gnc when Re,<10). - The calculated values of ¢/g. detect a
similar behavior; although they begin to decrease when Resglo, they
still remain higher than those determined in the experiments (with
the same Res number). Apparently, at low Reynolds numbers, Res<102,

one should take into account in the calculation the conditions of

slip and temperature jump on the wall, which, in particular, lead
to a decrease in the values of the heat flow [9].

With a decrease in the Res number the density p% increases 1in
proportion to ps since the hw is constant (with thermal insulation
a drop was observed in the density at the leading critical point
[4] and [10]).

2. Shock wave structure. The thickness of a shock wave in a
viscous gas is usually determined by the formula proposed by Prandl:

fs—Fo
e (9f/9max "
where f - any of the gas-dynamic functions, df/dr - maximum slope

of the profile f to the axis 6=0. In most of the experiments car-
ried out to study the shock-wave structure (for example, [11] and

[12]) the density field was measured and, therefore, thickness a
was calculated using the profile p in the area of the shock wave.
However, under the cooling conditions of the surface the calculated
density profiles p(r, 0) in the shock wave have a complex behavior
(see Figs. 4 and 5) and it is difficult to use them for the calcula-
tion of d. For this it is more convenient to use the profiles
; u(r, 0) and p(r, 0), which have approximately the same nature as
with thermal insulation. The calculation of the thickness of the
shock wave using the profiles u(r, 0), when M,=6 and Re,=300, 200,
90, 45, and 20, yield the following values: d=0.055: 0.084; 0.169;
0.286; and 0.474, Thus, with an increase in rarefaction the shock
wave thickens quickly. The comparison of the thickness d in cases
of thermal insulation and cooling (with all other conditions being
equal) indicates a somewhat lesser thickness in the case of cooling.
The thickness of the transition zone in the shock wave, when there

is a change 1in the angle 6, can be determined conditionally by the
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value D(e)=r1(9)—r2(e), where r, and r, are points at the fixed

ray 6: in r. the value p—p,x0.01 p,, in r, the adp/dr attains a

maximum valie in the shock wave. The position of the washed out
shock wave relative to the sphere can then be determined by the
middle line Ty of the indicated zone. The dot-dash curve on Fig.

6 shows the position of the line rp when Ree=U5 and M,=6. This

line travels in approximately the same way as a shock wave during

an inviscid flow but it is located further from the sphere. A
similar behavior of the shock wave zone was observed in an ex-
periment (see [5]). With a change in the numbers M, and Re, the
behavior of the value A=rD—1, which can be roughly considered as

the "devarture" of the shock wave, has the following feature:

a) with a decrease in the number Re, (Mo,8 are constant) A increases;
b) with an increase in 6 (Re_, M

, are constant) A increases; c)

with a change in the number M, (8,R, are constant) this function
is not monotonic (see Fig. U4): for 2&Mn<4 the A diminishes, for
Mw>4 it increases (the same behavior was observed in the calcula-
tions of a thermoinsulated sphere [4]). The shock wave intensity
was determined by the value of the ratio I(e)=(pmax—pm)/(p; =P )

where Poias is the value of maximum pressure in the area of the
shock wave at the fixed ray 6. It was found that with an increase
in 6 the function I(6), for all the flow conditions examined, de-
creases (for example, when M_=6; l(0)=0,917;l(—“§-) =0,238 for

Rew=200 and I(O)-—:0,882.l(—’;-)=0.193 for Ree=45).

Thus, with an increase in the angle 6 and a decrease in the Rey,
number, there is a continuous (according to r) washing out and
weakening of the shock wave (just as in the case of thermal insula-
tion [11~[31]).

3. Structure of a comnressed layer. Figure 3 (a, b, c¢) shows
a typical behavior of the flow parameters in a compressed layer
(Mo=8, Rew=90), where, for comparison, the dashed lines show the
solution when 6=0 in the case of thermal insulation of the sphere.
From an analysis of the calculated data we draw the following con-
clusions. The enthalpy h(r, 6) has a maximum on each ray @ due to
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the cooling of the sphere's surface. The density p(r, 8) has a
local maximum immediately behind the shock wave as it moves away
from the region of the leading critical point, and maximum pressure
p(r, 6) is attained between the shock wave and wall; with the low
values of 6 the maximum pressure p(r, 6) is on the wall. With a
relatively large ReS numbers (for example, when M, =2 and Rex=500)
there is an area close to the sphere's surface in which the pres-
sure along the normal to the wall changes insignificantly, which
indicated the existance of a region of the type of a boundary layer.
The position of the sonic line ry(6) is depicted in Fig. 6 for
the various Re_, (M _=6, solid lines) numbers and in Fig. 8 for the
various M_ (Re, =90, solid lines) numbers. It is evident that with
a change in 6 and M_ (Re, is constant) the behavior of these lines
is nonmonotonic. For a constant M, number sonic lines move further
away from the sphere's surface with a decrease in the Re, number.
Let us examine in more detail the behavior of the solution along
the stagnation line 6=0. Figure U4 characterizes the behavior of
u and p with a change in the M, (Re,=90) number. Using profiles
u(r, 0) we can clearly see the nonmonotonic nature of "departure"
of the shock wave noted above. The density increases along the
6=0 axis when r » 1; here there are regions of sharp increase of
p in the shock wave and close to the body (the latter is the result
of cooling of the surface). Both these regions have a tendency to
merge with an increase in the M, number and the fixed Rey, number
(1. e., with a decrease in the Res number) (Figs. 4 and 5).

Figure 5 shows the distribution of the density p(r, 0) and
enthalpy h(r, 0) when M,=6 and a change in the Re, number. It is
evident that with a decrease of the Re, number (and, consequently,
Res number) the maximum value of h(r, 0), which is achieved behind
the shock wave, also decreases and hmax<hs' If we take the point
r, where the maximum h{(r, 0) is achieved, to be the trailing front
of the washed-out shock wave, it turns out that, at this point, the
density p(r, O)<pS and p(r, O)<ps, i. e., an incomnleté comnres-
sion in the shock wave, leads to disruption of the Renkin-Hugoniot
conditions and to its gradual disintegration with an increase in

rarefaction. With an increase in rarefaction its gradual thicken-




ing is evident in the area of the shock wave according to the
profiles of h(r, 0). Approximately the same behavior of the density
and tempera®ure was observed along the line of stagnation in the
experiment of work [13], in which nitrogen flowed past a cylinder
with a spherical blunt end (M =9, Kn=0.0L45, TO=2980K, and T /T ~0.3).

The field temperatures determined in [3] attest to the presence of

a noticeable temperature jump on the model surface (T&/TO=O.78 when

Tw/Ton.3 at the leading critical point).

4. Distributions along the surface of the spnhere. Figure 7

shows the graphs of the deduced pressure ;}=pwwxmw«n and heat
flow qw(6§ when M_=6 and with different values of the Res,. In the
=cosb/2, the

same figure the dot-dash line depicts the function a

CMm
dotted line - gnc(9), obtained from the calculation of the boundary
layer. on the sphere [14] (Max=10, Re~10% y=14, T./T;=0,6), the
dashed line - pwu(9) when Mgo=6, Reo=00 ([7], chapter 8). With

a decrease in the Re, number the values of 5w gradually increase '}
on the front section of the sphere and they are higher than the .
corresponding values in an inviscid flow. With an increase in the :j
angle 6 the function qw(e) decreases gradually and with a decrease
in the Re, the values of qw(e) increase; in this case, gnc<qu<dqcm.
The nature of change in the calculated heat flow is in agreement
with the experiments [8] and [15].

Figure 8 shows the friction coefficient graphs C,=1;/p,Wt==
R]:(pdwaﬁw for Re,=90 and the various M, numbers (solid lines).

In the same figure the dot-dash line depicts the function
[C#(0) Jem= (sin 20)/2, the dashed line - [C4(8)]nc taken from
work [14]. All calculation curves of C.(8) are located between the

curves for the free-molecular and boundary-layer conditions of

PP T S [ P -

flow. The values of Cf increase with a decrease in the Re, number.
With a change in the angle 6 the function cf(e) has a maximum for
the various Re, numbers when 6~U40—60 degrees, i. e., about in the
middle of the area of a sharp approch oi' the sonic line to the
sphere. In the calculations of the boundary layer on blunted selids
[16] it was found that the maximum values of the function Cf(ﬁ)

were obtained in the vicinity of the sonic point on the surface




of the streailined body. The behavior of the functions 5w and Cf

is analogous to the case of thermal insulation when there is a

decrease in the Re_ number [4].

Figure 9 shows the construction of the ratio CD/(CD)CM as a
function of the number 2ReS s the shaded areas indicate the data of

the experiments carried out to determine the resistance of spheres
= o.
[5]. The quantity €p was calculated by the formula CD==450%COSG+-

C, sin 6) sin 6 6, and (CD)CM by the formula used to calculatg the
diffused deflection with the accommodation coefficient ecualling
unity [6]. It is obvious that in the examined conditions of flow
CD<(CD)CM , while the ratio being examinec increases with a de-
crease in the Res number.

3. The numerical results indicate that when Res.glo2 the shock
wave and the boundary layer joln in the area of the leading critical
point of the sphere, which leads to a series of new phenomena which
do not take place in flows with large Reynclds numbers. With
reduced rarefaction the calculated aerodynamic characteristics
have a tendency to approach the corresponding values in a free-
molecular flow and, in the range IO{Resslog, there 1s a satlsfac-
tory agreement between them and the measurements derived from the
experiments. When Regk10 there is a certain anomaly in the behavior
of some characteristics of the flow, which can be explained by the
fact that the effects of slip and temperature jump were disregarded
in these calculations. Apparently, when taking these effects into
consideration within the framework of the Navier-Stokes model, there
should be a better agreement with the experiments also at lower
Reynolds numbers (Res<10). The same conclusions are drasn from the
analysis of flows with thermal insulation of the sphere's surface
[4]. Thus, one can assert that the numerical solutions of the
problem of flow in this setting afford the description of the
phenomena in a compressed layer, which are close to those observed
in experiments.

The author expresses his appreciation to Z. M. Yemel'yanov and

L. V. Kuznetsov who took part in calculations and processing of the
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Table

Mn R’. "' I’ln Rt‘ Kn
2 500 0,267 338 0,006
2 90 0,267 61 0,033
4 . 300 0,457 105 0,020
4 90 0,457 - 32 0,067
6 300 0,527 63 0.030
6 200 0,527 42 0.045
6 90 0,527 19 0,100
6 45 0,527 9,5 0,200 .
6 20 0,527 4,2 0,450
8 %0 0,557 13 0,133
0 7 19F -euar g :,, 5
ly /’0 = & gT / ’—0
= pp - Q Y
4 /
1k
5 / L)\ \
: £88Y
105F
141 - St 1y
Res v, Reg
95 L L Y Il X S N
; 4 . 0 4y 7 7 i
Fig. 2. Behavior of pd/p, (a) and  ¢%/d%c (b) at the

leading critical point.
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Fig. 3. Parameters of flow in a
compressed layer. M,=8, Re,=90

(a - 8=0°, b - 6=45°, ¢ - §=90°)
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