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1. INTRODUCTION

The search for models useful in describing and predicting the
break-up of shaped-charge jets has proceeded along several lines.
The problem of mass flow in jets can be treated in a continuum mechanics
fashion by formulating a set of difference equations which can be solved
in a reasonable time by a large computer. When spatially periodic
perturbations are introduced into the boundaries of the jet, they are
found to grow if they are of the right size.l Another approach 'is to
make experimental observations and attempt to use similarity methods?
and empirical curve fitting to extrapolate from the measured to the
unknown. A third approach, and the one to be followed in this study,
is to use basic mechanics and simple probability theory to treat the
jet as a collection of stretching links. All of these approaches are
tied to material properties which are reasonable in concept but dif-
ficult to measure during the formation and break-up of the jet

It has been observed that high speed jets, created by the detonation
of shaped explosive charges with conical copper liners, tend to break
up into small particles of various sizes after about 10"% seconds.
Continuous jets with all parts traveling along the same straight line
are known to have better penetration capabilities than jets which are
broken or dispersed, and there is considerable interest in discovering
and controlling thosc physical parameters which influence the pattern
of jet break-up. The purpose of this report is to combine a number of
observations with some simple theory and to arrive at a model which
contains the pertinent physical parameters and predicts the pattern
of the break-up of shaped charge jets.

2. SIMPLE DESCRIPTION OF A JET

By examining consecutive x-ray flash photographs of a jet, it is
possible to determine its mass distribution in space and time and to
describe it rather simply at a given time as shown in Table I, which
will be the basis for the following analysis. Jet properties will of
course vary with the design of the shaped charge. The values listed
in Table I were obtained by a crude averaging of data from firings3
of precision 3.3 inch (8.4 cm) shaped charges with Copper liners,
end are thought to be representative. Because copper is the metal

lP.C. Chou and J. Carleone, Stability of Shaped Charge Jets, Journal

of Apnlied Physics, Vol. 48, No. 10, pg. 4187, October 1977

)

“W. E. Baker, P. Westine and F. T. Dodge, Similarity Methods in
Engincering Dynamics, Hayden Book Co., Inc., Rochelle Park, NJ,

pie 196, 1973

. Simon and R, DiPersio, Shaped Charge Warhead Performance, Transac-

tions of dth Symposium on Warhead Research, US Naval Ordnance Testing
Sratton, Ching Lake, CA, Sept 1965
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most often used in liners for shaped charges, some properties of copper
are listed in Table II,

Table I. Nominal Properties of a Copper Jeu :0"% seconds
After Shaped Charge Initiation

Velocity of‘Tip 7.5 km/sec
Length (V2.5 km/sec) 50 cm
Diameter o 3 mm )
Break-up Time 100 u/sec
Number of Particles 50

Mass in Jet : 32 gms

Table [I. Nominal Properties of Copper

Density 8.93 gm/cm3
Sound Velocity 3750 m/sec
Thermal Conductivity 3,94 w/cm°C

Heat of Fusion 207 j/gm

Heat of Vaporization 4730 j/gm
Specific Heat ' 0,38 j/gmeC
Atomic Weight - - ' 63.54 /mol
Melting Point 1083°C

Boiling Point S 2595°C

Strength ' 2x108 newtons/m2

For purposes of discussion we will assume, as depicted in Figure
1, that the shaped charge produces at the virtual origin a-copper jet
‘which expands uniformly in time so that it can be viewed as a stretching
right circular cylinder of constant mass and density., The length L
of the jet at time t is given by the equation,

L= Ut = 50X 103t

where'Us is a stretching speed of 5.0 km/sec, the difference in speed
between the tip and the tail of’fhe-jet. If the jet'hhs;axdiamgtgrtb
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Figure 1. A depiction of the jet resulting from a copper-lined
shaped charge. If we assume that the jet started from
the virtual origin at time zero, it is 100 .microseconds
old. The speed of stretching US' is 5.0 km/sec and the

velocity gradient, or strain rate, Uq/L, is 104 sec—l.
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of 3 mm when it is 50 cm long at 100 u/sec and if copper has a density
of 8.93 gm/cms. the mass of the jet is given by the equation,

M = nDsz/4 = 31,56 gm. (2.2)

The motion of the jet can be described in terms of the motion of the
center of mass and the motion relative to the center of mass by the
equation,

U = UL+ (X/L) U - L/2SXSL/2 (2.3)

where U(X) is the speed of a mass point located by the coordinate X
measured from the center of mass, u. is the speed of the center of
mass, L is the length of the jet at time t, and US is the difference

in speed between the jet tip and tail.

Combining Equations 2,1 and 2,3 yields the result,

ux,t) = U, + (x/v), -US/2<X/t<US/2, (2.4)

where, for our particular jet, both Uc and Us are 5 km/sec,

3. ENERGY DISTRIBUTION IN THE JET

It is evident that Bquatior 7.4 can hold only if the stretching of
the jet requires no expenditur«: - [ nnergy. The energy of the jet may
be divided into two parts, the onegy associated with the motion of
the center of mass and the energy associated with motion relative to
the center of mass, and may be written as

X=L/2
B o= MUZ/2+ (1/2) wu? (X) dX 3.1)

X=-1/2

where u is the mass per unit length in the jet and u(X) is defined
from Equation 2.3 by the equation,

u(X) = U(X) - Uc = (X/L)Us. (3.2)

After integration between limits Bquation 3.1 becomes

‘_4_,_,____..___._A._..__4
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E = MU§/2 " Mu§/24 (3.3)

where we have replaced p by M/L. Since U, and U, are both equal to

5.0 km/sec for our situation, we see that only about 1/13 or 8% of
the energy is associated with the stretching motion, and it is this
energy which is depleted as work is done in stretching.

Suppose that a uniform jet is divided into n equal segments with

the velocity distribution of the Kth segment relative to the laboratory

system being given by the equation,

U(x) =0, + (X/L)Us. A<X<B, (3.4)
where
A= (-L/2) + (K-1) (L/n), (3.5)
and
B = (-L/2) + K(L/n). (3.6)

With these definitions, the location and speed of the center of mass
of the Kth particle are given by the equations,

-~
n

g = ~L/2 + (K-%) (L/m) = (A+B)/2, (3.7)

and

Uy = U+ [-% + (K -3)/n] U = UK. (3.8)

The velocity distribution in each segment relative to its center of
mass can be written as

U’ (X*/L) = (X*/L) Ug, -L/2n&X“<L/2n (3.9)
so that the relative kinetic energy can be wuoitten as

X=L/2n ,

Y = [ oy (x-/w? u? axe (3.10)
X=-L/2n c : '

L/2n
= w2y /x| o @an

-L/2n
= %24 03 (3.12)

11
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From Equatiun 3.8, the kineti~ energy of the Kth particle, less its
internal nergy r2lative to its center of mass, can be written as

g 2]
I

= (M/2n) uz

(3.13)

(w/2m) (U + [-% + G-)/nju )2 (3.14)

Jsing Equations 3,12 and 3.13 the total kinetic energy of the jet

can be written as
K=n K=n
E= 2, B+ 2, B
K=1 K=1

’

K=n 2 K=n
= Ega (W2n) (U, + [-% + (X=1)/n]U 1" + é;&

Using the identities,

K=
2. a=na, a = any constant,
k=1
K=n
. K = (5)n(n+l),
K=1

Ksn 5 ‘
Y KS = (1/6) (n) (n+1) (2n+1),
K=1 v

Equation 3.16 can be simplified to the form,

m
4]

MuZ/2 + 020030 (/B ]« w24yl

2 2
MUC/Z + (M/24)Us.

12
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Since n segments contribute to the last term of Equation 3.21, tne
contribution of each segment to the term is

E, = (1/n)(M/24)(U§/n2) - (M/24)U§/n3. (3.22)

in agreement with Equation 3.12. Equation 3.20 states that the n seg-
ments contribute to the total energy by three terms. The first term is
associated with the motion of the mass M at speed Uc. The second term

arises from the motions of the centers of mass of the several segments
relative to the center of mass of the jet. The last term arises from
the internal motion of each scgment relative to its center of mass.
The total energy of the jet is of course independent of the manner

of its division, as illustrated by Equations 3.20 and 3.21. These
cquations can beo written in terms of energy per unit mass as

B/M = U2/2 + (1/24)050-(1/n9)] + (1/24)0%/n? (3.23)

and

E/M

Ui/Z + (1/24)U§. (3.24)

The above calculations illustrate that, with a given stretching
speed, the energy available to stretch an isolated segment of jet,
after a partial break-up has occurred, varies strongly with length,
It should be stated further that, if a jet in the process of
stretching suddenly breaks into n pieces, the total kinetic energy is
still the same, but the energy available per unit mass to stretch the

jet (or its several pieces) has fallen from U§/24 to U§/24n2, as
indicated by Equations 3.23 and 3.24,

4, RELATIVE ENERGY CONSUMED IN STRETCHING

The element of energy dE consumed in stretching a rod an elemental
distance dX is given by the equation,
dE = F dX, (4.1)
where F is the applied force. By the definition of stress S as force.

per unit area and strain de as elongation per unit length, Equation
4,1 can be written as

13
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dE = (F/A) A X (dX/X) = V S de, 4.2)

where S = F/A, de
Then, E/V = J/éde.
. For purposes of illustration, suppose that the jet from a

shaped charge is assumed to start from a right circular cylinder of some
initial length Lo and that it continucs to stretch uniformly until

dX/X and V = AX, (4.3)

it breaks up at some length Lf. From the definition of de Equation 4.3

can be written as
Le
E/V = J/' $ (dX/X) = 8 1n (Lg/L ) (4.4)
L

[§)

where S has been assumed to be a constant parameter during the stretching
process.

Suppose that a jet exists initially as a right circular cylinder
with a length to ciameter ratio (LO/DO) of unity. The volume V of the

jet can be written as

- . p .3
VeMp=m0 L/4=mLi/4, (4.5)

so that, using values for the mass M and density p from Tables I and II,
the initial length Lo is calculated as

Ly = (aM/70) 3 = 1.67 cm. (4.6)

Using Equations 3.24 and 4.4 and assuming that all the internal kinetic
enorgzy of the jet is used in stretching and that there is no jet
break-up,

2 _
Us/24 = (S/p) 1n (Lf/Lo) (¢.7)
and
Lg = LOEXP[pU§/24G]. (4.8
14
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1.64 EXP[8.93 x 10° - 50002 /(24 + 2x 10%)] (4.9

20
cm.

2.64 x 10 (4.10)

This result, though perhaps unrealistic, illustrates that the interpal

mechanical energy of a jet is sufficient to stretch it until it breaks.

If we had assumed a break up length of 50 cm, the work done, from
Equation 4.4, would have been

E/ov = (2 x 10%/8.93 x 10%) 1n (50/1.67) (4.11)
= 76.1 j/gn.

This is only about 7% of the available internal kinetic energy,
given from the last term of Equation 3.24 as

E/M = U2/24 = 1042 3/gn. (4.12)

From Table II the specific heat of copper is 0.38 j/gm°C and the

heat of fucion iy 207 j/gm, se that the work calcvlated in Equation 4.1]]

is rather modest compared to the energy reyuired to heat copper from
500°C, for example, and melt it. Since the stress S, assumed for the
foreguing calcuiations to be that of cold copper, is expec*ted cc
decrease markedly as copper approaches the melting point, there is
little likelihood that work done on a stretching jet will cause it to
melt if it was a sclid at some time during the stretching process.

It will now be assumed, in agreement with observations, that the
stretching jet will break rather than stretch indefinitely. In
physical terms it can be said that there is apparently some threshold
of work by stretching which the jet can endure before it breaks up
into segments. -Each segment nas a velocity gradieént US/L and will

continue to stretch until it breaks further or relief waves propagate
from the free ends and the velocity gradient is removed. The energy
associated with the velocity gradient persists until it is expended
by work done in stretching. The energy available to stretch a segment
of length & is given from Equation 3.22 as ' e :

E = (M/24)U‘Z;/n3 = (1/24) th/L) (US/L)ZgZ" - (4.13)

where n has been replaced by L/n'and factors have been associated
to define the mass M%/L of the segment and the velocity gradient US/L.

15
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The internal energy per unit mass in the segment is then

R/M(L/L) = (1/24)(U5/L)222- (4.14)

Suppose, for example, that the first breaks occur at some energy
threshold (E/M)0 and that subsequent breaks occur if the segment

has enough relative energy to push the work done on the segment
beyond some upper limit (E/M)m

Equating the additional work needed for further break-up to the energy
available, as given by Equation 4.14, we obtain

/20y /w207 = (M) - B = aE. T (4.15)
If we argue that the segment will not break further if
2.2 ‘
(1/24) (Uq/L) L5 < AE, (4.16)
then the equation,

L= [24 (aE)/ (U /1) %2 (6,17

defines the longest segment that can exist without further break-up.
By means of Eouation 4.4 and 4.15

= (S/p) In (L /L), . (4.18)

where L is the length of the segment when break-up starts and Lm is

its length when it has used all of its internal kinetic energy in
stretching, Equation 4,17 can be written with Equation 4.18 to yield

1/2

¢ < (26 (5/0) 1n (/)1 2w /Ly (4.19)

Assuming a 5% stretch (Lm/Lo = 1.05) and hqminal,vélues pf strength
S, density p, aad velocity gradient US/L from Tables I and II and
Figure 1, we find that :

2 <1.62 cm » (4.20)

Data, .obtained by Jameson and exhibited in Figure 7. show an
estimated maximum length of 1.98 cm,

16




One way of looking at the energy or cime interval associated with
jet break-up is to balance the ensrgy available for stretching a jet
particle against the work done in stretching. For example, a particle
of length &, velocity gradient Us/L, and mess M will have available for

stretching at most the energy
2,,3 o
E = (WL)(U/L)"(27/24) (4.21)
as given by Lquation 4.13. The energy per unit volume is therefore

Bp/[M(2/L)] = pRZ(Us/L)2/24 (4.22

If S is the strength of the material and the elongation Ae in time At
is given by the equation

Ae = AL/L = Us(l/L) At/2, (4.23)

the work done per unit volume by strctching in time At is givem from
Equation 4.2 as

dE/V = She = SU_(2/L) At/S.. O (4.2)

If we equate the ensrev available to the work done in time At (Equations
4,22 and 4.24) '

2
pU; (W/1)%/24 = SU, at/L (4.25)
and '
At = pUsL(E/L)2/24 S = p(us/L)12/24's. (4.26)
If we use the value of & from Bquation 4.20 we find that (4.27)

At = 4.88 x 10°% sec,
From purely kinematic considerations using Bquation 2.1

At =t (AL/L) = 5 x 10°° sec. (4.28)

17 -
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The time internal for At required for a relief wave to travel across a
1.62 cm segment is given by

At = 2/a = 1.67 x 10'2/3750 - 4.45 x 1079 sec. (4.29)

As will be shown later, this transit time for a relief wave is intimately
related to particle size distribution.

The point of the preceding discussion is that maximum particle
length (Fquation 4,20) and relief wave speed (Equation 4.29) can be
consistently related by & simple stretching model, which includes work
done in stretching.

An interesting consequence of Equation 4.17 is that, if the amount
of work permissible by stretching becomes small in the time interval
between when break-up starts and when it ends, the jet will break into
very small pieces. The theory to support this initial conclusion will
be developed later.

It can be argued that the assumptions leading to Equation 4,20 and
its fair agreement with experiment are ad hoc and fortuitous, It will
be shown later that the same assumptions lead to a reasonable distri-
bution in size for the fragments., Because of the square root and
logarithmic dependence of & on Lm/Lo, the result is not particularly

sensitive to fairly large variations of Lm/Lo' For example if Lm/Lo

had been 10, the re:ult would have been 11.0 cm. This variation in
length from 1.62 to il cm represents a factor of 200 in the amounts of
strotch assumed.

The velacity gradient (or strain rate) US/L is probably the most

casily measured of the quantities in Equation 4,19. The density p is
not expected to vary greatly, The strength S, on the other hand, is
somewhat of a mystery because of the apparent tendency of copper to
keep its strength better as the stra1n rate is 1ncreased as shown in
Figure 2.

The preceding discussion can be summarized as follows. The jet
will either stretch forever  (Equation 4.10) or it will break-up. If
it breaks up and its time of break-up is determined by the amount of
work done in stretching it, there will be some threshold (of stretch,
time, or work) at which breakage begins.

18
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If breakage occurs, each segment has a velocity distribution and
therefore a kinetic cnergy relative to its center of mass, and this
kinetic energy must be consumed in further stretching of the segment.
[f there are further potentially weak points in the segment, like the
ones which produced the segment in the first place, the segment will
subdivide further as more stretching is done. This process will
discontinue rather abruptly because of the sensitivity of the energy
available for stretching to the segment length (Equation 4.14). This
process can be modeled simply (Equation 4.19) to yield an estimate of
the upper limit for the length of the segments following break-up.

5. ELASTIC AND INELASTIC BEHAVIOR OF A LONG RIGHT CIRCULAR CYLINDER
WITH A LONGITUDINAL VELOCITY DISTRIBUTION

In order to better understand the behavior of a jet particle with
a velocity gradient and two free ends, it is useful to examine the

elastic response of a long right circular cylinder to a velocity gradient

as an initial condition. We can write the longitudinal displacement
y(X,t) from equilibrium at time t of a point located at a distance X
from the center of mass in terms of the Fourier series,

=00

y(X,t) = Y, b sin [nrat/L) + en] sinfinTX/L) + en] (5.1)
n=0 '

=

wherc L is the length of the cylinder, a is the speed of sound in the

¢ylinder and bn. € and Gn are constants determined by initial and

boundary’ conditions. We will assume that, at zero time, we have

y (X,0) = 0, -L/2<X<L/2, (5.2)
and

y(X,0) = UX/L, = RX, -L/2G¥<L/2, (5.3)
i.e. that the rod is initially unstretched but has a uniform velocity

gradient. The dot over the y indicates partial differentiation with
respect to time, Ug is the stretching velocity defined carlier, and

R Z US/L , ' (5.4)

is the strain rate.
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The compatibility of Bquations 5.1 and 5.2 requires that

cn = 0, (5.5)

Differentiating Equation 5.1 with respect to time t and using Equation
5.5 gives the result,

n=w
y(X,t) = AE% (nna/L)bncos(nnac/L)sin[(nnX/L)+6n], (5.6)

so that, from Equations 5.3 and 5.6,

n:m

y(X,0) = 2;% (nﬂa/L)bnsin[(nnX/L)+6n] = RX (5.7)

The Fourier expansion for X in the range -L/28X<L/2 can be written?
in the form,

]
n=o

X = (4L/7%) 3 [-1)""Y/(2n-1)?Dsin[ (2n-1)7X/L] (5.8)
n=

Comparison of Equations 5.7 and 5.8 shows that it is possible to write
the coefficients of the series in the form

6§, =0 | (5.9)

b = (alr/r’e) (-1 (2n-1)® (5.10)

Using Equations 5.5, 5.9, and 5,10, Equation 1 can be written as

20,3 4 = n-1 3 : .
v(x,t) = [4L°R/v”a) 3, [(-1)""7/(2n-1)")sin[(2n-1)mat/L]sin
n=}
[(2n-1)wX/L] - ,- . | C(5.11)

“Handbook of Tables for Mathematics. 4th Edition. The Chemical Rubber
Cor. 18901 Cranwood Parkway, Cleveland, Ohio 44123, pg.. 611 formula 7,
1964, S _ I

21

- <y TR

Y




The velocity and acceleration are computed from Equation 5.11 as
. 2 & n+1 2
y(X,t) = (4LR/x%) 3 [(-1)7" "/(2n-1)“Jeos[ (2n-1)mat/L]sin
n=1
[(2n-1)mXx/L] (5.12)
and

n=w
y(X,t) = (4Ra/m) [(-1)"/(2n-1)Isin[ (2n-1)mat/L)sin[ (2n-1)7X/L] (5.13)
n=1

Since each element of the cylinder is accelerated according to
Newton's second law, we can write for the mass between X and X+dX the
equation, dT = pydX, where T is the tension in the cylinder and u is the
mass per unit length, so that

X X :
f dT:u f y dX. (5.14)
L/2 L/2

Using Equation 5.13 and the fact that the tension at the end of the
cylinder is zero we have

. ) X N=oo
T(X,t) = [4Rap/n]} dX 2. [-1"/sin[(2n-1)rat/1) sin[(2n~1)7X/L)
n=1 (5.15)
L/2
2, & n+l 2 |
= [4Raui/»°] 3 [(-1)77 " /(2n-1)“Isinl (2n-1)matL]cos[ (2n-1)
n=1 :
X . '
I'.X/L] | . (5-;6) ‘
L/2 :
Using the fact that thé cosine terms vanish when X=L/2 and the definitions
S = T/'nr_2 E stress - (5.17)
. 2 | '
p £ M/(nr”L) (5.18)
22
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u = ML (5.19)

where M is the mass of the cylinder and r is its radius, we have finally

. 2 Iy n+l 2
8%, t) = [4Rapl/7°) 3 [(-1)™ "/(2n-1)“Isin[(2n-1)wat/L}cos[(2n-1)

n=1

aX/L] (5.20)

On the basis of Eyuation 5.20 a number of conclusions may be drawn.
At small times, i.e., when

sin{ (2n-1)mat/L] = [(2n-1)mat/1]}, (5.21)

Fquation 5.20 reduces %o

e

s(x, ¢ = [4pra/n?] L [(-1)™1/(2n-1)T(ra/L) teos[ (2n-1)n¥/L]. (5.22)
n={ ' .

If we use the series identiuy,

w/4 = L-1™1/ (2n-1) Jeosl (zn-1)mx/L], (5.23)

Equation 5.22 reduces to
S(X,t) = (oRa’t) ' (5.24)
Equation 5.24 is an expression of our expectation that a uniform velccity

gradient produces a uniform stretchking until a relief wave can propagate
from the ends of the cylinder. The time required for the uniform

" stretching to exceed the elastic limit of copper in our "standard jet"

is estimated from Equation 5.24 as
t = S/ (pRa’%)

‘=-o.16x10'6sec. (5.25)

'We see that the strain in a stratching jet is sufficient to insure plastic

flow from jet formation to break-up. Plastic flow reduces the velocity a
at which signals propagate so that what happens at one point in the jet
docs not communicate rapidly to neighboring points, Therefore the jet
continues to stretch in a manner determined by the local velocity
gradient or strain rate. : )
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If the deformation of the cylinder were totally elastic, we would
expect maximum strain when every term in Equation 5.20 is positive or

vat/L = «/2, (5.26)

or
t = L/2a. (5.27)

This is the time for a sound wave to travel from the end to the center
of an elastic cylinder. In this case Equation 5.20 becomes

n=w
S(X,L/2a) = [4pRal/v°] Y. [1/(2n-1)%Jcos[ (2n-1)mx/L] (5.28)
n=1

We now use the fact that the Fourier series for [(L/2)-X] in the range
-L/2 SXSL/2 is given by

n=o

L/2-X = (4L/7%) % [1/(2n-1)%Jcos[(2n-1)nx/L],  (5.29)
n=1 . :

so that Equation 5.28 becomes

S(X,L/2a) = pRa[L/2 - X] ~(5.30)

This agrees with our boundary condition that the stress vanishes at the
ends and our expectation that the stress is a maximum at the center of
the cylinder.

The preceding discussion of the jet as an elastic right circular
cylinder illustrates a number of points which are expected but which are
perhaps more believable if demonstrated by a standard mechanical analysis,
The tension along the jet is uniform (Equation 5.25) until the elastic
limit is exceeded, and is expected to remain so until the jet begins to
break-up, if perturbaticns are expected to propagate poorly in the
plastically stretching jet., With a given velocity gradient, the maximum
stress available (Equation 5.30) is proportional to the product of
length, velocity gradient, wave velqcity, and density. This agrees with
our earlier calculations, based on kinetic energy considerations, that
longer segments will stretch more because they have more energy per
unit mass (Equation 4.14), Since the tension is greatest at the middle
of the jet (Equation 5.30) a relieved segment (one that has lost its
velocity gradient) will be stretched more in the middle and-have a
tendency to be bigger at the ends, where stretching is least.
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i If we assign a maximum stress level s, Equation 5.30 permits a
calculation of the distance d from the end at which this stress in exceeded
and plastic deformation begins:

; d = (L/2-X) = S/pRa

= 2x10%/(8.93-10%-10*3750) = 0.6mm (5.31)

This means that segments above about lmm will use almost all of their
kinetic energy, relative to the center of mass, in causing plastic
deformation.

As a matter of interest, whether or not it has physical reality in
the case of the actual jet, the relief wave starting from the free end
of the jet should cause the jet to stretch less in the region near the
end and hence insure that the tip particle will have the largest
diameter and will have a greater length than average.

If we imagine a jet to start as a right circular cylinder and to

break-up in 10"4 seconds with open spaces of one .cm roughly equal to the i
length of the particles, we can estimate crudely the magnitude of the

forces involved. The jet has roughly 0.6 gms/cm mass, and a mass of 0.3 gm

must move a distance of 0.25 cm on the average to vacate a space of 0.5 cm, /
Using Newtons second Law, we derive the formula,

F = 2MS/t2 (5.32)

where F is the average applied force which must be exerted to move a !
mass m a distance X in time t. Using the above numbers,

| ] L
| | . F = 2+0.3x107°x0.5x10">/(10™%)? = 300n (5.33) -

The surface tension v of molten copper is 1.103 n/m, so that its
contribution to the tension T in a jet of 3 mm diameter D is computed , :

to be ) , . : '
| .

T = nDv = 0.01ln, . (5.34;

; This means that the surface tension is toc small by a factor of 3x10? i ;
[ to produce the observed motion, and that the jet is unlikely to have i
: broken up because it was a liquid cylinder unstable under forces of _ .
surface tension. On the other hand, the strength of copper is roughly i |
1
t

. 2x108 n/mz, so that the tension in the jet if it is a cold solid is _
: 1.4x103n. A 20% variation in this tension would be required to produce

i the specified displacements in 107 secs, so that even a sizeable
instability might not be sufficient to produce the necessary action
unless it grew rapidly from the beginning.
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6. A SIMPLE STOCHASTIC MODEL FOR JET BREAK-UP

With the preceding theoretical framework it is now possible to
discuss jet break-up in a more quantitative fashion., It will be
assumed that the copper jet stretches as a solid until enough work is
done on it to cause it to break into pieces. The distribution in length
of the pieces will be determined by the energy available to stretch a
piece further after it is formed, the distribution of weak points or
inhomogenities in the jet, and the properties of the material in general.

The first part of the determination is given by Equation 4.14,

B/IM/L] = (1/24) /w3, (6.1).

which relates the specific kinetic energy relative to the center of mass
of a segment to the veliocity gradient (US/L) and length £, We are

justified in keeping Equation 6.1 while the jet stretches and begins

to break-up because we have shown following Equation 4.11 that only about
7% of the jet energy is consumed in stretching and have argued that the
jet stretches uniformly with little communication up and down the jet
because of the rapid rate of plastic deformation.

The second part of the determination, namely the distribution of weak
points in a jet, is something easy to believe but difficult to demomstrate,
other than by noting that the jet does break-up into a somewhat irregular
pattern,

Referring to Figure 3, suppose that the probability, that any
segment of length 4X will break during the time interval between t
and t+At, is given by the expression,

P(t) AX AE = B(t) aX AE, (6.2)

where AE is the work done on the segment by stretching. The assumptions
contained in this equation are (1) that the probability of a weak point
being in the segment is proport1onal to its length and (2) that the
probability of its breaking is proportlonal to the work done on it by
stretching.

Since work proceeds as a function of time as the Jet stretchas,Equat1on
6.2 can be written in the more convenient form, A

p(t) AX at = b(t) AX at, (6.3)
where

t St _ (6.4)
Here t is the time when break-up starts and t, is the time when it ends.
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Calculation of the probability that n segments of total
length L will hold together. Breaks are postulated for
segments 1 and n, and the probability that no other breaks
occur before a relief wave arrives is calculated.




The inclusion of the limits on the time t reflects the experimental
observation that, in stretching a number of like samples of copper, the
elongations at which breaks occur are bunched between uppsr and lower
limits which ure rather loosely spaced. Between these limits, the work
done is roughly proportional to the elapsed time At. The parameter b(t)
is characterized by the material and its condition at time t.

Suppose that the time interval between t, and t, is divided into
M equal intervals of length 4t and that the jet is also divided into

imaginary segments, The probabllity Pk that the ith segment of length

(8X), will survive the Kth time interval (at), without u break is given
from Equation 6.3 as

Py = 1 - b(8) (8X); (81), (6.5)

i.e. the survival probability Pix is unity minus the probability of a
break, given by Equation 6,3, . '

The total survival probability of the segment is the product of all
the individual survival prchabilities, i,e.,

p; (t) = KU; [1-b(t) (8x); (at) ] (6.6)

Taking the logarithm of both sides yields the result,

-
tn p, (t) = ¥ enl1-bce) (a), () ] (6.7
K=1
Sinzce
2im tn (l-y) = -y. . (6.8)
y+0

and the products b(t)(AX]i(At)K will become arbitrarily small as (AX)i
and (At)K apprcich zero, it is a good approximation to write

K=M

tn py (1) = - 231 b(t) (4X), (At),. (6 9)
The identification,
K=M A ,
> b(t)(At)K=f b(t)dt, " (6.10)
K=1 , . - ,
S :
o
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permits Equation 6.9 to be written as

tnpy (1) = -(ax), | beeya 6.11)
t
(o)

Equation 6.11 is a statement of the probability that the ith segment
of length (Ax)i will survive if a relief wave arrives at time ti. It

is assumed that the process of jet break-up is as shown in Figure 4
and that a segment is subject to breakage until it is relieved by a
relief wave propagating from a nearby break.

In a like manner it can be stated that, if a rod of length L is
to survive until time tm’ each sub~elementr(AX)i must be relieved

before that time. Suppose that the rod is divided into n segments of
equal length, as shown in Figure 3, and that . the rod is formed by a
break on the left at time t; and a break on the right at time t,.

Suppose that a relief wave travels from the left break with a speed

U(X) and arrives at the ith segment at time t,. The survival probability

of the ith segment is given from Equation 6.11 as

i

py(ty) = Exp[-(Ax)i JI b(t)dt - (6.12)
t
Q
where
i v
ty = tﬁf dX/u(X). (6.13)
0

The distance Xi is measured from the left end of the rod to the ith

segment, and U(X) is the speed at which the relief wave travels from
the left break. The integral in Equation 6.13 is just the time
required for the relief wave to travel from the left break to the ith
segment. In general, the relief waves from the right and left will
meet at some time t, and at some point X12 such that '

>

' 12 12
tomty o+ dx/u(x) = t, t’x dX-/U(X"),  (6.14)
0

(6.15)
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From the above considerations and reference to Figure 3, the
probability thdt a break will occur on the left between the times t

and t, ¢+ (At)1 and on the right between the times t, and t, + (At)2

and that the intervening segments will survive until reached by a
relief wave, after which they are sure to survive, can be written as

1

=M K=n
Plotyity) @0 (00, = T by TT7pg bl (bt (81), (4D (6.16)
j=1 =

In the above expression, b(tl)(At)1 is the probability per unit length that

the first segment will break between the time ty and t) o+ (At)1 and

b(tz)(At)2 is the probability per unit length that the last segment will

break between the times t, and t, + (At)z. For Equation 6.16 to be a

true probability equation, it should be multiplied on both sides by
(AX)I(AXJ2 to include the lengths of the segments where the breaks

occur. However, beczuse only a relative probability is sought and
because the location of the breaks is immaterial to the extent that
any other two breaks separated by the same distance would yield the

same results, the factor (AX)I(AX)2 is ignored to save writing and
space. The first product,
j =M
: Pj, (6.17)
j=1

is the probability that the left part of the rod of length L, defined
by

0<N<X12, : | (6.18)

will survive, and the second prbduct is the probability that the
right part will survive, Total survival probability is the product
of the survival probabilities of the individual parts.

For convenience of analysis, the left hand side defined by Equation

6.18 is divided into M equal segments of langth AX and the right hand

side is divided into n equal segnents y length AX so that

(M+n)AX = [ S I(6 19)
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From Equations 6.12 and 6.13,

ot :

p, = EXP[-aX b(t)dr]; (6.20)
J Jt
o]
K

Py = EXP[-aX b(t)dt]; (6.21)
g to

X; :

tj = tl +.[0 dy/U(y) = t1 + f(xj); (6.22)

' L-X, | |

te =t +JO dy“/U(y") = t, + f(.L—XK). - (6.23)

By way of explanation, Equation 6,20 states the survival probability
of the jth segment relieved from the left by a relief wave starting some

cime between t and t, ¢ (At\ and arriving at time tJ Equation 6,21

computes tJ in terms of the in1t1at1on of the relief wave at time ty
and its travel time-to the jth segment located at XJ Combining
Equations 6.16-6.23 and taking the logarithm gives the result,

S oM j | Ken ty
in P(L,t),t,) = anfb(t )b(t,)] - AX 221 o POt - o 3 f b,

In the limit as AX becomes arbitrarily small
M (5 12 -
AX ) b(t)dt = dx , b(t)dt etc, (6.25)
j=1 /¢
"o

so that Equation 6.24 can finally be written as

| 12 £(t,X)
n P(L.tl'.'tz) = m[b(tl)b(tz)]- o dX f “b(t)de -
, , ¢ . _
’ ] (o]

Xiz | (tz,X) :
dax b(t)dt -
. 0 t

{6.26)

0
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The integration for the left side extends from time ty when breaks
can begin, to the time t(tl,x) when the relief wave arrives, where
from Equation 6.22

X
t(t].X) =t + fo dy/u(y) . (6.27)

Likewise,

L-X S
t(t,,X) = t, + J- dy* /u(y’). (6.28)
0

The integration over X, for example, continues from the left end to
the point Xi2 where the relief waves meet. Bquation 6.14 determines

the meeting point. Finally

P(L) = ffdtl dt2 P(L,tltz). (6.29)

To exercise this theoretical structure, it is worthwhile to make the
simplest possible assumptions, namely that

b(t) = b, ' (6. 30)

where b is a constant and that relief waves travel with a constant speed

a, i.e.
U{X) = a. ) (6.31)

Equation 6.14 then becomes

| X12 L-X2
tu = t1 + o dX/a = t, + o dX/a (6.32)

=t o+ X12/a =ty + (L-Xlz)/a (6.33)
so that v

Xy, = [a(c2 -t) ¢ L)/2. (6.34)
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From thations 6.27 and 6,28,

t(tl,)\) = tl

t(ty,X) = t, + (L-X)/a, (6.

+ X/a; : (6.

35)

36)

With these definitions the integrals of Equation 6.26 can be written

as
f12 t(t5,%) X2 |
’ dx b(t)dt = b (t, + X/a - to]dx
0 t 0
(o] .
= b [(t,-t X, + X, /2] (6
1 "07712 12 *
and
L-X,, (t;,X) L-X,
dax b(t)dt = b [t1+X’,(a~to]dX’
0 t 0 )
(o] . .
: 2
= b [(t,-t ) (L-X,;) + (L-X;,) /2a) : (6.
After some simplification and the use of Equation 6.34, the sum of
these integrals can be written as
2 2
(ba/4) [2T(X+y) - (y-X)° + T°] (6.
where
X = t~tys (6.
Yy B tyt; - (6,
T:L/a, . (6.

Equation 6.29 can now be written in the form,

P(L) = sz‘ fdx dy EXP{- (ba/4){2’l‘(x+y)-(y-x)2+1‘]} 6.
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A number of conditions must be met for the limits of integration
indicated in Equation 6.43., Since the break-up occurs between t, and
t .

m
t °<t l<tm , 0<x<tm~t02t (6.44)
td&tiGtm s 0<y<tm-tost (6.45)

Becausé all the rod of length L must be relieved before time tm’
t<to. (6.46)
From Equation 6.33 it can be shown that
t = [L/a+t1+t2]/2, (6.47)

so that, from Equations 6.46 and 6.47

L/a + tl + t2<2tm, T + X + y<2T. (6.48)

Finally, the breaks at times t, and t, must be such that a relief wave
from one does not arrive in time to prevent the other, i.e.

Itl-t1l<L/a , |x-y|<r. (6.49)

These conditions have been plotted in Figures 5 and 6 for t, and t

1 2°
Since there is symmetry with respect to which break occurs first, the
arbitrary condition

<t

t2 (6.50)

1

was added to reduce the range of integration.
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(t. 1) 1\\$

Figﬂre 5. . Graphfcai represenfation of the conditions of Eys 6.44-6.50

15

for E>a(tm-to).. The cross hatched area meets all the

conditions,
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Unfortunately, the integral cf Equation 6.43 camnnot be expressed
in simple terms. However, an upper limit can be assigned by noting
that the exponential is always less than unity so that

P(L)B2A(L), (6.51)

where A(L) is'just the area over which the integration is to be performed,

By inspection of Figure 5 it is seen that the area of integration for
U>a(tm-to) is one fourth of the square with edge of length [2(tm-t0) -

L/a]. Therefore
AL = (1/4)[2(t -t ) -L/al’, (6.52)

In Figure 6, the area of integration is seen to be a trapezoid with
altitude v2L/2a and bases«?(tme/Za-to) and /f(tm-L/a-to). Therefore

2,2 6.53
ALY = (1/2)(By*Bh = (t-tXL/a -3L°/4a%) (6.53)
Combining Equations 6.52 and 6,53 gives the result,
2 2 .
A(L) = (tm—to)(L/a)-SL /da” , 0<D<a(tm~§b)‘; o (6.54)
= (1/4)[2(tm-t0)-L/a] , a(tm~t°)<L<_2a(tm_-t_o).‘
It is seen that A(L) has a maximum at
L = Za(t,-t)/3 : (6.55)
and that A(L) meets the requirements that
A(0) = Al2a(t -t )] =0,  (6.56)

as well as the requirement for continuity at A[a(tm-to)].

_ e maximum for P(L) should lie to the left of the maximum
for b“A(L) because of the increasing influence of the exponential for

larger values of L.
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An axperimental5 plot of P(L) is shown in Figure 7. A graph of A
versus L is shown in Figure 8. PFrom Equation 6.56, if the maximum
permissible length is determined from Figure 7 to be 3.8 cm and if the
relief velocity is assumed to be 3750 m/sec,

2a(t -t ) = Lo (6.57)

t -t = 3.8:1072/(2X3750) = 5X10™% sec.  (6.58)

The ratio of maximum length tp most probable length is roughly 3 from
the experimental data and is also 3 from Equations 6,54 and 6.55.

The shape of the theoretical curve is not very good  for small
values of L, possibly because of the variation of a with distance
from the break. The relief speed a is probably near 3750-m/sec_at
the break but less as the energy dissipation required of the relief
process is increased, according to Equation 4.14, )

The limits of integration for Equation 6.29 can be determined from
Figures 5 and 6 by inspection. From Figure 5, for U>a(tm-to),

t l<t

j<2tm-t1-L/a; (6.5?}

t°<tl<tm-L/2a. {6.60)

From Figure 6, for O<U<a(tm~to) and td<t1<tm'b/a‘

tl<t2<L/g + tl; (6.61)
t°<tl<tm-l./a. (6.62)
‘From Figure 6, for 0<D§a(tm-t°) and tm-L/u<tl<tn~L/Za,
tfigiﬁitm-tl-L/a; | : (6.63)
t.-L/a<t1<tm-L/2a. : : (6.64)

5Robert L. Jameson of the Ballistic Research Laboratory, private
communication, Nov 1977 )
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These limits can be chenged to suit Pquation 6.43 by the substitutions
of Equations 6.40-6.42.

For T>tstm-to, (6.65)
: XSy<2t-X-T, : ’ (6.66)
OCU<t-T/ 2. (6.67)

For T<t
X<y<T+X, : (6.68)
0<X<t -T; (6.69)
X<y<2t-X=T; - O (6.70)
‘ t-TRX<t-T/2, (6.71)

With these limits, Equation 6.43 may be written morv explicitly as

t-T e t-T/2 2t-X-T
P(T) = f dXx f F(X,Vdy +f dxf P(X,y)dy (6.72)
0 X t-T X

when ORIt and as

t-T/2 2t-X-T
P{T) =J- dX j F(X,y)dy (6.73)
0 X

when tS<I<2t, wherec

R(X,y) = EXP {-ba[T(X+y)/2 + T2/4 - (X~y)§‘]}- (6.74)
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7. FURTHER CONSIDERATION OF JFT BREAK-UP

It may seem reasonable from a physical viewpoint to remove the
time restrictions on the onset and completion of jet break-up. Experience
with pulling copper seems to justify the assignment of a nariow range
between the strain necessary to start breakage in a collection of samples
and the strain sufficient to insure breakage in every sample. Experimentally,
there arc no sampies which do not break, and it is ot reasonable to
expect that a segment of a jet will be arbitrarily long after jet
break-up and relief of the individual segments.

The process by which a segment, with a velocity gradient and two
free ends, relieves itself is not well understood, If it is assumed,
as shown in Figure 9, that the fragment of length L is ivelieved from

the ieft end to the point X, which has a speed RX, the ”1net1c energy
Ep for the relieved part can be written as

= (M/2L) (L/2-X)R%X? RS

The kinetic energy Eu of the unrelieved part is expressed as

= (M/2L) f R%x%dx = (M/6L)R*X> (7.2

The total energy E of the left half of the segment is therefore given
by the equation,

E = Ep+E = m2X2/4-MR2X3/3L. (7.3)

It will be assumed that this energy is removed by stretching of the
anrelieved portion of the segment., The rate P at which work is done
in stretching the unrelievec portion is

P = TRX ' S (7.4) -
where T is ihc tension‘at the interface between the relieved and

unrelieved regions and RX is the velocity of the material at the inter-
face. In an instant of time dt, the work done dE can be written as

dE = Pdt = TRXdt. o (7.5)
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}.—;—LIZ-X-——T X ——nla- L/2 — -»]

//////// =

dx

Figure 9, Hypothésized'relief of a 5egmeni with an initial speed

distribution U(X) = RX. The left portion of the segment,

of length L/2-X, has been relieved by & wave located at
Xe . N
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The energy loss by the segment is ziven by

(B/3X)dX = (MR2X/2-MR“X/L)dX = dE (7.6)
where E is given by Equation 7.3 and dX is the amount the interface

moves in time dt, Equating tho results of Equations 7.5 and 7.6
gives the equation, :

%%-= (TRX) 7 (MROX/2-MR2X%7L) 7.7)

= SAL/(MRL/2-MRX) = (S/0R) (L/2-X) (7.8)

where the tension T has been written in tarms of the stress S and
the cross section C of the segmant as SC and the demsity p has becn
defined as M/LC.
17 the defination,
X = (L/2) - X (7.9)
is made, BEquation 7.8 becomes _
dX/dt = S/pRX°21/(AX") (7.i10)

This is the speed which the interface (relief wave) must move to

consume the available energy if the segment is relioved as hypothesized

in Figure 9, where X° is the distance from thc left of the segment.

Following the pattern of Section 6, it is seen that the time for
the relief wave to arrive at a point X from the end is given by

X

t(tl.X) b tl 'l}s

dX/U{X) = ¢, +jx AXAX =t + AX/2 (7.11)
0 Rl [ . o .

Likewise, _
A t(t,,X7) = t, + Ax‘z/z. J ' 0 (71.12)

The waves meet at.a time t, and place xlz suchrfhaﬁ

+ AX12/2 "ty ¢ A(' 12’ /2 - tp;.
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s0 that

X1 = (tz-tl)/(AL) + L/2

i,

and g . 2 ) .
t, =,(t1+t2)/2 + (tz-tl) /(2AL") + AL“/8, (7.14)

Proceeding as before the integrals of Equation 6,26 can be written as \

; I=b dx dt+ b dx” dt, (7.15)
; . 0 t, 0 t,

or more explicitly as
. 2 2
Dab ety + (W/EIX5 + (tpt(LKyp) + (W6) (k) }. a6

This reduces to the expression,

1 = b[{X#y)L/2 + ALY/24 - (y-X)%/2AL) o 7an

wshere as before

X = t1~t0 . : . R (7118) :
;
} ! y =.t2-to (7.{9) 5
: . ! —
t = tm-tc . | (7.20) )

The integration of EXP(-I) over the variables t, and t, is subject

ﬂ to several restrictions of the same kind as before, namely,
i e . o '
: t°<kl<tm , o<n<tr (7.21) '
: - v . [ v '- e Lo . - <
t6<ti<tm ., 0<y<t, (7.22)

5 | 'tz-tJ<AL2/2. |Y~XISAL2/ZET/2;\ ; g (7.23)
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et = (t0t,)/2 + (ty-t) /(ML) + AL¥/8, (7.24
2t>(Xey) + (X-y)2/T + 1/4. (7.25)

Using the definition

T w ALZ (7.26)

Equation 7.17 can be written as

I = (bLT/2) [(Xey) /T +H1/1z4(y-x)2/721 (a2

Equation 6.39 can be written for the constant relief velocity as

I = (baT?/4) [20%+y)/T + 3 = (y-X4/1%] (7.28)

These functions (Equations 7.27 and 7,28) are somewhat s1m1lar in
appearance but in one, Equation 7.27, T is defined as ALZ whereas

in Equation 7.28 it is defined as L/n. This means that longer segments
are discriminated against when the relief wave speed varies as 1/AX.
Small segments are also discrimminated against because the relief is
very rapid near a break so that the next break is more likely to be
distant, Thus the 1/AX assumption for the relief wave speed should
result in a more narrow distribution than the assumption of a constant
relief wave spoed.

To illustrate the above points more specifically, from conditions
described by Bquations 6.47 and 6.48 and examination of Figure 6, it

.is noted that, as L approaches zero, the trapezoid, which represents

the area over which the t and t, integrations take place, approaches

a height of L/(/fa) and a length /'(t L/a). ‘Therefore as L approaches

zero . ' '
Area = Lt/a : o (7.29)

This behavior at small L is exhibited by the curve of Figure 8 near the
origin.

On the othexr hand, for the 1/AX hypothesis for the relief wave velocity,
the condition of Bquation 7.23 indicates that the arsa of integration,
corresponding to that of Figure 6, has & width of AL/2. The length

of the ares, from Equation 7. 24. in the linit as ty ‘and t are equal

and - lpproneh ty 18 V2 (t-AL 2/8). In the limit as L goes to zero,

el s
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Area = AL%/VE. (7.30)

This behavior is characteristic of the experimental curve of Figure 7
near the origin, The hypothssis of a 1/AU relief velocity appears

to yield a theoretical curve which is reasonable in shape near the
origin and at large values of L, but the exact form of the curve is

not known without evaluating the integral of EXP(-I), given by Bquation
7.16 for various combinations of the parameters b, A, and t.

8. CONCLUSIONS

A simple physical model has been developed to explain jet break-up.
It gives a fairly good description of the upper limit for particle
length after break-up and predicts particle distribution with respect
to length in a relative way. The model, unfortunately, makes use of
material parameters which are not readily observable, such as the
strength of a stretching jet, the limit to which the material can be
worked by stretching without breaking, and the speed of a relief wave
originating at the free end of a segment. It is probable that any model
would have the same problem, because these parameters are fairly
fundamental,

Some obvious suggestions for improving jets arise from the study.
If the size of particles has an upper bound associated with the
development of breaks at propitious times and places, why not design
the jet to be weak at intervals whose distance is slightly less than
the maximum permissible length? The jet could then consist of particles
all of which are near maximum permissible length.

The time between onset and completion of jet break-up is estimated

to be leO“6 seconds, and is inversely proportiéhal to the speed of the
relief wave propagating from a break. This corresponds to a strain of .
roughly 5% between onset and completion of break-up for the jet under
study.

I1f the jet must break rather than stretch indefinitely, a more
uniform jet will break into smaller pieces than alcss uniform jet.
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