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I. INTRODUCTION

Pyrotechnics are used in a wide range of military applications,
all of which depend on the controlled ignition and combustion of a
pyrotechnic mix. The Engineering Design Handbook Series on Military
Pyrotechnics reviews the range of effects from a burning pyrotechnic
that are of military use . These effects include production of heat
(incendiary rounds), production of light (tracers and illuminating
shells) and production of smoke (smoke grenades and smoke rounds).
Pyrotechnics are also used as solid propellant igniters and primers.
A novel role of pyrotechnics is to increase the range or decrease the
time-of-flight of projectiles by reducing base dragZs3.

Despite the wide role of pyrotechnics in munitions, investigations
of the combustion and ignition of these substances have lagged behind
similar work on composite solid propellants and homogeneous propellants.
The Engineering Design Handbook on Theory and Application of Pyrotechnics
illustrates the gap between propellant combustion modeling and pyro-
technic combustion modeling.

In an effort to begin closing the gap between pyrotechnics and
propellant combustion, an experimental program is underway to obtain
burning rate data on pyrotechnic mixes. This report discusses measure-
ments of the temperature sensitivity of the burning rate of a mixture
(60/40 by weight) of magnesium and sodium nitrate. The organic binder
normally found in pyrotechnic mixes was deleted in the hope of simpli-
fying modeling efforts.

The desire to examine temperature sensitivity was prompted by work
on modeling composite propellant combustion. A 1972 JANNAF workshop?

1. "Military Pyrotechnics Series, Part Four, Design of Ammunition

or Pyrotechnic Effects", AMC Pamphlet AMCP 706-188, March 1974.
Y amp

J.R. Ward, F.P. Baltakis, and S.W. Pronchick, "Wind Turmel Study
of Base Drag Reduction by Combustion of Pyrotechnics", BRL Report
No. 1745, October 1974. (AD #B000431L)

K. Anderson, N.E. Gunners, and R. Hellgren, "Swedish Base Bleed -
Increasing the Range of Artillery Projectiles Through Base Flow",
Propellants and Fxplosives, 1, pp. 69-73 (1976).

"Military Pyrotechnic Series, Part One, Theory and Application',
AMC Pamphlet AMCP 706-185, April 1967.

L. Caveny, "Workshop Report on Temperature and Pressure Sensitiv-
ity of Burming Rates', Proceedings of the Ninth JANNAF Combustion
Meeting, Volume II, CPIA Publication 231, December 1972.
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concluded that the ability of various models to predict temperature
sensitivity may serve to validate such models better than the con-~
ventional prediction of burning rate vs pressure. This was demonstrated
recently by Condon, Renie, and Osborn6 who used prediction of tempera-
ture sensitivity to illustrate the superiority of the petite ensemble
model for modeling composite propellant combustion.

II. EXPERIMENTAL PROCEDURES AND APPARATUS

A low pressure combustion chamber was used to conduct propellant
burning rate studies as a function of initial temperature and pressure.
A schematic of the chamber, heat exchanger and auxilliary apparatus is
shown in Figure 1. The chamber was chosen to accommodate the burning of
the pyrotechnic samples used in this study without increasing the initial
pressure of 0.1 MPa of nitrogen more than ten percent. The volume of
the chamber is 0,08 cubic meter and has a maximum operating pressure of
1 MPa. The nitrogen was circulated along the sides of the propellant
sample, as shown in Figure 1, to inhibit flame spread. The propellant
holder was machined from aluminum because of its high thermal conductivity.
Both alcohol and water were used as the temperature conditioning fluid.

The samples were prepared in the following way. A mixture of forty
percent magnesium and sixty percent sodium nitrate was poured into a
mold and pressed to a pressure of 345 MPa with a hydraulic press. The
sample was removed from the press and its dengity determined. The sample
was then placed in a clamping apparatus that positioned it at the proper
angle for drilling three holes (#80 drill) for receiving thermocouples.
Chromel-Alumel thermocouples made of 0.05mm diameter wires were inserted
into the holes. The thermocouples were used to measure the initial
temperature of the propellant and the time of transit of the combustion
zone. The temperature profile measured by the thermocouples could also
be used for qualitative impressions of temperatures at various points
in the combustion zone. Figure 2 shows the prepared sample mounted on
the holder with dimensions. After purging and filling the chamber to
the desired pressure with nitrogen, the temperature was adjusted to the
desired value. The sample was ignited and the temperatures were recorded
on a Honeywell Visicorder.

ITI. RESULTS AND DISCUSSION

Twenty-nine samples were prepared and burned. A large variation
in burning rate was detected which depended on the density of the
sample. The theoretical density of forty percent magnesium and sixty
percent sodium nitrate is 2.02 grams per cubic centimeter. Only samples

6. J.A. Condon, J.P. Renie, and J.R. Osborm, "Temperature Sensitivity
of Propellant Burning Rates", Combustion and Flame, 30, pp. 267-276
(1977).
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whose densities were between 1.9 and 2.02 grams per cubic centimeter
burned in a fairly reproducible manner, so only firings of samples in
this density range were used in the analysis.

A copy of a typical record from the Visicorder illustrating the
response of the three thermocouples is shown in Figure 3. The burning
rate was determined from the time intervals bounded by the sharp in-
creases in temperature seen in Figure 3. Table I summarizes the burning
rates measured in this set of experiments. The reproducibility of the
burning rates measured at each thermocouple interval is taken as evi-
dence of uniform burning for a given run. In a number of cases,
thermocouple 2 or thermocouple 3 failed to register; the data from those
runs which gave burning rates in agreement with the rates in the rums
with uniform burning are also included in Table I. The burning rates
chosen for further analysis are taken from the time interval between
thermocouples one and three except for the runs 8, 10, and 24, in which
thermocouple three failed to function.

The temperature sensitivity at constant pressure is defined as the
following

& = agln r) | ; (1)

BTO P
where
0 = temperature sensitivity, K
r = burning rate, mm/s
To = jnitial temperature, K.

For the mixture of magnesium and sodium nitrate under study, the plot
of In r vs Tp is shown in Figure 4. The straight line determined from
a linear least-squares fit to the data is also shown in Figure 4. The
values of o determined from the least-squares analysis are 0.0021 K-1
and 0.0028 K-1 at 0.1 and 1.0 MPa, respectively. The standard estimate
of error determined from the least-squares analysis is 1.5 mm/s and

1.3 mm/s at 0.1 and 1.0 MPa respectively. All the experimental points
fall within the standard estimate of error.

The values of o for the pyrotechnics mix are similar to the
temperature sensitivities measured by Condon and co-workers. At 1.0
MPa they report a ¢ of 0.002 K-1_for the composite propellant in com-
parison to the value of 0.003 K~ estimated from the few runs at the
higher pressure for the pyrotechnic mix. The temperature sensitivity
of the composite propellant decreases as the pressure is reduced, which
is the same trend seen for the pyrotechnic mix. This trend in tempera-
ture sensitivity vs pressure reinforces one's intuition that composite
propellant combustion and pyrotechnic combustion are similar, and one
should use the composite propellant combustion models Condon found
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Figure 4,




predicted the temperature sensitivity best. The two models were the
petite ensemble model’ and the modified Beckstead, Derr, and Price (BDP)
model8, although Condon and co-workers found the petite ensemble model
predicted burning rate vs pressure closer to experimental values then
did the modified BDP model.

Another way to use temperature sensitivity measurements is to
examine the dependence of ¢ with initial temperature.,.Many of the
theories of steady combustion9-12 yield an expression = for the sensi-
tivity of the burning rate to initial temperature of the form
3 Kl ; EK2

@/c*1.)

g

(2)
2 3
2R(Q/Cp+To)

where

temperature sensitivity, K-l

heat of reaction, J/g

specific heat, J/g-K

activation energy, J/mole

gas constant, J/mole-K

initial temperature, K

dimensionless constants which range in value from 1 to 5
for K, and from 1/2 to 1 for K2.

nwononownn

7. R.L. Glick and J.A. Condon, "Statistical Analysis of Polydisperse
Heterogeneous Propellant Combustion - Steady-State", Proceedings
of the Thirteenth JANNAF Combustion Meeting, CPIA Publication 281,
December 1976,

8. M.W. Beckstead, R.L. Derr, and C.F. Price, "A Model of Composite
Solid Propellant Combustion Based on Multiple Flames', AIAAJ, 8,
pp. 2200-2207 (1970).

9. R.G. Parr and B.L. Crawford, "A Physical Theory of Burning of
Louble-Base Rocket Propellants", J. Physical Chem., 54, p. 929
(1950).

10. R.L. Coates, "An Analysis of a Simplified Laminar Flame Theory for
Solid Propellant Combustion'", Combustion Science and Technology,
4, p. 1 (1971).

11. M.W. Beckstead and N.S. Cohen, "Temperature and Pressure Sensitiv-
ity of Composite Propellants', Proceedings of the Seventh JANNAF
Combustion Conference, CPIA Publication 204, February 1971.

12. T. von Karman and G. Millan, "The Thermal Theory of Constant
Pressure Deflagration”, Anniversary Volume on Applied Mechanics,
Dedicated to C.B. Biezeno, pp. 59-69, N.V. Technische Uitgevery:
H, Stam, (Holland) 1953.

13. R.C. Strittmater, H.E. Holmes, and E. Wineholt, "The Temperature
Sensitivity of Gun Propellants", BRL Memorandum Report No. 593,
February 1976. (AD #A022200)

15




Equation (2) shows that o should be reduced as the initial temperature
increases. Since o is the slope of a plot of In r vs Ty, one should
see curvature downward of such a plot at the higher values of Tp. If
the In r vs Ty is curved, then this deviation from the usually assumed
straight line may be useful as a guide to testing the suitability of

a model. To date plots of o vs P have been used to discriminate between
different models as Condon and his collaborators did. Pyrotechnics,
such as magnesium and sodium nitrate, offer a chance to see if a plot
of 0 vs To could serve to distinguish models, since the initial temper-
ature can be raised to nearly 1000K before decomposition or phase
changes occur in the condensed phase in comparison to conventional
propellants where the decomposition can take place at 500-600K. For
the data gathered in this report, ln r vs T, may be represented by a
straight line; future experiments will be done at higher values of
initial temperature to see if curvature of the ln r 7s T 1line can be
observed.

IV. CONCLUSIONS

1. The temperature sensitivity of a 60/40 by weight mixture of
magnesium and sodium nitrate was determined to be 0.0021 K-l at 0.1 MPa,
and 0.0028 K-1 at 1.0 MPa.

2. The trend for the pyrotechnics temperature sensitivity to in-
crease with pressure is similar to the dependence of composite propellant
temperature sensitivity with pressure. This analogy suggest combustion
models applicable to composite propellants should be the starting point
for modeling pyrotechnic combustion.

3. At present the dependence of temperature sensitivity with
pressure is used to determine the capability of combustion models to
describe propellant burning. Another way to test combustion models with
information from burning rate at various initial temperatures is to
examine the dependence of temperature sensitivity with initial temper-
ature rather than pressure. The change in temperature sensitivity with
temperature will be reflected by curvature in the plot of 1ln r vs Tg,.
Measurements of temperature sensitivity are needed over a larger tem-
perature range than is presently employed.
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