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HYPERSCONIC AREA RULE

M. D. Ladyzhenskiy (Moscow)

Abstract

Assuming [ 2] that the entire mass of gas is concentrated in the
infinitely thin layer adjacent to the shock wave, report [ 1]
0 formulates the hypersonic area rule. According to this rule, during
flow about thin nonaxisymmetrical bluff bodies with equal values of
g blunting resistance and identical laws of the change in the direction
of the flow on the cross-sectional area, the shock wave surfaces, the 3

laws of the chang2 in pressure, and, consequently, also the dray |

acting on the body coincide. Here the surfaces of the shock waves are




axially symmetrical.

This study establishes the limits of agplicability of the

results in [1) and refines the hypersonic area rule by introducing

the entropy layer.

1. Determination of the Limits of Applicability of the Results
of [1]). As an example of using the hypersbnic area rule [1], we will
construct a body equivalent to a thin round cone, i.e., for which the
blunting resistance and the law of the change in the flow direction

¥ of the cross-sectional area are identical tc those of a cone. The

cross section of the body is assumed to be shaped like an ellipse

vhose long semiaxis is equal to the radius of the shock wave and

vhose area is equal to that of the cross section of the round cone

(Fige 1) . In other words, the eccentricity of the ellipse has the
raximum possible value which still satisfies the requirement
{(condition (3) from [1]) in each cross section, in accordance with
which the body should not go beyond the limits of the space bounded

by the surface of the shock wave.

As [1) pointed out, the area rule can ke combined with the law
of similarity during flow about thin bluff bodies [2], as a result of

which the dimensionless values which characterize the flow are 4
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determined by two dimensionless parameters at a fixed value of the
adiabatic index x : the known similarity parameter during flow about
thin bluff bodies K = N.r and parameter K, = (x/2.,85)#Lv?, which
characterizes the blunting effect of equal order of magnitude to the
square root of the ratio of the resistance of the body to the
blunting resistance. Here t~S”/L—- is the small dimensionless value
vhich characterizes the thickness of the body; S* is a certain
characteristic cross-sectional area of the body; L is the length of
the body; and cg, S are the blunting resistance coefficient and the

maximum midsectional area of blunting, respectively.

Assuming that the effect of blunting can Le replaced by an
explosive effect at the front point of the body with energy equal to
the blunting resistance, blunting is insignificant [1]). Thus,
blunting area S is introduced to express K, instead of the blurnting
diameter [ 2). We will assume that M_ of the unperturbed flow is equal
to infinity. Then, at fixed » the dimensionless variables will depend

on parameter K, alone.

FPigure 2 (at x= 1.4) shows the dependeﬁces of the value of k
(the ratio of the long semiaxis of the ellipse to the small one) and
(X - Xo/Xo (the ratio of the resistance of the body without

consideration of blunting resistance to the blunting resistance) in

function K, =(n/2c«S)"Ltg*a, in the form of curves, where a is
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the half-aperture angle of the round cone. The form of the shock wave
vas determined from the solution of the protlem of flow about a thirn
bluff cone according to [2). It is logical to apply the area rule at
X/Xqg » 1.1, which, as Fig. 2 indicates, corresgonds to K, > 0.1. At
small values of K, the resistance of the body is essentially
determined by the value of blunting resistance. At large values of
Ky, the area rule loses its validity as k approaches one (rore
precisely [1], at k—1~(x—1) /(x+ 1)) vhich occurs approximately at K,

= 1.2-

Thus, the range of application of the area rule lies within
0a1 £ Ky £ 1.2. Here the ellipse in the cross section of the bedy can
be rather elongated, differing from a circle (13 > k » 1.3). This
result can be of practical interest. However, whereas results [1)
vere obtained with approximate assumptions about the concentration ot
the entire mass of gas in the infinitely thin layer beyond the shock

vave, it is necessary to make the area rule more precise.

2. Refining the Area Rule. As before, we will assume that
My>1, but, unlike in [1], vwe will ncot impose the necessary
condi tion a3 1. We will introduce cylindrical coordinate systen
xL, yL, 6 (the x-axis passes through the front point of the body and

is directed along the flow). We will use uU_, WU, wU, to designate
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the velocity components in the axial, radial, and circurnferential
directions, respectively: pp,Uk— 1is pressure; PP, — is density; U,
is the velocity of the unperturbed flow directed along the x-axis;

and p,_ is its density. We will characterize the blunting value by the
dimensionless blunting diameter dL, where d is a small value. We will

vrite the equation for the surface of the body in the form y =

r(f) (x, ).

We will isolate the entropy layer, i.e., the region occupied by
the current lines passing through that section cf the surface of the
retreating shock wave where the angles of inclination formed by the
surface of the shock wave and the direction of the unperturbed flow
are not small (Fig. 3). Suppose that the equation of the arbitrarily
introduced boundary of the entropy layer is y = 6¢(x, 0), where 6 is
small. Beginning with a certain x = x5 ~ d, the angles of inclination
of the boundary of the entropy layer to the x-axis will be on the

crder of 6.

Below we will give estimates of the parameters of flow in the
entropy layer similar to those made in [3]. We will also point out
that the effect of the entropy layer on the pressure distribution on

a thin bluff cone was considered in (4].

We vill assume that the relationship »~d" holds on the

g e e g e S ot T SUS— -

.

T T TR ey e
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surface of the entropy layer, vhere a is the positive number to be

determined.

As follows subsequently, the order of pressure is maintained

across the entropy layer; therefore, with the ccndition of

adiabaticity, we can vrite p;—i. for density. Now we will write
the continuity equation of the entropy layer. FEquating the flow in
thke entropy layer to the flow in the jet current of unperturbed rlow
through an area equal to that of the maximum midsectional blunting

area, ve will have

d*~puag, (1)

vhere ¢ is the area occupied by the entropy layer in cross section x
= const (the shaded part im Pig. 3). As follows from the Bernoulli

equation, we will have ca-ff'. since u ~ 1 in the entropy layer.

It is obvious that estimate

83 =5+ ¢, : ' 3

is obtained for 6 in the entropy layer boundary equation, where S is
the cross-sectional area of the body. We will stipulate that the
crder of magnitude of the area of the body does not exceed the area

of the entropy layer S . e¢. Them, obviously,

6'~f-;. 3)
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Since the usual estimate of hypersonic flow P ~ 62 is valid for the
pressure on the external boundary of the entropy layer, we will find
the equation for determining a from it:

a
- —
& ~d . % —xfi (4)

Pinally, we will have the following flow parameters in the entropy

layer:

2 2 == il
p~dt, p~agtl § gt g g ) 5)

with the condition that the orders of magnitude of r and 4 are

related by the relationship obtained with the ccndition S ~ o:

x
1
T 4 {6

This relationship essentially conforms to the ccndition t~ Va,

wvhich says that the order of magnitude of the resistance of the body

is comparable to the blunting resistance [2].

We will estimate the pressure gradient in the entropy layer.

From the equations of motion we have

B e

i AN <8551
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Therefore, w e W since all the terms in the right sides of

(7) are of the same order of smallness. Whence, with consideration of

(5) and (6), the estimate

2(x+41)
Ap~di~t * |

is valid for the pressure gradient in both the radial and
circumferential directions. Thus, the pressure in the entropy layer

can be considered to be constant with the relative error
N SRR @
vhich is somewhat greater than the relative error in the theory of
small perturbations of the hypersonic flow (equal, as we know, to

r2),

We will state the flow problem. Suppose that at x < x4 the

axisymmetrical nose section of a body is given with its axis of

e i AR P T T Ryt e T
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symmetry directed along¢ the x-axis, the flow about which has been
completely calculated. As follows from the above discussion, since
the entropy layer cannot maintain the fpressure gradient in t+he
circumferential direction, the pressure on cross section x = ccnst
should be constant in region x > xo on the outer edge of the layer.
It suffices for the surface which bounds the entropy layer to be
axially symmetrical in order to satisfy this condition. (Here its

equation can be written as y = 6Y(x).)

Then the flow outside the entropy layer, which is axisymmetrical
according to condition at x < xg, also retains its axial symmetry at
X > x. Therefore, the condition of the constancy of the pressure in
the circumferential directicn on the external koundary of the entropy

layer will be satisfied.

We will single out the equation which relates S and o at x > xq,
for which we will use the continuity equation, as in [3]. We will use
the subscript 0 to designate the values in plane xga. Isolating the
elementary current jet in the entropy layer, we will write its flow

equation:

PotioyedQodyo = puydfdy. 9)

We will have the following for p and u from the adiabatic and

Bernoulli equations, in which the terms on the crder of r2 have bheen
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eliminated:
' PY* . ¥, % mp\E_ 1 1
N = LN et o LA VI SRS T .

We will divide equation (9) by pu and integrate over the entire
entropy layer in cross section x = x4 (we will use the sane
condition: that the coordinates of the selected current line y and 6
satisfy relationships y = y(Yor 90)s @ = 6(yor 6o)). Obviously, on
the right side of the equation we will find area ¢ occupied by the
entropy layer in cross section x. With consideration of the axial
symmetry of the boundary of the entropy layer, we will have o =

#52Y2(x) - S. Finally, the unknown relationship is written as:

_ n82Y? (z) — F (p) = S (x),
E Y 14 %2 1 _x p
Po \ x—1 p2 x—1 po
Fpy= \\ (&=
P) Sg(p) o —

o, 1+ 2 i 2% Po p)'—x-

YodOedye. (11)

x—1 M2 %x—1 po \po

Axisymmetrical flow outside the entropy layer at x > x4 can be
calculated by one of the known point methods, €.g., the
characteristics method. Here the boundary of the entropy layer will
be determined from equation (11), which plays a role in the boundary
condition which replaces the nonflow condition, during the solution.
Whence it follows that the flow is completely determined by the
assignment of the law of the change in the cross-sectional area of

the body S(X) at x > xy. Here one more cobvious limitation must be
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imposed on the shape of the body: the bedy must not go beyond the
limits of the "entropy circle" (see Fig. 3), which can be written

symbolically as:

S C ndY?2 (z). : (12)

U Now we can state the exact hypersonic area rule as follows. During
y flow about thin bluff bodies with axisymmetrical nose sections which
coincide at a certain distance from the front pcint of the body and
identical laws of the change in the cross secticn of the remaining

parts:

] a) the flows outside the entropy layers are axisymmetrical; the
flow parameters at the corresponding points, the surfaces of the
shock waves, and the arbitrarily introduced boundaries of the entropy

layers coincide;

b) the pressure in the entropy layers only depends om x, and the
E “ lavw of the change in pressure is the same for the bodies in question; 1
as a result, the drags acting on the bodies are equal, since drag X

: 1

1

ft is expressed as
;

1 »
X =Xo+ Lp U2, S S’ (z) p(z) dz, : (13)

X

vhere X, is the drag of the nose section of the body. Here it is
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assumed that conditions (6) and (12) are satisfied.

The results obtained can easily be generalized to the case of

flow with dissociation. The consideration of these phenomena only

changes the appearance of function F(p) in equation (11).

3. Comparison of Results. We will compare the result obtained
with the correct area proven in [1]. The requirement of the
correspondence of the laws of the change in the cross-sectional area
in the direction of the x-axis, as well as the condition which states
that the drag of the body must not exceed the order of value of the ‘
blunting resistance, are common to bcth theorems. The difference in

the formulation of the theorem proven in §2 is as follows:

a) the necessary condition N _r>f1; is not imposed, as was

done in [11];

b) instead of requiring the equivalence of the values of the

blunting resistance [1], a greater limitaticn is imposed: the nose

sections of the equivalent bodies, being axisymmetrical, must have

the same shape;

c) instead of condition (3) in [1]), vhich states that the body

P
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cannot go beyond the limits of the space bounded by the surface of
the shock wave, a greater limitation (12) is imposed: the body must

not go beyond the upper boundary of the entropy layer.

For this reason, we can expect the values of k found in §1,
characterizing the difference in the Cross section of the body fron

that of the equivalent solid of revolution, to be somewhat higher.

Received 20 December 1960
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s

Fig. 1. 1 - Shock wave; 2 - cross section of round body; 3 - cross

section of equivalent body.

Fig. 2.
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Pig. 3. 1 - Shock wave; 2 - entropy layer; 3 - body.
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