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. I. INTRODUCTION

The advent of advanced missile systems with increased performance
requirements has necessitated the development and use of carbon-carbon
composites for reentry vehicle nose tips. Two material properties of
importance in a reentry environment are recession rate and transition
altitude. Since a variety of precursor materials (fibers and matrices),
reinforcement constructions (orthogonal, polar, and seven-directional), and
processing methods (high and low pressure) exist, a large number of candi-
date composites is available. Unfortunately, ablation tests are both expen-
sive and time -consuming in that composites must be fabricated and models
machined and tested. Although the tests have been informative and the data
have been useful, the results have also been confusing, if not conflicting.
Therefore, a preliminary screening test was sought which could provide a
means of selecting the most promising fibers and composites in an economi -

cal and expedient manner.

According to studies of events occurring during reentry, sublimation
(vaporization and particle emission) was the primary mechanism of mass
1,

loss.
(turbulent flow) (Btu/ftz)/sec could be obtained from a CO2 laser in the

Heat fluxes typical of reentry, 30,000 (laminar flow) to 80,000

absence of strong aerodynamic flow. In addition to evaluating a screening
criterion, this test could provide ablated surfaces for studying the mech-

anisms of ablation., Therefore, the objective of this program was to study
the mass loss characteristics of various precursor materials and compo-
sites by laser irradiation. The experimental approach was to irradiate

various carbon/graphite filaments and pyrolytic graphite (PG) in both the

1K. Kratsch, Personal Communication, Science Applications, Inc.
(May 1976).

A. G. Whittaker and P. L. Kintner, Particle Emission and Related
Mor phological Changes Occurring During the Sublimation of Graphitic
Carbons, 14, 257 (1976).

) 2
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longitudinal and transverse directions, and bu'*- pitch matrix and carbon-
carbon composites in one direction. Total mass loss was measured after
each exposure and the irradiated surfaces were characterized by optical
and scanning electron microscopy (SEM). Through this type of study, the
merits of a mass loss criterion could be evaluated and a significant contri-

bution to the knowledge of carbon ablation mechanisms might be made.

A search of the open literature indicated that data on mass loss due
to sublimation in carbon fibers were totally lacking. One study conducted
by Barnet and Norr investigated the structural aspects of carbon/graphite
filaments after oxygen plasma etching, but not the mass loss characteristics. 3
The results of that study supported the "circumferential-radial'' mode for
high modulus polacrylonitrile (PAN) and the "onion skin'" structural model

for high modulus rayon.

3 TF R. Barnet and M. K. Norr, "Carbon Fiber Etching in an Oxygen

Plasma, ' Carbon, Vol. 11, 281-288 (1973).




. II. MATERIALS

The two principal precursor materials currently used in carbon fiber
fabrication for reentry applications are PAN and petroleum pitch. Primary
examples are designated HM2000 by Hercules, Inc., and Thornel P by Union
Carbode Corporation, respectively., However, to achieve the stated ob-
jectives of this program, a wide spectrum of precursor materials was
needed. Therefore, in addition to these two filaments, six additional fila -
ments were selected, including three rayon precursor filaments (see
Table 1).

The reference material for these experiments was pyrolytic graphite
(PG). This served as a valuable control because it represented extremes
in crystallographic orientation which were present in the filaments. In
addition, the C-direction of the PG also provided a suitable representation
of the pitch matrix sheath which surrounds the filaments in a carbon-carbon
composite processed by low-pressure impregnation procedures. To com-
plete the matrix structures to be evaluated, samples of bulk coal tar pitch
! (Allied Chemical Corporation 277-15V) processed by low (1000 psi) and
high (15, 000 psi) impregnation pressures were obtained.4 The bulk matrix
processed at high pressure was also taken to represent the inter -filament
matrix in a composite processed by the high-pressure procedures, The
final series of specimens were Thornel 50 multidirectional carbon-carbon

composites processed by different procedures (see Table 2).

{ TJ S. Evangelides, et al., Carbon Materials Analyses, Report No. ;
TOR-0077(2725-01)-2, The Aerospace Corporation, El Segundo, CA

(31 December 1976).
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II. EXPERIMENTAL PROCEDURE

The filament irradiation tests were conducted on bare, unimpregnated
filaments. This required a special holding fixture to permit irradiation in
both the longitudinal and transverse directions (Figure 1). The filaments
were loaded into the fixtures and compressed by a plate to volume fractions
of 0.51 to 0.77. The transverse filament ends were cut with a scalpel to
obtain a flat surface. The longitudinal surface did not require any addi-
tional handling after loading. Bulk pitch and composite specimens were
either cylindrical or rectangular in shape and approximately 1.0 in. in
diameter (length) and 0.4 to 1.0 in. in thickness. The surfaces of these
specimens were polished with N 600 grit paper to remove any gross

machining marks.

The laser irradiation tests were conducted on the 90 kW CO2 laser at
NASA Ames Laboratory. Typical laser power levels and exposure times
were 10 kW for 0.5 sec and 5 kW for 1.0 sec, except for the transverse
filament direction where a 10 kW power level was used. These exposure
levels were selected from preliminary tests which indicated that specimen
burn-throughs would not occur at these levels. Two different exposure
times were sought in order to estimate a mass loss rate. A flow of argon
was maintained over the specimen surface to reduce the amount of carbon
vapor that was re-depositing on the specimen surface. The temperatures
for all tests were measured by an optical pyrometer. Specimen tempera-
tures varied between 3700° and 4100°C. Obtaining consistently accurate
temperature measurements was difficult due to sighting and fogging
problems. However, temperatures were found to vary between specifnens
due to slight changes in laser power and also during an exposurc due to

laser fluctuations. This was confirmed by the pictures which were taken

of each test.
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Weight loss was determined after each test. Specimen damage was
characterized by optical and scanning electron microscopy. The composite
specimens were cross-sectioned through the center of the crater to investi-
gate in-depth material changes. All specirnen weight loss and exposure
conditions are tabulated in the Appendix. Five longitudinal filament expo -
sures were discarded due to improper beam alignment which resulted in

\

the edge of the holding fixture being irradiated.
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IV. EXPERIMENT RESULTS

A, MASS LOSS

The mass loss data were analyzed with respect to laser power and
energy to examine the effects on material property relationships. For these
experiments the cross-sectioned area of the laser beam was assumed to be
constant. Upcn calculating the mass loss per deposited energy, it was
noticed that the 0.5-sec exposures were generally higher than the 1.0-sec
exposures (see Table 3), These higher initial mass loss rates were thought
to be due to the initial thermal shock causing microfracturing, resulting in
local spallation and mass removal. Therefore, an equilibrium rate would
be obtained only after an initial induction period. This was particularly
true for the composite and matrix specimens where the 0, 5-sec rates were

37 percent greater than the 1. 0-sec rates.

Filament mass loss was divided by laser power and plotted against
the time of exposure for each filament (see Figures 2 thru 6). The linear
regression analyses of the data resulted in strong correlations in all but a
few cases (see Table 4). As expected, irradiation in the transverse fila-
ment direction resulted in a greater mass loss than irradiation in the longi~
tudinal direction. Initially, there was concern that, since the filament !
volume fraction varied from 51 to 77 percent between filament holders, any
relationships with mass lloss would be obscured or altered. However, the
correlation factors between mass loss and filament volume fraction and
effective bulk density (filament volume fraction times filament density) were
poor, being only 0.57 and -0,23, respectively, Therefore, even though
filament volume fraction is expected to influence mass loss, it was secondary
to the large differences in filament modulus, density, and crystallographic

orientation. The filament volume fractions were calculated from the volume

of the holder, filament density, and filament mass (see Table 5).
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Table 3. Summary of Mass Loss per Deposited Energy

for Two Exposure Times .

System Direction Mass Loss per Energy Deposited _
| 0.5 sec 1.0 sec Difference”, %
WYB Transverse 22,2 18.1 18
Thornel 50 15.4 14,6 5
Thornel 75 9.8 11.1 -13
Thornel 300 | 23.0 17.8 23
Modmor II 13.5 13.2 2
HM2000 17.8 13,0 28 ;
GY 70 13.1 11.4 13 ‘
Thornel P 18.0 14.2 21
WYB Longitudinal 9.9 - -
Thornel 50 - 8.4 -
Thornel 75 8.0 - -
Thornel 300 14.0 14,2 -1
Modmeor II 10.2 6.7 34
HM 2000 9.2 8.1 12
GY 70 7.5 - -
Thornel P 8.7 8.4 35
PG c 2.0 2.1 - 5
a 1.3 1.7 -31
GE 223 z 4.3 - -
MDAC 223 z 2.1 1.5 29
FMI 221 z 4.3 1.7 60 A
HiPIC - 5.5 4.9 11
LoPIC - 10.3 5.4 48
*Differences between 0. 5-sec and 1. 0-sec mass losses. |
E:
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Figure 5. Mass Loss Data for Rayon Precursor Filaments
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Table 5.

Filament Volume Fraction and Density for All Specimens
N I . Volume Fraction, Effective Density,
Specimen System o :

| T g/cc

28 wyYn 64 0, 84

29 73 0,96

30 ‘ 66 0.87

3 64 0. 84

67 0. 88
5 ‘Thornel 50 64 1. 06
6 70 1.16
7 72 1.20
8 68 1.13
69 t.14

17 Thornel 75 58 1.04

18 51 0.92

19 57 1.03

20 58 1.04

56" 1. 01
9 Thornel 300 73 1.24

10 73 1.24

11 74 t. 26

12 75 t1.28

74 1.26

13 Modmor II " 1,21

14 75 1.28

15 76 1. 30

16 76 1.30

75" 1.27
1 HM2000 68 1.23
2 65 1.18
3 66 1.19
4 68 1.23
33 64 1.16

66’ 1.20

21 GY 70 57 1.12

22 67 1.3t

23 65 1,27

63" 1,23

24 Thornel P 60 1.15

25 61 1.17

26 64 1.23

27 69 1.32

63.5" 1.22°
':-Avcrage
25
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Since the effective densities of the filament specimens varied slightly,
the mass loss data were also analyzed in terms of volume loss per unit of
power. Volume loss was calculated by dividing mass loss by filament
density. A linear regression analysis of the volume loss data revealed that
the average correlation factors were 0. 93 and 0. 92 for the volume loss and
mass loss, respectively. With such similar results, it was decided to

present the data in terms of mass loss.

The pyrolytic graphite was expected to have very low mass loss
values. The values were a factor of four to nine times lower than those for
the filaments, with the a-direction being 31 percent greater than the
c-direction (see Figure 7). The bulk matrix coal tar pitch specimens had
remarkably low values, slightly lower than the longitudinal direction of the
filaments (see Figure 8). Unfortunately, only a limited number of com-
posites could be irradiated. The three composites that were tested (see
Figure 8) had mass loss values equivalent to pyrolytic graphite (see
Figure 7). Although the composites could be ranked in terms of mass loss
rate, the average mass loss rates were very close, being 0.0134 g/kW for
composites processed by low pres_.ure procedures, 0.0199 g/kW for mixed

pressure processing, and 0.0216 g/kW for high pressure processing.

B. MICROSCOPY

The appearances of the craters in all filament specimens were similar
and of a triangular shape except for the Thornel 300 filament (see Figures 9
through 11). The slightly larger craters in the transverse specimens
reflected the greater mass loss of the transverse direction. The crater in
the longitudinal direction of the Thornel 300 filament was significantly dif-
ferent from those in the other materials in that the filaments splayed out
from the crater (see Figure 10a). Thé WYB and Modmor II filaments had a
small amount of splay from the longitudinal crater. With a slight increase
in magnification, additional details of the craters are evident (see

Figures 12 and 13), The small amount of filament splay present in the

26
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Figure 8. Mass Loss Data for Pitch Matrix (a) and
Carbon-Carbon Composites (b)
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(b) THORNEL 50
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1.75 in.

(c) THORNEL 75

Figure 9. Optical Macrugrapns ot Rayon Precursor Filaments
Before and After Laser Irradiation
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(a) THORNEL 300

| 1
(b) MODMOR 11

{c) HM 2000
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Figure 10,

B

(d) GY 70

Optical Macrographs of Polyacrylonitrile Precursor
Filaments Before and After Laser Irradiation
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Figure 11, Optical Macrographs of Petroleum Pitch Precursor
Filament Before and After Laser Irradiation
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Figure 12.

“THORNEL P

Scanning Electron Micrographs of Transverse Filament Craters
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THORNEL P THORNEL 75

Figure 13,

a

Scanning Electron Micrographs of Longitudinal
Filament Craters Showing Filament Splay
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longitudinal specimens is apparent. The coating on and in the craters is

re-deposited carbon which occurred during cooldown.

Craters in the bulk pitch are shown in Figure 14, In general, the -
characteristics of these craters were not unusual. Some additional informa-
tion on pore structure and orientation was obtained at a higher magnification
of the HiPIC (high pressure) sample. The distribution of closed pores in

this high pressure sample is quite evident (see Figure 15).

Craters in the multidirectional composites were very small in com-
parison to those in the filaments due to the significantly higher density and
heat capacity of the composites (see Figure 16). The composite specimens
were sectioned to view the point of maximum penetration. The specimens
were not divided through the maximum diameter of the crater to form the
sections, so the diameter of the crater must be taken from the top view
and not frorn the cross-sectional view. Figures 17 through 20 show the top
and side views of the craters in the composites processed by high (D2-2 and
B1-2) and low (AX-1) pressure pyrolysis procedures. The smaller craters
in the composites processed by low pressure procedures were surprising.
The craters in D2-2 and B1-2 were approximately eight times deeper than
those in AX-1, Although AX-1 had a more shallow crater, it enclompassed
a larger area. This is in comparison to the deeper but narrower crater in
the samples processed by high pressure procedures. Again, these observa-
tions are consistent with the high mass loss (60 percenf:) of the composites

processed by high pressure,

The pyrolytic graphite control samples had the expected small ,
craters, particularly in the a~-b face (see Figure 21). The crater on the
c-face was elongated in the direction of higher thermal conductivity (see
Figure 22). Examination of the crater on the a-b face at a higher magnifi-

cation did not reveal additional information (see Figure 23).
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. y | i

1.0 in.
(a) 1,000 psi PYROLYSIS PRESSURE

(b) 15,000 psi PYROLYSIS PRESSURE (HIPIC)

Figure 14, Optical Micrographs of Coal Tar Pitch Precursor
After Laser Irradiation i




Figure 15,

Scanning Electron Micrographs of Bulk Matrix
Pyrolyzed by HiPIC Procedure (~1)
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(@) 1,000 psi PRESSURE PYROLYSIS
COMPOSITE AX-2

(b) CVD + 15,000 psi PYROLYSIS :
PRESSURE COMPOSITE D2-1 '

Figure 16, Optical Micrographs of Multi-Directional
Composites After Laser Irradiation
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Figure 17.

SIDE VIEW

Scanning Electron Micrograph Top and
Side Views of AX-1 Crater
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Figure 18, Scanning Electron Micrograph Top
View of D2-2 Crater
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Figure 19,

Scanning Electron Microgra
D2-2 Crater
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Figure 21. Optical Macrographs of Pyrolytic Graphite After

Laser Irradiation
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¥igure 23,

Scanning Electron Micrographs of a Crater in Pyrolytic
Graphite Control Sample No. 1 on A-B Plane
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V. DISCUSSION

In the laser irradiation experiment, several of the relationships which
were believed to exist between filament mass loss and filament orientation,
modulus, and density were examined. The equations from the linear regres-
sion analysis were used to calculate mass losses for each system after a
one-second irradiation (see Figure 24), The three filaments of interest to
the aerospace community, Thornel 50, HM2000, and Thornel P, had equivalent
responses in both directions. The bar chart suggests possible correlations
of mass loss rate with density, modulus, or the product of modulus and
density. These are shown in Figures 25 thru 27 and the regression analysis
results are tabulated in Table 6. Good correlations were found for modulus
and the product of modulus and density with a reasonable correlation found
for density alone. Incorporating the pyrolytic graphite data into the correla-
tion (density of 2.15 g/cc and a modulus of 100) resulted in equally good

correlations (see Table 6).

The results confirmed the importance of physical and mechanical
properties in controlling mass loss, and also revealed that one single
property cannot determine mass loss, This is illustrated by a comparison
of Thornel 50, HMZOOO, and Thornel P filaments which had equivalent mass
losses, but which were of differing precursors (rayon, PAN, and pitch,
respectively), differing densities (1.66, 1.81, and 1.92 g/cc, respectiv.ely),
but similar moduli. A second example is a comparison of Thornel 300 and
Modmor II, which had different mass losses while having equivalent
densities and moduli. However, their precursors are not of the same PAN
family., Another comparison is between WYB, Thornel 50, and Thornel 75.
All are from a similar precursor, yet each differs in density and modulus, i
further supporting the importance of these two properties. Modulus is a
result of crystallographic orientation; consequently, the degree of graphitic
registry and the arrangement of these crystallites into macrostructural

units are both important structural parameters.
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COAL-TAR-
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Figure 24. Mass Losses from Linear Regression Analysis for a One-Second Irradiation
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Table 6, Linear Regression Analysis of Filament Mass
Loss Property Relationships

Without Pyrolytic Graphite Data

Property | Gomslaon | siope, | Yelnereopt
Density -0.72 -.0099 .0314
Modulus -0. 87 -.0010 .0193
Density & Modulus -0.87 -.0005 .0190

Using Pyrolytic G

raphite Data

property | Gomgtanon | shpe | Yelnsorcert
Density -0.85 -.0184 .0467
Modulus -0.88 -.0015 .0215
Density & Modulus -0.96 -.0008 .0190

r

T".« mass loss data from the longitudinal filameént orientation were

simi.: ., ranging from only 6.4 to 13.4 g/kW. If the 13.4 g/kW is omitted,

the rany - was from 6.4 to 8.2 g/kW. The 13,4 value was for the Thornel

300 filament which had the large amount of filament splay from the crater

(see Figure 10a). With such a dramatic crater, additional mass loss due to
microfracturing resulting in a highef than normal mass loss might be
expected. The similarity in mass losses in the longitudinal direction is not
surprising considering the small 1.1 to 1.9 range in transverse moduli.

In addition, there are some similarities in the microstructural characteristics,

crystallite orientation, and structure as discussed in the following paragraphs.

Due to limited data on the bulk matrix and composite samples, only

general comments can be made, The bulk matrix material eroded at a

50
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slightly slower rate than the longitudinal filament orientation, whﬂc the

transverse filament orientation eroded at the fastest rate, This ranking is
similar to that observed in ablation testing of composite modc]s.8 The only
difference is that the bulk matrix phasce erodes at a slightly faster rate than
the longitudinal filaments in actual testing, This reversed ranking of these
two components may again be duc to the large specimen size with higher

heat capacity and therefore lower mass loss. The mass loss percentage was }

on the order of 0.3 percent as compared to 1,0 percent for the filaments,

The three composite specimens had similar low mass losses ranging

from 0,6 percent to 0.1 percent, Longer exposure times at higher laser

Ao

becam energies are nceded to differentiate between these composites. How-
ever, the fact that they are equivalent is consistent with recession rates

measured during ablation tests. 8 The low composite mass losses are duce to 1
two factors. First, approximately 80 percent of the composite consists of
the low mass-loss constituents, i,e., longitudinal filaments and bulk matrix. 4
Second’r, higher density and larger specimen size will result in lower mass

losses.

The post-test analysis of the microstructural characteristics of
individual filaments provided considerable information on filament responsec
and structure of carbon filaments. Figure 28 shows thec morphology 4
structure and carbon filaments prior to irradiation. A summary of observa- 1

tions made from the scanning electron micrographs is tabulated in Table 7,

The rayon precursor filaments after irradiation are shown in Figures 29
thru 31, The rayon filaments typically eroded to a conical or slightly pointed
shape. Internal flaws and microporosity can be found. The internal structure
is most apparent in the WYB filament. Groups of oriented planes appear

parallel to the surface of the filament, matching the filament crenulations.

8J. S. Evangelides, Presentation to the SAMSO Material Development

Coordination Committee, El Segundo, CA (February 1977).
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Figure

28(a).
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THORNEL 50

Scanning Electron Micrographs of Control
Filaments Prior to Irradiation
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HM 2000 | GY 70

Figure 28(b). Scanning Electron Micrographs of Control
Filaments Prior to Irradiation (Continued)
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Figure 30, Scanning Flectron Micrograph of Thornel 50 After Irradiation
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Figure 31.

Scanning Electron Micrographs of Thornel 75 After Irradiation
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The PAN precursor cross section filaments were cylindrical,
with the exception of GY70, which was in the shape of a dog bone,  After
irradiation, cach of the PAN filaments assumed a different characteristic
shape (see Figures 32 thru 35), Thornel 300 had the most intriguing shape,
An extremely thin sheath surrounded the filaments and was noticceably more
crosion-resistant (sec Figure 32). The filament center was the least
resistant to ablation. This center region had either a very fine graphitic struc-
ture or a random structure., Filament segments or wedges radiated from the
low center to the higher sheath, The ends of the Thornel 300 filament had
the flattest post-test appearance. Modmor II assumed a conical shape viith
a circamferential structure which appearced segmented as shown in Figure 33,
The 1IM2000 also assumed a conical shape, but with cither a fine point or a
flat ablation-resistant core. The FHIM2000 structure was uniform, with an
"onion skin'' or cylindrical oricentation (sce Figure 34). Thesce results are
similar to those obtained by Barncet and Norr.() The GY 70 filaments tapered
at the cnds with a wedge-like appearance (sce Figure 35), Occasionally a
center-core pore was.prvsent. The internal structure was difficult to

discern in the GY 70 filament,

The final filament to be examined was the Thornel P filament which
was tapered, with the core being the least ablation-resistant (sce Figure 36),
The radial structure extending to the surface was stili apparent. A bricef
comparison of the filament microstructure after irradiation for the filaments
of interest is shown in Figure 37. This should be (:om})arcd with Figure 38
which shows an [IM2000 and a Thornel 50 composite after ablation testing
(Air Force Flight Dynamics Laboratory (AFFDL) 50MW),

The Thornel 50 multidirectional composites processed by high and low
pressure procedures were examined at high magnification to determine the

filament-matrix response when in the form of a composite. The composite

qF. R. Barnet and M, K. Norr, ''Carbon Fiber Etching In An Oxygen
Plasma, ' Carbon, Vol II, pp. 281-288 (1973).
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Figure 32. Scanning Elcctron Micrographs of Thornel 300 After Irradiation
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Figure 34, Scanning Flectron Micrograph of HM2000 After Irradiation
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Figure 36. Scanning Electron Micrographs of Thornel P After Irradiation
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processcd by low pressure procedures (AX-1) is shown in Figures 39 thru
41. The filaments oriented parallel to the laser beam were flat or slightly
slanted with the matrix phase being slightly more ablation-resistant (sce
Figure 39). The lack of tapered filaments as in the filament tests (sce
Figure 37) and in composite ablation tests (sec Figure 38) may be duce to

the less severe environment, Flat Thornel 50 filaments were observed

ncar the edges of the transverse craters for the bare filament experiments,
For the filaments oriented normal to the laser beam, both filament and
matrix can be fotind (sce Figurce 40), Also shown in Figure 40 is a filament
fracturc which could have occurred during the final graphitization step during
processing., Although it could have occurred during the laser experiment,

no other cvidence of fracturing or microdamage could be found in the com-
posite samples. The cross-sectional views through the crater did not

reveal any evidence of mechanical damage in any of the constituents, filament
ends, filament sides, or bulk matrix (sce Figure 41), The VtransvurS(- fila-
ment, bulk matrix, and longitudinal bundle (in order of decreasing recession)
woere similar to those obscerved during ablation testing. There was little
difference between the bulk matrix and longitudinal bundles in c¢ither this
experiment or in the ablation tests. This is consistent with the results

discussed previously when the constituents were tested individually.

The microstructure of the multidirectional composite processed by
high pressare procedures after laser irradiation is shown in Figures 42
thru 44, The filament ends and matrix receded at an equivalent rale with
only a discontinuity at the filament-Chemical Vapor Deposition (CVD)-matrix
interface (see Figure 42), At the interface it was apparcent that the CVD
receded at a faster rate than cither the filament or matrix. At first glance
once may conclude that the CVD offers no advantage since it erodes at a
much faster rate than the other constituents, However, if by its recession
it removes heat that would otherwise remove filament or matrix, it would

be advantagceous to have a CVD layer. The filaments oriented normal to the
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Figure 38,

ABLATION MODEL

Thornel 50

Scanning Electron Micrographs of Thornel 50 and
HMZ2000 Composites After Ablation Testing
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Figure 42,

—=— CVD COATING

< ==— F| LAMENT

Scanning Electron Micrographs of a Transverse
Filament Bundle Composite Processed by High
Pressurc Procedures After Irradiation
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Scanning Electron Micrographs of a Longitudinal Filan.ent Bunc
Processed by High Pressure Procedures After Irradiation

Figure 43.
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laser beam were more resistant than the matrix phase (see Figurce 43), The
transversely oriented inter-filament matrix is casily seen in this illustration,
The fact that there is less matrix on the longitudinal filaments may he due

to matrix recession béing assisted by some mechanical removal as the CVD
layer just below the matrix vaporizes., Unfortunately, there is no direct
cvidence for any mechanical removal; examination of the cross-sectional
views of cach constituent again shows no signs of mechanical failure. The
top micrograph of Figurc 44 shows filaments that have been partially eroded.
Also, inter-filament matrix can be found adjacent to these eroded

filaments.,

These experiments have provided insight into the microstructural
mechanisms of ablation and have shown that significant differences exist in
the mass loss characteristics between constituents of carbon-carbon com-
posites. The ranking of materials in order of decreasing mass loss was:
transverse filament, longitudinal filament, bulk matrix, composites, and
pyrolytic graphite. Significant differences were found in the transverse
mass losses of filaments while the longitudinal mass lossces were veryclose,
Post-test macro/microstructures of the transverse filaments were also
quite different for cach filament, Strong corrclations were found between
mass logs, filament density, and modulus, and conscquently, crystallographic
orientation, However, one simple property alone did not control the mass
loss characterigtics. The mass loss characteristics of the three principal

acrospace carbon filaments were cquivalent,

The ranking of constituents [rom composite laser tests was similar to

both the constituent laser tests as well as the AFFDL 50MW composite abla-

tion tests. Since the lowest mass loss phases arce 80 percent of the composite,

they have a controlling effect on ablation, This implies that since the longi-
tudinal filaments have a narrow range of mass losses, similar composites
having different filaments can also be expected to have a narrow range of

mass losses. The craters in the composites processed by high pressure

73

I
TN VR PRED PRI e

-




procedures were narrower and significantly deeper than the craters in
composites processed by low pressure procedures.  Further microstructural
cxamination revealed that the CVD layer around the filaments recedes at a

faster rate than cither the filaments or matrix.

A brief carbon negative ion analysis was made of the coating that
formed on the surface of the laser cratvrsm (sce Figures 12 and 13), In
all cases, they were found to contain carbyne forms of carbon, t The
amount of carbynce form remaining in the coating depends on two factors,
namely, the rate of transformation of the graphitic carbon and the rate at
which the coating was quenched, Qualitative results show that pyrolytic
graphite transforms at a higher rate than binder carbon or glassy carbon,
How the carbon fibers behave in this respect has not been determined, How-
ever, it is unlikely that they all transform at the same rate. The cooling
rate of the coating will depend mostly upon radiation loss and on how fast
heat can be conducted away from the coating. It was {found that the carbynes
were usually most prevalent in the coatings formed on the fiber sides. Since
the radiation losses were much the same from craters formed in fiber sides
and cnds, it follows that conduction losses were greatest from craters formead
on fiber sides. This conclusion is compatible with the geometry of the
samples. For a single fiber, the dircction of best thermal conductivity is
along the fil';er axis. Therefore, heat can be readily conducted away in two
directions from a crater produced in the side of the sample. A crater pro-

duced in the fiber ends has only one direction of good conduction.

mW. K. Stuckey and A. G. Whittaker, '"The Identification of Carbon

Allotropes by Ion Microprobe Mass Analysis, ' Paper No. TP-177,
Abstracts of the 10th Biennial Conference on Carbon, Bethleham, PA
278 (27 June - 2 July 1971).

A. G. Whittaker, '"Carbon: A New View of the High-Temperature
Behavior of Carbon, ' Science (May 1978).
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Specific results obtained from examination of some of the samples

arc listed below,

Thornel 50, Craters produced in both fiber dircctions had a
high carbyne content, and this fiber appearced to produce a
greater total amount of carbyne forms than any of the other
fibers., Also, an unusual form of carbon (perhaps a carbyne)
was found. This form gave only C™ and C3 signals and the
C™/C, ratio was cxceptionally high,

Thornel 75. Normal carbynes were found, butl in low concentra-
tions

FIM2000, Only the unusual carbon form (i, ¢., high C—/Cé ratio)

was found, ]
Thornel 300, Results were much like those for Thornel 75,
GY 70. Normal carbynes were found in a concentration that was {
intermediate between those of Thornel 50 and Thornel 75,
Thornel P, Normal carbynes were found, but in a low concentra- 4
tion as in Thornel 75,
WYB., This showed only the form of a high C™/C, ratio, A
positive ion spectrum showed that this fiber was very low in
inorganic impurities,
Modmor II, Normal carbynes in concentration similar to that
in Thornel 75 were found. 1
A
; . . < !
All of the samples showed evidence of particle emission, The heating ‘
chamber was cquipped with a tray to catch emitted material for analysis by {\
the scanning clectron microscope (SEM) and clectron diffraction. A SEM . ‘{

scarch showed that most of the emitted material was composced of short
scgments and clusters of fibers, A few splats were found which indicated
that the carbon was hcated above its melting point ¢~ 3800°K). Most of the
electron diffraction patterns showced diffusc rings that are characteristic of

graphitic carbon. A few clean single crystal patterns of chaoite were !

obtained,
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VI. CONCLUSIONS

The laser irradiation experiments have shown that: (a) corrclations
exist between mass loss and materials properties, (b) significant differences
in mass loss characteristics exist between the composite constituents and,
(c) ablation testing results in similar correlations., It was concluded that
laser irradiation of reentry nose tip materials can be used to screen
candidate materials as well as to simulate an ablation environment, Itis
highly reccommended that further testing be conducted on a variety of multi-
dircctional carbon-carbon composites to obtain mass loss data, as well as
to further the knowledge of composite ablation mechanisms. With such in-
formation, correlations between laser mass loss and ablation recession rates

can he investigated,

Carbon negative ion spectra obtained from the material coating the
laser craters showed that the carbon fibers transformed to carbyne forms
of carbon during the heating cycle. The different types of fibers did not

transform to the same extent,

Particle emission was observed in all cases and splats from liquid
carbon were found in the emitted material. Electron diffraction patterns
showed that most of the emitted material was graphitic, but a few single

crystal patterns of chaoite were found,
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APPENDIX. SUMMARY OF EXPERIMENTAL DATA

Filamoent . o L

Spedimen Dircction Valume W"‘uh,t, Lasoer Lrradiation

. . " Laass, " Power, kW Fitne, scc

Fraction, "
WYR-28 Longitudinal 64 0,79 5.49 0,514
b Transverse 5. 22 10,77 1062
-29 Transverse 74 5.07 .16 1.052
-30 Transverse 66 3. 86 11,30 0,514
-4t Transverse 64 3.74 10. 15 U, 492
Thornel 50.5 Longitudinal X} 1,27% 11.76 0,534
Transverse 3, K85 1. 17 1.048
.0 Longitudinal 70 1,04% 10,29 0,532
Transverse 4.00 7.95 1,056
-7 f.ongitudinal 72 0.99 5. 60 0,934
Transverse 2.16 10, 86 0. 556
- ¥ Longiturlinal 68 1.5 5. 91 0,924
l ransversce 2.20 10. 75 0. 490
[hornel 75-17 Longitudinatl 58 0,71 6. 49 0,522
[ransversce 4.09 15,79 1.079
18 Longitudinal a1 0.74 6,04 0.507
: Transverse 4,08 10,78 1.162
-19 Transversce 57 1.90 9.76 0,525
220 Transverse 54 0,85 10,24 (.59
- —

hornel 300-9 Longitudinal 73 1.40 10, 12 0.5135
Transverse 3,53 10. 53 1.060
-10 Longitudinal 73 1,48 10. 64 0. 500
Transverse 3. 31 9.26 1,036
- 11 Longitudinal 74 1,36 5. 44 0,968
Transverse 2,35 11,15 0, 569
-12 Longitucdinal 75 1. 19 6. 30 0,748
Transversc 2.12 10. 30 0.530
Modmaor [1-13 Longitadinal 77 0. 84 10. 59 0,520
Transverse 2.01 10.42 1,020
-14 Longitudinal 75 0,56 6.61 0,582
Transverse 2.24 10,95 1.068
.15 Longitudinal 76 0.53 6. 35 0.936
Transverse 1,28 10.05 0.503
-16 Longitudinal 76 0.63 6.74 0.952
Transverse 0. 68 10. 28 0,528
FHIM2000 -1 Longitudinal 68 0.98 11.00 0,504
Transversc 3.32 10. 62 t. 084
-2 Longitudinal 65 0.93% .12 0, 550
Transverse 3. 22 10, 88 1.030
-3 Longitudinal 66 0.98 6. 34 1,002
Transverse 2.96 10, 49 1.030
-4 Longitudinal 68 0.99 6.06 1.000
. Transverse 2.19 11.91 0, 590
233 Transverse 64 t, 56 10, 58 0. 499

#*Beam hit mctal holder, data discarded.
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APPENDLX.

SUMMARY Or EXPERIMENTAL DATA (Continued)

Specimen

Dircvenon

Filament
Yolume
I raction,

Weight
Loss, "

Laser

Power, kW

{frradiation
Time, scc

f.ongitudingl

ay 7.1 LY} 0,68 5,74 0,495
Transverse 4.00 10,77 1,090
22 Longitudinal 67 ), g ({. 70 0,952
Transverse 1. %) 10, 40 0,559
223 f.ongitudinal 6H5 0,65 % 6,07 0.891
Transverse 2.25 . 10.94 0,510
'ornel P24 Longitudinag] 06 0, 80 6,92 0. 500
Transverse 3,41 10,28 1.090
224 fongitudinal 61 0,70 6. 56 0.490
Transverse 2. 32 9.04 1.01t0
224 Longitudinal . 64 0, 87 5.95 G.Yy19
Transverse 2,00 11,132 0,522
227 Longitadinagl 69 0,95 6.61 0,940
Transverse 1.78 10, 66 0,523
PG e ; 0,13 6,45 0.969
a .04 5. 71 0.508
-2 [ - 0,173 5.56 0,984
P 0.05 5.73 0,524
o ¢ 0,13 4,89 0,914
a 0,12 6.42 1.087
-4 ¢ - 0.07 5,22 0,506
i 0,14 5.57 1.047
1223 Bt 7 - 0,21 6.27 0. 504
22 - 0,14 5.62 0. 500
-1R - 0.05 6,48 0.493
MDAC AX-1 v - 0.17 6.02 0,554
.2 . 0,23 5.91 1.036
FMIZ221 B4.1 P - 0.11 5.67 0.538
22 - 0. N 5.33 0,986
G1223 D2-1 ’ . 0.15 " 5,50 0.517
.2 . ] 0. 14 = .5,82 0, 500
Hiple - - 0.1 5.83 0, 500
7 0,24 6,57 1,036
MDAC 1.O ¢ - - 0,25 5,32 0, 548
4 0.26 5.01 1.004

2 cam hit metal holder, data discarded.
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