| COMPUTER-AIDED FAULT TREE ANALYSIS

by
i RANDALL R. WILLIE

D AD 66567

DDC FILE COPY

_l

B OPERATIONS
RESEARCH

- I.EVEK&@

UNIVERSITY OF CALIFORNIA

aadribution is unlimited.

+ BERKELEY

ORC 78-14
AUGUST 1978

This docwment has been approved | =
CENTER for public relouse and sule; iw

it s i i

e e i~ A bt & 1 el L il

AT

: COMPUTER~AIDED FAULT TREE ANALYSISf

by

Randall R. Willie
Operations Research Center
University of Californila, Berkeley

AUGUST 1978 ORC 78-14

This research has been partially supported by the Office of Naval

Research under Contract NO00l4-75-C~0781, the Air Force Office of

Scieatific Research (AFSC), USAF, under Grant AFOSR-77-3179 and the

Lawrence Livermore Laboratory under Purchase Order No. 7800103 with i
the University of California. Reproduction in whole or in part is :
permitted for any purpose of the United States Government. v

+The computer program FTAP 1s available from NISEE/Computer Applica- » :
tions, Davis Hall, University cof California, Berkeley, California -
94720, (415) 642-5113.

THIS DOCUMENT IS BEST
QDAL,I"" Y AVAILABLE. THE COPY

D TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT

REPRODUCED FROM
BEST AVAILABLE COPY

Unclassified

SECUNRITY CLASSIFICATION OF THIS PAGE (When Data Entered) ;
READ ! C NS i
REPORT DOCUMENTATION PAGE pEp EAD INSTRUCTIONS

2. GOVT ACCESSION NQ.l 3. RECIMIENT'S CATALQOG NUMBER

]
— :
a’
i

(2{1 j ORC-78=14 7 -

4. TITLE (and Subtitle) 13 cgvenup
[£
: . / Research Repax
) COMPUTER-AIDED_FAULT TREE ANALYSIS, /-~ @ __:__..—_/_,R/ &9
Pt -~ = o = 1

6. PERFORMING O MBER . i

e

7. AUTHOR(S) . " CONTNACT OR GRANT NUMBEN(S)

73 Randall R./Willie i NP0 14-75-C-07 T
.._,.—’"Z”// //sz/..)/"f"r/'y%f //4

9. PEAFONMING GRGANIZATION NAME AND ADDRESS o
AREA & WORK UNIT NUMBKERS
Operations Research Center
University of California - NR 042 238
Berkeley, Califormia 94720
11, GONTROLLING GFF|CE NAME AND ADDRESS ~] 12, REPORT DATE —
Office of Naval Resaarch V4 Augut 1378
Departmen . of the Navy I mrmm e
| __Arlington, Virginia 22217 103
4. MONITORING AGENCY NAME & AQDRESS(!! different {roin Controniling Office) 18, SECURITY CLASS, (of thia repart)
. - Unclassified
/ __/_¢? T3a, GECL AISIFICATION, COWNGRADING
SCHEDULE

. DISTRIBUTION STATEMENT (of this Report)

>

t Approved for public release; distribution unlimited.

7. DISTRIBUTION STATEMENT (of the sbatract entered In Block 20, (f ditterent (rocs Repert)

8. SUPPLEMENTARY NOTES

: Also supported by the Air Force Cffice of Scientific Research (AFSC), USAF,
under Grant AFOSR~-77-3179 and the Lawrence Livermore Laboratory under (
Purchase Order No. 7800103.

8. KEZY WORDS (Continue on reverae ul;‘n it necessary and identlly by block number)
= Fault Tree

3 Logic Tree

K Minimal Cut Sat

Prime Implicant

20. ARSTRACT (Continue on reverse side if necesaary and identity by block number)

i (SEE ABSTRACT)

- ,
DD , 5%, 1473 EoiTiON OF 1 NOV 6815 OBSOLRTE ;
S/N 0102-LF-014-6601 . UHClaSSified ENterod) g

’ K/é) yg / SACURITY CLASSIFICATION OF ¥ THIS PAGE (n-n Dets

ACKNOWLEDGMENT

I am deeply indebted to Professor Richard E. Barlow of University
of California, Berkeley for his guidance and encouragement in the pre-
paration of this report and the agsoclated computer program. I am

also grateful for his cheerful patience as I consistently under-

estimated the remaining time to complete this project.

Dr. Howard Lambert of Tera Corporation (formerly of Lawrence
Livermore Laboratories) deserves special thanks for providing a number
of large fault trees to test the algorithms and program logic. Finally,

I am grateful to Dr. Richard Worrell of Sandia Laboratories for a

stimulating discussion of fault tree methods during his visit to

Berkeley in November, 1977.

A ' ABSTRACT
3 \

Part 1 of this report discusses a computer-oriented methodology

for deriving minimal cut and path set familles associated with arbitrary 1
; i fault trees., Part II describes the use of the Fault Tree Analysigs

X | Program (FTAP), an extensive FORTRAN computer package that implements
the Part I methodology. An input fault tree to FTAY may specify the

é system state as any logical function of subsystem or component state

variables or complements of these variables. When fault tree logical
it relations involve complements of state variables, the analyst may

instruct FTAP to produce a famlly of prime implicants, a generalization

I T T T

systems associated with the tree as gystem modules and provide a

collection of minimal cut set families that essentially expresses the

i . of the minimal cut set concept. FTAP can also identify certain sub-
i
|
[

state of the system as a function of these module state variables.

0 Another FTAP feature allows a subfamily to be obtained when the family (

% ; of minimal cut sets or prime implicants is too large to be found in

; : its entirety; this subfamily counsists only of sets that are

L /;"interesting";;; the analyst in a special sense.

y)
-

LN '
- ‘

e T e—

—

TABLE OF CONTENTS 1
Page !
INTRODUCTION . ¢ v v v v v v v 0 o o 4 o o & . « 0o 1 i
. PART I: METHODS FOR COMPUTER-AIDED FAULT TREE ANALYSIS ., 4]
, I.1 Boolean Expressions ., e 4 4
! I.2 Fault Tree Fundamentals 8 Y
I.2.1 Fault Tree Definitions+ . . . 9 .
1.2.2 The MOCUS and MICSUP Methods S " 1
I1.2.3 General Framework for Implicant Elimination o0l 23 1
‘ 3
I.3 Simple Modules . . « v v v v & v v v v s o 4 v v o s o . 24 :
!
; I.3.1 Simple Module and Modular Subtree Definitions . . . 25 x
: 1.3.2 Application of Simple Modules to Implicant f
Families " . s 3 LI . e e 2 8 E
‘ I.3.3 A Method for Identifying Modular Subtrees I X
|]
f 1.4 Obtaining Implicant Families Associated with 4
: Modular Subtrees . + « 4 + 4 4+ e s 4 e s s s 00 . o« .. 40
i) %
' I.4.1 The MSDOWN Method . . . « « « « v &« 4+ o« & s + + » o 41 ©
I.4.2 The MSUP Method v ¢« v 4« & + « « + & « « . 49 1
1.4.3 The Nelson Method . ., . .,, .. 55 .
' I.4.4 Comments on the Choice of Method 61]
! PART II: VUSE OF THE FAULT TREE ANALYSIS PROGRAM . . 66
II.1 General Tnput SEXUCEULE -« .« « « « &+ + o + o o 4 & . . 67
IT1.2 Fault Tree Specification« + « 69
: IT1.3 Execution Instructioms « + v v o v & . 72
;; I¥.4 Option Instructions . . « « . « & & « « « « o o &« o« o« « « 15 (
N II.4.1 Fault Tree Modification (TRUE, FALSE) 76
' 11.4.2 Gate Event Selection (PROCESS, ALL) 78
IT.4.3 Methodology Specification (PRIME, ALLNEL,

DUAL, UPWARD, MINCHECK) . R
I1.4.4 Control of Printed and Punched Output
(MSPRINT, STATUS, DSTATUS, PUNCH,

MSPUNCH, NOPRINT) e e e . e o+ . . 83
! I1.4.5 Implicant Elimination Based on Sire and
! Importance (MAXSIZE, MODSIZE, IMPORT) &9

l
| NELSON, MSUP, MSDOWN, WRKFILES, MSONLY,
|
l
!
I

IX.5 Program Implementation
II.6 Specifications for Assembler Routines .

REFERENCES . ., ,

INTRODUCTION

The analyst who gseeks to determine reliability characteristics
of a complex system, such as a nuclear reactor, in terms of the
reliabilicy characteristics of 1ite subsystems and components confronts
a number of difficult tasks. One task involves identificaiicn either
implicitly or explicitly, of logical modes of system su..uss or

failure, that is, various distinct combinaticns of subsystems whose
mutual success or fallure implies success or faillure of the entire
system. Minimal cut set and path set families, tools familiar to
reliability analysts for some time, provide an explicit representation
of these modes. 'These families are useful not only

r evaluating
reliability characteristics of a system but also as a sig Jtool to
guide system modifications for enhancing reliability.

A widely used concept in reliability analysis of complex systems
is that of a fault tree. Fault tree methods are based on the observa-
tion that the system state, either working or failed, can usually be
expressed as a Boolean relation between states of sgeveral large,
teadily identiflable subsystems. The state of each subsystem in
turn depends on states of simpler subsystems and components which
compose 1t, so the state of the system itself is determined by a
hierarchy of logical relationships between states of subaystems.

A fault tree is a graphical representation of these relationships.
At the lowest level of the hierarchy are sutsystems whose success or
failure dependence is not further described. If reliability informa-

tion 1s availlable for these lowest level subsystems, then it may be

possible to use this information to deduce reliability characteristics

of the gystem itself.

N e R—. Tt

e vt i L e L i | L, ot UM

[PRPE I SR M

An analyst who prepares a system fault tree often does so with
the intention of utilizing it to obtain certain minimal cut (or path)
set families in terms of thesé lowest level subsystems and components.
Part I of this discussion outlines a computer-oriented methodology
for deriving such families for an arbitrary fault tree. Part II
describes the use of the Fault Tree Analysis Program (FTAP), an
extensive computer package, written mostly in FORTRAN, which implements
the Part I methodology.

FTAP has a number of useful features that make it well-suited
to nearly all fault tree applications. An input fault tree to this
program may specify the system state as any logical function of sub-
gystem or component state vatriables or complements of these variables;
thus, for instance, exclugive - or type relations may be formed.

When fault tree logical relations involve complements of state
variables, the concept of a minimal cut set fawmlly 18 no longer
particularly useful, so in thils case the analyst may instruct FTAP
to produce a family of prime implicants, a generalization of the
minimal cut set concept. The program offers the flexibility of
several distinct methods of generating cut set families, and these
methods may differ considerably in effilciency, depending on the
particular tree analyzed. FTAP can also identify certain subsystems
as system modules and provide a collection of minimal cut set families
that essentially expresses the state of the system as a function of
these module state variables. This collection is a compact way of
representing the same information as contained in the system minimal
cut get family in terms of lowest level subsystems and components.

Another feature allows a useful subfamily to be obtained when a family

.

TR

Tom
“

of minimal cut sets or prime implicancts 1s too large to be found

in its entirety; this subfamily may consist of only sets not con-
taining more than some fixed number of elements or only sets that are
"interesting' to the analyst in a special sense, TFinally, the analyst

can modify the input fault tree Ln various ways by declaring state

variables identically true or false,

A number of computer programs are currently avallable for obtaining

minimal cut set families from fault trees, and some of these programs
are mentioned in the discussion of Part I. One very capable package
that deserves speclal mention 1s the SETS program developed by

Dr. Richard Worrell of Sandia Laboratories [18]. 1In addition to

fault trée analysis, SETS manipulates arbitrary Boolean expressions.
For fault tree work, several features of FTAP and SETS are similar,
and both programs have been used with good results during the past
year in nuclear reactor safety studies counducted by Dr. Howard Lambert

of the Lawrence Livermore Laboratories.

. N b oo Sttt U= 33 b STAETY Sk A - ¥ el ot WA T et K ¥ i

PRI WO ST

N e N

¥
E
| %
|
.

PART T

METHODS FOR COMPUTER~AIDED FAULT TREE ANALYSIS

The first twc sections below essentlally provide notation and
background information for the procedures presented in Sections I.3
and I.4. The notation introduced in Section I.l has been chosen

both to reflect the computer implementation of these procedures and

to relate their various operations to manipulation of Boolean ex-

pressions. 1In Section I.2, fault trees and implicant families are

formally defined, and two quite well-known fault tree algorithms,

MOCUS and MICSUP, are reviewed.

The reader who is primarily interested in using FTAP should look
over Section I.l and Subsections I.2.1, I.2.2, I.3.1, I.3.2, and I.4.4

before skipping to Part II.

I.1l Boolean Expressions

The reader 1s assumed to be famlliar with the rudiments of Boolean

algebra; a refcrence such as [16], for instance, 1s more than adequate

as background. Let x.,, ..., X be Boolean variables independently
1 q

taking on values of Q0 or 1, and let x E (xl, "y xq) be a vector

of 0's and 1's representing an arbicrary cholce of these values.

We denote complementation by negation of subscripts: TFor any u

in the set U = [1, ..., q] , Eu (21 ~-x) is written as X_, -

u
-U = [~-1, ..., =-q] , and (u,-u)

is a complementary pair of indices.

The index set for complements {is

i

R 2 M

o G T Ll

W
e

Expressions may be formed using Xis ween xq v X v eeey x_q

and the ordinary Booclean relations of product and sum. An arbitrary non-

(not necessarily distinct) is

¢

s it e Gt o ol

identifled with the Boolean sum-~of-~-products expression

-

M x

!

&

‘ {

\ empty family 1 of subsets of U U (-U)
\

1

|

t Iel 1el

i

The notation /I/x denotes the value of this expression for a given

3
vector x of O0's and 1l's , that is,

g

/T1/x = max (min x,) = Yoon Ky o
Iel \Lel Iel iel

; o+ . ————

/1/ may then be taken as a Boolean function mapping each vertex of

the g~dimensional unit cube into 0 or 1 . Given nonempty families

I ,J,and K of subsets of U U (~U) , /I/ = /J/ wmeans that for all

. . x /I/x = /J/x . Similarly, 1f for all x /I/x = /J/x + /K/x
}u

(/T/x = /% + /Kix) , write [T/ = [/ + (K/ (/1) = (3] « /K/)

, the null family (@) we define
i

For
/®/ = 0 ; although for the family con-

taining only the empty set ([@#]) , /[0]/ is left undefined.

. ;
% ' The union of families T and J clearly has the property

[TVl = 1)+ /3] .

Now suppose U = {1,2,3} and Il - [{2,3}] 12 = [{1,2,3}] and

1

13 = [{-1,-3,3}] . For any x (xl,xz,x3)) /13/5_- X_j%X_qXy ™ 0

, and I3 need not be considered

»

S0 /Tl ul,uly/ 2/1, ul,/
further. Thus to simplify the discussion, it 18 agsuned that no set

of a family contains a complementary ralr; whenever a new family is

constructed, any sets containing complementary pairs are simply eliminated.

é
|
|

#

O L D PR LR

In the example above it is also true that for all x ,
/1) /x = /Ty U I,/x , since {2,3} C {1,2,3} , and thus /I,/x =1

whenever /I,/x =1 . A family is sald to be minimal if all sets are

distinct and for any two sets of the family, neither is a subset of the
other. For any family I , let m[I] (the "minimization" of I) be the
minimal family obtained by eliminating duplicate sets and those which
contain another set of I . For instance, wm[[{2,3},{L,2,3}]]1 = [{2,3}].

/1/

W

Of course, for any I , /m[I]/

] A~ T, T RV s - A

Next, the product family I x J of two families I # @ and

S

J# @ 1is defined by [T UJ | Iel, JeJ]; that is, T x J consists

P ————t

of all possible sets that may be formed by taking the unlon of a set

from I and a set from J , excluding unions which contain comple-
mentary pairs. The product is assumed to be empty 1f either I or J

is empty. Evidently, /I x J/ = /I/ - /J/ since for all x ,

/I/_:g-/J/_:g-<z nox) (I nox
Iel iel JeJ jeg I

= z I x
KeIxJ keK

i
t
:
)
P
'
i
4
Lo
;.
f
i
R}

K

We will need one additional concept. Given a nonempty family 1

. of subsets of U U (~U) , the dual family of I , denoted by d[I] ,
consists of all distinct sets J such that J NI # 0 for each I e [

and no subset of J has this property. By definition, d[I] is always

I e g P - v P ey

minimal, and though T may not be minimal, it is not difficult to
gee d[I] = d[m[I]] . TIn general, d[d[I]] # T , though there is one
important case in which equality holds: If T is a minimal family
of subsets of U (rather than U U (-U)) then I is called a

clutter, and d[I] 1s then known as the blocker of 1 , usually

s, e TR

written as b[I] . It can be shown [5] that b[b[I]] =T . 1f 1
consists of gubsets of U U (-U) , however, then d[I] may be empty;
for instance, let I = [{-1},{1}]

The dual frmily is useful because it allows us to relate an
expression in product-of-sums form to a sum-of-products form. Some

thought indicates that for all x ,

I Z X, = E I x
Iel iel Ted[7] iel

i
and

ani-n in.
Iel iel Ied[I] el

The following simple propositions will be useful later on:

Proposition I.1.1:

If T+#@ then for all x , 1 - /fd[I]/(L -x) = /I/x , where

l-x is the vector (1 -x., ..., 1 - xn)

19

This is true because De Morgan's Law gives

Hxi*l-ﬂ 2(1':{1)'
el 1el Iel iel

and the value of the expression on the right equals

1- 7 T @Q-x),
Ied[I] el

which is 1 - /d[T1/(1L- x)

|

s T T

B

B2 e e

o o W

A E g

Propogition I.1.2:

It 1 #¢ and J % ¢ , thea

d{I U J] = m[d[I] x d[J]] .

It is easy to see that d[I U J] Cd(I] x d[J] , and each set of
d(1] =% d[J] equals or contains a set of d[I U J] , so the above

proposition follows. A corollary 1is:

Proposition I1.1.3:

For T # @ and J # @ 4if d[d[I]) =T and d[d[J]] = J then

d(d[T] U a[J]] = m[T x J]

1.2 Fault Tree Fundamentals

Some of the terminology and notation of Subsection I1.2.1 is not
in standard use for fault tree work, partly because fault trees are
traditionally defined in a manner that does not permit system failure
to depend on complements of Boolean state variables for subsystems or
components. Subsection I,2,2, which presents the MOCUS and MICSUP
methods in the context of this notatlon and terminology, serves as

a useful introduction to the algorithms of Section I1.4. The final

subsection, I.2.3, formalizes the idea of a subfamily of "interesting"

cut sets.

T T

I.2.1 Fault Tree Definitions

Formally, a fault tree is an acyclic directed graph (U,A)

where U 18 the set of nodes and A 418 the get of arcs. Any pair

of nodes may bLe joined by at most a single arc, which may be eilther a

regular arc or a complementing arc. Nodes having no entering arcs we
call basic nodes, and those having one or more entering arcs are called
gate nodes. Those which have no leaving arcs are top nodes; a fault

tree usually has only a single tep node. The tree 13 drawn with arc

|
|
H
Pl
]
oy

paths directed upward from basic nodes and terminating at the top

node. Nodes are numbered by consecutive positive integers, with gates

numbered first. Also, associated with each gate is a logic indicator,

a positive integer £ that may take on any value between 1 and the

number of entering arcs for that gate.

Figure 1 presents a typical fault tree to illustrate the above

E! terminology. Basic nodes are denoted by circles and gate nodes by

‘} rectangles with node 1 as the top. All arcs are regular with the
]
1

exception of the complementing arc joilning nodes 6 and 4, aud this

-1 arc 1s distinguished by the symbol "~." The logic indicator for each

b gate node appears in the lower half of the rectangle; ll s 23 , 27

: and 28 are all 1 , and £2 y Ly s 25 , and 26 are equal to 2 .

e

We say that node v 1s a subnode of node u 1if there 1s an arc

path directed upward from v to u , and v 1is an tmmediate subnode

: of u 1if there 1s a single upward arc from v to u . Nodes 7, 8,
|

12, 13, and 14, for instance, are subnodes of node 5; whereas, 7 and 8

are the immediate subnodes of 5. When v 1is a subnode (lumediate

subnode) of u , u is sometimes referred to as a supernode

(immediate supernode) of v .

Y

L, =2

24,-2

L. =]l

L, =2

R,=1

FIGURE 1

25-2

11

Finally, given a set of nodes V C U, a dowmward order on V
is any complete ordering (g) of nodes of V such that for any
v, weV,v i w implies v 1s not a subnode of w . On the other

hand, 1f w & v implies v 1is not a subnede of w , then the order

(%) is an upward order. Thus, for V = {2,3,4,5} , 2 d 385 g,

is a downward crder and 5= 4 ¥ 382 1g an upward order.

A fault tree 1s a convenlent representation of a system of Boolean

expressions. Let the set of nodes be U= {1, ..., p~-1l,p,p+ 1, ..., q}

M ! s

where G = {1, ..., p} are gate nodes and B = {p+ 1, ..., q} are
bagic nodes. With the UCh node we associate the Boolean variable X, -

If u 1s a basic node, then x, wmay take on the value 0 or 1,

e i ¢ e e

independently of the values of other node variables; thus, {

b = (xp+l, viay xq) is an arbitrary vector of 0's and 1l's whose

elements are a particular choice of these values. On the other hand,

values of the independent basic node variables; that 1s, x 15 a

Boolean function of the vector b . Gate variable values are determined

by the following scheme: Let Du be a set of integers representing

1

|

|

|

v\ if u 1s a gate node, then the value of X, ultimately depends on
l

|

!

! the immediate subnodes of u

« If node v 1is joined to node u by

a regular arc then v e Du ;3 1f v 1is joined to u by a complementing
arc then -~v e Du . Note that since only a single arc can join any
two events in the tree, Du contains no complementary pair (v,~v)

The node definition family D(zu,Du) is a family of subsets of

U U (~U) that consists of all possible sets of size Eu that may

be formed from the elements of Du , where L 1s the logic indicator

for node u . The value of X, is determined by

i

L&

= X n x, .

xu i ;;
IEU(lu.Du) iel

Each integer 1 ¢ I may thus be positive or negative, with

x_y = (1 - xi) . An informal statement of this relation is that

the uth gate node is "trua" iff lu or more of its inputs are 'true."

The logic indicator satisfles 1 <& < #D , where #D, represents

the number of elements iun Du . The value lu = 1 corresponds to

the "OR" relation between immediate subnode variables (or thelr

complements); that is,

T T e

1f we apply De Morgan's Law to the general expression for X,

node, a similar expression may be obtained for X_y Let !

D =-D ={~i]41eD?} . Then
-1 u

i
|

1\ u a gate
l u
!
l

X_y = X It xi .
1eD(D -2 +1,D) iel
u u ~-u

Since variables xu and x_ are each associated with node u , it

is coavenient to call both indices u and -~u events; =-u 1is the

complementary event for node u .

g s

3

i

=

i

23

4
-
H

TP RTINS

i
4

1]
i
1

3
4

-

PR T by VL

‘i
\
)
i
)
\
A
,
'
L |
i
B
o
S
1
- |
A
"

Let x = (xl, cvey xq) be a vector of 0's

iy xp_l,xp,xp+l.
and 1l's . Using the notation developed in Section I.1l, x will be
sald to be congietent with che fault tree if for all gate nodes
uetG, x " /D(lu’Du)/E . Thus the set of all vectors x consistent
with the fault tree is a subset of vertices of the gq-dimensional unit
cube that represents all logically possible combinations of states

of the system and 1its subsystems and components. If x and x'

are both consistent with the fault tree and have the same values for

basic node variables (i.e., x veey X 0® xé) , then it

- 1
p+l xp+l’ q
will be the case that x = x' . So we might write a consistent vector
as x(b) = (xl(g). ceey xp_l(p),xp(g),g) for some vector

b= (x ey xq) of values for basic node variables.

p+l’
A subset F of U U (-U) is called an implicant set (or just

implicant) for event 1 1if x, = 1 for every vector x consistent

i
with the fault tree such that /[Fl/x = 1 . A family F of subsets
of U U (-U) 1is termed an IZmplicant family for event < 1if for all
congistent x , x, = /F/x . Thus an implicant family for event 1
is a particular collection of implicants for event 1 . Naturally,
an implicant family F for some event 1s minimal when m[F] = F .
As an example, some of the minimal implicant families for event 1
of the tree of Figure 1 are [{2},{5},{6}] , ({2},{7,8},{9,10}] ,
and [{3,4},{5},{6}] .

Some additional definitions are useful in dealing with fault
trees iavolving complementing arcs, Again, let x = (xl, ceey xq)
be any vector of 0's and 1l's (not necessarily consistent with the

fault tree), and suppose ¢ 1s a Boolean function mapping each such

x dnto 0 or 1 . A subset P of UU (-U) dis a prime implicant

13

Gy Lo o

o e o

o T

7

14

of ¢ 1f P implies ¢ (d.e., ¢(x) =1 for all x such that

/[P]/x = 1) and no proper subset of P implies ¢ . Also, a family

P of distinct subseta of U U (-U) 18 a prime tmplicant family for ¢ Aif

for all x ¢(x) = /P/x and each P ¢ P is a prime implicant for ¢ .
The concepts of prime implicants and prime implicant families have
been widely applied in the fields of switching theory and logic,

and the definitions given here are standard in most introductory

textbooks devoted to these fields. 1If Pl and P2 are both prime

implicant families for ¢ , then Pl - P2 , 80 a prime implicant

famlly is unique.

Specializing the 1dea of a prime implicant family to our purposes
here, we will call a family P of subsets of U U (-U) a prime
tmplicant family for evemt < 1f P 418 an implicant famlly for event
i and each P £ P is a prime implicant of the Boolean function /P/ .
Note that if F 1s ap implicant family for event 1 , the situation
/[F1/x = 1 for some F ¢ F requires that xg =1 only if x is

consistent with the fault tree; however, whether F 1s a prime implicant

of /F/ depends on all x , not just vectors consistent with the
fault tree, Thus with this definition, two prime implicant families
Pl and P7 for event 1 need not be the same, since /Pl/§ - /Pz/g

need only hold for consistent x . But if Pl and P2 are composed

only of sets of basic events, 1t will be true that P, = P2 . In fact,

1
in sectilons which follow, we will not be concerned with whether an
implicant family F for event 1 consists of prime implicants for

/F/ unless F consists only of subsets of basic events or only of

largest simple modules for event < , which will be introduced in

Section I.3.

N ST

et s e i

TN LT Tl

o ———— Te—

As an example, the family F = [{9,10},(12,14},{13},{-9,11},{-10,11})
is an implicant family for event 1 of the tree of Figure 1, and F 1is

in terms of basic events; but F 1is not a prime implicant family for

event 1. On the other hand, P = [{9,10},{12,14},{13},(11}] is a

prime implicant family for event 1 and it may be verified that
/Pl = [F] .
The fault tree algorithms MOCUS and MICSUP discussed in the follow-~

ing subsection obtain, for selected gate events of the tree, minimal

implicant families in terme of basic events, that is, families of

subsets of B U (-B) ~ family F obtained by one of these methods

will not in general . i prime implicant family unless F consists

only of subsets of B (or only of subgets of ~B). When F counsists
only of subsets of B , F 1is usually called a minimal cut get family.
The dual family in this case is the family of min@mal path sets.,

In utilizing a fault tree to obtain information on the reliability
of a system, it is necesgsary to have on hand estimates of the probability
of fallure of components or subsystems agssociated with the baslc events; i
the availlability of these estimates determines the extent to which sub-
gsystems are broken down into further subsystems. Once ' minimal
implicant family in terms of basic events bas been obtained for the
subtree top event, bounds on system reliability can often be found,
as well as a number of measures of the countribution of basic event
components and subsystems to reliable system operation., The use of

cut sets in reliability evaluation is discussed by Barlow and Prosgchan

[2] and Lambert [10].

4
16

A I
iy — anks |

I.2,2 Tho MOCUS and MICSUP Methods

Under the name MOCUS (Method of Obtaining Cut Sets), Vesely and

Fussell [6] suggested one of the first methods for finding a minimal

i Rl

implicant family Iin terms of basic events for the top node event (or
any other gate event) of the tree. MOCUS was originally proposed for

fault trees that do not include complementing arcs, but the method

remains essentlally unchanged if complementing arcs are present. A

computer program which implements MOCUS is the subject of Reference [7].

For the top node event, say event 1, the procedure begins with the

definition family D(ll,Dl) and generates a succegsion of implicant
; families for Xy by continually replacing implicants involving gate

fl events with events nearer the bottom of the tree. The essence of the

Sl %,

method 1s summarized by the following steps:

0. H+ D(Ll,Dl) .

P

1., If all sets H e H have been considered in this step, go to

4, Otherwise, gelect an H & H not previously vonsidered.

2, 1f all e ¢ H are basic events, go to 1. Otherwise for

e s At i

each e ¢ H that is a gate event Je + D(Ze,De) , and for

A ik o o

i

9 each e ¢ H that is bhasic event Je + [{e}] . /'-‘|
3. H+ [H~-[H]]U [X Je] .

ecH
4. 11 « m[H] .

-

(The notation "symbol + formula" is well-established and means that

after the operations indicated by the formula on the right have been

ot i i o fm >
»

performed, the resulting object, whether it be a family, set, or

quantity, is to be represented by the symbol on the left.) It is

© readily verified that Il will be an implicant family for event 1.
/

b

17

The minimization tagk of Step 4 essentially consists of comparing each
set H e H with gets which precedes it in H .

The algorithm as stated 1ls suitable for computer implementation, but
the main idea 1is best illustrated by deriving a Boolean sum-of-products
expression in terms of basic event variables for event 1 of the tree of
Figure 1. This expression 1s derived by repeated substitution for gate
event variables. Since the x are Boolean variables, note that the

J
identicy x2 g x may be used to simplify a product and that products

3 3

involving a complementary pair of varilables (xj,Ej) may be discarded:

xl - x2 S m——
+ x5
+ x6
g wrremancenl
+ x3x4 —.1.
il
+ x7x8
-‘—————-—
1 X%
+ x4x_6xll ? —T
+ xsx_6xll s
+ X19%13 '
MRSV TA
b
+ x13
M
+ x_6x_9xll ' —

TR T

18

* XXX _g¥11 l]
X %X _10%11 s
X g% I
tx_g¥_10%11 s
+ X _g¥i10%11 I
i rmr————————
+X_10%11 s
*X_g%11%12%13
* X _g%11%10%14
~alifer
+ X _9%11%13
+ X _g%11%13%4
t X 10%11%12%13
* X _10¥11%12% 141
i
* X 10%11%13 ‘
* X 10%11%13%14

The sum of remaining products corresponds to a nonminimal implicant
family for event 1. Minimization of this family is c¢quivalent to
applying the Boolean absorption identity (x + xixj E xi) to pairs

of products in the above sum, thus eliminating redundant products.

The resulting "minimal" expression is

X =™ Rg¥yg F XpXg, P Xpg ¥ X g¥ig F X 0%y

-

19

MICSUP (gznimal Cut Sets, ggward) is an alternative method of
constructing basic event implicant familles proposed by Chatterjee [3].
At least two computer codes utilizing this method are available [12],
[13]. The technique is based on the obuservation that if minimal basic

event families Ij are availlable foxr all immediate subevents j € D1

of a particular gate event 1 , then the minimal basic event family

for 1 1is simply

m U v 1.0,
1eD(2,,D,) fel i

where Ij g [{j}] 1f 3 1is a basic event. To find a basic event
family for the top node event of a fault tree, say event 1, the

procedure 1s as follows:

0. F« {1} .

1. 1If all events i € F have been considered in this step,

go to 3. Otherwise select {1 ¢ F not previously considered.
2. F+TFUI{]jc¢ Dy » 1 a gate event}
3. Consider successive elements of F in upward order (any

ordering such that each event follows all of its subevents).

For each 1 ¢ F construct

Ii +m U x I
1e0(1,,D)) fel 3

Steps 0, 1, and 2 serve only to avoid, if possible, finding Iu and

I_ for every gate node u

of a fault tree containing complementing

arcs; if the tree contains no complementing arcs, we may let F = G ,

the get of gate nodes, and just perform Step 3.

Also, minimization may

g

)
't
j-’:
1
]

20

be pogtponed until Il is conatructed if it 1s expected that the
unminimized families for immedlate subevents of Zl will not contain
a large number of nonminimal sets.

For the example tree of Figure 1, this simple method is illustrated
with Boolean expressions. Evidently, the set F in its proper order

ts {8,7,6,-6,5,4,3,2,1} .

g T X1y Ry

7 ™ Xpp t X4

6 - 9*10
X - x_9 + x—lO
5 = x./x

8

= (g + Xl q o)

" KpaRpg ¥ XXy, T X gt Xgxyy

= X12%14 Y ¥
4 = *le*11

= (g +x)%y

=X g% Y X 10*11

37 %t X

= (_gxyy + K go¥pp) F (Rppxp, X 5)

= Xg¥p t 0¥ T %1 t ¥

P |

I L

P e I e TR [T

N

21
X, = X

3%

(x_gxyy + X_1o%py * Xyp¥yy * Ry) (K gxyy X 10%)y)

X_g%11 * Xag¥_10¥11 t *oo®11%12%14

+ x_gxllxl3 + X X

—9%_10%11 * *_10%11

¥ X_10%11%12%4 T *210%11%13

= ¥g¥11 Y Xo10%11

X, = x2+x + X

3 6

(x_gkyy + X _yg%pp) ¥ (K g¥py + X 1% + X%, Fxyg)
+ (xgx;4)
X g1 * *lro*11 T *oo*1 * *io*11

X%, Y ¥yt X%

= R_gXy1 Y Xopo¥11 t *12¥14 Y *13 T ¥o¥yp v

The MICSUP algorithm is superior to MOCUS in two cases:

(1) when basic event families are desired for a number of intermediate
gate events as well as the top event, and (2) when only sets not
exceeding some given number of basic events are required in the top
event family. The second case 1s most important in practice. Often
the minimal top event family has many sets which contain a large number
of basic events. If the fault tree 1s free of complementing arcs,
each of these sets is associated with a mode of system failure due to
failure of a large number of basic node components and subsystems;
that the actual system will fail in this manner is highly unlikely.

Thus implicants which exceed some given size are usually not of interest

in the subsequent reliability analysis of the system.

The convenience

22

of the MICSUP method in this case 1s a consequence of the fact that
sets generated for every gate event conalst only of basic events, and
any set that exceeds a given size may be immediately discarded.

This way of finding a subfamily Ti of the complete minimal
family Ii for event 1 does not, in general, yield meaningful results
for fault trees involving complementing arcs, due to the fact that Ii
is usually not a prime implicant family. However, as an illustration,
suppose that only productis of size 1 are required in the previous

example. The expression following each colon (:) below results from

digcarding products containing more than a single variable.

+ X

¥g = X3 14

+ X

X7 % ¥*12 13

(kg + 330 (yg ¥ 1) 2 Xy
4 = *oe*11
x3 = xa -+ KS
= (9) + (%14) & %54
= %%,
ORIORE"

1 = x2 + xs + K6

=)+ (kL) k@) ox,

- triopean. L.

ST -0
NIRRT

T e T

ECas

T

T TR

T

(A null expression for X, means that there is no basic event variable

which by itself implies X .) In addition to X130 %9 algo implles
Xy s 80 the method has failed in this case to find all single variables
that imply Xy What is really desired here 1s the subfamily of

all prime implicants for event 1 which consist of only one basic eveat.

I1.2.3 General Framework for Implicant Elimination

Implicant size is one criterion which may be used to determine a

23

subfamily of "interesting" implicants when the complete minimal implicant

family 1s too large to obtain., More generally, given any set of events
E, an importance criterion for E assigns certain subsets of E to

a class, called important sets, in such a manner that if I 1is

important, all subsets of 1 (ignoring the null set) are also important. 3

This definition just guarantees that if 1' 41s a subfamily of all
important sets of the family I -then wm[I'] C m{I] . Also, let f
be a real-valued function whose domain consists of all subsets of E ;
iéiis convenient teo call £ an importance function if for any real

¢ either [T | ICE, £(I1)<ec] or [I|ICE, £(I) >c]l is a
ciasé of importait sets.

Suppose that a positive real value 1(k) 4is chosen for each

event ke E. If £(I) = J 1(k) for each I CE, then f 1is
kel

an ilmportance function; if 1(k) = 1 for all k g E , then all sets
not exceeding a critical size c¢ are important. Many other importance

functions can be constructed using the 1(¢) values, such as min (k)
kel

or, when all values are between 0 and 1 , T (k)
kel

T

i s e

24

For fault trees that do not contain complementing arcs, the
MICSUP algorithm obviously lends itself well to construction of
minimal subfamilies of all implicants that satisfy an importance
criterion, For E = B , as in the case of elimination by size,

implicants that are not important may be discarded whenever they

appear.

1.3 Simple Modules

Deleting nonminimallimplicants of a family 1s unquestionably
the most time zonsuming task in MOCUS and MICSUP methods. Given an
arbitrary implicant family K 1in any order, m[K] is obtained
esgsentially by comparing each set K with all sets that precede it
in K. If J 1s a preceding set, K is eliminated if J C K and
J 1s eliminated 1f J DK . Some effort can be saved by ordering the
sets of K according to increasing size; then K 4is not strictly
contained in any preceding set. In any case, the number of set com-
parisons required to find m[K] , 1f K consists of n gets, seems to
be bounded above by some constant times n2

In practice, MOCUS and MICSUP algorithms often perform a great
deal of minimization that could be avoided by isolating certain branches

of the fault tree that have no basic nodes in common. Such is the

general idea underlying this section.

T

R

25

I.3.1 Simple Module and Modular Subtree Definitions

We begin with some additional definitions regarding fault
trees. If node w is a subnode of u , a chain from w to u
is the set of nodes along an upward path from w to u . For
instance, in the tree of Figure 1, the sets (12,7,5,3,2,1} and
{12,7,5,1} are chains from node 12 to node 1. The number of nodes
in the largest chain from w to u 1is denoted by cu(w) , and
cu(~) is an integer valued function having u and the subnodes of
u as its doma;n (cu(u) 2 1 for any node u). In the example tree,
cl(l) a1, cl(2) -2, cl(3) -3, cl(a) =4, cl(S) -4, cl(6) -5,
etc,

Next, if v 1is a subnode of u , v 1is said to be a aimple
module for u 1f every chain from a basic subnode of v to u
includes v . Node 5 is a simple module for node 1 in the example
tree, sinée the basic subnodes of 5 are 12, 13, and 14, and the
chaing from these nodes to node 1 are [12,7,5,3,2,1] , [12,7,5,1] ,
(13,7,5,3,2,11 , [13,7,5,1) , [13,8,5,3,2,1} , [13,8,5,1] ,
[14,8,5,3,2,11 , and [14,8,5,1] , all of which include 5. 1t is
helpful to think of the Boolean varlables associated with a simple
module as indicating the gstatus of an iundependent subsystem; that
is, given the status of the subsystem, the status of any component
in the subsystem is irrelevant to the.psoblem of determining
whether the system itself is working.. For instance, the values

of «x are not important in determining the

12 » ¥13 > ad X,

1 1f the value of X is known. Note that with this

definition, node 4 is a simple module of node 3, but not of node 1,

value of x

. W " .
R AT N A 1 1 SR e A LW TV Y T et e ns s s 4 Al

e e mae ke e

b 8 S s T Dl A s e i i i, SN B

o,

26

so the node or set of nodes must be specified for which a particular

node 13 a simple module, Also, for any gate node u , all basic
subnodes are trivially simple modules for u .

If node v 1is a simple module for node u and v i3 not

a subnode of gome other simple module for u , then v is a largeat

gimple module for u . In Figure l, the largest simple modules for
node 1 are 5, 6, and 11, whereas those for node 3 are 4 and 5.

It is easy to see that the largest simple modules for a node have
no subnodes in common, a fact which motivates these definitions.
The modular subtree for a gate node u consists of all nodes,
along with the arcs joining these nodes, that appear in chains
from the largest simple modules for u to u itgelf. Node u

is thus the top node of its modular subtree. Filgure 2 illustrates
the modular subtrees for nodes 3, 4, 5, and 6 of the example

tree. This definition of a modular subtree 1s related to the idea
of an independent branch of the fault tree, introduced by

Chatterjee [4].

et o~ e

‘i

1
A
£
13
b
i
¥
3
L
M

27

FIGURE 2

4
1
|
L
4
-

i 1]

A T

28

I1.3.2 Application of Simple Modules to Implicant Families

The above concepts may be readily associated with implicant
families. For convenience, call event j a simple module for event
1 if node |j| 1is a simple module for node |i| in the fault tree,
and the modular subtree for event 1 1s the one having node |i|
at the top. Were the MOCUS or MICSUP method applied to the modular
subtree for event 1 , with largest simple modules for 1 treated
as basic eveats, the result would be a minimal implicant family Mi
in terms of these largest simple modules, More sultable algorithms
to find implicant families assoclated with modular subtrees are
discussed in Section I.4, but for purposes here, nothing is lost by
asgsuming that procedures similar to MOCUS or MICSUP are available

to find families Mi .

For a given set Q of gate events, a modular structure for Q
is a collection {Mj}jeM(Q) of minimal implicant families in terms

of largest simple modules for their resgpective index events, where
the index set M(Q) 1is the smallest set satisfying (1) Q C M(Q) ;
and (2) 1f j 1s a gate eveat in an implicant of some family Mi
for 1 ¢ M(Q) , then 3 € M(Q) . The modular structure for Q is
just the smallest group of implicant families in terms of largesé

simple modules necegsary to find a basic event implicant family for

each event in Q . For the tree of Figure 1, M({1}) = {1,5,6,-6}

and

[P N

e e i el i L il

e

29

i)
=
]

=
|

5 [{13},{12,14}]

=
]

6 = [(9,10}]

=
n

¢ = [{-9),0-10}] .

However, M{{1,3}) =~ {1,3,4,5,6,-6} , so the modular structure for

b
1
]

{1,3} includes, in addition to the above families,

M3 = [{3},{4}]

Sarr § o e T T

o e

Ma = [{=6,11}]

Reliability evaluaticns for a fault tree are usually introduced

Ay T .,_-,m‘.'.v

ey

by associating independent O0-1 random variables xu (1 - x_u)

sre R

with all basic nodes u ., For a gate event i , with a minimal

i
e e

et

basic event implicant family Ii , the random variable Xi is taken

to be 1 1if at least one set I € Ii has Xj =1 for all j el ;

otherwise, X is 0O

N . Under the agsumption of probabilistic

independence of basic node variables, variables for nodes that are

o A S S s

largest simple modules of any particular gate event are also in-

dependent, since they have no common basic suvbnodes. Hence reliability

TR e e

evaluations for events j ¢ M({1}) may be done by considering these

events in upward order, and treating each family M, as if it con-

3

. sisted of basic events. The number of minimal basic event implicants

for i wusually far exceeds the total number of implicants in all

37 3eM({ih)

% B modular structure families {M,}
.-

30

8 Should basic event families be preferred for events in Q ,
1 they are easlly obtained by gelecting the events j e M(Q) in

upward order and constructing I in the usual manner:

3

1, « v X 1

J. 3 Mij meM

where, of course, Tm z [{m}] for m a basic cvent. Because the
largest simple module events j have no subevents in common,
minimization is unnecessary. 1In terrs of Boolean expressions, the

modular structure for event 1 of the example tree yields,

Xg ™ Xy * X%y,

xl - x5 + x6 + x_6x11

)+ (xgxp) + (x_g +

()3 + %%, X_10°%11

= X + KX

13 ¥ *12%14 T ¥g¥10 * ¥g¥11 * ¥y0%11 ¢

Size vegtriction may be employed when a MICSUP-type method is

B applied to modular subtrees for events in M(Q) . These subtrees

N should be devoid of complementing arcs. The family Mj in the :
-
resulting collection {MS}jEM(Q) will consist of all implicants :

é':r of Mj that do not exceed the size limitation, and further elimina-

tion is dome as basic event families 1! are produced. .'

3

BT

3l

0f course, elimination bagsed oun an importance criterion for B
is also feasible when basic event families are constructed. For

j & M(Q) , a subfamily 15 is then constructed which consists of all

important scts of the complete family 1T However, it 1is usgeful

3

to have an importance criterion for the set of all events that

appear in at least one implicant of Mj . (Denote this set by E(Mj))

Elimination can then be done when the MICSUP method is applied to the

modular subtree for J . An importance criterion for EM,) 1is

3
easily obtained from a criteriom for B by declaring a set M C E(Mj)

important iff the basic event family X Im contains at least one
meM

important set. This is valid because the event sets E(Im) , me M
are disjoint.

Such an importance criterion for E(Mj) i8 actually quite easy
to implement when real nonnegative values 1(k) are available for all
basic events and an importance function f is given in terms of these
values. Suppose, for instance, that 0 < 1(k) <1 for ke B,

and for I a set of basic events, let f(I) = 1T 11(k) . For
kel

j € M(Q) we construct the subfamilies M' 1in upward order, that

|
is, M! 4s, constructed following all families M' for k a subevent
3 k

of j . When the family M! is constructed, for each gate event

3

m e E(Mj) which 1s a largest simple module for 3 , a value 1(m)

will be available from a previous computation unless M& -0 .
If the MICSUP method is applied to the modular subtree to find MS ,
then all sets generated will be in terms of largest simple modules

for 3 , and only ilmportant sets need be retained, where in thils case

a set M is important 1ff Mé # 0 for each me M and (2) (if

condition (1) hold#d

32 {

T {m) > ¢
meM

for a fixed critical value c . When the family M' has been

h
found, if Mj # @, 1(J) is determined by the computation '

max (I 1(m)) . :
MEM5 meM |

e

For Mi = 3, 1(3) 1is left undefined. It is quite easy to show that

: a set MC E(Mj) satisfies (1) and (2) 1ff there is a basis event

i set T e X 1 satisfying
' m
A meM

}. I (k) >c.
i kel

LR S e S

This scheme can also be employed to yield a more efficient f

=

technique for size elimination than simply restricting implicants in

—r

modular structure families to a fixed maximum size. Let o(k) =1
0 for each basic event k and let f be the importance function

j defined for a set I of basic events as f(I) = 2 o(k) . As in
- kel
3,' the procedure above, when M! 1s constructed, relevant values o(m)

3

% for largest simple module gate events m ¢ E(Mj) will be available !

L from earlier computations. A set M C E(Mj) is now considered

Taw -

! important 1ff (1) M& ¥ 9 for each me M , and (2) (if condition
[(1) holds)

] o(m) <e i
meM '

e

3
t
i
1]
ki

e R Lt e

B

g

1Tt o B b b

33

for a fixed integer value ¢ . From the family Mi s Lf Mj 9, §

o(j) computed as

min <) o(m)) .]
MeMi meM

For any set M e Mj in this case, there is at leart one basic

event set L £ X Im having no more than ¢ elements. We call
meM

the particular criterioa discussed in this paragraph modular size

importance.

1.3.3 A Method for Identifying Modular Subtrees

-
e i S A

For an arbitrary gate node u , let Gu V] Lu be the set of
nodes in the mcdular subtree for u , where L consigts of all
nodes that are largest simple modules for u and L N G, = ;G

u
is never empty, since u € Gu .

Finding sets Gu and Lu is not difficult computationally.
The technique described here makes use of particular sets of
replicated nodes, nodes which have more than a single leaving arc;
for instance 5, 6 and 13 are the replicated nodes of the Figure 1
tree. For any node v , let R, cnnsist of all replicated subnodes
of v , as well as v itgelf 1f v 1is replicated. The set of

replicated subnodes of v 1s just

where § is the set of immediate subnodes of v .

34

o The following procedure determines the set Lu of largest

i simple modules and the set Gu for an arbitrary gate node u :

a LSM !
4 3
;éi 0. 2«0, T« {u},L «¢,6 «4d,. %
3 1. If T =@, stop. Otherwise z + z + 1 ,

51 Te{v|verT, c,(v) #z} U {SV lverT, ¢, (v) = 2},

[.

ol ! -

4 G, * G, U {v|]ver, cu(v) z} .

i

3 2, L+«{v|ver, c,(v) =z + 1, R N[U R} =0

i weT

F‘ w*v)

. L +L UL, T+«T=-1L. Cotol.

. u u .

1

|

Ag an illustration, we find the largest simple modules of the top

i
- node of the tree of Figure 1: "
| 1
| i
g | ‘Rig o Ryp o Ry o Ryg s Ry = 8 ;
| -
é ! Ry » Ry Ry = {13}

Z - Ry = {6}

B 1 '

P' 1

3 - e :

i

N R3 » By sy Rl = {4,5,6,13}

z+ 0 T + {1} L1 « G1 « 0
z + 1 T+« pU{2,5,6}
G, * g uil}
L+@
z +« 2 T « {5,6} U {3,4}
C, * {1} v {2}
L+¢@
z + 3 T « {4,5,6} U {4,5}

Gl <~ {1,2} U {3}

L « {5} (since Rg N (R4 URg) = B)
L, * ¢ U {s}

T hat {4,5,6} - {5}

z + 4 T+~ {6} U {6,11}
Gl = {1,2,3} U {4}
L + {6,11} (since Rll =)
L = {5} u {6,11}

T« {6,11} - {6,11}

Stop.

Essentially, the method proceeds down the subtree with top
node u , and the set T and L 1involve nodes successively further
from u with increasing 2z . An examination of Step 2 shows that

if v 1is a subnode of u , unless v 1is a subnode of a largest

simple module for u , them v will eventually appear in the table

35

PR 1

e e e M 32 e it A

36

T formed in Step 2 for some value of 2z , say z' If

z' # cu(v) - 1 then v 1s retained in each T for successive
values of z = z',2' + 1, ..., cu(v) ~-1. When z = cu(v) -1
in Step 3, then v 1is tested to see if it 1ig a largest simple

module for u . If it is, v is included In Lu and removed from

T ; otherwise, Sv replaces v 1in the next T formed in Step 2

(for z = cu(v)) and v is included in Gu

The validity of this procedure is based on the following easily f

established facts:

1, Given any two fault tree gate nodes v and w , neither
being a subnode of the other, then R, NR = @ 4if and

A only if v and w have no basic subnodes in common.

i 2, Forany z , TU L, contains at least one node of every
chain from a basic subnode of u to u 1trself; moreover,

Ew ‘ for each v e T and w e Lu » R, MR = g .

E} 3, For veT, z = cu(v) - 1, there is no w ¢ T such that

;\ v is a subnode of w .

M . 4, For veT, v a simple module for u , there is no

w & T such that w 4y a subnode of v .

o An effective method of comstructing the set L in Step 3

é? deserves mention. Let r = (rl, aay rn) be a vector having the
same number of components as fault tree nodes. The set T 1is taken
to be ordered in some arbitrary manner and for v , we T we write

ve>w 1f v precedes w in T , Node u is again the subtree

; top node.

37

3 .
; #. L'« @ . For each we R,y»r,*«0 dn r.
4 1. 1If all nodes of T have been considered in this step,

stop. Otherwlse select the next element v € T in the

] ' order » .

2, If =z ¥ cu(v) -1, go to 3. Otherwise, if L 0 for

t
Q’ 1 1
& all we R, then L”« L" U {v}
1! ' 3. r_ +v for all we R . Go to 2.
; w v

| - This procedure constructs the set

i
E Ll ={v|verT, cu(v) =z + 1, and Rw N Rv = @ for all w »>v in T}.

The same procedure may be applied with the modification that the

‘ elements of T be conaildered in reverse order to obtain

L2 ={v|verT, cu(v) =z+1,and R NR, = p for all w=v in T}.

Then L = L7 AL" .

We sometimes require that the largest simple modules be known for

each gate node of the fault tree, so the LSM procedure must be applied

|
1
! ; 1.2
{
t
|
|
i

’ for every u & G . However, calculating cu(w) for all subnodes

w of u for each u e G 1is wasteful, and a more efficient method

This method 1ls motivated by two simple facts:

"l can be suggested,
! First, 1if Gu and Lu are available for some gate node u , and
we wish to find Gv and Lv for some v ¢ Gu , then 1t is only

necessary to calculate cv(-) for subnodes ¢f v in Gu V) Lu ,

since Gv U Lv < Gu U Lu . Secondly, if v 1is any gate node which

~ mm—“‘—m”"“"’““‘“""*", - e s e A == S
.
ST e s s -
- n ey
e S p—

38

is a simple module for u , then cv(w) - cu(w) - cu(v) for any
subnode w of v . In the following statement of the method, it

is assumed that a downward order has been determined for the set

G of all gate nodes.
l MODS |
|
] 0. For all we G , Nw +GUB .
1. 1If all nodes in G have been considered in thils step,
stop. Otherwise, select the next node u e G 1in downward

order.

i 2, 1If Lu and Gu have been found, go to 1. Otherwise

E calculate cu(-) for all subnodes of u in Nu , and

4

M+ {u} ,
a. If LV and Gv have been found for all nodes v ¢ M ,
go to 1. Otherwise select v € M for which Lv and

GV are not available,

b, Find Lv and Gv using LSM procedure, noting that
either v 2 u or v 1is a simple module for u , so
cv(w) = cu(w) - cu(v) for all subnedes w of v .

c. M+«MU({w | we L, » W a gate node} . For each l
W E Gv - {v} for which Gw is not available,

Nw “ Gv v Lv . Go to 2a. .

Note that substeps 2a thru 2c are repeated until all simple modules
have been found for node u chosen in Step 1.
The process of determining largest simple modules for each i

gate node of the tree of Figure 1 ig i1llustrated:

b ———

==

IR

ol i G LM e el A

T, S—

Dl S R S S

39

Nw “+ {1,2,3,4.5.6,7,8,9,10,11,12,13.14} y WEG ,
Calculate cl(-) for subnodes of node 1l in Nl . M+ {1},

L, = {5,6,11} , G = {1,2,3,4}

M+ {1} U (5,6}

N, * {1,2,3,4,5,6,11} , w e {2,3,4}
Lg = {12,13,14} , G = {5,7,8}
N, * {5,7,8,12,13,14} , we {7,8}

L6 - {9)10} ’ G6 - {6} .
Calculate cz(-) for subnodes of node 2 in N2 . M+ {2} .

L, = 14,5} , G, = {2,3)

M+ {2} U {4,5]}

N3 + {2,3,4,5}
L4 = {6,11} , G4 = {4}

M+« {2,4,5} U {6}

L5 N G5 found previously

L G found previously.

6 ' 76

Calculate c3(-) for subnodes of node 3 in N3 . M+ {3} .
L3 = {4,5} , G3 w {3}

M+ {3} U {4,5}

L4 ,» G found previously

4

L. , G, found previously.

5 3

T I I I IR —_——_—— -~

ekl Eciaal o et -

Bl ol e

40

L4 » Gy found previously.
L5 ’ G5 found previously.

L6 , G6 found previously.

Calculate c7(-) for subnodes of node 7 in Ny o M+ {71 .
L7 = {12,13} , G7 = {7} .

Calculate c8(-) for subnodes of node 8 in N8 . M+ {8} .

Lg = {13,141 , G8 - {8} .

Stop.

I.4 Obraining Implicant Families Associated with Modular Subtrees

Subsections T.4.1, I.4.2, and I.4.3 each suggest a technique for
deriving a minimal implicant family Mi associaé;d with the modular
subtree with top event 1 . If the subtree involves complementing arcs,
then the complete families, say Mi , ﬂi , and &i , generated by each
of thege three methods may all be different, though it will be true that
for every x , /M /x = /Mi/ﬁ = /ailg_. The families produced by method
MSDOWN of I.4.1 and method MSUP of 1.4.2 need not be prime implicant
families for 1 when the subtree has complementing arcs. The Nelson
method of I.4.3 always generates a prime implicant family or subfamily
of all prime implicants that agree with an importance criterion or sgize
restriction; however, this method will often be less efficlent than MSDOWN

or MSUP when applied to a large subtree.

Subsection I.4.4 speculates on the relative suitability of these

algorithms for particular applications.

-3

e

41

I.4.1 The MSDOWN Method

The spirit of this method (Modular Subtree Downward) 1is akin
to that of MOCUS, but MSDOWN is more intricate and more efficient
for most applications. The algorithm makes use of the concept
presented in Section 1.1 of the dual of a famlly of sets of positive
and negative Integers. For purposes here, ﬁhis concept requires some
additional comment, which is introduced by way of an example,

Consider the fault tree of Figure 3, Were the MOCUS algorithm
applied to this tree, the process of constructing the minimal implicant
family Il would be represented by (with by ™ 1)

! [ee{2,§,4,5} D(le’De)] '

where D, = {6,7,8,9} , Dy = {7,8,-9,10} , D, = {7,8,11,12} , and
D5 = {9,10,13,14} . 1In a Boolean context, the state vector 1s

X = (X, 4Xq, ~vs, X,,) , and the expression for / X D(1,D)/x
= 1'72 14 e’ =
ec{2,3,4,5}

is a product of sums,

(x6 + x, + Xg + xg) (x./. + Xg + X_g + xlo) (x7 + Xg +xll + xl;!) (xg + X0 +xl3 + xM) .

So determining the product family and minimizing is essentially
equivalent to expanding the above expression into a sum of products

and eliminating nonminimal products, as well as products having comple-
mentary pairs of variables. O0f the 256 products, 228 have no comple-~

mentary pairs of variables, but only 16 products are minimal,

Though the tree of Figure 3 ig contrived, and such trees do not

often occur in practice, the point is that 1f an implicant H with

42

25-1

FIGURE 3

S g e T e s Rew A Ay T

Ry St i mm o E e R e e i SV 2 LE i e Ry e T i s) 2
T s Zm mim N R Den SR e s T L B s st e e T R el et DT el o T e ST o Ry o e S T

- R
i T e Tl R s M, ey

43

a moderate number of gate events appears at asome time during applica-

T e

tion of the MOCUS procedure, the product family X D(Ee,De) may be ro
ecH o

I — Ty

quite large, especially for a tree where a sizable proportion of the

Ee sare 1 (OR relations). However, the famlily remaining after

minimization may be relatively small {f the immediate subevent sets

! De involve events assoclated with replicated nodes. This suggests i

that substantial effort could be avoided if the family

| m [X D(ze,neﬂ

ecH

could be found without generating all the nonminimal sets in the

product family.
From the definition of the family D(ae,De) , it 1s clear from

Section I.1 that d[U(Le,De)] - D(#De - le + 1,De) , where #De ‘:

is the number of elements in De . Moreover, d[d[D(Ee,De)]] =- ,

D(s,,D,) . Thus by Proposition I.1.3, P

o g o

d [eth (D, - %, + 1,De)] -m [eﬁﬂ v(ze,nc)] : o
The family in brackets on the left requires about the same amount

S : of effort to construct as the families D(Qe,De) together. The

R ' algorithm given in Reference [17] finds the dual of an arbiltrary

famlly F and is well suited to our purposes here. Eggentially,

the algorithm generates the sets of d[F] in groups, and minimization
1s required only among members cf the same group; in fact, when finding

the dual of U D(#De - le + 1’De) the algorithm bypasses minimiza-
ecH

] tion altogether 1f the sets De , e ¢ H are pairwise disjoint.

e T ——

44

In addition, the number of nonminimal sets appearing during con-
struction of this dual will always be less than the number of such

sets in X D(le,se) , usually many times less. Use of the dual
eeH

algorithm in the manner suggested here to find Il for the tree of
Figure 3 requires only 1/10 the computation time necessary to
produce and minimize the product family, The difference in efficiency
between the two methods becomes increasingly dramatic as the number

of sets in the product family increases. It 1s not hard to devige
examples where the dual algorithm generates the required minimal
family quite easgily, but formation of the product family 1s computa-

tionally imposaible.

If X D(ze,De) is small, say fewer than 20 sets, the dual
ecH

algorithm may require somewhat more computation time than forming
and minimizing the product family, due to the comparatively large
amount of computer code associated with the algorithm. However, in
this case, the computation time required by either method is quite
negligible; so in the MSDOWN method, it 1s not worth the trouble to
bypass the dual algorithm and derive and minimize the product family
whenever this family has fewer than 20 sets.

The steps below comprise the MSDOWN proéedure applied to a
modular subtree with top evemt 1 . The procedure requires that the

set Lu of largest simple modules for u = |i| be available, as

well as the set Gu of subtree nodes which are not in Lu

45 .

MSDOWN :

@, z+«0 ,0+0, u~+ |i| , H+ [{1}]
1. z+z+1,¢C8«{v|veG ,c(v)m=z}).
u u .

R® + (v i v e-Gu U Lu ’ cu(v) =z + 1, v replicated} .

] If cXmp, Mi « H and stop.

5 2. If all He H that intersect C% U (-Cz) have been
consldered previously in this step, go to 5.
Otherwise, select H e H with H N (C* U (-C%)) # @
that has not been considered. ‘

3. a. For each eec H 1if e e C% U (-¢%) ,

J,« DD, = 2 +1,0),and 1f e ¢ c® u -c® ,
J, « [led] .

b. ao+a+1.

c. Ha +d [U Je] .

eegH

d. H« [H - [H]] U Hu , 80 to 2,
4 R« [H|HeH,Hn R*PU (-R) % 9] .
(R will thus contain all H having a replicated

subevent e with cu(]el) =z 4+ 1.,)

5. Partition sets of R into disjoint families {Ra}aeA R
where Ra =R N HOL and A consists of all a such
that Ra 0.
6. H<« [H-Rl Un [U R] y B0 to 1.
a
CEA
Following each execution of Step 1, events e € H for any
implicant H € H all satisfy cu(|e|) > 2z . Steps 3a thru 3d

' ' select each implicant H e H having at least one event e satisfying

3 cu(|e|) = z and replace this implicant with a family Ha .

46

For ec H, if we let .T(1 - D(#De -t l,De) for cu(|e|) -z

and Je = [{e}] otherwise, then

H -m[X J]
a ecH e

by our earlier remarks. Thus when Step 4 1s begun, events e g H
for any H e H{ have cu(|e|) > 2z . At this point, the population
of events e with cu(|e|) = z + 1 is greater than in all families
H previously constructed, since no substitution for these events
has yet occurred, The events which correspond to replicated nodes
of the subtree and satisfy cu(lel) = z + 1 are likely to be found
in nonminimal sets of * H . So we agsign sets contailning such replicated
avents to the family R , and minimize only this portion of H .
Moreover, for any family HG constructed in Step 3, the intersection
of Ha and R i3 minimal (though it may he empty), because Hu is
minimal. Each family of the partition in Step 5 1s thus minimal, so
the indicated minimization only requires compavison of each get of a
family Ra with all sets in preceding families.

It is intuitive but not obvious that the minimization scheme in
this algorithm insures Mi will be minimal. This is the case, but
to establish this fact rigorously is tedious and not particularly
instructive, so we do not cunsider the proof.

Figure 4 ghows the modular subtree for the top node of the
Figure 1 tree, The following example derives the minimal implicant
family Ml for this subtree using Boolean variables. The integer
in parentheses following a term 1is the value o associating the
corresponding implicant with the family Hu . The families R of

Step 4 and thoge of the partitionsg of Step 5 are also indicated.

R R AT e e e R T P T T e IR T T R TR R R e e e e e R e ST " e - L.

~
=3

3

%1-1

11
FIGURE 4

e b A E

4

~T

~
i A 2

i iees Do gssie ke Acretad = el da

1
i

R e

o i e %]

oy, (s

48

z +1 ¢+ {1} R"+ 0

X1

+ xz(l)

+ x6(1)
R=¢
z 2 c?«f2) Riep
)
+x5
+ x6(1)
¥ xyx, (2) == (/d[1{3},{4}])/5) =—
R=2¢
z 4+ 3 c3 + {3} R3 + {4,5}
xs(l)
+ x6(l)
+ xy%,

4, (3) == (/AL [{4},{4,5}]1/x) =mt
R w [(4},{5}] , Ry = [{5H] , Ry = [{4]]
z « & c® « (4) R* « 16}
xb(l)

+ x6(l)

X4
x_gxqq (4) == (/d[[{~6},(11}]1/5) =

+

R = [{6},(-6,11}] , Ry = [{6}] , R, = [{-6,11}]

z + 5 c+ 9 Stop.

The expresgion asgsociated with /Ml/g‘ is thus xg + X + X_.X,

it S e

e T mn | mE T G ERST ST AR

. i i o e

: Sm——

49

it

1.4.2 The MSUP Method

The MSUP algorithm resembles MICSUP confined tn a modular subtree.
MSUP 1is particularly suited to applications where ounly a subfamily of
important implicants or those not exceeding a fixed size is required

for the subtree with top event 1 , vather than a complete family Mi .

As with MSDOWN, the MSUP method utilizes the set Lu of largest
simpie modules for the subtree top node u = |[i| , as well as the
set Gu of subtree nodes not in Lu . In addition, MSUP requires
| "~ that saets Lv be available for all v ¢ Gu s thus, prior to deriving
the modular structure families {M,}

3 3eMQ)

i ucsing MSUP, it is con-
B venient to apply the MODS algorithm of Subsection I.3.3 to determine

T tha largest sgsimple modules of every fault tree gate event. Finally,

o 4 it S, Ml Ll 1 0

MSUP calls on a "downward" type subalgorithm designated as ORDOWN
(substitution for OR-relatlons, DOWNward). Since ORDOWN has much in

common with the MSDOWN method of the previous subsection, we first

i e e et

r; . discuss this subalgorithm.

! I ORDOWN, 1like MSDOWN, obtains an implicant family Nj for j
l a top event of a modular subtree. However, the events in implicants

%. of the family Nj need not correspond to largest simple modules for

the subtree top node v = |j| . The method is outlined as follows:

ORDOWN

0. a<«0, v« il ,H«[}H

1. C«{viuiw | we G, » %, = 1}

W

2. If all H ¢ H that intersect C U (~C) have been considered

; previously in this step, go to 4. Otherwise select H g H

with HN (C U (-C) # @ that has not been considered.

ET RS ALY e SRR TS R,

s

e
T T TSR T

50

3. a. For each ec H , if e & C U (=C)
Je + D(#De - At l,De) , and 1f e ¢ C U (=C) ,
Je « [fe}] .
b, a+a+1.
c. H +«d [v J] .
a e
ecH
d. H=+ [H - [H]] U Hu and go to 2.
4, Partition sets of H into disjoint families Qa = HN Ha and
let A consist of all o such that Qa * 9 .
5. N, «m| U Rﬂ and stop.
J ael
Note that each ﬁa is minimal, since Hu arises from a single
application of the dual algorithm; thus, the minimization in Step 5

~

involves comparing sets in Ha only with sets in preceding families
of the union,

The form of this method 1s somewhere between MOCUS and MSDOWN,
but its important feature is the set C of Step 1 which controls
event substitution in implicants of H . Substitution for the top
event j 1s always done, but a subsequent event e appearing in sets
of H that is not a largest simple module for j may only be
replaced by P(Ze,De) if 2, =1, that is, if x_ 1is represented
by an OR relation between immediate subevent variables. One effect
of this restriction is that no set of the family Nj will contain
more events than a set in the top event definition family, D(lj,Dj) ,
though Nj will usually contain more sets than the definition family.
A second effect is that events in implicants of Nj are more likely

to correspond to largest simple modules for * than events in D

j ¥

e

though it may happen, of course, that Nj and D(L

same, The motivatien for producing families N, for selected gate

]

events j cof the modular subtree will be discussed in connection

j’Dj) are the

with the MSUP method.

For a large modular subtree with top event 3 , sets of N

3

will usually involve only events for nodes near the top of the subtree,

and in such a case, it is to Le expected that N, will contain

J
many fewer sets that the family Mj produced by the MSDOWN method.
For this reason, the more elaborate minimization scheme of MSDOWN
has not been included in ORDOWN. However, MSDOWN can be modified
to produce the family Nj ingtead of Mj by changing the formation
of the set C% in Step 1 of that algorithm.

For event 1 of the Figure 1 tree, ORDOWN proceeds in this

fashion:

¢« {1,3}

*1

+ xz(l)
+ x:(1) ~-(/d[[{1,2,3}]]/x)

+ x6(l)

(No set in H = [{2},{5},{6}] dintersects C).

Hl - H1 = [{2},(5},{6}) .

Stop.

51

R B i it i s it Mh

52

The expression assoclated with /Nl/5~ is X, + Xg + x6 . Hence, L

for this example Nl - D(zl,Dl) . But for event 5, ORDOWN gives

/NS/E a8 X %, * Xy,

To find the minimal family Mi in terms of largest simple

r nodule for event 1 , the steps of the MSUP algorithm are as follows: >

MSUP
0. F-« {1} , u <« |1] .

1. 1If all events j ¢ F have been considered previously

! in this step, go to 4. Otherwise select j ¢ F not yet

considered.

E 2. Determine the family Nj by applying algorithm ORDOWN

to the modular subtree with top event J .

I
} 3., F+FUfle| ec E(Nj) , e not a largest simple module for 1} .

Go to 1. .

i
W 4, Consider events j € F in upward order (so any event of

F follows its subevents), constructing families K, in

f J

this manner: If all events in E(Nj) are largest

' simple modules for J ,

e ' K, + U X K ,

J NENj neN O

(where Kn s [{n}] 1if n ¢ L, - If not all events in

E(Nj) are largest simple modules for J ,

|
! K,+m| U X K |.
i 1 NeNj neN "

T T T T Y T I

;! 5. Mi “ Ki and stop.

) e o p et ey VoA -17 M ORI S ORISR B gl s A - S

53

——— e et L

E(Nj) appearing in Steps 3 and 4 Is the set of all events appearing

in at least one implicant of N Also, though the facility for

g

' implicant elimination based on an importance criterion or size

o TS e o

limitation has not been included in this outline of MSUP, elimina-
tion may be carried out in Step 4 just as indicated in Subsectionms
. I.2.2 and 1.3.2 with regard to the MICSUP method.

The families KJ generated in Step 4 are all in terms of
largest slmple modules for event 1 . 1In fact, if in Step 2 the
+~ D2

: ORDOWN procedure is ignored and N , then the resulting

D

g < PlhyDy)
method is the MICSUP procedure applied to the modular subtree for
event 1 , with the exception that information concerning simple

modules guides minimization in Step 4. The Incentive for obtaining

Nj from the ORDOWN algorithm 1s threefold: First, sets of Nj are

more likely to contain only simple modules for j than sets of

D(%

j’Dj) , 80 there 1gs leass likelihood that wminimization will be
! required when K, 1s conmstructed. Secondly, since we are ultimately

. b
interested in the implicant family Ki (= Mi) , construction of

St B -

implicant families for other events in the subtree for event i should

be avoided if possible. Use of QRDOWN usually leads to a smaller set

of events F at the beginning of Step 4 than 1f N, were set to

]
D(Zj,Dj) » since an OR gate event e ¢ D‘1 y not a simple module for
! some other event in F , would not appear in F . Finally, the sets
& of Nj are no larger than those of U(Qj,Dj) » 80 implicant elimination

u based on size or importance in Step 4 is no more difficult than in

MICSUP.

S S

54

For event 1l of the tree of Figure 1, repeating Steps 1, 2, and 3

of MSUP yields families Nl , N2 , and N4 represented by the Boolean

expregsions:

= *6*11

The set F (in proper order) is {4,2,1} . Since 4 is a simple

module for 2, minimization is only done when Ml is found:

X = X_e¥11

X, =
2 " %y

*-6 11

xl - x_6x11 + x5x6 .

s v — .

55

o e R S

1.4.3 The Nelson Method

T T s

Assoclated with any given fault tree is a dual tree, which

differs from the original, or primal tree, only in the value of

Bt s,

gate node logic indicators. If Lu is the logic indicator for node

u of the primal tree, then #Du - lu + 1 1s the corrvesponding logic

! indicator for the same node of the dual tree. Of course, for trees

i having only AND and OR logic, the dual tree 1s easlly obtained from f
the primal by changing each AND gate to an OR gate and vice-versa.
Since the defining families D(lu,Du) and P(#Du -h I.Du) .

‘ for gate event u of the primal and dual trees, are dual families,

4 Proposition I.1l.1 of Section I.l indicates that for all x .

4 /O¢#D, = 4 + 1,0)/(L-x) = 1-/D(8 ,D)/x .

This holds for all u e G, so for any vector x consistent with

the primal tree, in the sense of Section I.2, the vector l1~-x

is consistent with the dual tree; that is, for all u e G

1

oD, - 2 + 1,0)/(L-x) = 1-%x .

R T T,

Were the MSDOWN (or MSUP) method applied to the modular subtree for

T T o L eI L T T L L S T T e

event 1 1in each of these trees to obtain a family Mi for the dual tree

and a family Mi for the primal, then for all x consistent with

the primal tree 1t would be the case that

|
|
‘ /M:/(L-gc_) = 1-/M/x . K

T T T S oy o TS T T e
a

Ec.

R R

P AR e R

56

So again by Proposition I.1l.1, the dual family, d[Mi] y Assoclated

with Mg would satisfy, for all x consistent with the primal tree,
Ja(M3l/x = M, /x
1" = 1'="

Thus we sce another way to construct a minimal i&plicant family Mi
from the modular subtree for event 1 ¢ Apply the MSDOWN (or MSUP)
algorithm to obtain a complete minimal family Mi for the dual
modular subtree for event 1 , and then construct the dual family,
dEWi] , assoclated with Mi .

This procedure may not always be successful in practice. The
first problem involves cbtaining Mi { this may not be possible if
the modular subtree for 1 1s large, since Mi must be a complete
minimal family, and a subfamily of important or size restricted sets
is not adequate. Secondly, even when Mi can be generated, con-
struction of d[ﬂi] may be difficult. There 13 a well-knowﬂ argument
that a '"good" algorithm for finding the dual family for an arbitrary
family will probabily never be devised [1], [15]; a "good" algorithm
would be such that the effort required could be bounded in all cases
by a fixed polynomial in the numﬁer of sets in the dual family or
the number of elements composing these sets. This, however, is not
intended to suggest that all algorithms for constructing dual families
are equally '"bad."

The dual algorithm given in [17] and previously recommended for
use 1n MSDOWN and ORDOWN mecrhods has worked well for obtaining d[Mi]
in a number of applications, some lnvolving quite large modular subtrees.

This algorithm also permits get elimination based on importance and

M e e i, “

4 g g L S e

slze criteria to be utilized to considerable advantage in constructing
a subfamily of all important sets of dEMg] or those not exceeding
a fixed size. In fact, Lf the complete family Mi is available,
adequate size and importance restrictions can almost always be chosen
to insure that some subfamily of dEMi] will be found with a moderate
amount of computational effort.

In some ingtances where this method has been applied to large
subtrees, the process of obtalning Mi and then implicants of
dEHi] not exceeding fixed size has proven to be several times faster
than employing the MSUP algorithm to find the family Mi with the
gsame gize restriction. Thege example subtrees did not contain
complementing arcs; thus, in each case the subfamilies generated by
the two methods were the same. One subfamily involved 1000 sets,
so the difference in effort required by the two methods can be
significant. However, it is well to note that families Md for the

i
dual gubtrees all had less than 50 sets, though some of these sets

congisted of more than 25 events.
When the modular subtree for an event 1 contains complementing

arcs, d[ﬂg] will usually not be the same family as that produced

by the MSDOWN or MSUP methoq; For ianstance, Mg = [{5,6,11}) for
event 1 of the exawnle tre; of Figure 1, so d[&?] = [{5},{6},{11}] ,
which differs from Ml = [{5},{6},{-6,11}] obtained by MSDOWN and
MSUP, The family d[&i] i a prime implicant family for the Boolean
function /[{5},{6},{-6,41}1/ =0 dEHg] is a prime implicant family
for event 1 in the sense of Subgection I.2.l. The method suggested

here may be recognized as an adaptation of "Nelson's Algorithm" [11]

SR SR R 1% J

57

o—— o

il b A o 7

S e o

S i R il

e e e

o e T

58

for finding a prime implicant family for the Boolean function /F/

)
glven an arbitrary family F of subsets of U U (~U) (where U ,
as usual, is gome set of consecutive positive integers, say
{1, .«., q}). It turns out that P = d[d[F]] 1is the required family,
One way to-prove this 18 to show that d[F) is a prime implicant
family for the functlomn /d[F]/ , which can be done by demonstrating
that i1f there is a proper subset of some P e d[F] such that this
subset implies /d[F]/ , then there is an x = (xl, ey xq) such
that both /d[F]/1 - x =1 and /F/x = 1 , contradicting
Proposition I.1.1. Our version of this technique 1s to find
d[d[Mi]] by replacing d[Mi] with the minimal family Mi , obtalned
through application of MSDOWN or MSUP to the dual modular subtree
for 1 . Though in general Mi ¥ d[Mi] , 1t is true that
d[Mﬂ - d[d[M, 1]

Letting Pj repregent the prime implicant for event J din

terms of largest simple modules for j , the collection

Pyt yemce)
may uow be derived by utilizing the Nelson method when the modular
subtree for j d1involves complementing arcs, and any one of the

me thods MSDOWN, M5UF, or Nelsou when complz2menting arcs are absent.
Suppose families iun terms of basic events are generated in the mauner
of Sursection I.3.2; that u.s, events J & M(Q) are considered in

upward order aud each basic event family T is generated by

N

e e

T e = @ T

- TN

Intuitively, it would seem that these basic event families should
also be prime implicant families, and this 1s in fact the case.

Also, since the dual algorithm is capable of constructing a sub-

family P5 conglsting of all gets of dlMg

or importance regtriction, the remarks of Subsection I,3.2 extend

] satisfying a size

in an obvious way to fault trees with complementing arcs. Thus a
collection {pj}jcM(Q) ot subfamllies may be obtailned such that PS
iz a basic event subfamily of all important prime implicants or those
not exceeding some fixed size.

To conclude this subsection, we note that the efficlency of
finding a prime implicant family in the manner suggested by d[d[F]]
greatly depends on the particular technique utilized to construct
dual families. Sometimes the name '"Nelson's Algorithm" is applied to
a detalled procedure, also called the method of double complements,
which is not noted for being very efficient. This procedure begins
with a Boolean expression in gsum—-of-products form, for examplc,

xlx2 + x2x3xa + x3x4 .
The expression is complemented and, using DeMorgan's Law, converted

to a product of sums:

(xl + xz)(x2 + X4 + xa)(x3 + x4) .

59

Next, a sum of products is obtalned by expanding and eliminating products

which are not minimal or contaln complementary pairs of variables:

60

This last expression is agaln complemented, repeating the above
steps to yleld
XK, + xlx3 + X)X, + X,%q
In our notation, P = [{1,2},{1,3},{~2,3},{3,~4}] 4is then a prime
implicant family for the function /F/ , where F = [{1,2},{-2,3,4},
{3,-41)
The effort required by the double complement method increases
very rapidly as the size of F increases. Hulme and Worrell (8]
considered the following sum of twenty products:
x1x6x7x9 + x2x6x7x8 + xlxaxax6 + xlx6x7x8
+ xl 4x5x7 + x3x4x7x8 + x3x6x8x9 + x,x,X
+ X)Xy X Xg + XyX,XgX, +

x3x5x7x9 + x1x3x6x8

x3x4x7x9 + x6 7x8x9 + x2x4x5x7 e x2x3x6x7

+ x2x3x7§9 + x1x7§8§9 + XyXaXeXg + §3§7§8§9 .

They terminated the double complement method after more than 6000
geconds of CPU time on a CDC 6600 computer without obtaining the
prime implicants associated with this expression. Uaing a general
factorization scheme, they were able to find the 87 prime implicants
in about 400 CPU seconds.

This sum-of-products expression can be represented as a fault
tree in the manner indicated by the introductory example of Subsection

I.4.1 (Figure 3): Subscripts of expression varlables are associated

with basic nodes, a geparate gate node with AND logic is created for

each product, .ind the top node is an OR relation between these gate
é nodes. The MSDOWN method then esgsentially finds Miop by applying
! . the dual algorithm to a fomily F of twenty sets, where each set

is composed of variable indices in one of the above products, so

\ ' .
; d[Mzop] ig found by two major applications of the dual algorithm.

The FTAP program, implemented on a CDC 6400 computer (which is

roughly comparable in speed to the CDC 6600), required leas than

et i ot il o i b i AP il

6 CPU seconds to find the 87 prime impllcants.

et

1.4.4 :Comments on the Cholce of Methad

e L

of this section is "best" for a particular modular subtree. When

the subtree ls small, say fewer than 2u gate nodes, these methods

i 2 2 Al o o e s .

|

|

|

l

| The questlion naturally arises as to which of the three methods
|

i

I

| will not Pften differ widely in computational efficiency, and any

I S S,

of the algorithms is appropriate, unless the subtree has complementing

arcs, 1in which case the Nelson method is usually preferable because

! it produced a prime implicant family. On the other hand, when the

| subtree 1ls large, say more than 50 gate nodes, it is usually difficult

| to predict the relative efficiency of these methods. The analyst may

I have to rely'on trial and error or previous computational experience

with similay gubtrees, combined with a few general considerations
; ' discussed hpré.

Let us.first assume that the modular subtree contains no comple-
menting arcé. MSDOWN or MSUP will most likely be selected in this
case. MSDéWN is intended for use when the comp.ete minimal implicaant

family Mi - 15 required, and 13 apt to be more sultable for this H

. " purpose than the MSUP method, especially when a moderate or large

J—

62

number of replicated nades are somewhat evenly distributed throughout
the subtree, The general "downward' method, as well as the dual
algorithm incorporated with MSDOWN, then offers some protection

agalnst the sudden appearance during processing of an unmanageable
number of nonminimal sets. However, 1f the gsubtree containe a small
number of replicated nodes, MSUP may be the Efaster of the two methods
for finding the complete family, but the difference in efficiency

will probably not be dramatic. MSUP, of course, 18 primarily intended
for use in deriving a subfamily of Mi consisting of important or gize
restricted sets.

The Nelson method may seem superfluous for a subtree without
complementing arcs, but when the complete minimal family Mg for the
dual modular subtree has significantly fewer sets than the primal
family Mi , this method is apt to surpass MSDOWN or MSUP. Of course,
for the Nelsou method to be successful, it is first essential that
MSDOWN (or MSUP) be capable of finding M: . One clue that suggests
Mi might be small is a predominance of subtree gate nodes with OR
logiz. A more formal approach Ls to calculate rough upper btounds
8, and Bi , called subtree binary indicated implicant countsg, on the
number of gets in Mi and Mi ; a simple procedure for computing Bi
and Bi ia given below. For subtrees without complementing arcs,

B, and Bi are the game aa counts of binary indicated cut gets and
benary tndicated path sete defined by Chatterjee [3], as long as the
modular subtree 1is treated as an Independent fault tree in the latter

definitions, with largest simple modules for the subtree top event

representing basic nodes. As a first approximatlon, it is usually

i i e i e A

P

reasonable to suppose that Bi exceeds the number of sets in M?

by one or maybe two orders of magnitude. When the complete family !

Mi cau be generated, it may be feasible to find all of the implicants

of dﬂﬂi] or perhaps only those satisfying an importance or size

constraint. The Nelsou method, with size or importance elimination

B et (ki Bt St el il Ll st -

P enabled when applying the dual algorithm to M? , can be cousiderably
faster than the MSUP method for obtaining the desired subfamily.

Quantities Bu and B_u are defined for a modular subtree with

LA o A e+ o ot e = e — -

top node u j for i =4n3 or 1 = -u , Bz = B8 For generality,

P

we allow the subtres to contain complementing arcs. Suppose che MOCUS

o s o MR

PR

and MICSUP methods, as discussed in Subsection I1.2.2, were modified

T ———————

to inhibit minimization. 1If then applied to the modular subtree,

with largest simple modules for u treated like basic events, both

methods would produce the same nonminimal family Bu or B~u in ;
T) terms of largest simple mcdules for u . Families Bu and B-u are
| called subtree binary indicated implicant families. Fortunately, i%
the number of sets in these families 1is easy to compute without %
! deriving the families themselves; Bu and B—u are these counts. ;

When the modular subtree involves no complementing arecs, Mu

and M—u are unique prime implicant families, with Mu C Bu and
E | M_u g;B_u , SO Bu and B_u are upper bounds for the number of sets

in Mu and M_u . Moreover, in the absence of complementing arcs,

che families Mg and Mfu associated with the dual subtree are

also unique, and for 4 = 4+u or i = -u , Mi

M-i by replacing each event j in an implicant of M-i by its

can be obtained from

complementary event -j . Thus B—i is also an upper bound on the

64

size of Mi « On the other hand, when the modular subtree contains
complementing arcs, the family Mi determined by algorithm MSDOWN

or MSUP is generally not a prime implicant family for i , and it
cannot be argued that Mi o Bi . However, for all practical purposes,
it will very rarely be the case that the number of sets in Mi

exceeds the number of sets in Bi .
Quantities Bu and B—u are determined by the following rapid

procedure: For each node v that is a largest simple module for

the subtree top node u Bv < 1 and B—v + 1 , Consider nodes in

Gu , the set of subtree nodes that are not largest simple modules,

in upward order. TFor v ¢ Gu ’

B+ T B

v k
KED(QV,DV) kek

By @) L
KeD(#D -4 +1,D_) keK

The last values calculated are Bu and B_

Finally, a few comments ghould be directed toward application
of MSDOWN, MSUP, and Nelson methods to subtrees which contaiu comple-
menting arcs. The workload for each algorithm is about the same
as when complementing arcs are absent, However, the complete
implicant family Mi produced by MSDOWN or MSUP is no longetr
guaranteed to be a prime implicant family for 1 . For some fault
tree applications, this may be acceptable, or the analyst may wish
to obtain Mi and from it generate a prime implicaant family by any

of a large variety of prime implicant algorithms available in the

b

literature; for example, see [l4]. Of course, Lmplicant elimination

based on size or importance should not be used in conjunction with

MSUP to obtain a subfamily of Mi . A size or importance criterion,

however, can be utilized to gooa advantage with the Nelson method,.

As remarked above, the quantity Bg (= B-i) can usually be asgumed

to exceed the number of sets in the family Mg produced by MSDOWN

(or MSUP) for the dual subtree. So, as before 1if Bi is nof too

large, the Nelson method will probably be feasible.

65

i

<7

R LR X
= v

E o~ T e e i R

Y T T T

66

PART II

USE OF THE FAULT TREE ANALYSIS PROGRAM

FTAP is a general purpose computer program for fault tree analysis
employing the methodology of Sections 1.3 and T.4. The bulk of the
program conslats of about 3500 FORTRAN statements, segmented into a
driver routine and about 40 subroutines. Assembler code performs
several simple operations that cannot be done In the context of
standard FORTRAN. The FORTRAN portion of FTAP is compatible with
nearly all FORTRAN compilers, but assembler routine packages arc
currently available only for CDC 6600/7600 and IBM 360/370 series
machines. However, versions of chese routines can easily be prepared
in any assembler language according to specificationg given in
Section IL.6.

Considerable effort has been expended to insure that FTAP will
be easy to use. The input format is direct and unified, and input
data 1s completely checked for correctness and consistency. Error
messages are detailed, allowing the user to promptly identify problems
involving program input or execution. Also, an ample number of
comment cards are interspersed with the FORTRAN gource statements to
describe the code in terms of the algorithms of Part I; notation used
for these comments is intended to resemble the notation scheme of
Sections I.3 and I.4. Finally, FTAP has been extensively tested for
reliable operation.

Sectiong IT.1 rhrough II.4 below describe program ilnput and
output; Section II.5 discusses the general procedure for implementing

FTAP at a computer installation.

——

RS A

I1.1 General Input Structure

The smallest logical units of input data are called program
ingtruotionsg, each of which is usually confined tn a single 80-
column punched card, though some instructions may be continued omn
additional cards. Program instructlons are clasgified according to
three major groups: gate node definition, option, and emecution.

Gate node definition instructions specify a fault tree for
analysis. Thege are always read first by the program, and 1f they
are free of errors, a representatién of the fault tree is stored in
main memory. Errors in fault tree specification are messaged and

cause processing to terminate.

One or more option instructions may follow fault tree gpecification,

and information provided by these instructions is checked and stored.
Options allow the user to (1) modify the fault tree, (2) select
arbitrary gate nodes for which implicant familles are to be found,
(3) specify the methodology for obtaining implicant families,

(4) enable implicant elimination on the basgis of size or importance,
and (5) control program printed and punched output.

The next card to be read after the option group is an execution
instruction, which may be one of the two types we shall designate as
*TREE and *XEQ. The *TREE instruction invokes an FTAP procedure that
produces a structural degcription of the fault tree, essentially by
listing modular subtrees and binary indicated implicant counts. The
*XEQ inmstruction begins the operation of obtaining implicant families.

Option instructions affect the processing initiated by an immediately

following *TREE or *XEQ instruction, and this processing will be

67

e

-

e

68

referred to as a run. Multiple runs are permitted; when a run is
completed, the program reinitializes all memory locations except
those assoclated with the input fault tree, so a group of options
and an execution instruction for a new run may follow the execution
instruction for the previous run. Options for a givean run in no

way affect other runs. The input data package for the FTAP program

therefore has this genersl form:

fault tree gpecification

run 1 option instructions

run 1 *TREE or *XEQ instructiom
run 2 option Iinstructions

run 2 *TREE or *XEQ instruction

run n option instructions

run n *TREE or *XEQ instruction.

For convenience, the same 80-column card format is used for
all instructions and consists of eight fields across the width of
the card. A particular instruction, however, will typically utilize
only information punched in certain of these fields. Field 1 is
composed of card columns 1-8, Fields 2 through 8 consist, regpectively,
of columms 11-18, 21-28, 31-38, 41-48, 51-58, 61-68, and 71-78.

The entry in field 1 is either a gate node name or an instruction
name, left-justified in the field. FTAP automatically numbers fault
tree nodes with positive integers in the scheme of Part I and allows

the analyst the luxury of choosing names to replace these node numberg

on program ilnput and printed output. Node names may consist of any

69

combination of elght or less characters. Instructlon names are fixed

strings of elght or less characters and are discussed in Section II.4.

Depending on the instruction, the entry in fleld 2 1ls elther a

P) positive integer, a decimal number in a FORTRAN E onr F format,

, or one of the special characters plus (+) or asterisk (*). An

entry may appear anywhere in field 2, except for an E-format decimal

number, which must be right-justified.

Euntries in fields 3 through 8 are again names of fault tree

2 e

{' nodes, left-justified in these fields. The dash (-) may appear in

any of the columns 20, 30, 40, 50, 60, or 70 if the field immediately ’

to the right of the column contains a node name. Dashes represent

event complementation.

I1.2 Fault Tree Specification 3

The input fault tree s specified through a series of gate

node definition instructions arranged in any order and followed by

a card with the string "ENDTREE" left-justified in field 1.

For a gate node u , the associated definition instruction provides

PR o T e x e

the value Qu of the logic indicator and the set Du of lmmediate

subevents. The first card of the instruction contains the node name

in field 1 and names of immediate subnodes in fields 3 through 8.

i e g A R

At least one subnode must appesar, and no two fields may contain

=k

the same name. If node u 1s joined to an immediate subnode by a
complementing arc, a dash should precede that particular subnode name.

The logic indicator value zu is a positive integer that may

L be placed anywhere in field 2; of course, & may not exceed the

| numbexr of immediate subevents. Optionally, either of the special

s i e ol it T e e B L

o om i o oms EA ar

70

characters plus or asterisk may be used In [ield 2, with a plus
signifying a value of 1 for Zu (an OR relation between subevent
variables), and the asterisk signifying a value for Lu equal to
the total number of subevents (an AND relation).

When a node has more than six immediate subevents, additional
subevent names may be entered in fields 3 through 8 on one or more
cards which {follow the first card and continue the gate uwode definition.
Flelds 1 and 2 on continuatlon cards are to be left blank. There is
no restriction on the total number of immediate subevents.

As an example of fault tree specification, we consider again the
tree of Figure 1, redrawn in Figure 5 with an unimaginative choice of
node names. The tree is specified as follows (where each line is to

be interpreted as a separate card):

Col., 1

‘ 11 21 31 ?1
TOP + G2 GS G6
G2 * G3 G4

G3 + Gé G5

G4 * ~Gé Bl1l

G5 * G7 G8

G6 %* B9 B10

G7 + B12 B13

G3 + Bl3 Bl4

ENDTREE

More than one fault tree can, in fact, be specified by a group of
gate node definitions. For instance, if the imstructiomns for TOP, G2,
and G) were deleted from the above list, FTAP would still accept the

remaining instructions, though they represent two distinct trees with

top nodes G4 and G5.

e e

i
™~

TOP

G2

G3

FIGURE 5

-) L P

72

I1.3 Execution Instructions

In some applications, the analyst may not wish to include any

option Instructions for a rumn; a *TREE or *XEQ instruction should then

[
immediately succeed the ENDTREE card or the execution instruction A

A
for the previous run. An execution instruction consists simply of the
name "*XEQ" or "XTREE" left-justified in field 1. In the absence of

options, FTAP responds to a *XEQ ingtruction by seeking a minimal

implicant family in terms of basic events for the fault tree top node.

FTAP responds to a *IREE instruction by performing a structural anmalysis

of the input tree and printing three types of information: (1) a

D T T YW 7 A

|

|

‘ :
representation of the tree, which 1is gimilar to a listing of gate node j
specification instructions; (2) an "inverse" tree, which identifies,

for each gate or basic node u , the set of immediate supernodes of u ; ﬂ

i and (3) a representation of each modular subtree whose top node is a

: simple module for the fault tree top node. Binary indicated implicant
| counts are also péinted for each modular subtrece and its dual. o

it As an {llustration, assume that .the ENDTREE card of the example
|

tree specification is followed by the two instructions:

P ATREE

*XEQ .

. Output for the first run begins with the tree representation: :

TREE FOR ANALYSIS

(B) PRECEDES BASIC EVENTS

NODE

TOP
G2
G3
G4
G5
G8
G7
G6

INVERSE TREE

NODE

G2
G3
G4
G5
G6
G7
G8
B1O
Bll
Bl2
B13
Bl4
B9

the *TREE run:

[S R TR TR

LOGIC SUBEVENTS

G2
G3
G4
-G6
G7
(B) BI13
(B) Bl2
(B) B9

Next we obtain the "inverse tree':

IMMEDIATE SUPERNODES

ToP
G2
G3
G3
G4
G5
G5
G6
G4
G7
G7
G8
Gb

(B)

(B)
(B)
(B)

G5
G4
G5
Bl1
G8
Bl4
B13
B1O

G2
TOP
TOP

G8

73

G6

This 1s followed by modular subtree information, which completes

L TR ey

74

MODULAR SUBTREES

(B) PRECEDES BASIC EVENTS
(M) PRECEDES LARGEST SIMPLE GATE MODULES FOR SUBTREE TOP NODE

SUBTREE FOR NODE TOP

TOP 1 G2 (M) G5 M) Gé
G2 2 G3 G4

G3 1 G4 M) G5

G4 2 M) -G6 (M) Bll

SUBTREE BINARY INDICATED IMPLICANT COUNT PRIMAL .4000E+01 DUAL .4000E+01

SUBTREE FOR NODE G5

G5 2 G7
G7 1 (B) BIl2 (B) B13
c8 1 (B) Bl13 (B} Blé4

SUBTREE BINARY INDICATED IMPLLICANT COUNT PRIMAL .4000E+0l1 DUAL ,2000E+01
SUBTREE FOR NODE G6
G6 2 (B) B9 © (B) BlO

SUBTREE BINARY INDICATED IMPLICANT COUNT PRIMAL .1000E+0l1 DUAL .2000E+01l

The *XEQ run simply yields a minimal basic event family for the fault

tree top node:

IMPLICANTS FOR EVENT TOP

1 B13

2 B10O B9
3 -B10 Bll
4 -B9 B1l
5 B12 Bi4

CPU TIME FOR RUN .349 SEC.

e o —— i

A i et

e TR

3
i
¢

The flexibility of FTAP 1s due tu 2 large varlety of options
discussed in the next section; even for simple fault trees, the analyst
will probably wish to include some of these instructions before *TREE ?
or ®XEQ. All options affect a run initiated by a *XEQ instruction,

However, whan Lthe *TREE instruction is used, the only options that
are effective ure those that modify the fault tree (TRUE, FALSE) or

select gate events for analysis (PROCESS, ALL).

I1.4 Option Instructions |

The first card bf'eACh'option instruction containa the option
name in field 1. This initial card will be the only card for all
instructions except TRUE, FALSE, PROCESS, NFLSON, and IMPORT. Options
TRUE, FALSE, PROCESS, and NELSON may be continued on subsequent cards
in the same manner as gate node definition instructions, by leaving
fields 1 and 2 blank on continuation cards; the number of continuation
cards 1is not restricted. The IMPORT option usually consists of more
than three cards but does not utilize the common continuation scheme.
Options other than these also have fields 2 through B blank, except
for MAXSIZE, which utilizes field 2.

Any option may be used for a run, but there are certain pairs

of incompatible options, and use of both options is treated by FTAP

as an error. In addition, a particular option may appear no more than
once for a run. But no restriction is placed on the number of

options that may be specified for a run or their input order.

We discuss options according to five functional categories.

S

e g T TS T I R

76

I1,4.1 Fault Trec Modification (TRUE, FALSE)

TRUE and FALSE permit any gate or basic event variables to bhe

taken as ildentically true or false for a run., Node names are entered

in flelds 3 through B of these lngtructiond, with preceding dashes
signifying complementation; field 2 is blank.
The effect of setting event variables teo true or false is
accomplished by constructing a modified version of the input
fault tree. An implicant family generated by FTAP in response to
the *XEQ instruction then applies to this modified tree, as does
tree structure data provided for the *TREE instruction. Nodes
listed on TRUE and FALSE instructlons do not appear in the modifled
tree, nor do any of their supernodes whose associated event variables
become true or false. Some logic indicators for gate nodes in
the new tree may, of course, differ from those in the input tree.
As an example, the Figure 5 tree is transformed to the tree of

Figure 6 through the instruction:

Col. 1 21 31

f ' t

TRUE -G3 B12

}
i
[
i

77

TOP

TP . W L P

i

FIGURE 6

: o DR
T L R Ty A N -3

b

. LV PR DS

s AT 2.1

78

I1.4.2 Gate Event Selection (PROCESS, ALL)

The analyst may wish to obtain implicant families for events
assoclated with gate nodes other than the input tree top node; this
1s achleved by using a PROCESS or ALL instruction. The PROCESS
instruction has gate node names in fields 3 through 8, with dashes
opcionally preceding these names. Field 2 is always blank. The ALL
option consigts simply of the string "ALL" in field 1. When the
*XEQ instruction initiates the run, an implicant family is obtained
for X, if the name for node u appears without a preceding dash
on a PRUCESS instruction; a preceding dash results in an implicant
family for X_y (= iu) . The PROCESS instruction, in fact, determines
modular structure {Mj}jeM(Q) by specifying the set of events Q .
The ALL instruction is less selective, and, when used in conjunction
with an *)XEQ instruction, provides implicant families for X, for
every gate node u , as well as a family for X_, if the fault tree
contains complementing arcs. With the ALL option, the set Q for
the modular structure is thus either the set: G of all gate nodes
or G U (-G) .

The ALL option 1ls perhaps more useful when 4 *TREE instruction
initiates the run. In this case, output from the tree structure
analysis procedure includes information on the modular subtree for
every gate node. On the other hand, the procedure provides modular
subtrvee informaiion only for nodes corresponding to events in M{(Q)

if the set (Q 1s selected through a PROCESS instruction.

ey B e S i

e e e

79

When PROCESS and ALL options are absent, FTAP takes Q to
congist only of the fault tree top node, unless the input fault
tree has more than a single top node. In the latter case, absence
of both Instructions is treated as an error. Events in Q which
are identically true or falgse are messaged at the beginning of run
and excluded from further consideration.

PROCESS and ALL are incompatil.le, and it is an ervor to specify

both for the same run.

II1.4.3 Methodology Specification (PRIME, ALLNEL, NELSON, MSUP, MSDOWN,
WRKFILES, MSONLY, DUAL, UPWARD, MINCHECK)

Options discussed here affect the manner in which FTAP obtains
implicant families, so these instructions are only meaningful'for runs
initlated by the *XEQ instruction. Except for NELSON, theée options
consigt only of the instruction name in fileld 1 of a card.

PRIME, ALLNEL, and NELSON instructions signal that the Nelson
method 13 to be emploved in obtaining certain minimal families Mj
in the modular structure. PRIME Indicates that this method is to be
used only when the modular gubtree for event j contains a complementing
arc, PRIME thus guarantees that all families generated for a run consist
of prime implicants; of course, this optiorn has no effect if the input
fault tree is devoid of complementing arcs.

The ALLNEL optiun, on the other hand, 1is effective for any input

tree., In this case, the Nelson method is utilized in obtaining all

Mj in the modular structure.

80 j

A - L e st L.

The NELSON option permits the Nelson method to be applied

salectively for events corresponding to node names in fields 3

through 8 of this instruction. That is, if the name for some node .

E it

u .ccurs in one of these fields without a preceding dash, then as
lon, as u ¢ M(Q) Mu is determined by the Nelson methed; a preceding
dash has the same effect for M—u . An event 3J ¢ M(Q) selected
by this inatruction is ignored, so the analyst should have some
knowledge of M(Q) , perhaps derived from an earlier structural !
analysis of the fault tree.

If a modular subtree contains complementing arcs, it is possible
for an event variable associated with the subtree top node to be :

identically true or false. The family M, for a variable x, which

3 3
is identically false is always empty, and FTAP gives this resgult.

However, 1f the variable xj is identically true, this may not be

apparent from FTAP results unless the Nelson method is utilized in

finding Mj . The first task in this method is to find a complete

, minimal family Mj for the dual modular subtree, and Mg is empty

! if xj is true. Should Mg be empty, FTAP prints an appropriate
message aund terminaices the run,
PRIME, ALLNEL, and NELSON are incompatible with each other, and

; : only one of the three may appear for a run. i

< Because FTAP automatically makes a reasonable choice between
;f MSDOWN and MSUP algorithms in finding families Mj , the analyst ! 7
N will not often want to include a MSDOWN or MSUP option for a run.

When the Nelson method is employed for a family M, , FTAP automatically

3
chooses the algorithm MSDOWN to first find a complete minimal family

for the. dual modular subtree, but the user may override this choice

e g " T

81
through the MSUP option. When the Nelson method is not employed,

FTAP chooses the MSDOWN algorithm to find Mj unless implicant

elimination based on gize or importance is enabled, in which case

the MSUP method is chosen. Again, elther choice may be overriden

through a MSUP or MSDOWN option. Since fields 2 through 8 of

these options are blank, selective application to the families Mj

is not possible., The presenc: of both options for the same run

is treated as au error.

WRKFILES informs the program that sequentially organized file
space on magnetic disk is available for use as working storage.

FORTRAN file numbers 19, 11, and 12 must be agsigned if this option

is used. This storage is only available to subroutines that imple-

ment the dual algorithm. Though MSDOWN and ORDOWN methods both
employ the dual algorithm, magnetic disk storage, when necessary,

will most often be utilized in application of the Nelson method to

large modular subtrees, Thus, the WRKFILES option will usually appear

in conjunction with ALLNEL, PRIME, or NELSON. If the WRKFILES option
has not been used for a run which must be terminated because of
insufficient working space in main memory, a message may be printed
suggesting that main memory could have been supplemented by magnetic

digk storage. In this case, it is reasonable for the analyst to try

a rerun with a WRKFILES instruction.
Once the modular structure has been found, the procedure for
finding implicant families in terms of basic events is very efficient

computationally, but for large fault trees, this final step might

require a great deal of main memory workspace, The MSONLY option

. | i i

Lo

82

instructs FTAP to bypass this step, so only the modular structure

is determined. This instruction will also lead to more efficient

use of main memory in obtaining the modular structure, since families
Mj need not be retained once they have been printed. Also, FTAP
includes a subroutine which, when provided with the family Mj in
terms of largest simple modules for j , counts the number of implicants
in the minimal basic event family Ij (without deriving this family).
Separate counts are accumulated by implicant size and printed by the
subroutine. If MSONLY 'ls specified, the routine is called for each

J e M(Q .

The DUAL option simply indicates that all implicant families
for a run are to be derived for the dual of the input fault tree.
Thus, 1f an implicant family associated with the primal tree consists
of system cut sets, a corresponding minimal path set family is obtained
by using the DUAL instruction.
The UPWARD option invokes an algorithm not explicitly stated

in Part I, This method closely resembles the MSUP algoriéhm: The
general MSUP technique is applied to the entire fault tree rather

than a modular subtree, with bagic events replacing largest simple
modules. Thus implicant families are generated directly in terms of
basic events without utilizing the modular structure. The UPWARD
option may be useful when the required minimal implicant families

in terms of basic events are expected to be small, which might be
the case even for large fault trees if size and importance elimination

options are included for a run., Because the modular structure is not

determined when this option is specified, certain other options are

FPPITIIT N %

83

incompatible with UPWARD., These are NELSON, PRIME, MSDOWN, MSUP,
MSONLY, MODSIZE, MSPRINT, and MSPUNCH, the last three of which
we will consider shortly, L

The MINCHECK instruction is only effective when it accompanies
the UPWARD option. MINCHECK specifies that minimization only be
applied to implicant families for events in the set Q determined
by PROCESS or ALL options, or in the absence of these options, to
the family for the fault tree top node. Thus, intermediate families
generated for events that are not of interest to the analyst are not
minimized.

IT.4.4 Control of Printed and Punched Output (MSPRINT, STATUS,
DSTATUS, PUNCH, MSPUNCH, NOPRINT)

These oﬁtions control output Information regarding implicant
families and are effective only for runs initiated with a *XEQ
instruction.

MSPRINT instructs FTAP to Include the modular structure families
in printed output. This option is unnecessary when MSONLY is
provided, because MSONLY also enables printing of the modular structure.
As an illustration, suppose the ENDTREE cavd for specification of the

Figure 5 tree is followed by the instructions:

MSPRINT

*XEQ .

Medular structure output is then:

et o e Bt e ik

il e o g e d - T

Y U

84

IMPLICANTS IN TERMS OF LARGEST SIMPLE MODULES
IMPLICANTS FOR EVENT G6
1 B10 BY
IMPLICANTS FOR EVENT -G6

1 ~B9
2 ~Bl10

IMPLICANTS FOR EVENT G5

1 B12 Bl4
2 B13

IMPLICANTS FOR EVENT TOP
1 G5
2 Gb
3 ~-G6 Bll
The STATUS option yields information on the progress of generat-
ing each minimal implicant family, giving the number and maximum
gize of implicants inm various intermediate families, as well as data
on computation times and the amount of unused main memory. STATUS

provides a brilef record of each iteration of the MSDOWN method. As

an illustration, consider the instruction group:

MSPRINT
STATUS

*¥EQ .

A sample of the output for the event TOP modular structure family

from a run initiated by these instructions 1s as follows:

e i S

. o

;
i 85
]

g

4 LARGEST SIMPLE MODULES FOR TOP

i G5 Bl1 a6

W

1 - EVENT TOP DOWNWARD -—- -
s NUMBER OF IMPLICANTS IN TABLE 3 MAXIMUM LENGTH 1
A NUMBER OF IMPLICANTS IN TABLE 3 MAXIMUM LENGTH 2
3 : NUMBER OF IMPLICANTS IN TABLE 3 MAXIMUM LENGTH 1
: MINTMIZATION

| 3 MAXIMUM LENGTH 1
| NUMBER OF IMPLICANTS IN TABLE 3 MAXIMUM LENGTH 2
! MINIMIZATION

¥ 3 MAXIMUM LENGTH 2
X UNUSED STORAGE BEGINS AT 361 CPU TIME FOR EVENT .070 SEG
i

|

IMPLICANTS FOR EVENT TOP

RESse-Sranty

1 G6
2 G5
3 ~G6 Bll

T AT

STATUS information for the Nelson method is similar to the above,

- : except the various "downward" lines refer to implicants for the dual

» subtree, and data on the number and size of implicants obtained from

- ' the dual algorithm precedes storage and time data.

Information for the MSUP method is somewhat different. The run

instructions)

MSPRINT

MSUP

SLATUS

*XEQ

give this output for the event TOP modular structure family:

|
% ‘
|

o

..._—_‘, . . _..._4‘,
T T T
i d

86

LARGEST SIMPLE MODULES FOR TOP

G5 B11 G6 ;
EVENT TOP DOWNWARD === ——-- ;

NUMBER OF IMPLICANTS IN TABLE 3 MAXIMUM LENGTH 1 i
MINIMIZATION 3 MAXIMUM LENGTH 1 ;
— EVENT G2 DOWNWARD ——— it
NUMBER OF IMPLICANTS IN TABLE 1 MAXIMUM LENGTH 1 ;
EVENT Gé DOWNWARD -— - s

J

NUMBER OF IMPLICANTS IN TABLE 1 MAXIMUM LENGTH 2 |
El

1

EVENT Gé UPWARD —— ;

NUMBER OF IMPLICANTS IN TABLE 1 MAXIMUM LENGTH 2 (3
i1

-—= EVENT G2 UPWARD --- I
b

NUMBER OF IMPLICANTS IN TABLE 1 MAXIMUM LENGTH 2 '3
5

EVENT TOP UPWARD -— - Lo

3

NUMBER OF IMPLICANTS IN TABLE 3 MAXIMUM LENGTH 2 L
MINIMIZATION 3 MAXIMUM LENGTH 2 &i
UNUSED STORAGE BEGINS AT 387 CPU TIME FOR EVENT .129 SEC L

IMPLICANTS FOR EVENT TOP

1 G6 .
2 G5 .
3 -G6 Bll

The "downward" information now represents successive applications of

the ORDOWN algorithm to events TOP, G2, and G4. These events are then

considered in upward order, us the family for TOP in terms of largest

simple modules is generated, The "upward" information foirmat is also

used in a rather obvious way to chart the progress of coustructing i

basic event families, whether this construction proceeds from the

modular structure or in the manner associated with the UPWARD option.

W

it

e e

87

DSTATUS causes the gubroutine package for the dual algorithm

to provide data on the sizes of various tables assoclated with that

algorithm. This data is only printed when the Nelson method 1is used

and the subroutine package is applied to the implicant family for a

dual modular subtree. Some familiarity with Reference {17] 1is required

to interpret thils output.

PUNCH and MSPUNCH options allow implicant families to be punched
on 80-column cards for input to other programs. FORTRAN file number 7

should be assigned to the card punch (or magnetic Jisk) 1if these

instructions are used, Events assoclated with the input fault tree

are represented by positive and negative integers « punched output,

and whenever the MSPUNCH optilon is used, this numbering scheme is the

gsame as suggested in Part I. MSPUNCH enables punching of the modular

structure, and determines that, for the ¢ nodes of the input fault

tree, integers 1 to p are to represent gate nodes on punched output
and p+ 1 to q are to represent basic nodes. The PUNCH option

causes basic event families to be punched. Unless MSPUNCH accompaniles

the PUNCH instruction for a run, integers 1 to q = p number basic

nodes on output.

When either MSPUNCH or PUNCH is ugsed, the first group of punched
cards for a rum gilves the correspondence between node names and numbers.
The initial card of the group has the FORTRAN format (SHNAMES,IS5),

where the single integer field contains the number of names (which will

be q 1f MSPUNCH 1is specified and gq -~ p if only PUNCH is specified).

On the remaining cards node numbers are paired with nnde names, with

up to five pairs appearing on a card in the format (5(I5,3H - ,A8)).

88

The modular structure, 1f requested, is given by the next group
of cards, whose initia card has a (5HIMPMS,15) format, containing
the run number in the integer field. The representation of each
family Mj then beging with a (5HEVENT,I5,16) format header card,
having the positive or negative integer Jj 1in the first field aud
the number of implicants in the family in the second., Following
the header card, each implicant of the family starts on a separate
card witha (1615) format and may continue on additional cards with
the game format. On the first card for an implicant, field 1 always
contains the number of events in the implicant. These events are
represented in fields 2 through 16 of the first card and 1 through 16
on subsequent cards.

OQutput for basic event families is preceded by a (SHIMPBE,IS)
format card, with the run number in the integer field. The general
format for representing these families follows that of the modular
structure, where the basic event families {7,} take the place of

37 JeQ
{Mj}jeM(Q) . Again, Q either contains the fault tree top node or

events indicated by a PROCESS or ALL instruction.

Finally, the analyst may gometimes wish to obtain punched output
but suppreas printed output for large basic event families. In such
cases, the NOPRINT option should accompany the PUNCH option. NOPRINT

only suppresses printing of bagic event families and does not affect

the MSPRINT option.

F
?
]
|
F

T

39

I1.4.5 Implicant Elimination Based on Size and Importance (MAXSIZE,

MODSIZE, IMPORT)

These options are cowmpatible with all of the algorithms MSDOWN,
MSUP, and Nealson, as weil as the method associated with the UPWARD
ingtruction. If size or importance options are included for a run
and options MSDOWN, PRIME, ALLNEL, and NELSON are absent, the MSUP
algorithm is chosen automatically by FTAP, even for modular subtrees
containing complementing arcs. However, it has been pointed out in
Part I that when the MSUP method 1s applied to a subtree with cum-
plementing arcs, the resulting subfamily of size or importance
restricted sets may not be meaningful. Thus, in utilizing these
options, the analyst will usually want to ingure that the Nelson
method 1s employed for such subtrees.

The MAXSIZE option imposes a uniform size restriction on implicants
in the modular structure and basic event families generated by FTAP.
Field 2 of this instruction gives the maximum number of events permitted
in an dmplicant; a pogitive inteyger may appear anywhere in the field.
Fields 3 through 8 of the card are blank.

As discussed in Part I, modular size importance is often a more
efficient criterion for implicant elimination than a simple size
restriction., This criterion is applied in the manner suggested in
Subsection I.3.2, which wve briefly recall: The subfamilies {M!}

37 1eM(Q)

are generated in '"upward" order, with M, constructed following

3

families for subevents of j . An implicant M is retained in M}

3

only if Z o(m) Jdues not exceed the fixed size restriction, where
meM

og(m) =1 4if m 4is a basic event, and for m a gate event, o(m) 1is

e ol

90

avallable from an earlier computatlion which followed construction

of M'
m

min) a(k) (M' 4 9)
KEM& keK "

FTAP implements elimination bhased on modular size importance when
the MODSIZE option accompanies MAXSIZE; in thias case, MAXSIZE specifies
the fixed sgjze restriction. MODSIZE is not effective in the absence
of the MAXSIZE option.
FTAP also allows for implicant elimination based on the product

importance criterion. Here an implicant M 1is retained in M!

3

1s an

only

if T 1(m) exceeds some critical value c¢ , where 1(m)
meM

arbitrary value between 0 and 1 for mw a basic event, and for

m a gate event, 1(m) hasg been determined from
max m (k) (Mé * 9 .
KEM& kek

The criterion 1s applied again when basic event families are obtained
from the modular structure.

The product importance option requires a group of cards to
specify the values 1(*) for basic events and the critical value c .
The first card of the group contains only the option name '"IMPORT"
in field 1; other fields are blank. Cards which assign 1(*) values
follow this initial card. These cards always have field 1 blank,

a positive decimal value between 0O and 1 in field 2, and basic

event names in filelds 3 through 8, with optional dashes preceding these

latter fields. The value in fleld 2 may be in FORTRAN E or F

N

T Tl el

P s

-

e e T T

format and must contain a decimal point. An F-format item, such

as .5 or .00l, may appear anywhere within the field, but E-format

items, such as 1.25E~2 or .lE-l, must be right-justified. Should the

name for basic node u appear on a card, 11(u) 1s assigned the

value in field 2 of that card when the name is not preceded by a dash;

a preceding dash causes the field 2 value to be assigned to t(-u) .

As many cards as desired may be used to set 1(¢) values, but it is

not required that values be provided for all bagic events:

FTAP assigns
1(k)

a default of 1 for any event k not represented on one of

these cards.,

The card that must terminate the product importance group has the

string "LIMIT" left-Jjustified in field 1 and a decimal value between

0 and 1 again in field 2. Fields 3 through 8 are blank., The field

2 value is the critical value ¢ for the importance test.

As a simple illustration of the above options, suppose for the
example tree, the analyst desires only prime implicants consisting of

a single basic event, and implicants involving node B9 are not of

interest. Sultable cards for this run are:

Col. 1 11

* 21 31
MAXSIZE 1
IMPORT

N B9 ~B9
LIMIT 5
PRIME

*XEQ

91

—

92

\ I1.5 Program Implementation

the internal storage format for representing implicant sers. FTAPL

o e e, e LA] it Sl

atores an implicant as a variable number of consecutive computer

words in main memory.

\ FTAP is available in two distinct versions that differ only in
\ The first word of the group contains the
i

integer number of events in the set, and a positive or negative
integer value in each of the remaining words identifies an implicant
event.

FTAP2, on the other hand, stores an implicant set as a fixed

group of consecutive words, and a fault tree event is associated with

e s =

Bit positions corre-

sponding to events in the implicant contaln the value 1, whereas

other bit positions contain 0. The fixed number of words required

i bt il

for an implicant set depends on the computer word length, the particular

|
[l
" a unique bit position in one of these words.
i
|
E
E stage of FTAP processing, and whether the input fauit tree contains

complementing arcs.

IR e

When modular structure families are constructed

rakds

for a fault tree without complementing arcs, the number of words must

be sufficlent to accommodate one bit position for each gate and basic '

node. Fur fault trees with complementing arcs, two bits are needed

- for a node, one for each event associated with the node. When basic
. event families are constructed, the situation differs only on the

fFact that bit positions are not needed for representation of gate

events.
FTAPZ is the more efficient of these two versions in tarms of

fi computation time and should be chosen for most applications. However,

[
F for large fault trees (having, say, more than 200 gate nodes), it is i

: often feasible only to obtain implicants having a small number of events.
|

The storage format of FTAPl becomes an advantage in such applications.)

RIS .

93

FTAPl and FTAP2 are designed for use on most general purpose
computers. The codes have been carefully prepared to ensure that
program logic 1is tight and efficient, and subroutines for minor
tasks such as sorting and searching use good standard algorithms,
as given in [9]. The FORIRAN portion of each program conforms to
ANSI specifications, except for array subscripts, which are apt to
consist of expressions using two or more simple FORTRAN integer
variables with addition, subtraction, and multiplication operatiouns,
and sometimes the integer absolute value operation. Most FORTRAN
compilers allow such expressions.

Main memory work space for either code is confined to one single
subscripted integer array, denoted by the FORTRAN name IA. Storage
in this array is dynamically allocated for maximum efficiency in use
of main memory. Because fault trees of appoximately the same size
may differ considerably in their structure, it is difficult to state
even roughly how large TA should be to accommodate analysis of a
fault tree with some given number of nodes. The analyst should make
TA as large as feasible for the environment in which the program is
implemented; for instance, if the program is required to execute in
a fixed partition of computer main memory, then the object code length
plus storage for IA should fill the partition. If the environment is
such that program use becomes more incouvenient as storage requirements
increase, an iuaitial length of IA should be chosen perhaps between 300
and 1000 times the maximum number of gate nodes in any tree to be
analyzed; this length may then be increased as necessary.

Implementation of FTAPL or FTAP2 is accomplished according to

the following steps:

B T TP

bt A . 11t 1 . i) B

abions,

i e A

94

L.

The desired dimension of the array IA should be set in

the declarative statement for this array near the beginning

of the main program. Since the code must be capahle of
determining when gtorage requirements exceed availability,

the length of the array must be provided for internal program
use, This is done by initializing the wvariable IASIZE

through a FORTRAN DATA statement, which also appears near

the beginning of the main program,

The first executable statement in the main program for FTAP2
assigns a positive integer value to the variable LWORD., This
value should be set to the length of a computer word less one.
When accessed by other routines, the REAL function TIME returns
the amount of elapsed time since the beginning of the computer
Job. The proper form of the subroutine CALL statement in
function TIME may depend on the particular computer installatioun,
and thig statement should be modified accordingly.

The group of assembler language routines should be chosen to
correspond to both the computer and FORTRAN compiler used.

Three groups of assembler language routinesg are supplied

with FTAPl or FTAP2: for use with (1) CDC 6600/7600 machines
and RUN compiler linkage convention, (2) CDC 6600/7600

machines and FIN compiler linkage counvention, or (3) 1IBM 360/370
machines (G or H compiler linkage coavention). To implement
FTAP1 or FTAPZ on other machines, one or more assembler routines

must be prepared according co specifications given in the

following section.

o am F e x an s e e
A L S :

i

95

PR e - L

I1.6 Specifications for Assembler Routines

The routines discussed in thig section are all very simple,

and the largest should not require many more than 25 statements in
any assembler language. FTAPl utilizes only routine CCM, but all

routines are accessaed by FTAP2.

¢ 1. CcM (IWl, IW2, ITEST):

CCM logically compares the contents of computer words IWl and
-f i IW2 and returns the result of the comparison in word ITEST. 1If
contents of IWl and IW2 are identical, then ITEST will contain a O ;

otherwise the value in ITEST depends on the highest bit in which the

X words differ. When this bit is 1 1in IWl aud O 4in IW2, ITEST

is returned as 1 ; in the reverse situation ITEST is returned as -1 .

2. ORM (IWl, IW2, IOR):

The contents of word IOR returned by this reoutine is simply a

logical OR of words IWl and IW2.

g 3. ANDM (IWl, IW2, IAND):

iil ANDM returns in word IAND the result of a logical AND of IWl

and IW2.

B 4. PUTM (LV, IV, TW):

E | When PUTM is accessed, IV is an array of successive words containing

positive integer values in increasing order. No value exceeds the
number of bits in a computer word. The location LV containsg a positive

integer representing the length of IV. The fuuction of PTUM is to

i
i
;
§
!
)

o

!

]

3

4

3

3

N .

96

place a 1 1in eachk bit position of word IW numbered by an integer

in array IV; other bit positions are get to 0 . As an example,
suppose the computer word length is 16, and PUTM is accessed with 4
in LV, and IV(1l) through IV(4) contain, respectively, 2, 5, 7, and 16.
On return, IW then contains the blt patterm ''L000000001010010."

The bit numbering for this example is increasing from right-to~left.

5. GETM (IW, Lv, IV):

GETM performs the reverse operation of PUTM. On return, IV is

a vector of consecutive words containing bit numbers for all bits

that are 1 in word IW. These integers are 1in increasing order in

1V, and the number of integers in this vector 1s returned in LV,

GETM may be accessed with IW having 0's 1in all bit positions, in

which case LV 1s returned with an integer value of O ,

6. BCM (IW, NBITON):

BCM returns in NBITON the count of bit pesitions containing 1

in word IW. The value in NBITON 1s thus an integer between 0 and

the number of bits in a computer word.

-

L i LU

i

L

(4]

[5]

2 (7]
(8]
(9]

(10]

-

97

auam i o o 12 48

REFERENCES

Aho, A., J. Hopcroft and J. Ullman, THE DESIGN AND ANALYSIS OF
COMPUTER ALGORITHMS, Addison-Wesley, Reading, Mass., 1974.
Barlow, R. E. and F. Proschan, STATISTICAL THEORY OF RELIABILITY

AND LIFE TESTING, Holt, Rinehart and Winston, New York,

et et < i oo Mt s sl

1975,
Chatterjee, P., "Fault Tree Analysis: Reliciirity Thecry and

Systems Safety Analysisg,” ORC 74-34, Operations Research

ks e

Center, University of California, Berkeley, (1974).
Chatterjee, P., "Modularization of Fault Trees: A Method to
Reduce the Cost of Analysis," in RELIABILITY AND FAULT TREE

ANALYSIS, R. E. Barlow, J. B. Fussell and N. D. Singpurwalla,

e e e bl

(editors), SIAM, 1975. i
Edmonds, J. and D. R. Fulkerson, "Bottleneck Extrema,' Journal of }

Combinatorial Theory, Vol. 8, pp. 299-306, (1970).

Fussell, J. B. and W. E. Vesely, "A New Methodology for Obtaining :

Cut Sets," Americam Nuclear Society Transactions, Vol. 15,

No. 1, pp. 262-263, (June 1972). :
Fussell, J. B. et al., MOCUS: A COMPUTER PROGRAM TO OBTAIN
MINIMAL SETS, Aerojet Nuclear Co., Idaho Falls, 1974,
Hulme, B. L. and R, B. Worrell, "A Prime Implicant Algorithm
with Factoring," (prepublication copy).
Knuth, D. E., THE ART OF COMPUTER PROGRAMMING, VOL. 3,
SORTING AND SEARCHING, Addison~Wesley, Reading, Mass., 1970.
Lambert, H. E., "Fault Trees for Decision Making in Systems

Analysis,'" Report UCRL~51829, Lawrence Livermore Laboratories,

Livermore, California, (1975).

-

98

3 [11] Nelson, R. J., "Simplest Normal Truth Fuuctions," Journal of

Symbolic Loglc, Vol. 20, pp. 105-108, (1953).

(12]) Pande, P, K., M. E. Spector and P, Chatterjee, "Computerized

Fault Tree Analysis: TREEL and MICSUP," ORC 75-3,
L}

Operations Research Center, University of California,

b

Berkeley, California, (1975).

L

[13] Pelto, P. and W. Purcell, "MFAULT: A Computer Prcgram for

[

Analysizing Fault Trees,' Report BNWL-2145, Battelle

Pacific Northwest Laboratories, Richland, Washington,

(1977).

Report TR 76-266, Department of Computer Science, Cornell

University, Ithaca, New York, (1976).

[15] Rosenthal, A., "A Computer Scientist Looks at Reliability

Analysis," in RELTABILITY AND FAULT TREE ANALYSIS, }3
R. E. Barlow, J. B. Fussell and N. D. Singpurwalla, (editors), 1
: STAM, 1975,
: [16] Whitesitt, J., BOOLEAN ALGEBRA AND ITS APPLICATIONS, Addison-

|

|

]

\ [L4] Reusch, B., "On the Generation of Prime Impliicants,"

I
|
|
|
|
|
|
|
|
1
i

Wesely, Reading, Mass., 1961. %
| [17] Willie, R., "A Computer Oriented Method to Find Boolean Duals,"
' (forthcoming}.

(18] Worrell, R. B., "Using the Set Equation Transformation System .
in Fault Tree Analysis," in RELIABILITY AND FAULT TREE ;

o ANALYSIS, R. E. Barlow, J. B. Fussell and N. D. Singpurwalla, ‘
|

(editors), SIAM, 1975,

