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HYPFRSONIC AREA RULE

N. D. Ladyzhenskiy (Moscow) -

‘I

Abstract

Assuming [2] that the entire mass of gas is concentra ted in the

infinitely thin layer adlacent to the shock wave, report C fl
formulates the hypersonic area rule. According to this rule , during

flow about thin nonaxisymmetrical bluff bodies wit h equal values of

blunting resistance and ident ical laws of the change in the directio~

of the flow on the cross—sectional area, the shock wave surfaces , tL~

laws of the change in pressure, and , cons equen t ly, also the ~Ira~

acting on the body coincide. Here the surfaces of the shoc k w av~’n are
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axially symmetrical. .

This study establishes the limits of applicability of the

results in (1) and refines the hypersonic area rule by int rodu ci ng

the entropy layer.

1. Determination of the Limits of Applicabilit y of the Result~

of [1). As an example of using the hypersonic area rule [1 J. we will

construct a body equivalen t to a thin round cone, i.e., f~~r wh ich t~~~~~~

blunting resistance and the law of the change in the flow direc tion

t of the cross—sectional area are identical to those of a cone. The

cross section of the body is assumed to be shaped like an cilipse

whose long semiaxis is equal to the radius of the shock wa ve ani

whose area is equal to that of the cross sect ion of the round cone

(Fig. 1). In other words, the eccentricity of the ellipse has the

maxi mum possible value which still satisfies the requirement

(condition (3) from [1]) in each cross section, in accordance with

which the body should not go beyond the limits of the space bounded

by the surface of the shock wave.

As (1] pointed out, the area rule can ~e combined wit h the law

of si.ilar ity during flow about thin bluff bodies (2], as a result of

which the dimensionless values which characterize the flow are

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 
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determined by two dimensionless parameters at a fixed value of the

adiabatic indeix : the known similarity parameter during f low about

• th in  bluff bodi K ~ M 0v and paramete r K 1 a (~ I2çS)’1’LT’, which

• ch aracterizes the  b imat ing  effect of equa l order of magnitude to the

square root of the ratio of th. resistance of the bod y to the

blunting resistan:e. Here ‘r —. S~”/L— is the small dimensionles s valuc

which characterizes the thickness of the body ; S* is a certain

characteristic cross—sectional area of the body; L is the length of

the body; and c~ , S are the bl unting resistance coefficient and the

maximum midsectional area of blunting, respectively.

Assumin g that the effect of blunting can he replaced by a n

explosive effect at the front point of the body with energy ‘~iual to

the blunting resistance, blun t ing is insi gnificant (1]. Thus ,

blunting area S is introduced to express K 1 instead of the blurting

diameter (2]. We will assume t hat PL~, of the unperturbed flow is ~ ju al

to infinity. Then, at fixed the dimensionless variables will iiepen i

on paramet er K~ alone. - - V

Figure 2 (at 1.*~ shows t he  dependences of the  v a lu e  of k

(the ratio of the long semiaxis of the ellipse to the s~ ill on e) an~

(X — X 0/10 ( the  ra t io  of the res istance of the  bod y w i t h o u t

consideration of blant ing resistance tO the  b l u n t i n g  r e s i s t a n c e )  in

function K 1 ~~~f 2cx.S~”Ltg ~c, in the form of curves, where a is t

- 
-
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the hal f—a pe rture angle of the round cone. Ihe form of the shock wave

was determined f rom the solution of the  problem of f low a b o u t  a t h i n .

b lu f f  cone according to (2] .  It is logica l to a pp ly  the area  rule at

X/X 0 ). 1.1 , which , as Fig. 2 indicates, corresponds to K 1 ). 0.1. At

small values of K 1, the  resist ance of the bod y is essentiall y

determined by the value of blunting resistance. At large values of

K1, the area rule loses its validity as k approaches one (more

precisely (1], at k — . i — ( x —i) I (x +f )) .  whic h occurs a p p r o x i m a t e l y  at K 1

= 1.2.

Thus, the ran ge of application of the area rule lies within

0.1 ~ K1 .~~ 1.2. Here the ellipse in the cross section of the body can

be rather elongate d, differing from a circle (13 >~ k ~ 1.3). This

result can be of practical interest. However , whereas resu lts [ 1)

were obt ained wit h approx imate  assumpt ions  about  the c o n c e n t r a t i o n  ot

the entire mass of gas in the infinitely thin layer beyond the shock

wave, it is necessary to make the area rule more  precise.

2. Pefining the Area Rule. As before, we will assume th at

~~~~~~ but , unlike in ( 1) ,  we wil l  not imp ose the necessary

condition •M ~~~~~~~~~~~ 1. We will  introduce cy l indr i ca l  coord ina te  s y s t e m

xL , yL , 0 (th. s—a xis passes through the front point of the body anJ

is directed along the flow) e We will uss ~~~~~~~~~ wU~ to designate

‘ L - - — •  ————— -

~~~~~~ 
- r~~~~- -

~~
-
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the velocity components in the axi al, radial, and circumferential

directions, respectively; pp~~U~~— is pressure; PP~~— is de nsity; U~,

is the velocity of the unperturbed flow directed along the x—axis;

and p, is its density. We will characterize the blunting value by th€

L dimensionless blunting diameter dL, where d is a small value. We will

J write the equation for the surface of the bod y in the f o r m  y =

H T ( f) (X , 6).

• We will isolate the entropy layer , i.e., the region occupied by

the  current lines passing th rough  tha t  section cf the s u r f a c e  of t he

retreating shock wave where the angles of inclination formed by the

surface of the  shock wave and the direction of the u n p e r t u r b e d  f l o w

F are not small (Fig . 3). Suppose that the  equat ion of t h e  a r b i t r a r i l y

intro duced boundary of the  en t ropy  layer  is y = 60 (r , 0) ,  where 6 is

small.  Beg inning w i t h  a certain x = x 0 — d , the angles of i n c l i n a t i o n

of the bou ndary of the entropy lay er to the x—axis viii be on the

order of 6.

4

Below we viii give estimates of the parameters of flo w in the

entropy layer similar to those made in (3]. We will also point out

that the effect of the entropy layer on the pressure distribution on

a thin bluff cone was considered in (11 ).

I We wi ll assum e tha t  the re lat ionship ~~~~ holds on the

~~~~~~~~~~~~~~~ 
•
~~~~~~~~~

:— 
~~~~~ :~~~~~~~ T~~ ~~ ~~~II- . 
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surface of the e n t r o p y  l ayer , wher e a is the  positive n u m b e r  t o  be

determined.

As follows subsequent ly ,  the order of pressure is mai n t a i n e d

across the entropy layer;  tber.for., with the ccndition of

adiaba t ici ty,  we :an wri te  p — d ’. for densi ty.  Now we w i l l  w r i t e

the contin ui ty  equa t ion  of the entropy layer. Equa t ing  th e  f l o w  in

the  entropy layer to the  flow in the jet current of unpert urbe d n o w

throug h an area equal to that of the max imum midsectional hlun’-ing

area, we will have

(1)

where • is the area occupied by the entropy layer in cross section x

= const (the shaded part in Fig.. 3).  As fo l lows f rom the  B e r n o u l l i

equation, we will have since u — 1 in the  e n t r o p y  layer.

It is obvious that estimate

(2)

is obtained for 6 in the entropy layer boundary equation, where S is

the cross— sectional area of the body. We will stipulate that the

crder of magnitude of the area of the body does not exceed the area

of the entropy layer S.~ .. Thea, obviously,

(3)

- ~~~~~~•-~~-- 
- —i- ~~~~~~~~~~~~~~ ~~~

— 
-~~~~~~~~~~~~

——
~~~~ ---~~~~-~~ - ~~~ ~~~~~~~

- •



1L
~ . — —

~~~~~~~~~~~~~~

- •

~ 

- -

~

--

~~~

---- 

- 

- —---- - - - - --

DOC = 1925 PAGE 7

Since the usual estimate of hypersonic flow p — 62 is va l id  for the

pressure on the external boundary of the entropy layer, we will find

the equation for determining a from it:

~~~~~~~~~~~~~~~~~~~~~~ 
a=~~~~ (4)

Finally, we will h ave the following flow parame ters in the e nt rop y
layer :

I Ix
p _ dX + 1. p_ . d~~

+l
, 6 . ~~~ x+1, ~~~~~*+1 (5)

with the condition that the orders of magnitude of r and d are

related by the relationship obtained with the condition S —

This relationship essentiall y conforms to the ccndition ~~~~~~~

wh ich says that the order of magnitude of the resistance of the bod y

is com parable to the blunting resistance (2).

We will estimate the pressure gradient in the entropy layer.

Prom the equations of lotion we have

op =~~•_ Or ~ Oa
831 ‘

~~~~~~ + -
~
- 

(7)-

t Op 
— 

~ + 
•øi. w

\~~~
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• op l o p . •Therefore, ~~~~~~~~~ ~~-
, si nce all the ter ms in the  r L g ht sides c f

(7) are of the saie order of smallness. Whence , wit h c o n s i d e r a t i o n  0±

(5) and (6), the es timate

- 2tX41)

is vali d for the pressure grad ient in bot h the rad ial and

circumferential directions. Thus, the ~res~ ure in the entropy laye r

can be considered to be constant with the relative err or

(8)-

wh ich is som ewhat  greater t han the relative error in the theor y of

small pert urbation s of the hypersonic flow (equal, as we know , to

We will state the flow problem. Suppose that at x < x 0 the

axisymmetrical nose section of a body is given wit h its ax is 0±

_  _  - - -- -~~~~~~~~~--~~~~~~~~~ • - - - - - - - ~~~~~~~ - - - ~~~~~~~~~~~~--~~~~~~
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sy mmet ry  directed along the i—axis , the  f low about w h i c h  has  been

completely calculated. As follows from the above discussion, since

• the entrop y layer cannot maintain the pressure gradient in 4he

c i rcumferen t ia l  di rection , the pressure on cross section x = ccnst

should be constant in region x > x 0 on the outer edge of the layer .

It suffices for the surface which bounds the entropy layer to b’~

axially symm etrical in order to satisfy this condit ion. (Here it~

equation can be w r i t t e n  as y = 6 Y ( x ) .)

Then the flow outside the entropy layer, which is axisynmetrical

according to condition at x < x~, also retains its axial symmetry •~t

x > x. Therefore, the condition of the constancy of the pr essure in

the circumferential directicn on the external  b oundary  of the entropy

layer will be satisfied.

We will single out the eq uation which  relates S and  a a t  x > x0,

for  which we will use the contin ui ty  equat ion , as in ( 3) .  We w i l l  use

the subscript 0 to designate the values in plane x0. Isolating the

elementary current jet in the entropy layer, we will write i t s  f l o w

equation:

PoUotJodOodYo = p ssyd8d y • (9)

We will have the following for p an d u fro m t h e  ad iaba t i c  an d

Bernoulli equations, in which the terms on the crder of v2 hav ’~ he~~n

_ _ _  
- - 

~~~:~~~~~~~~~~~li~~~~’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—- - : ~~~~~~ -~~~~ -~~~~~~



~~~~~~~~~~‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ - - -—~~~~ -~~~ - : -

_~~~~~~~~ -~~~~~~~~~ - - — -

DOC = 1925 PAGE 10

elimina ted :

1 - x—1
p p o(L\~~~; ~~~± _-!c_ L(_~~~~~~= .! + 

I 
• (10)

~Po/ 2 ‘c — I  p . 2 (x — I) M~, -

We will divide equation (9) by pu and integrate over the entire

entropy layer in cross section x = x 0 (we will  use the same

condition: that the coor d inates of the selected current line y ~ind 6

satisfy relationsh ips y = y ( y 0 ,  9~~) ,  0 0(Yo. 0~)). Obviously , on

the r igh t  side of the equation we will find area  a occupied by ‘he

entropy layer in :ross section x. With consideration of the axial

symmetry of the boundary of the entropy layer , we viii have a =

v6 ZY2 (x) — S. Finally, the unknown relationship is wri tten as:

- 
1~62Y (x) - - F ( p) S ( x ),

2 i—
~
::---

~ ~
,

fp o V~ ‘c — i  ~~~ ‘c — i  ~~1(p) 
~ ~~~~~~~~~~ 

y0dO,eiy,. (If>

~ + 2 1 
— 2’c p, (p ’

~~~~~~~i c — I  iC— i po \p .)

Azisyametrica l flow outside the entropy la yer at x > x~ can be

calculated by one of the known point methods, e.g., the

characterist ics method. Here the boundary of the entropy layer will

be determi ned from equation (11) , which plays a role in the boundary

condition wh ich replaces the nonflov condition , during the solution.

Whence it follows that the flow is completely determined by the

assignment of the  law of the change in the cross—sectional area  of

the body S (I) a t  x > x 0. Here one more obv ious limitation mus t ~~

— _ _ _ _ _  _ _ _ _  - -
~~~~a ~~~~~ 

-- 
~~

—- - - - -  -~ -.~~~~~ 
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im posed on the shape of the body: the bod y must not go beyond the

limi ts of the “entropy circle” (see Fig. 3), which can be w r i t t e n

sy mbolical ly as:

SCn~YY2 (x) . (12)

Now we can state the exact hypersonic area rule as follows. Durinq

flow about thin bluff bodies with axisymm etrical nose sect ions which

coincide at a certain distance from the front pcint of the bod y and

identical laws of the change in the cross secticn of the remaining

parts:

a) the flows outside the entropy layers are axisymm etrical; t h e

flow parameters at the corresponding points, the surfaces of the

shock waves, and t he  arbi t rar i ly  introd uced boundar ies  of the e n t r o p y

la yers coinc ide;

b) t he  pressu re in the entropy layers only depends on x, and the

law of the change in pressure is the same for the bodies in question;

as a resul t, the drags acting on the bodies are equal, since drag X

is express ed as

X = X, + L~pjJ~ ~ 
S’ (x) p (x) dx, (13)

where X 0 is the drag of the no se section of t h e  body. Here it is

- ~~~~~~~~~~~~~~~~ - ~~
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assumed that conditions (6) and (12) are satisfied.

The results obtained can easily be general ized to the case of

flow with dissociation. The consideration of these phenome na onl y

changes the appearance of function F(p) in equation (11).

3. Comparison of Results. We will compar e the result obtained

with the correct area proven in (1]. The requirement of the

correspondence of the laws of the change in the cross—sect ional area

in the direction of the x—axis, as well as the condition which s t a t es

that the drag of the body must not exceed the order of value of t h e

bl unt ing  resistance, are common to both theorems. The d i f f e r e n c e  in

the formulation of the theorem proven in §2 is as follows:

a~ the necessary condition A!,,~~~ .l; is not imposed , as was

done in (1 );

b) instead of requiring the equivalence of the values of ~he

blunting resistance (1], a greater liaitaticn is impose d: the nose

sections of the equivalent bodies, being ax isyumetrical, mus t have

the sane shape;

C)  instead of condition (3) in (1). whic h states that the body

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ----- —--- ii .~~~

_
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_
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cannot go beyond the limi ts of the space bounded by the sur face of
the shock wave, a greater limitation (12) is imposed : the bod y must
not go beyond the upper boundary of the entropy layer.

For this reason, we can expect the values of k found in §1 ,
characterizing the difference in the cross section of the bod y from
that of the equivalent solid of revolution, to be somewhat hig h~ r.,

Received 20 December 1960
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rig. 1. 1 — Shock wave ; 2 — cross section of round  body ; 3 — cross

section of equivalent body.

Fig.. 2.
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ri g. 3. 1 — Shock wave; 2 — eatto py layer ; 3 — body.

- _

L~ ~~~~~~~ ~~~~~~ 

_ :~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~-~~ - -— —---——-- - -- . 
~~~~~~~~~~

DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGANIZATION )~~CROFI~HE ORGA NIZ ATION MI CROFICHE

A205 DMP~TC 1 E053 AF / INAKA 1
A210 DMAAC 2 E0]. 7 AF/ ~~xm—w 1
B344 DIA/RDS—3C 8 E4 04 AEDC 1
C043 US.AZ4IIA I E408 AFWL 1
C509 BALLISTIC HES LABS 1 E4l0 ADTC
C510 AIR MOBILITY R&D 1 E4 13 ESD 2

LAB/PlO FTD
C513 PICATINNY A~~ENAL 1 CCN
C535 AVIATION SYS COI4D 1 ET I D 3

NIA / PUS 1
C59]. YSTC 5 NICD 5
c619 ~~A REDSTONE 1
D008 NISC 1
H300 USAI~~ ( USAREUR ) 1
P005 ERDA J .
P055 CIA/CRS /ADD/SD 1
NAVOBIETA ( 5oL) 1

NASA/KSI 1

AFIT/LD 1 
-

:1.

~

FTD- D ( T ~~)T-1925-77

-— --— - ---- , - . -

a~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
—-

~~~~~~~~~~~~ 
- —

~~~
. . . . H. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~

_ 
~~~~~~~~~

-—


