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formed. Infrared spectra establish the presence of coordinated hydrazinium ions
in the blue, green, and black compounds. Structures are proposed for all of the;

DD ,57n%; 1473 EUITION OF 1HOV €5 15 OLSOLETE

f/¢ﬁ 9 f/ 42 7c9?7a'ﬂ"ﬁgfam“imr§ﬁmrom £

YQP ’



— e
TR T - Ttmrm ke e e e oo Wt S el AEL L3

Lo
—

v materials based on spectroscopic and magnetic measurements.‘4%%§nif1cant exchange
interactions are present in the chloride-bridged linear chain complex (N2H5)Cu613.
The structure of the complex (NZHS)CuC13 has been determined from single crystal
X-ray counter data. The complex crystallizes in the orthorhombic space group

Pama with four molecules in a cell of dimensions a = 14.439(2), b = 5.705(1),

and ¢ = 6.859(1) A. The structure has been refined by full-matrix least-squares
techniques to a conventional R-factor (on F) of 0.042 using 538 independent
observations. The entire formula unit (with the exception of some of the "hydrogen -
atoms) is constrained to 1ie on a mirror plane. The structure consists of infinite
chains of dichloro-bridged dimers, in which one chioride ligand serves to pro-
pagate the chain in both directions while the other two chloride 1igands do not.
Thus, one chloride ligand is coordinated to three copper atoms with ag in-plane
distance of 2.297(1) A and two out-of-plane separations of 2.8560(5) A, while

the other two chloride ligands are each coordinateg to only a single copper

center with bond lengths of 2.280(1) and 2,298(2) A. The Cu-Cu' separation and
bridging Cu-C1-Cu' angle in the chain are 3.751(1) A and 92.79(3)°, respectively.
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Abstract 1
i The reaction of hydrazine with copper(lI) chloride in acidic aqueous solution
has been shown to produce at least four distinct complexes. Hydrazine behaves as
a reducing agent, leading to the white, diamagnetic copper(l) complex (N2H4)CuC1
and the black paramagnetic mixed-valence copper(I,I,11) complex (N,Hg),CusCle. o
Blue and green copper(Il) complexes (NZHS)ZCuCI4-2H20 and (NZHS)CuCI3 are also ]

formed. Infrared spectra establish the presence of (oordinated hydrazinium ions i o ‘
in the blue, green, and black compounds. Structures are proposed for all of these
materials based on spectroscopic and magnetic measurements. Significant exchange i
interactions are present in the chloride-bridged 1inear chain complex (NZHS)CuC13.
The structure of the complex (NZHS)CuC13 has been determined from single crystal y
X-ray counter data. The complex crystallizes in the orthorhombic space group Pnma
with “our molecules in a cell of dimensions a = 14.439(2), b = 5.705(1), and ¢ =
6.859(1) R. The structure has been refined by full-matrix least-squares techniques
to a conventional R-factor (on F) of 0.042 using 538 independent observations.
The entire formula unit (with the exception of some of the hydrogen atoms) is
constrained to 1ie on a mirror plane. The structure consists of infinite chains of
dichloro-bridged dimers, in which one chloride 1igand serves to propagate the chain in
both directions while the other two chloride 1igands do not. Thus, one chloride
1igand is .oordinated to three copper atoms with an in-plane distance of 2.297(1) E
. and two out-of—plane separations of 2.8560(5) i. while the other two chloride 1igands

are each coordinated to only a single copper center with bond lengths of 2.280(1)

and 2.298(2) 3. The Cu-Cu' separation and bridging Cu-Cl-Cu' angle in the chain

are 3.751(1) A and 92.79(3)°, respectively.
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Introduction

Hydrazine, like other polybasic 1igands, offers the possibility of several
different types of coordination behavior toward transition metals. It can, of
course, function as a monodentate 1igand, but may also serve as either a bridging
or chelating bidentate ligand. -Although numerous examples of both monodentate-
and bridging hydrazine have been demonstrated crystallographically, no verified
examples of chelatively bound hydrazine have been reported.2 Another coordination
possibilify exists as well. The mono-protonated hydrazinium cation, N2H5+, retains
a basic site, and should be capable of coordination. Although postulated in certain
cases, the only adequately characterized complexes containing coordinated hydrazinium
jon are the series [MII(N2H5)2(504)2]H, M=Cr, Co, NI, Cu, or Zn.3 A further
complication, or possibility exists for the interaction of hydrazine with
transition metals; hydrazine is a potent reduc’ng agent in agueous solution, so that
depending upon the particular metal ion involved, various redox reactions are possible
in addit1on.§o the coordination possibilities.

We have been interested in the relationship between the structural properties
and magnetic exchange interactions in chloride-bridged dimeric copper compounds.4
Since the number of chloride-bridged copper dimers is rather small, we have attempted
to prepare new examples of this structural type. The complex di-u-chloro-bis[dichloro-

(guaninium)copper(I11)] dihydrate is known to be a chloride bridged d1mer,5

and it is
also one of the few structurally characterized examples of a transition-metal complex
containing a positively-charged l1igand. We reasoned that complexes of similar
stoichiometry, and possibly comparable geometry, might be available from the

reaction of copper salts with a variety of polybasic 1igands under conditions where
monoprotonation of the 1igand is expected. We report here our results on the
reactions between hydrazine and copper(Il) chloride in acidic media, reactions which

appear to involve redox reactions as well as coordination of both neutral and

protonated hydrazine.
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Experimental

Preparation of Complexes

In general, it appears that most of the complexes discussed in this work may
be formed under a wide variety of reaction conditions, and in fact most reactions
led to mixtures of products. The preparative details outlined here are those which

we believe to be the most facile routes which lead reproducibly to pure products.

Hydrazinium trichlorocuprate(ll). Addition of 4.6 g (44 mmoles) of NyH,'2HC1 -

to a solution of 7.5 g (44 nmoles) of CuC12~2H20 in 25 m! of 34 HC! produced an
immediate 1ight green precipitate which was filtered from the solution. Upon
refrigeration the filtrate deposited bright green crystals of product.

Anal. Calcd. for (N2H5)Cuc13: Cu, 31.31; N, 13.80; H, 2.48. Found: Cu, 31.19;
N, 13.52; H,_2.52.

Bishydrazinium tetrachlorocuprate(Il) dihydrate. The initially formed 1ight

green pre;jpitate (see above) was added to 40 m1 of 3 M HC1 and heated to 45°C for
a few minutes. Following filtration the solution was refrigerated; shiny blue
crystals deposited.

Anal. Calcd. for (N2H5)2Cuc14'2H20: Cu, 20.66; N, 18.22; H, 4.59; C1, 46.12.
Found: Cu, 20.42; N, 18.24; H, 3.68; C1, 46.20.

Bishydrazinfum hexachlorotricuprate(I,1,I1). A solution of 3.5 g (20 mmoles)
of CuC]z-ZHZO and 2.2 g (20 mmoles) of N2H4-2HC1 in 30 ml of 3M HC1 was heated to
75°, with stirring, for approximately five minutes. Upon cooling to room temperature
black crystals formed which were filtered, washed with 3M HC1 and acetone, and
air-dried, (If the solution is allowed to remain in contact with the air prior to
fsolation of the product, a green crust forms on the surface).
Anal. Calcd. for (NpHg!,CusClg: Cu, 40.61; N, 11.94; H, 2.15; C1, 45.31.
Found: Cu, 40.39; N, 11.58; H, 2.18; €1, 45.40.
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Hydrazinechlorocuprate(I). A sclution of 8.0 g (47 mmoles) of CuC1,-24,0
and 4.8 g (46 mmoles) of NoHy*2HCT in 45 ml of 1 M HC) was heated to near boiling
for approximately 10 minutes. Upon standing at room temperature the solution
deposited shiny white crystals. The solution was filtered in a nitrogen-filled
glove bag and washed with water to remove traces of & black impurity which was
commonly present. |
Anal. Caled. for NoHaCuCl: Cu, 48.49. Found: Cu, 48.42. The instability of this

complex.(see text} precluded.other. meaningful microanalyses. .-

Measurements

Magnetic susceptibilities as a function of temperature and applied field were

measured as has been described previous'ly.6

Data were corrected for diamagnetism
of the constituent fons and for temperature independent paramagnetism, (TIP),
estimated to be 60 x 107 cgsu for Cu(11).

Electronic spectra in the visible and near-infrared regions were obtained
usirg a Cary 14 spectrophotometer. Samples were prepared as Nujol mulls on filter
paper. The quality of the spectra was limited by thermal decomposition of the
materials in the spectrometer 1ight path.

Infrared spectra for samples prepared as both KBr pellets and Nujol mulls on
KBr plates were obtained using a Beckman [R-20A spectrophotometer. Low-frequency
(500-100 cm']) spectra of Nujol mulls on polyethylene plates were obtained using
a Digilab FTS-14 FT interferometer.

Room- temperature EPR spectra were obtained using a Varian E-3 spectrometer.
The magnetic field was determined dfrectly from the calibrated chart paper. This

technique was checked with a Magnion G-502 precisfon gaussmeter, a Hewlett-Packard

5245 L frequency counter, and a DPPH sample; the results indicated that the accuracy
was better than 1%.

Analyses were performed by Integral Microanalytical Laboratories, Inc.,
Raleigh, N. C.
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Results and Discussion

There have been a number of reports of the reaction of copper complexes with
hydrazine. In aqueous solution, reaction of copper(Il) salts with hydrazine
hydrate leads to complexes Cuz(N2H4)2xz, which have been characterized as con-

2 2 ana\ogs.z Distinct

taining bridging hydrazine by analogy *o the Mrt¢ and n'
dihydrates”*® (for X, = 50,2” and X = Br") and two monohydrates’*? (for X = 1” and
X = C17) of this general formula have also been reported, and solution equilibrium
measurenents have indicated the existence of Cu(NHg) *Z, y = 1,2,3,8,6.10 1¢
copper chloride is neutralized to pH = 7 prior to reaction with hydrazine, a
diamagnetic complex, presumed to be a diimide -omplex of copper(l), is formed.n
Oxidation of substituted hydrazines by cupric :alts in aqueous solution leads to
isolable and well-characterized diazine compIexes.]Z"14 €.9., (CH3N-NCH3)Cu2C12.
Distinct hydrazine complexes of copper(l)15']6. as well as mixed-valence copper(I,Il)

complexes with substituted hydrazines.]7']8

have also been reported, There has
apparently been only one report of the reaction between copper(I1) complexes and
hydrazine in acid solutions.19 Although no characterization other than analytical
formulations was provided, three of the complexes reported (the blue, green, and
black complexes) appear to be identical to those found in our study.

The course of the reaction between hydrazine hydrochloride and copper(11)
chloride 1n hydrochloric acid solution, and hencc the fdentity of the products
isolated, fs highly dependent upon the specific conditions used - reagent and acid
concentrations, reaction temperatures, duration of reaction, and crystallization
temperatures. In fact, in a typical reaction all of the products (hereafter
referred to as the blue, green, black, and white complexes) to be discussed are
formed, but in varying yields and purity. The conditions out)ined in the experimental
section are simply those which we have found to be most 1ikely to lead to the pure

complexes in reasonable yfeld. In investigations of the kinetics of oxidation of

hydrazine by various reagents, it has been claimed that cupric ion does not react
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at an appreciable rate with hydrazine in acid solut1on.2° Howaver, under the
conditions of high concentration and elevated temperature used in our preparative
work, redox reactions are facile, as judged by both the extensive gas (presumably
nitrogen) evolution observed and the isolation of distinct copper(l)
containing products. -

Although all of the products are sufficiently stable that they may be

readily isolated and characterized, color changes indicate that, over long periods

. of_time, most undergo some reaction. The variety of color changes which do occur

suggest that several more stable copper-hydrazine phases may exist. Indeed,
instability is not surprising for complexes containing both oxidizing and reducing
agents. The white complex, (Nqu)CuCI. is readily afr-oxidized, and unless it is

isolated in an inert atmosphere the resulting product is gray or black in color.

Based on EPR spectra, the black material which forms upon exposure of the white complex

to air is not tk2 black mixed-valence complex discussed in detail below. Over
long periods of time, the formation of a green color is observed as well. The
specifics of the color changes obser\ :d for the Cu(Il) complexes are somewhat
unexpected. Upon standing open to the air for a period of several months, the
green complex (NZHS)CUCI3 turns black, although samples in closed vials retain
their green color. In contrast, the blacked mixed-valence complex (NZHS)ZCU3C16
develops a green color upon standing in closed vials over a period of a few weeks.
Of the complexes examined in this work, only the color of the blue (N2H5)2CuC14'2H20
appears to be unchanged with time. It should be emphasized that, based on EPR
measurements, these decomposition products do not reprasent simple interconversions,
e.g., the green product derived from decomposition of the black (NZHS)ZCu3c16 is
not equivalent to the green complex (NZHS)CUCI3.

The sensitivity of these compounds was further demonstrated during our attempts
to obtain infrared spectra. Although the white and black complexes yielded KBr

pellets readily, grinding the blue complex with KBr produced a green mixture, and
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grinding the green complex with KBr produced a 1ight orange mixture which

darkened with time. Although such color changes could be indicative of pressure
induced decomposition, it is more likely that they represent solid state reactions,
either bromide for chloride metatheses or cleavage of bridging halide ponds.

That the proper explanation is halogen exchange is suggestea by the observation
that these color changes do not occur upon grinding with potassium chloride.

These materials which we have prepared are sufficiently different that we

. gill examine them individually in the discussion which follows. o R

(N2H4)Cuc1. This white complex is quite afr-sensitive, turning grey and
then black upon exposure to air. Afr-oxidation is likely, given its
formulation as a copper(I) complex. Also, the static susceptibility measurements
and epr spectra are in accord with its formulation as a copper(l) complex.

The compound {s diamagnetic, and the weak EPR signals, which increase with
exposure to air, may be attributed to copper(1!) oxidation products.

There have been only a few reports of complexes of hydrazines with copper(I).
Reaction of anhydrous hydrazine with anhydrous copper(II) chloride near 0°C gives
the white solid CuC12-3N2H4 (sic), which was formulated16 as a mixture of
N2H4-Hc1 and CuCl'2N2H4. The same copper complex CuCl~2N2H4 was more simply
prepared from reaction of copper(l) chinride with anhydrous hydrazine. Based
on an observed conductivity in hydrazine which {1s appropriate for a 1:1 electrolyte,
the complex was postulated to be the 1inear cationic species [Cu(N2H4)]+C1'.16
This formulation is somewhat suspect, however, since the reported nitrogen

]

infrared stretching frequency, 959 cm ', is in the range expected for either

bridging hydrazine or monoprotonated hydrazine.Zl

More closely related by
empirical formula to the present compound is a wnite complex of phenylhydrazine,
(CGHSNHNHZ)CuI. which may be prepared from the copper(!) salt.'? Perhaps the

best model for the expected structure of (N2H4)CuC1 is the analogous species

. .
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(N2H4)CuCN. a material whose structure has been determined cr_ystallogr-aphically.]5
In this complex infinite zigzag chains of cyanide bridaed copper ions are bridged
by hydrazine, forming inf nite puckered layers which nest together. We propose

a similar structure for (N2H4)CuCl. based on the following reasoning. First, the
physical properties of the crystals are correct. As initially formed, the crystals
of (N2H4)CuC1 have the appearance of mica. This is compatible with a layered
structure as observed for (NZHA)CuCN. Infrared spactra are also compatible with

this formulation. Previous work2] has shown that “N-N for unidentate hydrazine
falls

LY

L -
in the range 931-936 cm™', whereas vn-y for bridging hydrazine falls in the

-1 -
range 948-980 cm . The value of 960 cm ! observed here for (N2H4)CuC1 clearly

establishes the presence of bridging hydrazine. This result is again compatible with

the proposed structure.

The synthesis of this compnund is undoubtedly the least predictable of all
the materials examined, and the preparation is very sensitive to reaction conditions.
Upon occasfon, efforts to synthesize (N2H4)Cuc1 have led to the isolation of CuCl,
which wa§ identified by analysis, crystal morphology, and lack of air sensitivity.
Attempted preparation of the complex in more dilute acid (0.01 M) led to a complex
of apparent composition (NZHS)CuCIZ. This white, diamagnetic, solid decomposes
thermally in vacuo to produce hydrazinjum chloride. Efforts to reproducibly prepare
this material in pure form were unsuccessful.

(N2H5)2CU3C16. One of the most surprising materials formed in these studies

is (N2H5)26u3c16, a compound which appears as opaque black crystals. This formula-
tion, which involves protonated hydrazine as either ligand or counterion, requires
that copper be present as a mi«ture in the +1 and +2 oxidation states. Analytically,
the only d{istinction between this formulation and one invoiving neutral hydrazine
(and hence a singly-valent copper(II) complex) would be the hydrogen content.

Although it might be argued that the accuracy of the analyses is insufficient to




distinguish these possibilities, the mixed-valence formulation is clearly favored,
and a varirty of magnetic and spectroscopic evidence provides firm support for the
existence of both oxidation states.

Infrared spectra demonstrate the existence of hydrazinium cations and thus

provide confirmation of the mixed-valence nature of the complex. The N-N stretchin

' freqbenc1es df'hydfizine and {ts salts and compléan are Qéneraiiy suffiéieht-tdl

distinguish the various coordination possibn'lties.21

The uncoordinated hydrazini:m
ion has NN in the range of 958-965, depending on the counterion, and this may be
contrasted to free hydrazine, which has “NN = 885 cm'l. Although the free hydrazinium
fon may be distinguished from »~didentate hydrazine (NN = 931-936 em'), there

is some overlap with bridging hydrazine (VNN = 948-980 cm']). However, coordinated

hydrazinium cation may be distinguished from all other poss1b111t1es22 by its high

N-N stretching frequency near 1000 em)

. (NHg),CusClg exhibits NN = 1000 ca™' 1n L
Nujol mulls, and a doublet YNN = 1000, 992 cm'] in KBr pellets. Although the
splitting of the band in KBr pellets may reflect either low symmetry 1n the complex,
solid-state effects, or reaction with kBr, 1t should be noted that the complexes 5
M(N2H5)2(504)2. which have symmetrically disposed hydrazinium ligands, also ? 1
apparently exhibit a doublet near 1000 cm']. Thus, the existeace of a coordinated '
hydrazinium fon in (N2H5)2003615 is fairly well established by the infrared spectra.

More direct evidence for the existence of a mixed-valence copper complex
comes from measurements of the magnetic susceptibility. Over the temperature range
2-60°K, the susceptibility exhibits Curie-Weiss behavior with a molar susceptibility

X corrected for diamagnetic effects, given by

. 0.446
m " Y+2.8
wtere the susceptibility 1s calculated per formula unit, e.g., for three copper ions.

295

This susceptibility 1eads to a room temperature magnetic moment Vofe = 1.88 B.M.

per formula unit. This value is in the range typically found for 1solated copper(Il)
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fons, and demonstrates that of the three copper ions in the formula unit, only

one is copper(Il). By comparison, the magnetic moment calculated per copper ion

295 , 1.08 B.M, Such a value is much too low for non-interacting copper(II)

1S uoge
fons, and since the linearity of the reciprocal susceptibility versus temperature

plots rules out significant exchange interactfons, 1t must be concluded that two

“of the three copper fons are present as copper(I), rather than copper(II).

A large number of mixed-valence copper complexes are known.23 ﬁith both
amine and halogen ligands, the most commonly encountered formulations are species
of the sort [CuIIA4J[CuIX2}2. We propose that the complex (N2H5)2Cu3C16 is a
similar species which is most appropriately formulated as [CulI(NZHS)ZCIZJ[CuICIZ]Z.
Unlike the simple amine complexes where the +2 cation results from coordination of
four reutral ligands to copper(Il), in this case the +2 cation arises from the
coordination of two positively charged 1igands and two negatively charged 1igands
to copper(II). Although other formulations are possible, the requirement for
coordinated hydrazinium fon, as demonstrated by infrared spectra, the lack of
magnetic exchange interactions between copper(Il) sites demonstrated by magnetic
susceptibility measurements, and the similarity of the empirical formula to known
species establishes tr1is as the most 1ikely formulation. Although such an 1opic
formulation could be verified through the measurement of conductivities, its
instability in solution precludes such measurements. The complexes [CuA4][CuXZJZ.
which range in color from dark green to dark blue, are claimed to be Class !
mixed-valence compounds, e.g., to contain noninteracting copper(I) and copper(Il)
sites. 23 The deep black color of (u2n5)20u3c16, howaver, suggests the presence
of some ‘nteraction, e.g., Class II behavior. Although no specific feature of the
electronic spectrum could be assigned as an intervalence transfer transition, the
very broad absorption through the entire visible region of the spectrum is
concistent with the presence of several unresolved transitions. Weak interaction

of copper(l) and copper(11l) via bridging chloride seems 11kely, gfven both the

0
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proclivity of copper(Il) to attain coordination numbers greater than four and
also the evidence for interaction via bridging cyanide in Cu3(NH3)4(CN)4.24

(NZHS)CuC13. Part of our initial interest in the complexes of hydrazine with
copper lay in the possibility of preparing, and then examining magnetically and
structurally, chloride-bridged copper(Il) dimers. By analogy to the structuraily
characterized® material di-u-chlorobis[dichloro(guaninium)copper(1l)]dihydrate,
the green complex hydraziniumtrichlorocopper(1l) appeared to offer the best
possibility for observing such behavior. In fact, the evidence shows that the
complex is a chloride-bridged polymer, rather than a dimer.

Infrared spectra of (NZHS)CuCl3 demonstrate the presence of the coordinated
hydrazinium {on. In the N-N stretching region, Nujol mull spectra exhibit a
single absorption at 995 cm']. and KBr pellet spectra exhibit a doublet at 1005
and 992 cmTJ. As mentioned previously, there 1s a color change (from green to
orange) upon grinding this complex with KBr, and the apparent substitution
reaction may be responsible for the observation of distinct N-N stretching
frequencies in KBr pellets. As discussed above for (NZHS)ZCU3C16, the observation
of the N-N stretch in this region unambiguously demonstrates the existence of the
coordinated hydrazinium ion.

Although somewhat inconclusive, low-frequency infrared spectra suggest the
presence of chloride bridging in (N2H5)CuC13. The complex exhibits doublets at
309 and 300 cn”! and at 268 and 262 cm™'. There is only limited precedent for.
the assignment of low-frequency infrared spectra of copper-halogen complexes, and
apparently no comparison of terminal and bridging copper-chiorine stretching
frequencies goes without debate. Published datazs for a series of related complexes
suggests that terminal copper-chlorine stretching frequencies fall near 300 cm'].
We have examined the far-infrared spuctra of several complexes known to contain

bridging chlorides, and ?ind that in addition to absorptions near 300 cm']
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(attributable to terminal Cu-Cl), there are absorptions in the range 260-280 em .

Thus, the observed absorptions at 268 and 262 cm" ir (N2H5)CuCl3 are suggestive

of bridging chloride. For comparison, the complex (NZHS)ZCu3C15, which
apparently contains no chloride bridges between copper(Il) ions, exhibits no
absorptions fn the 200-280 cm' region.

The presence of multicenter spin-spin interactions, and_hence the necessity
of chloride bridges, is clearly demonstrated by the magnetic susceptibility.
Figure 1 is a plot of susceptibility versus temperature in the range 2-74 K.

As can be seen, the susceptibility exhibits a broad maximum centered at 11.4 K,
consistent with the presence of anti{ferromagnetic interactions. The data could be

reproduced fairly well using the modified Bleany-Bowers expression26 (eq. 1) for

exchange-coupled copper(ll) dimers;

2.2
Xn * agpey [+ (1/3)exp(-20/k1)37 + o (M

which results from a consideration of the eigenvalues of (2), the

H o 'ZJ 51 'Sz (2)

Heisenberg exchange Hamiltonfan, However, the value of one parameter

obtained from this fitting procedure 1$ unreasonable. Although the values.

2J = -6.5 cm'] and g = 2.312 are in the range commonly encountered for chloride

bridged copper(Il) ions, the value of 6 = -15,5 K casts doubt on the validity
of the application of the dimer model to this complex. The parameter o is an

indicator of fntermolecular interactions, In this case, then, the results suggest

that the intermolecular exchange interactions are.sign1f1cant1y larger than the
intramolecular exchange interactions, a conclusion which 1s clearly incompatible
with the existence of dimeric (N2H5)Cuc13.
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In order to understand this unusual magnetic behavior we have carried out
8 structural determination by single-crystal X-ray diffraction methods. Green,
hexagonal plate-shaped crystals were obtained as stated above. On the basis of
Weissenberg and precession pﬁotographs. the crystals were assigned to the
orthorhombic system. The observed systamatic absences are Okl for (k+)) odd
and k0 for h odd, which suggests that the space group is either Pnma (D;g) or
Pnzla(c2v9)' The former (centrosymmetric) choice was verified by the structure
refinement (vide infra). The cell constants,obtained by least-squares methods,
are a = 14,439(2), b = 5.705(1), ¢ = 6.859(1) A. The observations were made at
a temperature of 22C with the wavelength assumed as x(MoKn1) = 0.7093 3. A
density of 2.386 g cm'3 calculated for four formula units per cell is in good
agreement with the value of 2.41(3) ¢ em™3 observed by flotation in chloroform/
bromoform mixtures. Hence, ifn space group Pnma, the copper atom and at least one
chlorine atom are constrained to 11e on etther an inversion center or a mirror
plane; only the latter choice 1s consistent with the known formulation of the
complex.

Diffraction data were collected from a crystal bounded by planes of the
forms (100}, {001} and the faces (01T), (071), (021), (027). The distances between
opposite faces were as follows: (001) to (00T), 0.13 mm; (100) to (700), 0.09 mm;
(017) to (011), 0.22 mm; (021) to (021), 0.27 mm. The crystal was mounted
approximately parallel to the crystallographic b-axis, and in this orientation
intensity data were collected on a Picker four-circle automatic di ffractometer using
MoKa radiatfon and a graphite monochromator. The mosaicity of the crystal was
examined by means of the narrow-source, open-counter w-scan technique and was
Jjudged to be acceptable.

Twelve reflections, accurately centered through a narrow vertical slit at

a takeoff angle of 1.2°, formed the basis of the least-squares refinement of cell
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parameters and orientation using the logic documented by Busing and Levy for
the PDP-8/L computer.27

Intensity data were collected at a takeoff angle of 3.3°, with a counter

%
%
13

aperture of 5.0 mm x 5.0 mm positioned 32 cm from the crystal. The data were

collected by the e-20 scan tachnique at a scan rate of 2.0° min~'. The peaks

were scanned-from 0.80° to-2e below the calculated K“i peak position to 0.80° -

e R
DAL

i

tn-20 above the calculate K02 peak position. Stationary-counter, stationary- !

crystal background counts of 4s were taken at each end of the scan. The pulse-

R MEE LI

height analyzer was set for approximately a 90% window, centered on the MoKa peak.

A unique data set having 3°<29<55° was collected; a total of 717 intensities

ST

was recorded. The intensities of three standard reflections, measured after every

L

100 reflections, showed appreciable decline during the run, and a linear correction -

was applied to the data to allow for diminished intensity with cumulative exposure. é {

Cata processing was carried out as described by Corfield 53.514?8 After

gt w .?‘..;"1-!4’ [N "Rt

correction for background, the intensities were assigned standard deviations _
according to the formula !

oy e

o(1) = [C+ 0.25(ts/tb)2(BH + BL) + (p1)?)/2

where the value of p was selcted as 0.05. The values of I and o(l) were corrected

o e

for Lorentz-polarization effects, and for absorption. The absorption coefficient

for this compound for MoKa radfation is 52.2 cm"l and for the crystal chosen the

. i d

transmission coefficients were in the range 0.31 to 0.44 with an average value of
0.40. Of the 717 data collected, 552 were greater than three times their estimated
standard deviations; in addition to the exclusion of data with 1 less than 3o,

fourteen data with ccunts greater than 1x105. which had flooded the counter,

were excluded. Thus 538 data were used in the subsequent structure analysis and

refinement.

i
i
|
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The structure was solved by direct methods using the highest 145 normalized
structure amplitudes (E's) in the program MULTAN.29+30  The chosen solution, which

had an R of 21.11 and an absolute figure of merit of 1.0557, gave an E map

Karle
that clearly revealed the location of the copper and three independent chiorine

all on the crystallographic mirror p{apg at y = l/@, A structure factor cal;u]ation
followed by a difference Fourier synthesis revealed the positions of the two

nitrogen atoms, also on the mirror plane. Isotropic least-squares refinement of these 6
positions led to values of the conventional agreement factors R, = zl[Fol-IFcll/leol =
0.189 and R, = [2N(|FOI'IFC|)Z/EWFOZJ]/Z = 0.276. Al1 least-squares refinements in
this study were carried out on F, the function minimized being 2W(|F0|-1Fc|)2- where
the weights w were taken as 4F°2/02(F°2): In 811 calculations of F_, the atomic

scattering factors for nonhydrogen atoms were from International Tables3]

32

while
those for hydrogen were from Stewart et al. Subsequent anisotropic least-squares
refinement on these atoms gave R, = 0.062 and R2 = 0.077. The hydrogen atoms were

then located in a difference Fourier map. Attempts to refine these hydrogen atom
parameters were no* successful. An attempt to refine the structure in the non-
centrosymmetric space group Pn21a [an alternate setting of the conventional Pna21

(No. 33)] was also unsuccessful {n that the y-coordinates of the heavy atoms and

their associated thermal parameters oscillated wildly. Least-squares refinement

was therefore continued in the centrosymmetric space group Pnma, with the hydrogen atoms
assigned fixed isotropic thermal parameters which exceeded the isotropic thermal para-
meter of the atom to which they were bonded by 1.5 32. In the final cycles of least-
squares refinement, no hydrogen parameter was varied, non-hydrogen atoms were refined

anisotropically and the data were corrected for secondary extinction.33’34

yielding
final values for R] and R2 of 0.042 and 0.059, respectively. In the final cycle of
Jeast-squares refinement, no parameter experienced a shift of more than 0.03, which is
taken as evidence of convergence. The positional parameters, along with their standard
deviations as estimated from the inverse matrix, are listed in Table I. The

thermal parameters and a compilation of
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of observed and calculated structure amplitudes are available as supplementary

material. The final value of the extinction coefficient was 7(2) x 10'8.

Description of the Structure

The complex is polymeric in the crystal, the coordination around each copper(Il)
center being the commonly observed tetragonally elongated (4+2) octahedral. The
four in-plane (short) bonds are to the three chloride ligands, C1(1), €1(2), and
C1(3) and to the nitrogen atom N(1) of the hydraz1nfum cation. The out-of-plane
(Tong) bonds are to the basal C1(1) atoms of the copper atoms above and below.
The coordination around a single coppef atom is shown in Figure 2, and views
of the bridging network and consequent chain structure are shown in Figures 3 and 4.
Since the copper and all the in-plane atoms in the complex l1ie on a crystallographic
mirror plane, these five atoms are strictly coplanar. This polymeric structure in
which one ha]iderligand is bﬁund to three adjacent copper atoms while the others
are terminal is uncommon, but has been observed before in the bromide-bridged
polymers dibromo[2-(2-aminomethyl)pyridine]copper(11) and dibromo(2-methyl-1,2-
diam1nopropane)copper(II);35 this present complex represents the first such example
involving chloride bridges, however.

The interatomic distances and angles observed in the complex are listad in
Tables II and I111. The in-plane Cu-C! bond lengths of 2.280(1), 2.297(1), and
2.298(2) 3 are similar to those found in a variety of other chloro-bridged copper(1l)

3,37 The Cu-N bond of 2.061(5) R is longer than those of 1.971(2) and

1.984(2) K in Cu(NH3)2((:03)38 and in most other copper-amine comp1cxes.39 but is

complexes.

consistent with the reported length of 2.08 R in the 2inc hydrazinium complex
3
Zn(NZHS)Z(SOG)Z’
The Cu-Cu separation in the chain 1s 3.751(1) K. the out of plane Cu-C1(1)’
and associated Cu-C'(1)'-Cu’ angle being 2.8560(5) A and 92.79(3)°, respectively.
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Thus, the bridging geometry here {s different from that in the analogous bromide-
bridged chains referred to ear11er35 in that the bridging angle here is cobtuse
while in those earlfer structures it was acute. Indeed, in the present case

the out-of-plane interaction is stronger than those of 3.109(2) and 3.260(6) A

in the brom1de5br1§g§drspegies (gllowing for a diffe(ence of 0.]5 3 between the
radi{ of Br and C1) but the larger bridging angle causes the Cu-Cu separation to
be comparable with those of 3.866(2) and 3.737(6) A 1n these complexes .

The N(1)-N(2) bond length of 1.457(7) & 1s not significantly different from
the value of 1.451(5) Z in neutrai hydrazine and in neutral dimethy1hydrazine.4o
The Cu-N(1)-N(2) bond angle 15—119.1(3)’, apparently larger than the value of 110°
in the zinc complex.3 Since the hydrogen atom parameters were not varied, it {s
difficult to make many conclusions- concerning the hydrogen bonding in the crystals.
It is apparent, however, that there is a strong hydrogen bond between N(2) [which
has the additional proton) and the terminal atom C1(3) of a neighboring chain;
the N(2)----C1(3) distance and associated N{2)-H:---C1(3) angle are 3.111(5) A and
174°,

(N2H5)2Cuc14‘2H20. This bright blue crystalline complex forms upon

recrystallization of the green (N,Hc)CuCly. Unlike the other materials, it
appears to be stable indefinitely. Although nitrogen, copper, and chlorine analyses
are quite good for the formulation given, the value for hydrogen s approximately
20% Jow. Similarly low, but variabie, results wers found for other preparations of
this material and probably reflect some decomposition pathway which complicates
the microanalysis.

Magnetic susceptibi)ity measurements are consistent with the existence of
non-interacting copper centers. Over the tamperature range 2.4 to 100°K the plot

of reciprocal susceptibility vs. temperature 1s linear, with an intercept of -2°K.

[
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The data provide an excellent fit to the Curie-Weiss law, the susceptability being
given by

L.

The effective magnetic moment, 1.92 B.M., is normal for copper(ll)
Infrared spectra are again consistent with_the presence of coordinated
hydrazinium ion in (NZHS)ZCuC14~2H20.

frequency at 1008 em™! in KBr pellets (1016 em™ ! in Nujol mulls) rules out

uncoordinated hydrazinium fon such as 1s observed in (NZHS)ZCdCI4 Y

Observation of a single N-N stretching

Based on the similarity in color and in empirical formula, it is tempting

to expect similar structures for this material and the previously characterized

(NZHS)ZCU(SO4)2' This latter complex has a linear chain structure with bridging

bidentate sulfate groups and trans hydrazinium 1igands. Although magnetic exchange

interactions are extremely weak in (“2"5)2C“(S°4)2'42 an analogous structure

involving chloride bridges would be expected to show magnetic behavior comparable
to (NZHS)CuC13. Since the complex appears to follow the Curie-Weiss law down to
very low temperature, the magnetic measurements appear to preclude such a structure
On the basis of the ava1labie evidence, then, we suggest that the most probabie
structure for (NZHs)ZCuCI4-2H20 involve 6-coordinate monomeric copper complexes
trans-bis(hydraziniumjtetrachiorocopper{I1).

Conclusion

We have demonstrated that the reaction of hydrazine with copper(II) chloride

in acidic solutions gives rise to a range of products differing significantly from

those obtained in neutral solutions. The results ind'cate that protonated hydrazine

reacts as both a reducing agent and as & 1igand, the specific products formed being

sensitive to conditisns. Experiments designed to determine 1f thic behavior {s also

TR o Lt o et omtd
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characteristic of substituted hydrazines have just been initiated; preliminary

evidence suggests that a serfes of complexes is formed.
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Table I.

Atom

cu
CL1
cL2
c13

"2

w2

g 112
H921
a8 23

2 Hydrogen atom positions were not varied

X

0.4532( 1)
0.5391( 1)
0.3754( V)
0.3191( V)
0.5706 { 3)
9.6611( 3)
0.5
0.663
0.711

y

o. 2500
0.2500
0. 2500
0.2500
0.2500
6. 2500
0. 130
0.397
0.250

Positional Parameters for [(NZHS)Cuc13]

z

0. 1477( V)
-0. 1341 ( 2)
0.4370( 2)
«0.0329 ( 2)
0.3186( 7)
0.2245¢( 7)
0.375
0,216
0.309

[ ———
[




Table II. Interatomic Distances (K) in (NZHS)CuCI3

Bond Distance

i

. Cu-Cu 3.751(1)
e Cu-CL1 2.297(1)
Cu-CLY" 2.856(1)
" Cu-CL2 2.280(1)
§ Cu-CL3 2.298(2)
Cu-N1 2.061(5)

N1-N2 1.457(7)
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Table IIl. Interatomic Angles (Deg) in (NZNS)(:u(:'I3 ;_
. Atoms  Angle 'é
Cu-CL1-Cu’* 92.79(03) '
CL1-Cu-N1 91.95(14) :
N1-Cu-CL2 84.84(14) :
; CL2-Cu-CL3 93.12(06)
g CL1'-Cu-CL2 92.74(03) ¥
; CL1'-Cu-CL3 90.87(03)
g CLY'-Cu-N 89.23(03)
CL1'-Cu-CLY" 174.15(07) ;
N2-N1-Cu 119.06(31) % |
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CAPTIONS FOR FIGURES

Figure 1. “Magnetic susceptibility as a function of temperature for Cu(hydrazinium)-

Cl3. The solid 1ine was calculated from the modified Bleaney-Bowers

equation with the parameters 2J = 6.5 cm'], g=2.12, and ¢ = -15,5°.
Figure 2. View of a single formula unit of Cu(NZHS)Cl3. Thermal ellipsoids are
drawn at the 50% probability level; hydrogen atoms are omitted for

clarity.

Figure 3. View of the bridging network in Cu(N2H5)C13. The unlabeled atoms are

nitrogen atoms.

Figure 4. View of the packing of the formula units in the polymeric Cu(NZHS)Cl3

structure.
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SUPPLEMENTARY MATERIAL
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Observed and calculated structure amplitudes ( electrons X 10) for [(N2H5)CUC13J
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