ANALYSIS OF PACKAGING FOR THE 7900 D GYRO. (U)

DEC 78 F C JARVIS

PTPT-78-26

END
LEVEL

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

FIRE REPORT NO. 76-06
AFBRA PROJECT NO. 76-27-01

FRANK C. JAEGER
Mechanical Engineering Technician
Autovon 767-4519
Commercial (313) 277-4224

ANALYSIS OF PACKAGING FOR THE 7900D GYRO

AF AIRCRAFT/VTV
AIR FORCE PACKAGING EVALUATION AGENCY
Wright-Patterson AFB OH 45433

December 1976
NOTICE

When government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related government procurement operation, the United States Government thereby incur no responsibility whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto. This report is not to be used in whole or in part for advertising or sales purposes.

ABSTRACT

In support of Oklahoma City Air Logistics Center (OC-ALC), three different pack designs were evaluated for packaging of the 7900D Gyro. Based on performance none of the three packs were considered to be satisfactory. Instead, a corner pad design approach recommended by AFPEA was incorporated by OC-ALC/DSPC with an XAS Fast Pack to provide a system that adequately protects the gyro.

PREPARED BY:
FRANK C. JARVIS, Mechanical Engineering Technician, Materials Engineering Div.
AF Packaging Evaluation Agency

REVIEWS BY:
MATTHEW A. VENETOS
Chief, Materials Engineering Division
Air Force Packaging Evaluation Agency

APPROVED BY:
JACK E. THOMPSON
Director, Air Force Packaging Evaluation Agency

PUBLICATION DATE:
10 JAN 1979

79 03 05 112
TABLE OF CONTENTS

Abstract .. 1
Introduction ... 1
Description of Test Packs 1
Test Instrumentation and Equipment 1
Test Procedures and Results 1
Discussion ... 6
Conclusions ... 6
Distribution List ... 8

FIGURES

Figure 1. Photographs of Test Packs 2
Figure 2. Photograph of Prototype Test Pack 6

TABLES

Table I. Test Pack Information 3
Table II. Comparison Drop Test Data of the Three Test Packs 4
Table III. Consecutive Drop Test Data for Lear Siegler Pack 4
Table IV. Drop Test Data of TPO Pack with Lear Siegler Top and Bottom Cushions 5
INTRODUCTION

Oklahoma City - Air Logistics Center (OC-ALC/DSPA) requested the evaluation of a Lear Siegler pack, an existing TPO pack and the XAS Fast Pack to determine those suitable for packaging the 7900D Gyro.

DESCRIPTION OF TEST PACKS

With the exception of the cushioning material, the Lear Siegler pack and the TPO pack were essentially the same. Both included an inner carton with polyethylene blocking materials and the complete encapsulation of the item with polyurethane foam. This type of pack and the XAS Fast Pack are shown in figure 1.

Additional pack information is presented in table I.

TEST INSTRUMENTATION AND EQUIPMENT

1. Oscilloscope, 4 channel storage, Tektronix Model 564-B
2. Accelerometer, tri-axial, Endevco Model 2233E
3. Amplifiers (3 ea.), Endevco Model 2614C
4. Power Supply, Endevco Model 2622C
5. Gaynes Drop Tester, Model 125

TEST PROCEDURE AND RESULTS

The drop tests were conducted in accordance with Federal Test Method Standard 101B, except as noted. A tri-axial accelerometer was located at the center of gravity of the wood simulated model to monitor the impact forces. The drop test data for the three test packs are presented in table II. The shock duration for this test series varied from 30 to 50 milliseconds.
Figure 1. Test Packs

a. Lear Siegler/TPO Pack

b. XA5 Fast Pack
<table>
<thead>
<tr>
<th>TYPE PACK</th>
<th>PACK DIMENSIONS (INCHES)</th>
<th>CONTAINER MATERIAL</th>
<th>CUSHIONING MAT'L. SPEC. DENSITY (pcf)</th>
<th>FORMULATION</th>
<th>THICKNESS (INCHES)</th>
<th>GROSS WT. (LBS.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAR SIEGLER</td>
<td>28 5/8 X 18 5/8 X 18 3/8</td>
<td>DW. Fiberbd.</td>
<td>1.1 & 1.3</td>
<td>ETHER</td>
<td>5 3/8 & 7 1/4</td>
<td>30</td>
</tr>
<tr>
<td>TPO</td>
<td>28 5/8 X 18 5/8 X 18 3/8</td>
<td>DW. Fiberbd.</td>
<td>1.2 & 1.4</td>
<td>ETHER</td>
<td>5 5/8 & 7 1/4</td>
<td>30</td>
</tr>
<tr>
<td>XA5</td>
<td>18 X 12 X 12</td>
<td>SW. Fiberbd.</td>
<td>1.75</td>
<td>ETHER</td>
<td>3 & 4</td>
<td>18</td>
</tr>
</tbody>
</table>

Table I. Test Pack Information
<table>
<thead>
<tr>
<th>IMPACT SURFACE</th>
<th>PEAK ACCELERATION - Gs</th>
<th>PEAK ACCELERATION - Gs</th>
<th>PEAK ACCELERATION - Gs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TPO</td>
<td>LEAR</td>
<td>XA5</td>
</tr>
<tr>
<td>3 (bottom)</td>
<td>3</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>1 (top)</td>
<td>2</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>2 (front)</td>
<td>2</td>
<td>29</td>
<td>9</td>
</tr>
<tr>
<td>4 (back)</td>
<td>1</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>5 (l.side)</td>
<td>17</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>6 (r.side)</td>
<td>16</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3 - 4 - 6 (corner)</td>
<td>16</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>3 - 4 (edge)</td>
<td>4</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>3 - 6 (edge)</td>
<td>20</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4 - 6 (edge)</td>
<td>20</td>
<td>17</td>
<td>4</td>
</tr>
</tbody>
</table>

Table II. Comparison Drop Test Data of the Three Test Packs

OC-ALC/DSPA's request included consecutive drop test data on the same face for the Lear pack and data for the TPO pack with the top and bottom cushions from the Lear pack. This data is listed in tables III and IV.

<table>
<thead>
<tr>
<th>IMPACT SURFACE</th>
<th>PEAK ACCELERATION - Gs</th>
<th>DURATION msec</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (bottom)</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>3 (bottom)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4 (back)</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>4 (back)</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>5 (l.side)</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5 (l.side)</td>
<td>22</td>
<td>0</td>
</tr>
</tbody>
</table>

Table III. Consecutive Drop Test Data for Lear Pack
<table>
<thead>
<tr>
<th>INTACT SURFACE</th>
<th>PEAK ACCELERATION - Gs</th>
<th>DURATION msec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>3 (bottom)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1 (top)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2 (front)</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>4 (back)</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>5 (l.side)</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>6 (r.side)</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>3 - 4 - 6 (corner)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3 - 4 (edge)</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>3 - 6 (edge)</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>4 - 6 (edge)</td>
<td>13</td>
<td>12</td>
</tr>
</tbody>
</table>

Table IV. Drop Test Data of TPO Pack with Lear Top and Bottom Cushions

Since the shock levels of the three test packs exceeded the 15 G fragility rating for this gyro, a new pack design was required. Design data, generated on AFPA's computerized Package Cushion Design Program, resulted in a corner pad design which will protect the gyro during shipment.

To confirm the computer results, a prototype pack was fabricated and tested. The preliminary data revealed that the computer designed pack would provide adequate protection. The prototype pack is shown in figure 2.
DISCUSSION

When OC-ALC/DSPA was informed of the improved performance that a corner pad design would provide, they incorporated the corner pad design with the XA5 Fast Pack as the inner container. This reduced the amount of cushioning material in the outer container and eliminated the need for the inner carton which included expensive polyethylene blocking inserts. The combination of the corner pad design with the XA5 Fast Pack reduced the maximum shock level to 14.8 Gs.

CONCLUSIONS

1. The Lear Siegler pack appeared to provide adequate protection when tested in accordance with standard drop test sequences. However, the soft polyurethane ether base foam will compress considerably and allow the item to slip within the cavity and become wedged in the corner. Because of this, the second of two consecutive drops on the same container face will generate shock levels which exceed the 15 G fragility value of the item.

2. The XA5 Fast Pack and the TPO pack will not provide adequate protection for the 7900D Gyro.

3. The combination corner pad design and the XA5 Fast Pack will provide the best protection at the lowest cost.
DISTRIBUTION LIST

HQ USAF/LETN
Wash DC 20330

AGMC/MABE
Newark AFS OH 43055

AGMC/SNA
Newark AFS OH 43055

Aviation Supply Office
ATTN: TEP-A
Philadelphia PA 19111

Commander
US Army Natick R&D Ctr/DRXNM-EPS
Natick MA 01760

NWC-Earle
Colts Neck NJ 07722

DESC/DESC-T
1507 Wilmington Pike
Dayton OH 45444

JMP TC
Aberdeen Proving Ground MD 21005

ADTC/SD3P
Eglin AFB FL 32542

WR-ALC/DSP
Robins AFB GA 31098

OO-ALC/DSTC
Hill AFB UT 84406

OC-ALC/DSPA
Tinker AFB OK 73145

OC-ALC/MMIMI
Tinker AFB OK 73145

SA-ALC/DSP
Kelly AFB TX 78241

SM-ALC/DSP
McClellan AFB CA 95652
DISTRIBUTION LIST (Contd)

Tobyhanna Army Depot/DRXTO-TP-S
Tobyhanna PA 18466

HQ AFSC/LGT
Andrews AFB DC 20334

AFALD/PT

AFLC/LOTTP

AFALD/PTP Library

DDC-TC (Accessions Division
Alexandria VA 22314

DLSIE/DRXMC-D
US Army Logistics Management
ATTN: Mr. Malcolm Alley
Fort Lee VA 23801

AGMC/MAWW
ATTN: Howard Price
Newark AFS OH 43055

OC-ALC/MMH
Tinker AFB OK 73145

AGMC/DMTP
Newark AFS OH 43055

USA Natick Labs (DRDNA-EPS)
Natick MA 01760

NAVSUPSYSCMD (SUP-0321A)
Wash DC 20376

USA Armament Research & Development Command
ATTN: DRDAR-LCU-TP
Dover NJ 07801
ANALYSIS OF PACKAGING FOR THE 7900D GYRO

In support of Oklahoma City Air Logistics Center (OC-ALC), three different pack designs were evaluated for packaging of the 7900D Gyro. Based on performance none of the three packs were considered to be satisfactory. Instead, a corner pad design approach recommended by APPEA was incorporated by OC-ALC/DSPC with an XAS Fast Pack to provide a system that adequately protects the gyro.