CHANNEL BLOCKING IN A SATELLITE COMMUNICATION SYSTEM MODEL. (U)

OCT 78 D. P. GAVER, J. P. LEWOCZYK

UNCLASSIFIED NPS 55-78-025
CHANNEL BLOCKING IN A
SATELLITE COMMUNICATION SYSTEM MODEL

by
D. P. GAVER
and
J. P. LEHOCZKY

October 1978

Approved for public release; distribution unlimited.
Naval Postgraduate School
Monterey, California

Rear Admiral T. F. Dedman
Superintendent

Jack R. Borsting
Provost

This report was prepared by:

D. P. Gaver, Professor
Department of Operations Research

J. P. Lehoczky, Professor
Carnegie-Mellon University

Reviewed by:

Michael G. Sovereign, Chairman
Department of Operations Research

Released by:

William M. Tolles
Dean of Research
Channel Blocking in a Satellite Communication System Model

D.P. Gaver and G.F. Lehoczky

Naval Postgraduate School
Monterey, California 93940

Naval Postgraduate School
Monterey, California 93940

Approved for public release; distribution unlimited.

Satellite Communication,
Service Systems,
Telephone Traffic

A model is constructed for a communication system that involves a single satellite and many ground stations. The probability that messages are blocked is studied.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Formulation of the Problem</td>
<td>1</td>
</tr>
<tr>
<td>2. Analysis</td>
<td>3</td>
</tr>
<tr>
<td>3. Blocking Probabilities</td>
<td>9</td>
</tr>
<tr>
<td>4. Numerical Results for Three and Four Stations</td>
<td>13</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>16</td>
</tr>
</tbody>
</table>
1. Formulation of the Problem

Consider a communication system consisting of \(r \) stations, each of which must be able to communicate with all the others. The communication is conducted via an intermediate satellite. Since each station has, realistically, a finite capacity to handle messages simultaneously in progress, and since the satellite itself has limited capacity, the system will sometimes be congested, and a message applying for transmission will be blocked, i.e. effectively given a busy signal. We wish to calculate the probability that a message will be blocked, or delayed. The reader familiar with telephone system congestion theory, see Syski [1960], or Cooper [1972], will recognize this as a more complicated version of the situation for which the "Erlang B" formula—a truncated Poisson—holds. Essentially we assume that blocked calls are lost. For a model describing the more realistic "re-try" situation, see Gaver and Lehoczky [1976].
Specifically, we assume that station \(i \) (\(1 \leq i \leq r \)) has \(c_i \) channels, and the satellite has \(c_s \) channels. We assume that a message initiated at station \(i \) and intended for station \(j \) (\(i \to j \) for short) requires a free channel at \(i \), one at the satellite, and one at \(j \) before transmission may begin. If no channel is available at one of these three locations, blockage occurs. We assume the satellite offers direct access, thus if any channel is available in the satellite a user will not be blocked at that point. Furthermore we assume that a channel in use is not available to any other user. That is, there is no possibility of simultaneous transmission by another user on an occupied channel and consequent message spoilage. The possibility of message destruction apparently exists for some existing satellite communication systems; see Kleinrock [1975], and Gaver and Lehoczky [1977]. Finally, direct access structure is apparently not yet available in practice, according to our information. Our study pertains to conceptual systems.
2. Analysis

Suppose that attempts to transmit messages from \(i \) to \(j \) arrive according to a homogeneous Poisson process with rate \(\lambda_{ij} \), the rate of message termination, when the call is from \(i \) to \(j \), is \(\mu_{ij} \), and holding times are independently exponential. Let \(\rho_{ij} = \lambda_{ij}/\mu_{ij} \), and \(\eta_{ij} = \rho_{ij} + \rho_{ji} \). Let \(X_{ij}(t) \) be the number of messages or calls in progress from \(i \) to \(j \) at time \(t \). It is clear from our formulation that \(X_t = \{X_{ij}(t), 1 \leq i < j \leq n\} \) is a multivariate Markov process in continuous time.

Steady-State Solution

Note that \(X_t \) satisfies inequality constraints \(C \) which occur because the channel capacity is limited at the various stations.

\[
C: X_{12}(t) + X_{13}(t) + \cdots + X_{1r}(t) + X_{21}(t) + \cdots + X_{r1}(t) \leq c_1,
\]

and in general,

\[
\sum_{j \neq i} X_{ij}(t) + \sum_{j \neq i} X_{ji}(t) \leq c_i, \quad 1 \leq i \leq n
\]

\[
\sum_{i=1}^{r} \sum_{j \neq i} X_{ij}(t) \leq c_s.
\] (2.1)
If the constraints were not present \((c_i = \infty, c_s = \infty)\) then

\(X_{ij}(t)\) is an infinite server, Poisson arrival queueing process (termed M/M/\(\infty\)) for every station pair \(i, j\), and the stationary distribution is then Poisson:

\[
\lim_{t \to \infty} P(X_{ij}(t) = n_{ij}) = e^{-\lambda_{ij}} \frac{n_{ij}^{n_{ij}}}{n_{ij}!}, \quad n_{ij} = 0, 1, 2, \ldots \quad (2.2)
\]

Furthermore, the number of calls in progress between all pairs of stations are independent. It may even be stated that the above, (2.2), is true for the arbitrary service time situation.

If the constraints are seldom binding, that is if blocking is a rare event, then (2.2) provides a useful approximation.

In the case that the constraints are imposed, the above result is also very nearly true, as is seen from the following:

Result. The stationary joint distribution of \(X_{ij}\) is Poisson constrained to the region \(\mathcal{C}\). That is,

\[
\lim_{t \to \infty} P(X = n) = \lim_{t \to \infty} P(X_{12}(t) = n_{12}, \ldots, X_{r,r-1}(t) = n_{r,r-1}) = \frac{n_{ij}^{n_{ij}}}{n_{ij}!} \\
= \frac{n_{ij}^{n_{ij}}}{n_{ij}!} \prod_{i \neq j} e^{-\lambda_{ij}} \frac{n_{ij}^{n_{ij}}}{n_{ij}!} \prod_{\beta} e^{-\lambda_{ij}} \frac{n_{ij}^{n_{ij}}}{n_{ij}!} \quad (2.3)
\]

if \(n_{ij} \in \mathcal{C}\), and is zero otherwise. That is, if
\[n_{12}^+ n_{13}^+ \cdots n_{1r}^+ + n_{21}^+ \cdots n_{r1} \leq c_1 \]

e.g., as in (2.1).

Discussion. In order to justify the solution (2.3) we consider the balance equations for the steady state probabilities \(\pi \).

These have the following form at state values away from the boundaries, the latter being defined by the constraint set \(C \).

\[
\pi(n_{12}, \ldots, n_{1r}, n_{21}, \ldots, n_{2r}, \ldots, n_{r1}, \ldots, n_{r,r-1}) \\
\times [\lambda_{12}^+ \cdots \lambda_{r,r-1}^+ + \sum \n_{ij} \mu_{ij}] \\
= \sum_{i \neq j} \pi(\ldots, n_{ij}^+, \ldots) [(n_{ij}^+) \mu_{ij}] \\
+ \sum_{i \neq j} \pi(\ldots, n_{ij}^{-1}, \ldots) \lambda_{ij} \quad (2.4)
\]

These equations state that the rate of departure from the state \(n \) equals the rate at which that state is entered.

Actually, there is local balance: if \(\pi(n_{ij}) \) denotes marginal distribution of calls in progress between \(i \) and \(j \), then in the unconstrained case we can see that local balance holds: if

\[
\pi(n) = \prod_{i \neq j} \pi(n_{ij}) \quad (2.5)
\]
and
\[\pi(n_{ij}) = e^{-\rho_{ij}} \frac{\rho_{ij}^{n_{ij}}}{n_{ij}!}. \] (2.6)

Then, termwise in (2.4) for all \(i \neq j \),
\[\pi(..., n_{ij}, ...,)[\lambda_{ij} + n_{ij}u_{ij}] \]
\[= \pi(..., n_{ij}+1, ...)(n_{ij}+1)u_{ij} + \pi(..., n_{ij}-1, ...)\lambda_{ij} \] (2.7)
since
\[e^{-\rho_{ij}} \frac{\rho_{ij}^{n_{ij}}}{n_{ij}!} \lambda_{ij} = e^{-\rho_{ij}} \frac{\rho_{ij}^{n_{ij}+1}}{(n_{ij}+1)!} (n_{ij}+1)u_{ij} \] (2.8a)
\[e^{-\rho_{ij}} \frac{\rho_{ij}^{n_{ij}}}{n_{ij}!} n_{ij}u_{ij} = e^{-\rho_{ij}} \frac{\rho_{ij}^{n_{ij}-1}}{(n_{ij}-1)!} \lambda_{ij} \] (2.8b)

This shows that the product from solution (2.5) holds for \(n \) strictly within \(\mathcal{C} \). Now suppose \(n \) is a boundary point. This means that some transition rates which were \(\lambda_{ij} > 0 \) in the unconstrained case must be equal to zero, in order to keep the \(X \) process within \(\mathcal{C} \), i.e. on the left hand side of the balance equations (2.4) these terms now involve zeros.
for λ_{ij}. But examination of (2.7) shows that if $\lambda_{ij} = 0$
then adding one to n_{ij} results in $n_{ij} + 1$---a state outside
C. Consequently, we define $\pi(\ldots, n_{ij} + 1, \ldots) = 0$. But
according to (2.8b), balance still holds. Consequently, the
solution in the constrained case is just the product form
(2.5), constrained to fall within C, as expressed by (2.3).

Example. Suppose that two stations communicate via satellite.
The constraint set, C, is

$$\begin{align*}
n_{12} + n_{21} & \leq c_1 \\
n_{21} + n_{12} & \leq c_2 \\
n_{12} + n_{21} & \leq c_s .
\end{align*}$$ \hspace{1cm} (2.9)

In this case the smallest channel capacity, be it at station 1,
2, or satellite, determines C. The balance equations are

$$\begin{align*}
\pi(n_{12}, n_{21})[\lambda_{12} + \lambda_{21} + n_{12}\nu_{12} + n_{21}\nu_{21}]
& = \pi(n_{12}+1, n_{21})(n_{12}+1)\nu_{12} + \pi(n_{12}+n_{21}+1)(n_{21}+1)\mu_{21} \\
& + \pi(n_{12}-1, n_{21})\lambda_{12} + \pi(n_{12}, n_{21}-1)\lambda_{21} .
\end{align*}$$ \hspace{1cm} (2.10)

Clearly, we define $\pi(n_{12}, n_{21}) = 0$ if $n_{12} + n_{21} > \min(c_1, c_2, c_s)$.
Now inside \(C \) the balance equations (2.10) are satisfied by the product form

\[
\pi(n_{12}, n_{21}) = \left(e^{-\rho_{12} \frac{n_{12}}{n_{12}!}} \right) \left(e^{-\rho_{21} \frac{n_{21}}{n_{21}!}} \right) = \pi(n_{12}) \pi(n_{21}).
\]

(2.11)

Now suppose \(n_{12} + n_{21} = \min(c_1, c_2, c_3) \), i.e. is on the boundary of \(C \). Then \(\lambda_{12} + \lambda_{21} \) must be set equal to zero. But, correspondingly \(\pi(n_{12}+1, n_{21}) = \pi(n_{12}, n_{21}+1) = 0 \). By local balance, the product form solution continues to hold on the boundary. Write for \(n_{12} + n_{21} = \) boundary point

\[
\left(e^{-\rho_{12} \frac{n_{12}}{n_{12}!}} \right) \left(e^{-\rho_{21} \frac{n_{21}}{n_{21}!}} \right) [0 + 0 + n_{12} \lambda_{12} + n_{21} \lambda_{21}]
\]

\[
= 0 + 0 + \left(e^{-\rho_{12} \frac{n_{12}-1}{(n_{12}-1)!}} \right) \left(e^{-\rho_{21} \frac{n_{21}-1}{(n_{21}-1)!}} \right) \lambda_{12}
\]

\[
+ \left(e^{-\rho_{12} \frac{n_{12}}{n_{12}!}} \right) \left(e^{-\rho_{21} \frac{n_{21}-1}{(n_{21}-1)!}} \right) \lambda_{21}
\]

(2.12)

and cancel off common factors; the balance is obvious. It is only necessary to normalize the product form over the constraint region, as dictated by (2.3).
3. Blocking Probabilities

The probability that a call originating at station i is blocked, essentially receiving a busy signal, is calculated in principle from (2.3). It is convenient to define

$$Y_{ij}(t) = X_{ij}(t) + X_{ji}(t) \text{ for } 1 \leq i, j \leq r, i \neq j \text{ and } Y_{ii}(t) = 0.$$

Here $Y_{ij}(t)$ represents the total number of calls in progress between stations i and j. In steady state Y_{ij} are independent Poisson random variables with parameter $\lambda_{ij} = \rho_{ij} + \rho_{ji}$, constrained by C:

$$\sum_{j=1}^{r} Y_{ij} \leq C_{i}, \quad 1 \leq i \leq r$$

and

$$\frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{r} Y_{ij} \leq C_{s}.$$

Now observe that a call from i to j can be blocked in three ways:

1) At the originating station, if Station i is full. This is event $E_{i} = \{ \sum_{j=1}^{r} Y_{ij} = C_{i} \}$.

2) If the satellite channels are full, the event $E_{s} = \{ \sum_{i=1}^{r} \sum_{j=1}^{r} Y_{ij} = 2C_{s} \}$.

3) If the destination station, Station j, is full. This is event E_{j}.

The probability an i to j or j to i transmission is blocked somewhere is given by
P(i to j or j to i transmission is blocked)

\[P(E_i \cup E_j \cap E_s) = P(E_i) + P(E_j) + P(E_s) - P(E_i \cap E_j) - P(E_i \cap E_s) - P(E_j \cap E_s) + P(E_i \cap E_j \cap E_s). \quad (3.2) \]

Each of the above probabilities can be represented in terms of the \(Y_{ij} \) random variables. The value of each of these probabilities can be easily found by summing terms of the form (2.3), the steady state distribution, over a boundary portion of \(\mathcal{C} \). For example

\[P(E_i) = \sum_{\mathcal{C}} \prod_{k < \ell} \frac{\lambda_{k}^{\ell}}{\sum_{\mathcal{C}} \prod_{k < \ell} \lambda_{k}^{\ell}}. \quad (3.3) \]

\[\sum_{j \neq i} Y_{ij} = c_i \]

while other terms in (3.2) can be computed by changing the numerator to reflect a change in the boundary conditions.

It is clear that the calculation of each of the terms in (3.2) is in principle straightforward as it involves merely the calculation of a well-defined ratio. Unfortunately, the problem may be nearly computationally infeasible if the \(c_i \)'s, \(c_s \), and \(k \) are large. For example if \(c_i = c_s \), \(1 \leq i \leq r \), then \(\mathcal{C} \) includes
distinct points. If \(c_s = 50 \), then for \(k = 3, 4, \) and 5 this quantity is \(2.3426 \times 10^4 \), \(3.2468 \times 10^7 \), and \(7.5394 \times 10^{10} \) respectively. Many interesting cases are essentially computationally infeasible.

Computer programs have been written for the cases of \(r = 3 \) and 4 (\(r = 2 \) can be done with the Erlang B formula). It is possible to reduce the computations necessary in (3.3) as follows. Let \(c_{\text{min}} = \min(c_1, ..., c_r, c_s) \). The denominator (and numerator) can be rewritten as

\[
\left(c_s + \binom{k}{2} \right)
\]

\(c_s = 50 \), then for \(k = 3, 4, \) and 5 this quantity is \(2.3426 \times 10^4 \), \(3.2468 \times 10^7 \), and \(7.5394 \times 10^{10} \) respectively. Many interesting cases are essentially computationally infeasible.

Computer programs have been written for the cases of \(r = 3 \) and 4 (\(r = 2 \) can be done with the Erlang B formula). It is possible to reduce the computations necessary in (3.3) as follows. Let \(c_{\text{min}} = \min(c_1, ..., c_r, c_s) \). The denominator (and numerator) can be rewritten as

\[
\frac{c_s}{\sum_{n=0}^\infty \sum_{y \in C} \prod_{k < l} \frac{\eta_{k,l}}{y_{k,l}^n}} = \sum_{n=1}^\infty S_n
\]

\[
= \sum_{n=0}^{c_{\text{min}}} S_n + \sum_{n=c_{\text{min}}+1}^\infty S_n. \quad (3.4)
\]

Now using the multinominal theorem

\[
\sum_{n=0}^{c_{\text{min}}} S_n = \sum_{n=0}^{c_{\text{min}}} \sum_{y \in C} \prod_{k < l} \frac{\eta_{k,l}}{y_{k,l}^n} = \sum_{n=0}^{c_{\text{min}}} \sum_{y \in C} \prod_{k < l} \frac{\eta_{k,l}}{y_{k,l}^n} \]

\[
= \sum_{n=0}^{c_{\text{min}}} \left(\sum_{k < l} \eta_{k,l} \right)^n \quad \cdot \quad (3.5)
\]
The last term is simply computed. This observation removes

\[\binom{c_{\min} + \binom{k}{2}}{\binom{k}{2}} \]

can reduce the computations required substantially. Nevertheless, for interesting values of \(k, c_s, \) and \(c_i, 1 \leq i \leq r, \) the number of terms needed to be computed may render the method to be infeasible. Research directed toward finding a tractable approximation useful for large networks is presently under way.
4. Numerical Results for Three and Four Stations

We now present a few numerical results that have been obtained for the situation in which three or four ground stations communicate via satellite. The computer programs used for obtaining these numbers is available upon request. It calculates the probabilities using enumeration of the multinomial terms. Three stations require a relatively small number of computations. For the case of four stations, the reduction (3.5) is utilized.

We are interested in cases where the blocking probabilities are small, say less than .10. We wish to see if in such circumstances probability of blocking \(P(E_i \cup E_j \cup E_s) \) can be estimated assuming independence. Specifically, we wish to determine if \(P(E_i \cup E_j \cup E_s) \) can be approximated by \(1 - P(E_i) P(E_j) P(E_s) \). If such an approximation is reasonable, it reduces the amount of computation required in the problem. In looking over the following tables, it appears that this approximation is usefully accurate, especially for the cases of small (less than .1) block probability.
Probability a 1 to 2 or 2 to 1 Message is Blocked

Given System Specifications

Case 1. \(r = 3, c_1 = c_2 = c_3 = 10, c_s = 12, \eta_{12} = \eta_{13} = \eta_{23} = \eta \)

<table>
<thead>
<tr>
<th>(\eta)</th>
<th>Exact ((P(E_1 \cup E_2 \cup E_s)))</th>
<th>Approximate ((1-P(E_1)P(E_2)P(E_s)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>.014</td>
<td>.017</td>
</tr>
<tr>
<td>3.0</td>
<td>.090</td>
<td>.108</td>
</tr>
<tr>
<td>4.0</td>
<td>.206</td>
<td>.241</td>
</tr>
<tr>
<td>5.0</td>
<td>.316</td>
<td>.361</td>
</tr>
</tbody>
</table>

Case 2. \(r = 4, c_1 = c_2 = c_3 = 10, \eta_{ij} = 1.0 \)

<table>
<thead>
<tr>
<th>(c_s)</th>
<th>Exact</th>
<th>Approximate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>.0431</td>
<td>.0432</td>
</tr>
<tr>
<td>12</td>
<td>.0119</td>
<td>.0155</td>
</tr>
<tr>
<td>14</td>
<td>.0030</td>
<td>.0033</td>
</tr>
<tr>
<td>16</td>
<td>.0017</td>
<td>.0017</td>
</tr>
<tr>
<td>18</td>
<td>.0016</td>
<td>.0016</td>
</tr>
<tr>
<td>20</td>
<td>.0016</td>
<td>.0016</td>
</tr>
</tbody>
</table>
Case 3.

\(r = 4, c_1 = c_2 = c_3 = 10, \ \eta_{ij} = 2.0 \)

<table>
<thead>
<tr>
<th>(c_s)</th>
<th>Exact</th>
<th>Approximate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>.3019</td>
<td>.3023</td>
</tr>
<tr>
<td>12</td>
<td>.1991</td>
<td>.2038</td>
</tr>
<tr>
<td>14</td>
<td>.1226</td>
<td>.1335</td>
</tr>
<tr>
<td>16</td>
<td>.0805</td>
<td>.0916</td>
</tr>
<tr>
<td>18</td>
<td>.0683</td>
<td>.0733</td>
</tr>
<tr>
<td>20</td>
<td>.0674</td>
<td>.0692</td>
</tr>
</tbody>
</table>

Case 4.

\(r = 4, c_1 = c_2 = c_3 = 10, \ \eta_{ij} = 3.0 \)

<table>
<thead>
<tr>
<th>(c_s)</th>
<th>Exact</th>
<th>Approximate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>.493</td>
<td>.494</td>
</tr>
<tr>
<td>12</td>
<td>.402</td>
<td>.408</td>
</tr>
<tr>
<td>14</td>
<td>.319</td>
<td>.339</td>
</tr>
<tr>
<td>16</td>
<td>.254</td>
<td>.286</td>
</tr>
<tr>
<td>18</td>
<td>.221</td>
<td>.242</td>
</tr>
<tr>
<td>20</td>
<td>.216</td>
<td>.223</td>
</tr>
</tbody>
</table>

DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>DISTRIBUTION</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATISTICS AND PROBABILITY PROGRAM</td>
<td>1</td>
</tr>
<tr>
<td>OFFICE OF NAVAL RESEARCH</td>
<td></td>
</tr>
<tr>
<td>CODE 46</td>
<td></td>
</tr>
<tr>
<td>ARLINGTON, VA</td>
<td>22217</td>
</tr>
<tr>
<td>OFFICE OF NAVAL RESEARCH</td>
<td></td>
</tr>
<tr>
<td>NEW YORK AREA OFFICE</td>
<td></td>
</tr>
<tr>
<td>715 BROADWAY - 5TH FLOOR</td>
<td></td>
</tr>
<tr>
<td>ATTN: DR. ROGER GRAF</td>
<td></td>
</tr>
<tr>
<td>NEW YORK, NY</td>
<td>10033</td>
</tr>
<tr>
<td>DIRECTOR</td>
<td></td>
</tr>
<tr>
<td>OFFICE OF NAVAL RESEARCH</td>
<td></td>
</tr>
<tr>
<td>BRANCH OFF</td>
<td></td>
</tr>
<tr>
<td>536 S. 6TH CLARK STREET</td>
<td></td>
</tr>
<tr>
<td>ATTN: DEPUTY AND CHIEF SCIENTIST</td>
<td></td>
</tr>
<tr>
<td>CHICAGO, IL</td>
<td>60605</td>
</tr>
<tr>
<td>LITERARY</td>
<td></td>
</tr>
<tr>
<td>NAVAL OCEAN SYSTEMS CENTER</td>
<td></td>
</tr>
<tr>
<td>SAN DIEGO, CA</td>
<td>92152</td>
</tr>
<tr>
<td>NAVY LIBRARY</td>
<td></td>
</tr>
<tr>
<td>NATIONAL SPACE TECHNOLOGY LAB</td>
<td></td>
</tr>
<tr>
<td>ATTN: NAVY LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>BAY ST. LOLIS</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>290522</td>
</tr>
<tr>
<td>NAVAL ELECTRONIC SYSTEMS COMMAND</td>
<td></td>
</tr>
<tr>
<td>NAVELEX 22C</td>
<td></td>
</tr>
<tr>
<td>NATIONAL CENTER NO. 1</td>
<td></td>
</tr>
<tr>
<td>ARLINGTON, VA</td>
<td>20360</td>
</tr>
<tr>
<td>DIRECTOR NAVAL RESEARCH LABORATORY</td>
<td></td>
</tr>
<tr>
<td>ATTN: LIBRARY (ONRL)</td>
<td></td>
</tr>
<tr>
<td>CODE 202C</td>
<td></td>
</tr>
<tr>
<td>WASHINGTON, D.C.</td>
<td>20375</td>
</tr>
<tr>
<td>DEFENSE DOCUMENTATION CENTER</td>
<td></td>
</tr>
<tr>
<td>CAMERON STATION</td>
<td></td>
</tr>
<tr>
<td>ALEXANDRIA, VIRGINIA</td>
<td>22314</td>
</tr>
<tr>
<td>TECHNICAL INFORMATION DIVISION</td>
<td></td>
</tr>
<tr>
<td>NAVAL RESEARCH LABORATORY</td>
<td></td>
</tr>
<tr>
<td>WASHINGTON, D.C.</td>
<td>20375</td>
</tr>
</tbody>
</table>
OFFICE OF NAVAL RESEARCH
SAN FRANCISCO AREA OFFICE
760 MARKET STREET
SAN FRANCISCO CALIFORNIA 94102

TECHNICAL LIBRARY
NAVY CRENAVANCE STATION
INCIAN HN C MARYLAND 20640

NAVAL SHIP ENGINEERING CENTER
PHILADELPHIA
DIVISION TECHNICAL LIBRARY
PHILADELPHIA PENNSYLVANIA 19112

BUREAU OF NAVAL PERSONNEL
DEPARTMENT OF THE NAVY
TECHNICAL LIBRARY
WASHINGTON D. C. 20370

LIBRARY CCIC 0212
NAVAL FLEET INSTITUTE SCHOLL
POMTEY CALIFORNIA 93940

PROF. M. AECIL-HAMEO
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF NORTH CAROLINA
CHARLOTTES NC 28223

PROF. T. W. ANGERSON
DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

PROF. F. J. ANSCOMBE
DEPARTMENT OF STATISTICS
YALE UNIVERSITY
NEW HAVEN
CONNECTICUT 06520

PROF. L. A. ARCAI
INSTITUTE OF INDUSTRIAL
ADMINISTRATION
UNION COLLEGE
Schenectady
NEW YORK 12308
<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROF. C. R. BAKER</td>
<td>DEPARTMENT OF STATISTICS U.NIVERSITY OF NORTH CAROLINA</td>
</tr>
<tr>
<td></td>
<td>CHAPEL HILL, NORTH CAROLINA</td>
</tr>
<tr>
<td></td>
<td>27514</td>
</tr>
<tr>
<td>PROF. R. E. BECHHOFER</td>
<td>DEPARTMENT OF OPERATIONS RESEARCH CORNELL UNIVERSITY</td>
</tr>
<tr>
<td></td>
<td>ITHACA, NEW YORK 14850</td>
</tr>
<tr>
<td>PROF. A. J. BEERSHAD</td>
<td>SCHOOL OF ENGINEERING UNIVERSITY OF CALIFORNIA</td>
</tr>
<tr>
<td></td>
<td>IROVINE, CALIFORNIA 92664</td>
</tr>
<tr>
<td>P. J. BICKEL</td>
<td>DEPARTMENT OF STATISTICS U.NIVERSITY OF CALIFORNIA</td>
</tr>
<tr>
<td></td>
<td>BERKELEY, CALIFORNIA 94720</td>
</tr>
<tr>
<td>PROF. E. W. BLOCK</td>
<td>DEPARTMENT OF MATHEMATICS U.NIVERSITY OF PITTSBURGH</td>
</tr>
<tr>
<td></td>
<td>PITTSBURGH, PA 15260</td>
</tr>
<tr>
<td>PROF. J. B. BLUM</td>
<td>DEPT. OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE</td>
</tr>
<tr>
<td></td>
<td>THE AMERICAN UNIVERSITY WASHINGTON, CC 20016</td>
</tr>
<tr>
<td>PROF. R. A. BRADLEY</td>
<td>DEPARTMENT OF STATISTICS U.NIVERSITY OF FLORIDA</td>
</tr>
<tr>
<td></td>
<td>TALLAHASSEE, FLORIDA 32306</td>
</tr>
<tr>
<td>PROF. R. E. BARLOW</td>
<td>OPERATIONS RESEARCH CENTER COLLEGE OF ENGINEERING</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720</td>
</tr>
<tr>
<td>MR. C. H. BENEDETT</td>
<td>NAVAL COASTAL SYSTEMS LABORATORY</td>
</tr>
<tr>
<td></td>
<td>CORP. P. 61, PANAMA CITY, FLORIDA 52401</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>PROF. L. N. PHAT</td>
<td>COMPUTER SCIENCE / OPERATIONS RESEARCH CENTER</td>
</tr>
<tr>
<td></td>
<td>SOUTHERN METHODIST UNIVERSITY</td>
</tr>
<tr>
<td></td>
<td>DALLAS, TX 75275</td>
</tr>
<tr>
<td>PROF. W. F. ELISCHKE</td>
<td>DEPT. OF QUANTITATIVE BUSINESS ANALYSIS</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF SOUTHERN CALIFORNIA</td>
</tr>
<tr>
<td></td>
<td>LOS ANGELES, CALIFORNIA 90007</td>
</tr>
<tr>
<td>DR. DERRILL J. BERDELLON</td>
<td>NAVAL UNDERWATER SYSTEMS CENTER</td>
</tr>
<tr>
<td></td>
<td>CODE 21 NEWPORT, RI 02840</td>
</tr>
<tr>
<td>J. E. BILVER JR</td>
<td>DEPT. OF STATISTICS</td>
</tr>
<tr>
<td></td>
<td>SOUTHERN METHODIST UNIVERSITY DALLAS, TX 75275</td>
</tr>
<tr>
<td>DR. J. CHANDRA</td>
<td>U. S. ARMY RESEARCH</td>
</tr>
<tr>
<td></td>
<td>F. C. BOX 12211 RESEARCH TRIANGLE PARK, NORTH CAROLINA 277C6</td>
</tr>
<tr>
<td>PROF. E. CHERNOFF</td>
<td>DEPT. OF MATHEMATICS</td>
</tr>
<tr>
<td></td>
<td>MASS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02135</td>
</tr>
<tr>
<td>PROF. C. CERMAN</td>
<td>DEPARTMENT OF CIVIL ENGINEERING AND ENGINEERING MECHANICS</td>
</tr>
<tr>
<td></td>
<td>COLUMBIA UNIVERSITY NEW YORK 10027</td>
</tr>
<tr>
<td>PROF. R. L. DISNEY</td>
<td>VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY</td>
</tr>
<tr>
<td></td>
<td>DEPT. OF INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH</td>
</tr>
<tr>
<td></td>
<td>BLACKSBURG, VA 24061</td>
</tr>
<tr>
<td>MR. J. DOWLING</td>
<td>DEFENSE LOGISTICS STUDIES INFORMATICA EXCHANGE</td>
</tr>
<tr>
<td></td>
<td>ARMY LOGISTICS MANAGEMENT CENTER FORT LEE, VIRGINIA 20350</td>
</tr>
</tbody>
</table>
FRCE J. C. ESARY
DEPT. OF OPERATIONS RESEARCH AND
ADMINISTRATIVE SCIENCES
NAVAL POSTGRADUATE SCHOOL
MONTEREY
CALIFORNIA 93940

C. F. J. FISCHER
DEFENSE COMMUNICATIONS AGENCY
1960 WIESELE AVENUE
RESTON
VIRGINIA
22070

PROF. D. P. GAVER
DEPT. OF OPERATIONS RESEARCH
NAVAL POSTGRADUATE SCHOOL
MONTEREY
CA 93940

MR. GENE F. GLEISNER
AFFLIEO MATHEMATICS LABORATORY
CAVILO CIAYLER NAVAL SHIP RESEARCH
AND DEVELOPMENT CENTER
BETHESDA
MD 20084

FRCE S. S. GUPTA
DEPARTMENT OF STATISTICS
PURDUE UNIVERSITY
LAFAYETTE
INDIANA 47907

FRCE C. L. HANSON
DEPT. OF MATH. SCIENCES
STATE UNIVERSITY OF NEW YORK,
BINGHAMTON
BINGHAMTON
NY 13901

FRCE F. J. HARRIS
DEPT. OF ELECTRICAL ENGINEERING
SAN DIEGO STATE UNIVERSITY
SAN DIEGO
CA 92182

FRCE L. H. HERBACH
DEPT. OF OPERATIONS RESEARCH AND
SYSTEMS ANALYSIS
FOLYTECHNIC INSTITUTE OF NEW YORK
BROOKLYN
NY 11201

FRCE M. J. FINCH
DEPARTMENT OF ECCOAMICS
VIRGINIA FOLYTECHNIC INSTITUTE
AND STATE UNIVERSITY
BLACKSBURG
VIRGINIA 24061
PROF. W. M. PIRCH
INSTITUTE OF MATHEMATICAL SCIENCES
NEW YORK UNIVERSITY
NEW YORK
NEW YORK 10453

PROF. D. L. IGLESIAS
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD,
CALIFORNIA
94305

PROF. J. B. KALDEN
DEPARTMENT OF STATISTICS
CARNEGIE-MELLON
FLEETWOOD,
PENNSYLVANIA
15213

DR. RICHARD LAL
DIRECTOR
OFFICE OF NAVAL RESEARCH BRANCH OFF
1230 EAST GREEN STREET
PASADENA
CA
91101

DR. A. R. LAMBER
DIRECTOR
OFFICE OF NAVAL RESEARCH BRANCH OFF
1230 EAST GREEN STREET
PASADENA
CA
91101

PROF. W. LEAGUE
DEPARTMENT OF STATISTICS
UNIVERSITY OF NORTH CAROLINA
CHAPEL HILL
NORTH CAROLINA 27514

DR. J. S. LEE
J. S. LEE ASSOCIATES, INC.
200 JEFFERSON DAVIS HIGHWAY
SUITE 800
ARLINGTON
VA
22202

PROF. L. L. LEE
DEPARTMENT OF STATISTICS
VIRGINIA POLYTECHNIC INSTITUTE
AND STATE UNIVERSITY
BLACKSBURG
VA
24061

PROF. R. S. LEVENWORTH
DEPARTMENT OF INDUSTRIAL AND SYSTEMS
ENGINEERING
UNIVERSITY OF FLORIDA
GAINESVILLE,
FLORIDA 32611

No. of Copies

1
1
1
1
1
1
1

22
No. of Copies

1

PROF. P. A. W. LEWIS
DEPT. OF OPERATIONS RESEARCH AND
ADMINISTRATIVE SCIENCES
NAVAL ECST GRADUATE SCHCOL
MONTEREY, CALIFORNIA
93940

1

PROF. G. LIEBERMAN
STANFORD UNIVERSITY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD, CALIFORNIA 94305

1

DR. JAMES R. MACAR
NATIONAL SECURITY AGENCY
FORT MEADE, MARYLAND
20755

1

PROF. R. H. MAESEN
DEPARTMENT OF STATISTICS
UNIVERSITY OF MISSOURI
COLUMBIA
MO 65201

1

DR. N. B. MARLEW
SCIENCE CENTER
ROCKWELL INTERNATIONAL CORPORATION
P.O. BOX 1089
THOUSAND OAKS, CALIFORNIA 91360

1

DR. W. F. MARLOW
PROGRAM IN LOGISTICS
THE GEORGE WASHINGTON UNIVERSITY
707 22ND STREET, N.W.
WASHINGTON, D.C.
20037

1

PROF. E. MASRY
DEPT. OF APPLIED PHYSICS AND
INFORMATION SERVICE
UNIVERSITY OF CALIFORNIA
LA JOLLA
CALIFORNIA 92037

1

DR. BRUCE J. MCGONAGL
SCIENTIFIC DIRECTOR
SCIENTIFIC LIAISON GROUP
OFFICE OF NAVAL RESEARCH
AMERICAN EMBASSY - TOKYO
AFSC SAN FRANCISCO
96503

1

PROF. J. A. MCKELSTADT
DEPT. OF OPERATIONS RESEARCH
CORNELL UNIVERSITY
ITHACA, NEW YORK
14850

23
No. of Copies

CR. JANET M. MYHRE
THE INSTITUTE OF DECISION SCIENCE
FOR BUSINESS AND PUBLIC POLICY
CLAREMONT MEN'S COLLEGE
CLAREMONT
CA 51711

MR. F. NISSELSA
REAL OF THE CENSUS
ROOM 2025
FEDERAL BUILDING 2
WASHINGTON,
DC, 20233

MISS B. S. CARLEANS
NAVAL SURF. SYSTEMS COMMAND
(SEA 033)
FM 10308
ARLINGTON VIRGINIA 20360

FRCF. C. E. OWEN
DEPARTMENT OF STATISTICS
SOUTHERN METHODIST UNIVERSITY
DALLAS
TEXAS 75222

PROF. E. PARZENT
STATISTICAL SCIENCE DIVISION
STATE UNIVERSITY OF NEW YORK
AT BUFFALO
AMHERST
NEW YORK 14226

CR. A. PETRASCVITS
ROOM 207B, FOOD AND CRG BLDG.
TUNNEY'S PASTURE
OTTAWA, ONTARIO K1A-CL2
CANADA

FRCF. S. L. PHELMA
SIBLEY SCHOOL OF MECHANICAL AND
AEROSPACE ENGINEERING
CORNELL UNIVERSITY
ITHACA
NY 14850

CR. A. L. POWELL
DIRECTOR
OFFICE OF NAVAL RESEARCH BRANCH OFF
455 SUMMER STREET
BOSTON
MA 02210

MR. F. R. FRIDRI
CODE 224 OPERATIONAL TEST AND UNRS
EVALUATION FORCE (OPTEVFJR)
MCafeLk
VIRGINIA
20360
PROF. M. L. PURI
DEPT. OF MATHEMATICS
P.O. BOX F
INDIANA UNIVERSITY FOUNDATION
FLEMINGTON
IN 47401

PROF. M. ROBBIA
DEPARTMENT OF MATHEMATICS
COLUMBIA UNIVERSITY
NEW YORK, NEW YORK 10027

PROF. M. ROSENBLATT
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA SAN DIEGO
LA JOLLA
CALIFORNIA 92093

PROF. S. M. ROSS
COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY
CA 94720

PROF. I. RUBIN
SCHOOL OF ENGINEERING AND APPLIED
SCIENCE
UNIVERSITY OF CALIFORNIA
LOS ANGELES
CALIFORNIA 90024

PROF. I. R. SAVAGE
DEPARTMENT OF STATISTICS
YALE UNIVERSITY
NEW HAVEN, CONNECTICUT
06520

PROF. L. L. L. SCHAFER, JR
DEPARTMENT OF ELECTRICAL ENGINEERING
COLORADO STATE UNIVERSITY
FT. COLLINS
COLORADO 80521

PROF. R. SELLING
DEPARTMENT OF STATISTICS
FLORIDA STATE UNIVERSITY
TALLAHASSEE FLORIDA 32306

PROF. W. R. SCHLEGANY
DEPARTMENT OF STATISTICS
SOUTHERN METHODIST UNIVERSITY
DALLAS, TEXAS 75222

No. of Copies

25
No. of Copies

1

PROF. C. C. SIEGMUND
DEPT. OF STATISTICS
STANFORD UNIVERSITY
STANFORD
CA
54305

1

PROF. J. L. SHOHMAN
DEPT. OF ELECTRICAL ENGINEERING
POLYTECHNIC INSTITUTE OF NEW YORK
BROOKLYN
NEW YORK
11201

1

PROF. N. SINGPURWALLA
DEPT. OF OPERATIONS RESEARCH
THE GEORGE WASHINGTON UNIVERSITY
7C7 22ND ST. N. W.
WASHINGTON, D. C.
20052

1

DR. A. L. SLAFKOSKY
SCIENTIFIC ADVISER
COMMANDANT OF THE MARINE CORPS
WASHINGTON, D. C.
20350

1

MR. CHARLES S. SMITH
CASE (I&L),
PENTAGON
WASHINGTON
DC
20301

1

FR. C. E. SMITH
DESMA TICS INC.
P. O. BOX 618
STATE COLLEGE
PENNSYLVANIA
16801

1

PROF. W. L. SMITH
DEPARTMENT OF STATISTICS
UNIVERSITY OF NORTH CAROLINA
CHAPEL HILL
NORTH CAROLINA 27514

1

PROF. H. SCHOMACK
DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD
CALIFORNIA
54305

1

MR. GLENN F. STAHL
NATIONAL SECURITY AGENCY
FORT MEADE
MARYLAND 20755

26
No. of Copies

Mr. Candido A. Shick
Advanced Projects Group
Code BIC
Naval Research Lab.
Washington
DC 20375

Mr. Wendell G. Sykes
Arthur C. Little, Inc.
Lexington Park
Cambridge
MA 02140

Prof. J. P. Thompson
Department of Mathematical Science
Rice University
Houston,
Texas 77001

Prof. W. A. Thompson
Department of Statistics
University of Missouri
Columbia,
Missouri
65201

Prof. F. A. Tillman
Department of Industrial Engineering
Kansas State University
Manhattan
KS 66506

Prof. W. H. Tukey
Department of Statistics
Princeton University
Princeton, N. J. 08540

Prof. F. F. Veinott
Department of Operations Research
Stanford University
Stanford
California
94305

Daniel H. Wagner
Station Solare JNE
Facili,
Pennsylvania
15301

Prof. Grace Wahba
Dept. of Statistics
University of Wisconsin
Madison
WI 53706

27
<table>
<thead>
<tr>
<th>Address</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROF. PETER ELLIOTFIELD</td>
<td>08540</td>
</tr>
<tr>
<td>STATISTICAL DEPT.</td>
<td></td>
</tr>
<tr>
<td>PRINCETON UNIVERSITY PrINCETON, N. J.</td>
<td></td>
</tr>
<tr>
<td>PROF. G. G. BROWN</td>
<td>1</td>
</tr>
<tr>
<td>CBT. CF OP NAVAL POSTGRADUATE SCH. CCL</td>
<td>53940</td>
</tr>
<tr>
<td>MONTEREY, CALIFORNIA</td>
<td></td>
</tr>
<tr>
<td>R. W. BUTTERWORTH</td>
<td>1</td>
</tr>
<tr>
<td>SYSTEMS EXPLORATION AMI. WEBSTER ST.</td>
<td>93940</td>
</tr>
<tr>
<td>MONTEREY, CALIFORNIA</td>
<td></td>
</tr>
<tr>
<td>DR. JAMES CAPRA</td>
<td>1</td>
</tr>
<tr>
<td>7218 CELFIELD STREET</td>
<td>20015</td>
</tr>
<tr>
<td>CHEVY CHASE, MARYLAND</td>
<td></td>
</tr>
<tr>
<td>CR. C.R. COX</td>
<td>1</td>
</tr>
<tr>
<td>DEPT. CF MATHEMATICS</td>
<td></td>
</tr>
<tr>
<td>IMPERIAL COLLEGE</td>
<td></td>
</tr>
<tr>
<td>LONDON SW7, ENGLAND</td>
<td></td>
</tr>
<tr>
<td>DEFENSE DOCUMENTATION CTR.</td>
<td>1</td>
</tr>
<tr>
<td>CAMERCA STATION ALEXANDRA VIRGINIA</td>
<td>22314</td>
</tr>
<tr>
<td>ECCA. AND MAN. SCI. CTR.</td>
<td></td>
</tr>
<tr>
<td>NORTHWESTERN UNIV. EVANSTON ILLINCS</td>
<td>602 01</td>
</tr>
<tr>
<td>MAN. SCE. RES. CTR. FACULTY OF COM. AND BUS. ADMIN. LUNIV. CF BRITISH COLUMBIA VANCOUVER BRITISH COLUMBIA V6T 1W5 CANADA</td>
<td>1</td>
</tr>
<tr>
<td>CR. M. CHASS</td>
<td>1</td>
</tr>
<tr>
<td>MAIN. DEPT. NORTHWESTERN UNIV. EVANSTON ILLINOIS</td>
<td>602 01</td>
</tr>
</tbody>
</table>
No. of copies

1

PROF. K. T. WALLENIUS
DEPARTMENT OF MATHEMATICAL SCIENCES
Clemson University
Clemson, South Carolina 29631

1

PROF. G. S. WATSON
DEPARTMENT OF STATISTICS
Princeton, N. J. 08540

1

PROF. BERNARD WIDROW
STANFORD ELECTRONICS LAB
STANFORD UNIVERSITY
STANFORD, CA 94305

1

PROF. C. I. WIESCUNE
DEPT. OF INDUSTRIAL ENGINEERING
LEHIGH UNIVERSITY
BETHLEHEM, PA 18015

1

PROF. S. ZACKS
DEPT. OF MATHEMATICS AND STATISTICS
CASE WESTERN RESERVE UNIVERSITY
CLEVELAND, OH 44106

1

PROF. M. ZIA-HASSAN
DEPARTMENT OF INDUSTRIAL AND
SYSTEMS ENGINEERING
ILLINOIS INSTITUTE OF TECHNOLOGY
CHICAGO, IL 60616

1

HEAD, MATH. SCI SECTION
NAT. SCIENCE FOUNDATION
1800 E. STREET, N.W.
WASHINGTON, D.C. 20550

1

PROF. A. F. ANCURUS
DEPT. OF CP
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93940

1

PROF. C. R. BARR
DEPT. OF CP
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93940

1

29
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CR. R. ELASHCUFF</td>
<td>BIOMATHEMATICS, UCLA, Los Angeles, California</td>
</tr>
<tr>
<td>1</td>
<td>PROF. GEORGE S. FISHER</td>
<td>University of California, Los Angeles</td>
</tr>
<tr>
<td>1</td>
<td>CR. R. GANPAKESIKAN</td>
<td>Bell Telephone Labs, Holmdel, NJ</td>
</tr>
<tr>
<td>1</td>
<td>CR. A. J. GOLMAN</td>
<td>Chief, CR, Duke University, Chapel Hill, NC</td>
</tr>
<tr>
<td>1</td>
<td>CR. H. FICKEY</td>
<td>F3 Bonn 1, Postfach 585, Nassestrasse 2, Germany</td>
</tr>
<tr>
<td>1</td>
<td>CR. J. A. HOCKE</td>
<td>Bell Telephone Labs, Holmdel, New Jersey</td>
</tr>
<tr>
<td>1</td>
<td>CR. ROBERT HOCKE</td>
<td>Math. Dept., Westinghouse Res. Labs, Pittsburg, Pennsylvania</td>
</tr>
<tr>
<td>1</td>
<td>CR. O. L. IREY</td>
<td>Dept. of C.P., Stanford University, Stanford, California</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>ZIP</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>CR. PATRICIA JACOBS</td>
<td>CR DEPT. NAVAL POSTGRADUATE SCHCOL MONTEREY CALIFORNIA</td>
<td>93940</td>
</tr>
<tr>
<td>CR. H. KCEAYASHI</td>
<td>JPY YORKTOWN HEIGHTS NEW YORK</td>
<td>10598</td>
</tr>
<tr>
<td>CR. JOHN LEOCCZY</td>
<td>STATISTICS DEPARTMENT CARNEGIE-MELLON UNIVERSITY FITTSBURG PENNSYLVANIA</td>
<td>15213</td>
</tr>
<tr>
<td>LITERARY</td>
<td>CCIB 55 NAVAL POSTGRADUATE SCHCOL MONTEREY CALIFORNIA</td>
<td>93940</td>
</tr>
<tr>
<td>DR. A. LEMOINE</td>
<td>1020 GUINCA ST. PALO ALTO CALIFORNIA</td>
<td>94301</td>
</tr>
<tr>
<td>CR. J. MACKUEEN</td>
<td>UNIV. OF CALIF. LOS ANGELES CALIFORNIA</td>
<td>90024</td>
</tr>
<tr>
<td>FRCF. K. T. MARSHALL</td>
<td>DEPT. OF CF CF NAVAL POSTGRADUATE SCHCOL MONTEREY CALIFORNIA</td>
<td>93940</td>
</tr>
<tr>
<td>DR. M. MAZUMCARI</td>
<td>MATH. DEPT. ESTINGHOLSE RES. LABS CHURCHILL BCPC FITTSBURGH PENNSYLVANIA</td>
<td>15235</td>
</tr>
<tr>
<td>DR. LEON F. MCGINNIS</td>
<td>SCHOLL CF INC. ANI Sys. ENG. GEORGIA INST. OF TECH. ATLANTA GEORGIA</td>
<td>30332</td>
</tr>
</tbody>
</table>

No. of Copies

1

CR. C. R. MCNEIL
DEPT. OF STATISTICS
PRINCETON UNIV.
PRINCETON
NEW JERSEY
G8540

1

PROF. P. R. MILCH
DEPT. OF OR
NAVAL POSTGRADUATE SCHOOL
MONTEREY
CALIFORNIA
93940

CR. F. MOSTELLER
STAT. DEPT.
HARVARD UNIV.
CAMBRIDGE
MASSACHUSETTS
02135

1

PROF. R. R. READ
DEPT. OF OR
NAVAL POSTGRADUATE SCHOOL
MONTEREY
CALIFORNIA
93940

1

DR. M. REISER
GOR.
THOMAS J. WATSON FES. CTR.
YORKTOWN HEIGHTS
NEW YORK
10598

1

DEAN OF RESEARCH
CODE 013
NAVAL POSTGRADUATE SCHOOL
MONTEREY
CALIFORNIA
93940

1

PROF. F. F. RICHARDS
DEPT. OF OR
NAVAL POSTGRADUATE SCHOOL
MONTEREY
CALIFORNIA
93940

1

DR. J. RIECEN
DEPT. OF MATHEMATICS
ROCKEFELLER UNIV.
NEW YORK
NEW YORK
10021

1

DR. LINUS SCHRADE
UNIV. OF CHICAGO
GRAD. SCHOOL OF BUS.
5826 GREENWICH AVE.
CHICAGO, ILLINOIS
60637

32
<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR. PAUL SCHWEITZER</td>
<td>POST OFFICE BOX 218 NEW YORK</td>
</tr>
<tr>
<td>Dr. Richard Sorenson</td>
<td>CODE 303 NPRDC 271 CATALINA BLVD. SAN DIEGO</td>
</tr>
<tr>
<td>PROF. M. G. SOVEREIGN</td>
<td>DEPT. OF NAVAL POSTGRAD SCHOOLS MONTEREY</td>
</tr>
<tr>
<td>CR. V. SHRINIVASAN</td>
<td>GRAD SCHOOLS OF BUSINESS STANFORD UNIVERSITY</td>
</tr>
<tr>
<td>Dr. R. M. Stark</td>
<td>Univ. of Delaware NEWARK</td>
</tr>
<tr>
<td>PROF. RICKARD VANSLYKE</td>
<td>RES. ANALYSIS CORP. GREN COVE, NEW YORK</td>
</tr>
<tr>
<td>PROF. JOHN W. TUKEY</td>
<td>FINE HALL PRINCETON UNIV. PRINCETON NEW JERSEY</td>
</tr>
<tr>
<td>CR. THOMAS C. VARLEY</td>
<td>OFFICE OF NAVAL RESEARCH CODE 424 ARLINGTON VA</td>
</tr>
<tr>
<td>PROF. G. WATSON</td>
<td>FINE HALL PRINCETON UNIV. PRINCETON NEW JERSEY</td>
</tr>
</tbody>
</table>
Dr. Roy Welsch
M.I.T., Sloan School
Cambridge, MA 02139

Dean of Research 012
Naval Postgraduate School
Monterey, Ca. 93940

Professor D. P. Gaver
Code 55Bv
Naval Postgraduate School
Monterey, Ca. 93940

R. J. Stampfel
Code 55
Naval Postgraduate School
Monterey, Ca. 93940

No. of Copies
1

1

20

1