
LE"VEL ~i

SWHIGH DURABILITY MISSILE DOMES.)

SRaytheon Company
,4 Research Division

"Waltham, MA 02154 F

R. / man, E. /Maguire J. /pappi/

D- ,ec s t_ Sal

Prepared for

OFFICE OF NAVAL RESEARCH
Department of the Navy
Arlington, VA 22217

;'L



No. of No. ofOrganization Copies OraiainCopies

Dr. L.M. Gillin
Aeronautical Research Laboratory
P.O. Box 4331
Fisherman's Bend
Melbourne, VIC 3001
AUSTRALIA(1

I S



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

RP TO M TI PGREAD INSTRUCTIONS
REPORT DOCUMENTATION- PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Interim Technical Report

HIGH DURABILITY MISSILE DOMES 1 Oct 1977 - 30 Sept 1978
6. PERFORMING ORG. REPqprNUMBER

S-2439 "
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

R. Gentilman
E. Maguire N00014-76-C-0635
J. Pappis

9. PERFORMING ORGANIZATION NAME AND AD RESS 10. PROGRAM ELEMENT. PROJECT. TASK
Ra o AREA & WORK UNIT NUMBERSRaytheon Company

Research Division
Waltham, MA 02154

11. CONTROLLING OFFICE NAME AND AOORESS 12. REPORT DATZ

Office of Naval Research December 1978
Department of the Navy ,). NUMOKR 0, PAGES

Arlington, VA 22217 20
I4. MONITORING AGENCY NAME I AODRESS(Ol dlfem s, lram Coe"F0,1111' Ofl'tr) I. SECURITY CLASS. (of Ithis repat)

Unclassified

IS.. '9C 1 VASIUICATIOW' OOWGRAOING
SlC It.D Ms ta

1S. OISTRIOUTION STATEMENT (of this Repse)

Approved for public release; distribution unlimited.

17. DISTRIOBUTION STATEMENT (of the abstract onforefa n 1loat 20. it l te~mreD ba Iepmot)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revers# side of nre(ssary •rid inrtttv7 bw btock nMm•,r)

Spinel
Magnesium Aluminum Oxide
Hot Forging
IR Domes

20. ABSTRACT (Conrinue on roverse aide If necessary mad identitrf bblock rmmmrow)

Small hemispherical domes were fabricated from discs of polycrystalline
(MgO • A1203) and single crystal (MgO- 3.5 A12 0 3 ) spinel by hot forging. Applied
stresses of 70-105 MN/ m 2 at - 17750 C produced deformations of up to 1 cm
in - 4 hrs. After polishing, the forged domes exhibited generally excellent
quality. Some localized regions of optical scatter in the single crystal forgings
have been identified as containing alumina precipitates. The present results
demonstrate successfully the feasibility of fabricating full-size IR domes by
hot forging. This will be the object of future work.

FORM

DD I JAN '3 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ,When Date Enre~ed)



FOREWORD

I.

This report was prepared by Raytheon Company, Research Division
Waltham, Mass., under Contract No. N00014-76-C-0635, entitled, "High

Durability Missile Domes. " This work is administered under the direction

of the Office of Naval Research, Material Sciences Division, Arlington,
Virginia. Dr. Arthur M. Diness is the project scientist.

The work was carried out at Raytheon Research Division, Advanced

Materials Department. Dr. J. Pappis is the department manager. Dr. Richard
Gentilman is the principal investigator. Experimental work was performed

by Mr. Edward Maguire.

This is the Interim Technical Report for Contract N00014-76-C-0635.

covers the period I October 1977 to 30 September 1978. The report was

given the Raytheon internal number S-2439.
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1.0 'ýNTRODUCTION

Heat seeking missiles designed for air-to-air engagements face

severe operational hazards that either reduce their effectiveness or raise

the overall system' s cost. The missiles are carried unprotected in ex-

posed positions on aircraft. The infrared transparent dome can be broken

during routine handling, pitted by sand and debris during takeoff and landing,

or eroded by water droplet impact in flight through rain squalls. These

problems are becoming increasingly severe as airspeeds are increased

and as the introduction of terrain avoidance radar allows supersonic flight

at very low altitudes.

Impact damage that leaves the dome intact but roughens the originally

polished outer surface will degrade seeker performance in two ways. First,

the minimum resolvable target size will be increased. In the current opera-

tional air-to-air missile, this factor is not critical. However, in the designs

under conideration for the next generation missiles, seeker resolution will

be severely affected by dome erosion. Second, roughening of the dome in-

creases the amount of sunlight scattered into the seeker optics, raising the

noise level in the infrared detection system and thus limiting the ability to

detect targets. While these effects have not been well characterized, it is

of considerable concern in current development of seekers designed for head-on

approach.

Finally, ' immediately after missile launch, high tensile stresses are

generated in theI me dur to transient nonuniform aerodynamic heating of

the dome. The seoerity of these stresses depends on the nature of the dome

coefficient) and on t e specific aerodynamic flight regime. For a ivext genera-

tion missile launch 4t Mach 1. 5 with a powered flight lasting 2. 0 sec, signi-

ficant tensile st.'ess~s develop at the inside dome surface during the missile' s

acceleration, reaching a maximumi of approximately 12, 000 psi just after the

1 -



end of the powered flight. However, the fracture strength of magnesium

fluoride is only 10, 000 psi at 450' C, the approximate average temperature

of the dome during flight at the time of the maximum thermally induced

stress.

Early forms of infrared missiles operated at short infrared wave-

lengths where fused silica domes could be used. This material has a very

high resistance to thermal shock but suffers from rain erosion. Magnesium

fluoride domes have provided higher strength, adequate resistance to rain

erosion (for current applications), transparency in the 3 to 5 pm atmospheric

window, and the ability to withstand the thermal shock of current missiles

in subsonic launch. However, magnesium fluoride domes are predicted to

fail in either supersonic launch of current missiles or subsonic launch of

the next generation designs and also to be adversely affected by rain during

supersonic captive carry.

The need for a new, more durable missile dome is clear. New

missile designs are being compromised by the lack of a dome material with

the required strength, hardness, and thermal conductivity that can be pro-

duced at an acceptable cost. However, there are several highly durable

crystalline oxide materials (Table 1) that are transparent at ultraviolet,

visible, and infrared wavelengths out to 5 pm that will serve the optical

needs of future seeker designs, Specifically, spinel has become a leading

candidate material for future air-to-air missile domes.

The particular dome shape of interest during this investigation is a

hemispherical shecl approximately 70 mm diameter and 3 mm thick. One

approach proposed for the fabrication of such a shape from refractory oxides

is to press forge flat plates at high temperatures. Work reported in the
1.2 3

literature by Heuer, Hwang and Mitchell1.2 and by Becher' showed that

single crystals of spinel could be deformed plastically in compression. The

experiments reported here were attempted to see if this plastic deformation

2
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I.
process could be utilized where the stress applied was not simple com-

pression. Also, it was desired to determine the feasibility of using poly-

crystalline as well as single-crystal spinel.

Spinel of excellent optical quality is available in both single-crystal

and polycrystalline form. The selections made were single-crystal boules

of alumina-rich spinel, generally 1 MgO to 3. 5 Al10 3 , gI'ov:n by a Verneuil

technique and plates of polycrystalline spinel of 1:2 :: MgO:A12 0 3 stoichiom-
4etry produced by a fusion casting process. The alumina-rich material has

a lower yield stress than the stoichiometric 1:1 composition. As a preliminary

step toward full-sized IR domes, experiments were size limited by the diam-

eter of available single crystals of spinel, slightly over 3. 2 cm. But the

validity of the concept could be demonstrated by forging domes of smaller

diameter but comparable curvature.

The present hot forging work was begun in 1977, with studies of

simple beam deformation of alumina-rich spinel in three-point bending.

During 1978, the technical feasibility of forging flat discs into hemispherical

shells was demonstrated successfully.

Adolf Meller Co., Providence. RI.
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2. 0 EXPERIMENTAL PROCEDURE

Figure 1 shows schematically the press forging technique employed

to form hemispherical dome shapes from flat plates of spinel. The plates,

2. 62 - 2.86 cm diameter and 0. 19 cm thick, were set into a hemispherical

cavity in a graphite die and loaded at their center points by a matching

hemispherical giaphite punch. The radius of curvature was approximately

1.2 cm. Spacers of Grafoil 0. 04 cm thick, between the spinel plate and the

graphite die faces reduced interactions to a minimum.

Loaded in this manner, with the edge simply supported and the force

applied at the center, the maximum stress developed is determined by
5

23(l+ )P 1 1 + loge r 1r r

where o = maximum stress

= Poisson's ratio

P = central load

t = thickness of plate

V," radius of plate

r radius of central loaded areao

As tile plate deforims, the radius of the central loaded area increases. This

was taken into account and the load increased when necessary to maintain

any given stress level. The loads that were applied produced maximum
.1

stresses in the plates of 525-1050 kg/ cmn 7.5-15 kail.

In Figure 2 tihe furnace assembly is sho0Wn with the graphite die in

place. The load was appied to the top punch by weights suspended below

the furnace. This loading was static with incremental changes to maintain

a given stress level as deformation proceeded. Thle extent of deformation
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was monitored on a dial indicator. A graphite heating element provided

temperatures of 17500 -1800° C in an atmosphere of helium.

3, 0 RESULTS AND DISCUSSION

In the course of the experiments reported here, twenty-six (26) runs

were made with single-crystal spinel and seven (7) runs with polycrystalline

plates. A summary of these forging runs is presented in Table 2. Data were

selected from these to illustrate the effects of temperature and pressure on

deformation rates. In Figure 3, deformation is seen to take place more

rapidly as temperature is increased. These spinel plates Y,... subjected
2to a stress of 875 kg! cm (12. 5 ksi). Some deformation is shown at zero

time because the load was applied throughout the heatup portion of the cycle

while time was measured from the point at which a given temperature level

was reached. Data for polycrystalline plates indicates lower rates under

comparable temperature and pressure conditions. Pressure was the variable

in Figure 4. As expected, the deformation was accelerated by increasing

pressure. Good results were obtained at temperatures of 1750° to 1780' C

and pressures of 700-1050 kg/cm2 (10-15 ksi).

A number of the domes produced are shown in Figures 5, 6, ano 7.

There was no difficulty with gross defects such as cracks or tears. Surfaces

did suffer some degradation as a result of contact with g3-aphite. However,

the surfaces were easily restored by polishing and as the polished domes in

these photos demonstrate, the optical quality was excellent.

Some domes appeared to have cloudy areas that were not removed by

surface polishing. Under the optical microscope, these areas werc seen to

contain numerous small crystals. Figure 8 shows SEM photos at 400X magni-

fication of a clear area and a cloudy area of typical domes. The latter area

is examined more closely In Figure 9 at 2000X. An x-ray microprobe was

used to analyze the spots marked by the white dots in the lower photo. The



TABLE 2

SUMMARY OF SPINEL HOT FORGING RUNS

Sample Max. Defor-

Run Diam. Thickness Temp. Stress Time mation Loss
No. cm cm 0 C Kg/cm 2  

hr cm % Comments

20 2.78 0.19 1750 1120 5.5 0.32 6.2 cracked

21 2.78 0.09 1775 1050 8.0 0.68 --- cracked

22 2.78 0.25 1850 700 6.0 1.40 --- broken

23 2.78 0.19 1800 1050 2.5 1.20 --- broken

24 2.78 0.19 1800 700 --.---- --- broken

25 2.78 0.19 1775 1050 8.0 0.38 12.3 OK

26 2.78 0.20 1750 1260 12.0 0.71 23.8 broken

27 2.78 0. 20 1750 980 12.0 0.46 34. 3 OK

28 2.78 0.21 1780 1050 4.5 1.09 - broken
29 2.78 0,19 1760 1050 6.0 0.42 9.2 OK

30 2.78 0.19 1750 1050 12.5 0.41 22.5 OK

31 2.78 0.20 1800 1050 8.0 0.45 44.2 OK

32 2.78 0.19 1780 840 7.5 0.53 31.9 OK

33 1.90 0.19 1775 1050 4.0 0.50 11.3 OK

34 1.90 0.20 1785 1050 7.0 0.50 5.0 OK

35 2.60 0.19 1775 1050 11.0 0.59 3.5 OK

36 2.60 0. 18 1770 1050 31.5 0.72 2,4 OK

37 2.60 0.19 1760 1050 6.0 0.04 3.8 OK

38 2.60 0.19 1765 1050 5.8 0.90 2,0 OK

39 2.60 0.19 1775 1050 6.2 0.91 1.3 OK

42 2.85 0.20 ---- 1050 ---- ---- --- broken,

polyxtal
43 2.85 0.20 1780 875 8.0 1.09 4.7 OK, poly-

xtal
44 2.60 0.20 1770 875 6.0 0.77 2.5 OK

45 2.60 0.21 1800 875 2.5 0.84 6.1 OK

46 2.60 0.20 1780 875 5.0 0.93 3.7 OK

47 2.60 0.19 1780 875 3.5 0.90 9.1 OK

9



TABLE 2 (Cont' d)

Sample Max. Defor-

Run Diam. Thickness Temp Stress Time mation Loss
No. cm cm 0 C m

2  hr cm % Comments

48 2.53 0.20 1790 875 8.0 0.82 4.8 polyxtal
some crackE

49 2.53 0.20 1720 875 --- ... .--- polyxtal
broken

50 2.53 0.20 1775 700 8.5 0.79 3.8 polyxtal
OK

51 2.53 0. 18 1750 700 8.5 0.70 4.3 polyxtal
OK

52 2.53 0.19 1775 700 11.5 0.72 3.8 polyxtal
OK

53 2.60 0.20 1785 1050 5.5 0.87 --- OK

54 2.60 0.19 1785 1050 3.8 0.89 2.9 OK

10
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three individual grains were identified as A1 2 0 3 while the background matrix

was spinel. It appears that some precipitation! recrystallization of alumina

had occurred. This behavior was seen in domes press forged from plates

of single-crystal spinel but not polyerystalline ones. A check of the phase

equilibria of the system (Figure 10) provides an explanation for the difference

in behavior. In the case of 3. 5 to 1 single-crystal material, the forging

temperatures of 1750' -1800' C placed the piece in a region where two phases,

spinel and alumina, can exist. Under the same conditions, 2 to 1 polycrystal-

line material is within the single-phase spinel area.

4.0 SUMMARY

The concept of press forging hemispherical dome shapes from flat

plates of magnesium aluminate spinel has been demonstrated. Small domes,

2.54 cm in diameter and 0.76 cm high, were fabricated from both single-

crystal and polycrystalline material. Excellent optical quality was maintained.

The only potential problem was presented by precipitation/ recrystallization
of A12 0 3 in single-crystal 3. 5:1 spinel. This work is teing pursued toward

the fabrication of larger-sizes domes.

181
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