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1.0 INTRODUCTION

The present work is a result of efforts directed -toward providing theoretical support
to aerodynamic testing in transonic wind tunnels. The corresponding boundary-layer
. problems usually involve compressible turbulent flows with both favorable and adverse
preésure gradients on smooth impermeable adiabatic walls. The following requirements
have occurred in the Propulsion Wind Tunnel Facility (PWT) at the Arnold Engineering
Development Center (AEDC) which illustrate the need to solve this sort of
boundary-layer problem rapidly, with reasonable accuracy, and with minimal preparation
time: (1) support of tests while they are in the tunnel, (2) accounting for the
boundary-layer displacement effect in solutions requiring viscous/inviscid iterations, and
(3) estimation of skin friction drag. In the first requirement, quick results are desired to
investigate boundary-layer problems that could influence the remaining test plan. In the
second requirement, transonic inviscid codes can be complicated and require large
amounts of computer time and storage; hence it is desirable to expend minimum time,
effort, and computer resources on the boundary-layer portion of the problem. For the
last requirement, it is usually necessary to perform computations for a large number of
test conditions and it is desirable to reduce the time per solution to conserve compruter
time. The present work was carried out to yield a turbulent boundary-layer calculation
method capable of providing reasonably accurate solutions in short periods of time with
minimal demands on computer resources.

Turbulent boundary-layer computation methods can be divided into two classes,
integral and differential techniques. Integral methods require the solution to one, or
more, ordinary differential equations, but differential methods require the solution to a
system of partial differential equations. As a result, development of differential methods
has accelerated in recent years following advances in computational capabilities (including
both computers and numerical algorithms), whereas integral methods require less in the
way of computational capability and have been under investigation for many years.
Differential methods, in conjunction with improved turbulence models such as the one-
or two-equation-of-turbulence models, are usually regarded as more accurate than integral'
methods for general applications (Ref. 1). With regard to specific applications, however,
the results of the Stanford Conference (Ref. 2) on incompressible flow indicate that some
integral techniques provide essentially the same accuracy as differential methods.
Therefore, an integral approach is considered here in the interest of simplicity and speed,
with the additional intent of developing an integral method to the point of being
competitive in accuracy with differential methods for transonic turbulent flow over an
adiabatic wall.

The approach of this work is the simultaneous solution of the momentum integral
equation and the mean-flow kinetic energy integral equation for two-dimensional planar
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or axisymmetric flow. The momentum integral equation is usually used in integral
methods (an exception to this is White's (Ref. 3) method; he contends that his technique
is entirely different from von Kéirman's momentum integral equation). Use of the
mean-flow kinetic energy integral equation is not uncommon in integral techniques, but it
is not universal. A primary advantage of using this latter equation was pointed out by
Nash (Ref. 4) to be that it is extendible to compressible flow without the transformation
limitations associated with the moment-of-momentum integral equation.

In addition to the momentum integral equation and the mean-flow kinetic energy

integral equation, other auxiliary parameters commonly required for solution of the
integral equations are addressed:

1. The wall shear stress
Velocity profiles
The shear-work integral

The velocity-temperature relationship

I

Shape factor correlations

The methods by which items 2 through 4 are handled in the present work are different
from those used in other integral techniques. The velocity profile is a newly developed
profile which promises increased accuracy, the shear-work integral is evaluated directly
rather than by empirical correlation, .and the temperature (density) distribution is based
on a new relation which predicts the total-temperature overshoot near the outer edge of

turbulent adiabatic wall boundary layers with nonunity Prandtl number and recovery.
factor.

The integral method is developed in Section 2.0. Numerical solutions are compared
with experiments and finite difference boundary-layer solutions in Section 3.0 to
establish the capabilities and limitations of the method. These solutions are all for an
adiabatic wall as this is the situation usually encountered in transonic flow applications.
The resulting computer program used to obtain the results is short and simple to use, A
listing of the Fortran code is presented in Appendix A.

2.0 ANALYSIS

The general form of the integral boundary-layer equations for x-momentum and
mean-flow Kinetic energy for turbulent compressible flow on two-dimensional planar or
axisymmetric bodies is derived in this section. The five items, which amount to auxiliary
relations, mentioned in the preceding section will be addressed as they arise in the
development of the integral method. The numerical method used to solve the equations is
a simple one used by Nash (Ref. 4).
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2.1 DERIVATION OF THE INTEGRAL EQUATIONS

The compressible turbulent boundary-layer equations of continuity, x-momentum,
and total enthalpy (energy). are, respectively,

F() g () -

S AR e T [’k (k& - )} @

8 () o]

where r = r,, + y cos ¢ for external flow, r = ry, - y cos ¢ for internal flow, k = 0 for
two-dimensional planar flow, and k = 1 for axisymmetric flow. The dependent variables
in Egs. (1) through 3 are time-averaged quantities with the exception of the term pv,
which is actually the product of the time-averaged p and the mass-weighted averaged v
(see Cebeci and Smith (Ref. 5) for a discussion of the approximations leading to the
boundary-layer equations). The y-momentum equation is dp/dy = 0. The momentum and
mean-flow kinetic energy integral equations will be derived from Egs. (1) and (2).
Equation (3) is the basis for a relation between velocity and temperature which is
required for solution of the compressible momentum and mean-flow kinetic energy
integral equations.

The momentum and mean-flow kinetic energy integral equations are derived by
multiplying Eq. (1) by u™*!/(m + 1), Eq. (2) by rXu™ summing, and simplying the
results to obtain

L |9 (rkpum_z) + 9 (r¥pvu™T = —rkymde L oym 9 (kg 4
m-1 ox dy dx dy
where 7 is the total shear stress
7 du _ pu’v’ )

Substitution of m = 0 will eventually result in the momentum integral equation, and m =
1 in the mean-flow kinetic energy integral equation. Using the momentum equation at
the edge of the boundary layer
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d
- pu, e (6)

dx dx

and subtracting the term 1/(m + 1) 8/9x ¥ pu u,m*1) from each side of Eq. (4), one can
write the expression

1 ‘ e k m+2  pu m+1 -1 3 k_  mel
—— ?a—x [r Pa Ye p.u, (:m+1 + x rrpvu

=r a" u,p, du, _m—1+—ia% (rkpuu':+1)+ umﬁ(rkr) @)

dx

Expanding the middle term on the right-hand side of Eq. (7), combining part of this
expansion with the term containing due/dx, and using Eq. (1) in the remaining portion of
the expansion results in the expression

1 J k m+2  pu m+l P K me1\ _ omtl g .
m+ 1 %a-_x [r Pe“e peue (:llm-'-l + ‘W rpvu ue E (l' PV)

Peu,

k 1 due m k
= pult - (:_“' - _pu ) + u™ a_‘?, r*9 (8)
Integrating Eq. (8) with respect to y over the interval (0 < y< =) yields the result

1 ‘ k m-2 pu mtl ; m+] Jk |
I E1RE ()] e e

3 k 1 d m i k

o [+}

The no-slip wall boundary condition of u = 0 at y = 0 is used to obtain Eq. (9). In
addition, two terms resulting from the integration of the second and third terms on the

left-hand side of Eq. (8) do not appear in Eq. (9) because they sum to zero as a
consequence of pv —> (pv), and u—>u, in the limit of y—>=.

For the special case of m = 0, Eq. (9) can be written

00

I irkpeuz pu 1. o dy+J- rkpeue& 1 - P |} dy
ox Pel, u, dx Pe Ve

[] o

k
-y Uep, Y, = rlvcv r, (10)

10
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In writing Eq. (10), it is necessary to use (rk7)>0 as y—>= To show that (r*7)~0 as y—==,
consider the following: The turbulence model used subsequently in this analysis will
postulate the shear stress in the outer part of the boundary layer to be proportional to
the local velocity gradient. Therefore, because r is linear in y, it will suffice to prove that
(y du/dy) = 0 as y—=. As a consequence of the velocity profile developed in Ref. 6, also
to be used subsequently in this analysis, the term 3ufdy behaves as exp (-cyb) where ¢ >
0 and b > 0. -The product y exp(-cyb)~> 0 as y—=, and hence (tk7)—0 as y—>=.

For the special case of m = 1, Eq. (9) can be written

P [t g (o) w]- et fen (-2 )

0

00

k 2 k
—%r pww=J.r rg_:dy (1D

In writing Eq. (11), it is necessary to integrate the last term in Eq. (9) by parts and again
use (rk7)->0 as y—o=.

Interchanging the order of differentiation and integration in Egs. (10) and (11),
these equations can be written as

- = du
1 4 (oK 26)4.8_"_°—P_wv"'=c—‘ (12
rtpeuz i (l‘w Pe ug ue dx pe ue 2

- . du v C: R

1 d_(rk_p u36*)+§ﬂ Le -1 Pw'w o %P
Zr:pe “:: ax w Fe “e u, dx 2 Pe‘ u, 2 (13)

where

Ezi T ' (14

i [ ()L ) as
8*=f (1-_‘0_1’_““_)(1.tr_y coslﬁ)kdy (16)
/

LCDEEY @

11
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For - [ = (1 - ;f) (1 - _'vv cos ¢)"‘ dy (18)

- 7 k
B f o Ofw/u) (1 t Y cos ¢) dy (19)
Tw Oy T

These five integral quantities are denoted by the tilde (“Vv) in order to distinguish them
from true defect lengths. For example, 5* defined by Eq. (16) is the true mass-flow
defect (displacement) length for two-dimensional planar flow (k = 0) but it is not the
true mass-flow defect length for axisymmetric flow (k = 1) (see Ref. 7). However, 5%
approaches the true mass-flow defect length for axisymmetric flow when the boundary
layer is thin compared to the local body radius. This is true not only because y/r, in Eq.
(16} is small when (1-pu/p, u.) is largest, but also because 5*/ry (a term not appearing
in Eq. (16) but that does appear in the true expression for the mass-flow defect length,
see, e.g., Section 1.9 of Ref. 5) is small compared to unity. It is important to make this
point about the defect lengths because if Eq. (16) was used to compute the displacement
effect on an axisymmetric body with thick boundary layers for use in a viscous/inviscid
iteration calculation, for example, the computed displacement effect would be incorrect.
Although the lengths defined by Egs. (15) through (18) are not true defect lengths for
axisymmetric flow, Eqgs. (12) and (13) are exact within the boundary-layer approximation
and are the general form of the momentum and mean-flow Kinetic energy integral
equations for compressible flow on two-dimensional planar or axisymmetric bodies.

The analysis is hereafter restricted to boundary layers that are thin relative to the
local body radius. The motivation for this is that by excluding the term (y/r,,) cos ¥ in
Eqs. (15) through (18), integrations can be performed once and for all in order to
establish correlations for certain shape factors which will appear in the analysis.
Otherwise, integration of Eqs. (15) through (18) has to be performed at each axial
station thereby increasing the computational time. The analysis is also restricted at this
point to an impermeable wall, v, _ o. It would be a trivial program modification to
include the permeable wall capability, but the associated auxiliary relations were not in-
vestigated as to their suitability for use in permeable wall calculations. For thin boundary
layers relative to the local body radius, and for impermeable walls, the momentum and
mean-flow Kinetic energy integral equations, [Eqs. (12) and (13)], reduce to

k d
n i(preuzéﬂ)—ﬁ—‘diu%f (20)

2 4
FwPo e 7

k 3 wv du c
ﬁ ‘%(rw peuee*) +_5-.e__°_=_.iD (21)

w e e

12
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where

e=f ou (1_‘%)@ | 22)
Ve .
- g+ =f sz]e (1_ :_i)d,v (24)

soe =J' L8 (h,g’:)dy (25)
- - 7 a(“/“e)
D - .r ™ ey (26)

Equations (20) through (26) are used in this work, where k = O for planar flow and k =
1 for axisymmetric flow. (Actually, in the computer program, planar flow is handled by
inputting r,, = constant.)

22 WALL SHEAR STRESS

An expression is needed for the local skin friction coefficient appearing in Eqgs. (20)
and (21) in terms of variables appearing in these equations. Such expressions are
frequently derived by using the zero pressure gradient (dp/dx = 0) momentum equation
to develop a transformation relating the compressible skin friction coefficient, ¢, to an
incompressible skin friction coefficient, T;. One of the available expressions for T; can
then be used to determine c;. In the present work, variable pressure gradient (dp/dx # 0)
as well as zero pressure gradient flows are of interest and the procedure for obtaining an
expression for c; is not well established. Therefore, the rationale behind the one
developed here will be given; the success of the resulting expression will be judged by the
agreement obtained with experimental data.

The basis for the present expression for cf is Coles' law of corresponding stations
(Ref. 8) which is

¢ Re, = Pefe ¢, Re ’
f (7] pw“w f €9 (27)

where the superscript bar (T) denotes low-speed flow. This relation was used by Lewis,
Kubota, and Webb (Ref. 9), along with the approximation, u~ T, to successfully

13
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correlate high-speed (up to M, = 8.18) turbulent boundary-layer velocity profiles. Using
this approximation, i.e., 4 ~ T, Eq. (27) reduces to

It was pointed out in Refs. 8 and 9 that, whereas Eq. (27) specifies the relation for
corresponding stations, it does not specify the relation between ¢; and T;, which must
come from hypothesis. In this work, recourse is made to the work of Winter and Gaudet
(Ref. 10), who established the relation

Er - le lf'2
cT=rc=(T_ss) (29)

for adiabatic walls, dp/dx = 0, and air. It is hypothesized that Eq. (29) is acceptable for
dp/dx # 0 if an appropriate expression is used for C¢ for dp/dx # 0. The expression

used for c; is _
0.36—1.33H

1.74+0.31H 30)

ol

[ =

(log, FG)

which is Eq. (6-179) in White's book (Ref. 3). The incompressible momentum thickness
Reynolds number, R—e,, used in Eq. (30) is obtained using Egs. (28), (29), and Re,
which is calculated as part of the solution. The incompressible shape factor, H, used in
Eq. (30) is obtained by a subsequently developed correlation of H as a function of Hg *
(which is also calculated as part of the solution) and M..

2.3 VELOCITY PROFILE

The integrils of Egs. (22) to (25) are usually evaluated by use of power-law or
law-of-the-wake (Ref. 11) velocity profiles. The main feature distinguishing the current
method from previous integral methods and the main contribution to the quality of the
results is the use of a newly developed velocity profile. This new profile is given by a
closed-form analytical expression valid over the entire thickness of the turbulent
boundary layer, Ref. 6. Shown in step 8 of Table 1, the expression is the sum of two
transcendental functions, one expressed in terms of the inner variable, y+, and one
expressed in terms of the outer variable, y/f. Table 1 was taken from Ref. 6 and is a
summary of the procedure for calculating turbulent boundary-layer velocity profiles by
this method. This expression was shown in Ref. 6 to provide a reasonably accurate means
of correlating various velocity profiles that included boundary layers near separation,
reattached boundary layers, nonequilibrium boundary layers (boundary layers with
nonzero streamwise variation of §), and compressible boundary layers. In the latter case,
the incompressible profile given in Table 1 is related to the corresponding compressible

14
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P—

profile by ufu, = ufu, and v/6 = (y/0)(8/8) where 6/8 is a correlation developed in
Subsection 2.6. It is convenient that the expression for the profile is a function of the
local incompressible parameters: skin friction coefficient, shape factor, and Reynolds
number based on momentum thickness, because these parameters are a natural
consequence of the equations being solved. This velocity profile expression was developed

Table 1. Summary of Procedure for Computation of Turbulent
Boundary-Layer Velocity Distributions

Step Requirement Comment
: - 2 \1/2
1 H, v, and neo are inputs {use incompressible values) u, = (_—
Cg
2. Compute 1 (2) = 1.723 706 H(l + f’_-_‘l-) L %) at ¥ = 2
u, Rea u, 5 G
- 2 -
3. Compute & (5) = 0.87 + 0.08¢2-6(F-1.95) LU atlas
u, u, \9 6
- 0.18 He
g— {(2) - 1 — tan~! 'Tg
. u, 0.09 u u
4. Compute g(2) = e e g(—) at L =2
1 - T 5, [
0.18 U]
- 0.45 Re
5 (5) - L — tan~1 — 8 \
ug 0.09 u at
5. Compute g(5) = e e E(Z) at L = 5
T a )
1- _ 9 g
0.18 ug
1n tanh™ ! [52(2)| tanh~lz = % in G‘*—z)
-
-1 2
B. Compute b = tanh g (5)
, ) e22. -1
In (—) tanh z = 3
5 e‘Z 4+ 1
-1 2 —
7. Compute a = tanh g (2) no_p
zb . ue ﬁe
_ i T
8 el 1 -1 + —+ * 12|, v\P v 1§,
. (u = .09 tan “(0.09 y ) + (ue T tanh a(;)
v Re
V-8 Y
= =
ue ]

for two-dimensional planar flows, but it is used herein for axisymmetric flows without
modification, because the assumption has been made that the boundary layer is thin
relative to the local body radius.

15
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Because the new profile reduces to an identity at the wall, it is not possible to
calculate the wall shear stress, 7,, = (u0u/dy),,, by taking the slope of the velocity profile.
Instead, the wall shear is obtained from the skin friction coefficient developed in
Subsection 2.2. The shear work integral, Eq. (26), is usually obtained by correlation of
experimental data, but the new velocity profile is considered sufficiently accurate to
permit evaluation of Eq. (26) by use of Bu/dy obtained from the profile expression and
an appropriate turbulence model, as described in Subsection 2.4.

24 SHEAR-WORK INTEGRAL

The term referred to here as the shear-work integral (also frequently referred to in
the literature as the dissipation integral) is denoted by D and given by Eq. (26). The
velocity profile given in Table 1 is used to compute the velocity derivative, and in this
regard it is convenient to express Eq. (26) as

” u. u) -
D = J' r £ d(y/6) 31
4 Tw 6(}' i9) o S

inasmuch as y/-ﬂ- is one of the independent variables in the velocity expression. The
problem, therefore, is to specify the shear-stress distribution, /7y, across the boundary
layer in order to carry out the integration identified by Eq. (31). In keeping with the
idea of maintaining simplicity, the shear-stress distribution is specified in three regions
across the boundary layer, and common turbulence models for each region are used.

" The first region considered is that near the wall, defined by 0 < y* < 100. In
deriving the inner solution part of the velocity profile in Table 1 (the inner solution part
is tan'l (0.09 y*)/0.09), it was assumed that the total shear stress 7 was constant and
equal to 7,. Based on the agreement between experimental data and the velocity profile
expression resulting from this assumption (see Ref. 6), it appears that 7 = Ty for 0 <yt
< 100 is a plausible approximation for use in Eq. (31). In fact, in Fig. 7 of Ref. 6 an
extreme case of an experimental velocity profile having a severe adverse pressure gradient
and no logarithmic region was well represented by the velocity expression in Table 1, and
for this case the inner solution, tan-1 (0.09 y+}/0.09, was the dominant term for 0 < y+
< 100. The assumption 7 = 7y allows Eq. (31) to be integrated analytically over 0 < yt
< 100 (i.e., out to the value of y/f where y* = 100 as given by y/8 = 100 Tie*“/R_eI,, see
Table 1) and numerical integration is avoided.

The next two regions are handled by Boussinesq's (Ref. 12) eddy-viscosity concept,
where the eddy viscosity e is defined by

~u'v = ¢ U (32)
oy
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where € will be either €, or €,, depending on the region. For the first region outside y*+
= 100 (middle region), Prandtl's mixing-length theory (Ref. 12) is used where

em =92 | 9 (33)
dy
and the mixing length is
g= 0.4ly (34)

For the outer region a constant eddy viscosity of the form suggested by Clauser (Ref. 13)
is used. The specific expression for €, in the outer region is

€, = 0.0168 u_ 5* (35)

where §* is the incompressible displacement thickness defined as

5=I”(h;;ay (36)

The point in the boundary layer separating the middle region from the outer region at a
particular x location is that point where €,, = €,. The shear stress for y+ > 100 primarily
consists of the turbulent shear stress as defined by

T, = -p u’v’ 37
‘and the shear stress distribution for use in Eq. (31) is approximated as
p(0.41y)% [du | du g ()| I
- dvldv _ 2 £ fo41 i)” __() ——() (38)
" w Tw Cy Pe 5 8(_'_) 1__")
) g
for the middle region, and
=, 0u
0.0168p u_B* 5—
o P ez £ow ) (39)
T T c; Pe a(v,'é)

for the outer region.

Equation (31) is analytically integrated from v+ 0 to y+ = 100 and then
numerically integrated in the middle and outer regions, using Egs. (38) and (39) with
plp, being evaluated as discussed in Subsection 2.5.

25 VELOCITY-TEMPERATURE RELATIONS

To establish the necessary shape factor correlations for use in the solution to Egs.
(20) and (21) it is necessary to use a relation between velocity and temperature in order
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to integrate Eqgs. (22) to (25) (recall that p/p, = T,/T as a consequence of dp/dy = 0).
The relationship used is the analytical solution developed in Ref. 14 for nonunity Prandtl
number. Because the interest here is in turbulent boundary layers on adiabatic walls, only
the adiabatic wall solution in Ref. 14 is used. The advantage of the method developed in
Ref. 14 over the more commonly used method of Crocco (Ref. 15) is that the results
obtained in Ref. 14 predict the overshoot in total temperature near the outer edge-of a
turbulent boundary layer on an adiabatic wall [sce, e.g., van Driest (Ref. 16)], which the
Crocco results cannot do. Moreover, the Crocco solution is actually contained as a special
case of the solution given in Ref. 14 for unity Prandt] numbers. The quality of agreement
between the results of Ref. 14 and experimental data is considered good. The
comparisons from which this conclusion was drawn are given in Refs. 14 and 17.

The density ratio in the expressions for the shear-stress distributions, Eqs. (38) and
(39), is, however, specified by the modified Crocco relation for an adiabatic wall (see,
e.g., Ref. 3)

Peip = T/Tg = 1arjy-1) M2 (1-u2/42)/2

The reason for this choice rather than using Ref. 14 is that numerical integration of Eq.
(31) is carried out at each axial location (whereas integrations for the shape factor
correlations are carried out only one time) and the modified Crocco relation is simpler
than the solution given in Ref. 14, requiring less computer time. Moreover, the modified
Crocco relation is in good agreement with the solution given in Ref. 14 in the region near
the wall for adiabatic flow and this region is the dominant portion of the integrand of

Eq. (31).
2.6 SHAPE FACTOR CORRELATIONS

There are four length scales in Egs. (20) and (21), @, 6*, 6*, and &**. It is
convenient and computationally expedient to correlate these lengths by analytical
expressions of other variables to avoid evaluation of the integrations identified by Egs.
(22) through (25) at each x location (and possibly several times at each x location to
obtain convergence). The approach is to define the following shape factors

Hgx = %_‘ (40)

Hgs = 96_* (41)
and

Hgeu = 36** (42)
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and then correlate these shape factors in terms of M, and H where

> |

= _ 8" T 43)

|

In addition, because y is scaled by @ as shown in Table 1, and because 8 is obtained from
the solution to Eqgs. (20) and (21), a correlation for 6/8 is also established.

The velocity profile given in Table 1 was used to carry out the numerical
integrations (using Simpson's rule) necessary to establish the correlations. This profile
depends on T; and fe, as well as H. Using Eq. (30) for ¢; = [} (Ee,,, ﬁ), the variables
are reduced to Ee, and H only. The influence of Regon the numerical results is
extremely small compared to that of H. For example, the difference between solutions
with Re, = 5,000 and Re, = 100,000 is less than one percent, which is within the
accuracy of the analytical expressions derived for the correlations. All numerical results
given here for the correlations are for R_ea = 50,000.

The numerical results for Hgs, Hpu, Hyus, and 0/6 are represented in Figs. 1
through 4 as open symbols. The results of the analytical expressions derived to represent

these numerical results are given in Figs. 1 through 4 as solid lines. The analytical
expressions derived by inspection are '

Hee = H (1+0.13 M2) + 0.200 M2 (44)
H 2 — 0.54 tanh |-1.1(ﬁ— 1)] + 0.028 Mz
6 = 5 (45)
1+ 0.014 M2
Hs,, ={9:064 , ¢.051\ M2
) (H— 0.8 e (46)
and
2
P 0.92 M _
— =1 - —— € tanh | 1.49( H- 0.9
g 7.09 + M2 [ ( )] 47)

Although the constants differ, the general form of Eqgs. (44) and (46) was used by Nash
(Ref. 4) for these shape factor correlations. The form of Eq. (45) was not used by Nash,
however. The advantage of Eq. (45) over the form used by Nash is that Eq. (45) can be
inverted to obtain H as a function of H,* and M., which is useful in the numerical
solution of Egs. (20) and (21). The correlation given by Eq. (47) is in good agreement
with that established by Winter and Gaudet (Ref. 10), althotl,lgh their correlation was for

A
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Open Symbols Represent the Numerical Results for
E9. (40) Using the Velocity Profile Given in Table 1
and the Velocity-Temperature Relation of Ref. 14

M = 2 Solid Curves Represent the Analytical Correlation of
Hg* = F (L + 0.113 MD) + 0.290 M2 [Eq. (44)]

1
10

L4 18 2.2 2.6 3.0

Open Symbols Represent the Numerical Results for
Eq. (41) Using the Velocity Profile Given in Table 1
and the Velocity-Temperature Relation of Ref. 14
Solid Curves Represent the Analytical Correlation of
. 2-0.54tanh (11 - 1] +0.028 M2

Hge =
o 1+ 0.014 M2

[Eq. (45)]

1 | | 1 J

1.0
L0

L4 1.8 2.2 2.6 3.0

H

Figure 2. Correlation of the shape factor Hg* for adiabatic flow.
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4 —
()
3 My=3
H5"
. 2 | Open Symbols Represent the Numerical Results for
Eq. (42) Using the Velocity Profile Given in Table 1
Mg =2 and the Velocity-Temperature Relation of Ref. 14
1F Solid Curves Represent the Analytical Correlation of
2oannnngaer] Hﬁ..,.(f“""d +u251)m§_ [Eq. (461
0 1 | L [ | H i 0' 8
1.0 14 1.8 2.2 26 3.0
H
Figure 3. Correlation of the shape factor Hg=+ for adiabatic flow.
101
0.8}
0.6 )
_ Open Symbols RepreXent the Numerical Results for
/8 6/8 Using the Velocity Profile Given in Table 1 and
04l the Velocity-Temperature Relation of Ref. 14
Solid Curves Represent the Analytical Correlation of
0.92 M2 _
o2l - %q-—M'é tanh [1.49 (F - 0.9 {Eq. (47))
e 1.09+ Mg
0 1 1 ] 1 1]
1.0 1.4 1.8 2.2 26 3.0

Figure 4. Correlation of the compressible to incompressible
momentum thickness ratio for adiabatic flow.

zero pressure gradient flows and did not contain the parameter H. The correlations given
by Egs. (44) through (47) and compared with numerical results in Figs. 1 through 4 are
for M, <3 and a constant recovery factor of 0.88.

2.7 SUMMARY OF THE EQUATIONS AND METHOD OF SOLUTION

Using the definitions of the shape factors defined by Eqs. (40) through (42), Eqgs.
{20) and (21) can be rewritten as
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1 __ 4 (k 2 ) .0 Y. _ o
Lk P, a2 dx (rw Pe Ye 9) + HS"‘ u, dx 3 (48)
w L]
L & (e ulollp) + Hpw £ due _ % p
2r:pe 3 i (rw Pe Ue OHgs ) + Hgxx i . (49)

where Hgs, Hy«, and Hg«« are given by Egs. (44) through (46) and are functions of H
and M, as indicated. The skin friction coefficient, c;, used in the solution of Egs. (48)
and (49) is given by Eqgs. (28) through (30) and can be written as

—-1.33H
cf = l 0.38

F, [log o (Reﬂfpc)] 1.74—0.31H

(50)

" where F, = (1 + M2/5)1/2_ The skin friction coefficient is, therefore, a function of ﬁ,
M, and Re, where Re, = p.u, 8/p, The shear-work integral, D, is defined by Eq. (31)
where 7/7 , is unity for 0 < y+ < 100, and given by Egs. (38) and (39) for the middle
and outer regions of the boundary layer. Therefore, D depends on Cs, _ﬁ,ﬁ, and p/p,
(where p./p is given by the modified Crocco relation, Subsection 2.5). All of these
quantities can be related to H, M,, and Re, (or @ in place of Re, because PeUc/it, I8
known from the boundary-layer edge conditions). Equations (48) and (49) are, therefore,
two equations for the two unknowns H and 4.

The method used to solve Eqs. (48) and (49) is the predictor-corrector method used
by Nash (Ref. 4). Various schemes were tried for determining step size and for most
problems the step size was not particularly important. A constant value for the step size
was used for the solutions presented in this report; however, because the code is simple,
it is a trivial task for the user to modify this portion of the program as appropriate.
Initial values of & and H (from which H is obtained in the program using Eq. (44)) must
be input as well as a reference Mach number, Reynolds number, and M, and r, as
functions of x. A listing of the boundary-layer code is given in Appendix A.

3.0 RESULTS

Because a turbulent boundary-layer calculation method can be made to fit a
particular set of experimental data, it is of interest to consider several sets of data for
various conditions. The present method was applied to a large number of experiments
and examples are presented in this section, The examples presented are those of
Schubauer and Klebanoff (Ref. 18), Stratford (Ref. 18), Cook, McDonald, and Firmin
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(Ref. 19), Pasiuk, Hastings, and Chatham (Ref. 20), and Winter, Rotta, and Smith (Ref.
21). These examples represent a fairly broad range of flow conditions that include
favorable, mild, and severe adverse pressure gradients.

The experiment of Schubauer and Klebanoff (Ref. 18) was selected because it is a
realistic airfoil-type flow commonly encountered and also numerous other calculation
techniques were compared to this experiment in Ref. 2, from which indirect comparisons
with the present method can be inferred. Comparisons between calculated and measured
values of c¢;, Hy«, and Re, are given in Fig. 5. The agreement is reasonably good
upstream of about x = 22.5 ft. This is the same sort of agreement obtained by nearly all
the 27 calculation techniques (both integral and finite difference) shown in Ref. 2.

0.005 0 Experimental Data, IDENT = 2100, Ref. 18
0,004 fag, — Present Calculations

0. 003

C'&ooz

0. 001

3.0

Hb' 201 &P

Regx 1074

Figure 5. Present calculations and incompressible experimental
measurements of Schubauer and Klebanoff (IDENT =
2100, Ref. 18).
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However, those calculations shown in Ref. 2 which took three-dimensional flow effects
into account were in better agreement with these experimental data than the present
calculations. Three-dimensional effects were not considered in the present calculations.
Comparisons of calculated and measured velocity profiles are shown in Fig. 6 for
favorable, nearly zero, and severe adverse pressure gradient portions of the flow as
indicated by the experimental values of Bex p- This agreement is considered good, even for
the severe adverse pressure gradient at x = 22.0 ft.

5 s
O  Experimental Data, IDENT = 2100, Ref. 18
—— Present Calculations
4 p—
3Ir
Y. in,
2 -
L E
0 ] 1
0 0.2 0.4 0.6 0.8 10 0.6 0.8 10 0.6 0.8 1.0

ulug

Figure 6. Favorable and adversa pressure gradient incompressible velocity
profiles of Schubauer and Klebanoff (IDENT = 2100, Ref. 18).

In contrast to the experiment of Schubauer and Klebanoff (Ref. 18) where nearly
all 27 calculation techniques (Ref. 2) were able to compute the flow with reasonable
success, the experiment of Stratford (Ref. 18) had comparisons presented from only
about half of these calculation techniques and of these only two succeeded in calculating
reasonably good results for ¢, Hy;«, and Re, (Ref. 2). Comparisons between the present
calculations and the experiment of Stratford (Ref. 18) are given on Figs. 7 and 8. Of
particular interest in these comparisons is the velocity profile in Fig. 8 for Boxp = 78.988

which appears to be extremely close to separation and yet the experimental velocity
distribution is reasonably well calculated.

Boundary-layer measurements on an RAE 2822 airfoil in transonic flow have
recently been made by Cook, McDonald, and Firmin (Ref. 19). Three sets of data from
Ref. 19 are considered, and the pressure distributions are given in Fig. 9. Case 2
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O Experimental Data, IDENT = 5300, Ref. 18

0.005 Present Calculations

0. 004

% o0om b
0.001 |-

Regx 103

Figure 7. Present calculations and incompressible experimental
measurements of Stratford {(IDENT = 5300, Ref. 18).

represents a reasonably mild favorable and adverse pressure gradient flow where the flow
is subcritical and the airfoil is at @ = -2.18 deg. Cases 9 and 12 represent commonly
encountered supercritical flows with severe adverse pressure gradients caused by shocks
on the airfoil (@ = 3.19 deg). Comparisons between calculated and measured values of c;,
8*/c, B/c, and H,+ are given in Fig. 10 for Case 2. These quantities vary smoothly along
the airfoil and the agreement between calculations and measurements is good.
Comparisons of the same quantities are made for Case 9 in Fig. 11. Good agreement is
obtained up to the shock and reasonable agreement is obtained downstream of the shock.
Case 12 was for the same conditions as Case 9 except the chord Reynolds number was
reduced from 6.5 x 106 to 2.7 x 106. Comparisons of calculated and measured data are
presented in Fig. 12 for Case 12. The agreement in Fig. 12 is good except for the integral
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quantities at x/c = 0.9. This experiment (Ref. 19) provides the opportunity to investigate
the shock/boundary-layer interaction region in some detail. The three velocity profiles
nearest the interaction (which are located just upstream, essentially at, and just
downstream of the interaction) for Cases 9 and 12 are compared with the calculations in

Figs. 13 and 14. The agreement in Fig. 13 for the higher Re

wc OW with an abrupt

change in boundary-layer properties (see, e.g., the ¢; distribution in Fig. 11 which
illustrates this abrupt change) is considered reasonably good. The agreement in Fig. 14 is
considered good with only a slight discrepancy between theory and experiment for the
velocity profile in the interaction region at x/c = 0.498,

y, in,

O Experimental Data, IDENT = 5300, Ref. 18
x=4,103ft, Bexp =31.320

0 Experimental Data, IDENT = 5300, Ref. 18
x = 6,236, Bexp = 78.988

Present Calculations

6—

Figure 8. Severe adverse pressure
gradient incompressible
velocity profiles of
Stratford (IDENT =
5300, Ref. 18).

Cp

-6
Mp Reg (x10

Sym "o g, deg Case
o 0676 5.7 -2.18 2
o 073 6.5 .19 9
m 073%0 2.7 3.19 12
-1.4 -
-1.2 ae
-1.0 -
-0.8 o Gp*for Mg = 0.730
Y- h_ ______
. a
-0.4 ooo°°c>gt:|
o® og
'02 Oo aa
o B
0 |
o
02 8
0.4
0.6
0.8
1.0
1.2
1-4 ] 1 | 1 ]
0 0.2 0.4 0.6 0.8 1.0
xlc

E 2822 Airfoil Cross Section =

Figure 9. Upper surface pressure
distributions on the
RAE 2822 airfoil for
Cases 2, 9, and 12 of
Ref. 19.

Measurements by Pasiuk, Hastings, and Chatham (Ref. 20) were made for a
compressible turbulent adiabatic wall boundary layer with a favorable pressure gradient.
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Boundary-layer displacement and momentum thickness measurements are compared to
present calculations in Fig. 15 and the agreement is considered good. The boundary-layer
edge Mach number varied from about 1.5 to 3.0 for the data shown in Fig. 15.

o Experimental Data, Case 2, Ref.

0.065 — Present Calculations

oo}l 8
0.0
0.002 }

0.001 |-
0 1 1 1 1 J

0.020
0.015 |-
6'lc g00f

0.005 -
OMJ

0. 008 -
0.006 -
6/c 0.004 |-

0.002 -
0 1 ] |

3.0
251

1L5F

10 [l 1 i | |
0 0.2 04 06 08 L0

xlc

Figure 10. Upper surface boundary-layer
properties of the RAE 2822
airfoil for M_ = 0.676, Re_
5.7 x 108, and a = -2.18 deg
{Case 2).
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¢ 008
0.002
0.001
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0.020
0.015
6°/c 0.010
0. 005

0

0.008

0. 006

Bic 0 o1
0.002

0

3.0

2.5

Hy* 2.0
15
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Figure 11.

o Experimental Data, Case 9, Ref. 19
—— Present Calculations

0.2 0.4 0.6 0.8 1.0
xlc

Upper surface boundary-layer
properties of the RAE 2822
airfoil for M_ = 0.730,

Re_. =6.5 x 106, and a =
3.19 deg (Case 9).

An experimental investigation was performed by Winter, Rotta, and Smith (Ref. 21)
on a waisted body of revolution in both subsonic and supersonic flow. Two sets of data
from Ref. 21 are considered, M_ = 0.597, Re_g = 9.98 x 106 and M_ = 1.398, Re_¢ =
10.08 x 106. The pressure distributions for these two cases and the body geometry are
shown in Fig. 16. Boundary-layer properties of c;, 6*, 0, and H;. are compared with
present calculations in Fig. 17 for M_ = 0.597 and in Fig. 18 for M_ = 1.398. “The
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calculated c; is a little larger than the experiment for the M_ = 0.597 data, but the
overall agreement in Fig. 17 is considered good. The agreement with the M_ = 1.398 data
in Fig. 18 is good up to x = 42 in., but not as good over the remaining aft end of the
body. In this connection, a compatibility check of the experimental data was performed
by Winter, Rotta, and Smith (Ref. 21) by using measured values of ¢; and Hg« in the
momentum equation. The conclusion drawn in Ref. 21 from this exercise was that for the
M, = 1.398 data, the skin friction measurements appear to be too large for x > 42 in.
This was attributed in Ref. 21 to the technique used to measure skin friction (the razor
blade technique) which had not been completely established for these types of flow.

0.05 - o Experimental Data, Case 12, Ref. 19
0.004 + — Present Calculations

¢ 0.003 -
0.02 -
0.001 |-

0 I 1 1 1 J

0.020
0.015
6°/c 0.010 [ o]

0.005 0'___9’0’/
0 1 ] ]

0.008
0.006 |~

8fc 0.004
o q——/
0 L ] |

3.0
25 °
Hg* 2.0 | °~—'0—“\o~9_’
L5 |

Lo 1 1 | ] |
o 0.2 04 0.6 6.8 L0

xlc

L

Figure 12. Upper surface boundary-layer
properties of the RAE 2822
airfoil for M_ = 0.730, Re_,
=27 x 108, and ¢ = 3.19
deg (Case 12}.
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0.025 F '
o Experimental Data, Case 9, Ref. 19
— Present Calculations Ic =
0.020 F xic = 0. 650
0.015 |-
yic xfc = 0,574
xlc = 0.498
0.010 |
0.005 |-
0 1 1 1 fr 1 s }
0 0.2 0.4 0.6 0.8 1.0 0.6 08 1.0 0.6 0.8 L0
ulug
Figure 13. Velocity profiles in the shock region of the RAE 2822
airfoil for M_ = 0.730, Re_. = 6.5 x 108, and
a = 3.19 deg (Case 9).
0.025 = o  Experimental Data, Case 12, Ref. 19
Present Calculations xic = 0. 650
0.020 -
xic = 0,498
0.015 |-
/
ye xlc=0.404
0.010
0.005 |-
0 L L ]

0 0.2 0.4 0.6 0.8 1.0' 0.6 0.8 1.0 0.6 0.8 1.0
ulug

Figure 14. Velocity profiles in the shock region of the RAE 2822
airfoil for M_ = 0.730, Re_, = 2.7 x 108, and
a = 3.19 deg (Case 12).
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0.020 ' o Experimental Data, Ref. 20
— Present Calculations
0.016 |

L5< M, <3.0
0.012 M

0.008 I~

0.00¢ |

o, ft 0002 |-

0.001 I

0 0.5 L0 L5 2.0 25 3.0 3.5

Figure 15. Boundary-layer displacement and momentum
thickness distributions for a compressible
adiabatic wall boundary layer with a
favorable pressure gradient.

Velocity profiles for these two sets of data from Ref. 21 are compared with present
calculations in Figs. 19 and 20. The agreement is good except for the last two
downstream profiles in Fig. 20 which is poor. This is the same region of discrepancy as in
Fig. 18. Also shown in Figs. 19 and 20 are the ratios of §*/r,, which must be small (i.e.,
&*/r, <<1) for transverse curvature to be unimportant (recall that this method is
axisymmetric but does not account for transverse curvature). Note that regions of any
significant discrepancies in Figs. 19 and 20 (excluding the last two downstream profiles in
Fig. 20) occur near the outer edge of the boundary layers. It was pointed out in Ref. 6,
where the velocity profile used here was developed, that the correlation for u/u, at y/5 =
5 should be modified for axisymmetric flow. Therefore, the strictly two-dimensional
planar correlation at yla = § is identified as the source of this discrepancy in Figs. 19
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and 20. It should be pointed out, however, that the portion of the boundary layer for

y/ﬁ < 5 is the important part for the calculation of the shear-work integral term, Eq.
(31).

-0.6 §ﬂ h _____Rem'z X 10-6 ’

o 0.597 9.98
e 139 10.08
-0.41 o ©
8e,
o072k ° °
0.2 ) o ..
e o
°
% o Jo bt —0-
. e 2
02f o 83u00%0ee,,,
0Qire °
06 { 1 | ] | |

10 20 30 40 50 60

X in Aﬂ

Waisted Body of Revolution Cross Section

Figure 16. Pressure distributions on the waisted
body of revolution for M_ = 0.597,
Re_g = 9.98 x 106 and M_ = 1.398,
Re_g¢ = 10.08 x 106 (Ref. 21).

lf/

The most upstream boundary-layer profile measurements reported in Ref. 21 were at
x = 24 in. Initial conditions near the nose were not available. This is usually the case in
practice; therefore, it is of interest to investigate the influence of initial conditions on the
solutions. Skin friction measurements were reported for x < 24 in. in Ref. 21 and these
measurements provide an indication of the results that might be expected. Solutions for
four sets of initial conditions arc compared to these skin friction data for M_ = 0.597
and Re_p = 9.98 x 108 (Ref. 21) in Fig. 21. Three solutions are for initial conditions at
x = 3 in. and one for initial conditions at x = 24 in., which is the same solution as given
in Fig. 17. As illustrated in Fig. 21, the three solutions beginning at x = 3 in. quickly
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0.004 O Experimental Data, Ref, 21
0. 003 — Present Calculations
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Figure 17. Boundary-layer properties on the waisted
body of revolution for M_ = 0.597 and
Re_ ¢ = 9.98 x 106.

converge to the same axial distribution of c;. The solution beginning at x = 24 in. also
has the same distribution, and converges to the same solution as the three solutions
started at x = 3 in.

The data of Winter, Rotta, and Smith (Ref. 21) were used for comparisons with
other calculation techniques. Blake (Ref. 22) compared these data with the finite
difference calculation methods of Cebeci and Smith (Ref. 5), Harris (Ref, 23), and 3lake
(Ref. 22). Three figures were taken from Ref. 22 and included here along with the
present calculations as Figs. 22, 23, and 24. It is important to note that these figures
were copied from Ref. 22 because the plotted experimental data points differ somewhat
from supposedly the same data (M_ = 1.398 and Re_g = 10.08 x 106) already used in
Figs. 18 and 20. The discrepancies are not large, however, and direct comparisons of the
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calculation methods can be made. Skin friction comparisons in Fig. 22 indicate that the
present solution is close to Blake's solution (Ref. 22) up to about x/€ = 0.7 and then is
below the other solutions for x/2 > 0.7 and below the experimental data for x/2> 0. 8.
As pointed out previously, however, it was concluded by Winter, Rotta, and Smith (Ref,
21) that the experimental skin friction appears too large over the aft portion of the
body. Momentum thickness comparisons in Fig. 23 indicate that the present solution is
essentially the same as Cebeci and Smith (Ref. 5) up to the maximum value of 0/%, and
then is between the Cebeci and Smith solution and Blake's and Harris’ solutions (the two
latter solutions arc esscntially the same) over the remaining aft end of the body. From
the velocity distribution comparisons in Fig. 24 the present solution is considered to
provide a better description of the experimental velocity profile than Blake's solution
(Ref. 22). Velocity distributions from Cebeci and Smith (Ref. 5) and Harris (Ref. 23)

C Experimental Data, Ref. 21

0.004 —— Present Calculations
0.003 |~ 0
¢ 0.002 |- W
0.001 |-
. : . . . | )
0.4
0.3 |
6%, in. g2} D/\
01 °
0 ' ' ' ' l '
0.20 [
0.15
8, in. 010 F
wor //\5\0
0 ; \ [ 1 1 ] '
>l \
Hs* 2.0 ° o
1.0 ' . ' I ; l
0 10 2 30 40 50 60

Figure 18. Boundary-layer properties on the
waisted body of revolution for

. = 1.398 and Re_¢ = 10.08

x 106,
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1
calculation methods were not given in Ref. 22. The discrepancy between experimental
data and the present solution near the outer edge of the boundary layer was discussed
above and attributed to neglecting transverse curvature. However, the slight inflection in
the experimental, velocity profile in Fig. 24 is well represented by the present integral
solution, whereas the finite difference solution of Blake does not properly describe this
feature of the boundary layer.

The experimental data of Winter, Rotta, and Smith (Ref. 21) were also considered
by Lewis, Kubota, and Webb (Ref. 9) in their work concerning the application of
transformation theory to turbulent boundary layers and the extension of Coles' (Ref. 8)
analysis to include pressure gradient. The agreement obtained in Ref. 9 is considerably
worse than the agreement obtained here with the same experimental data. Two possible
sources of discrepancy are given in Ref. 9 as having to do with the low-speed formulation
part of their transformation theory and/or the Mangler transformation which they used.
Such problems are avoided by the present approach.

x=500in. , x=5%.0in.
8k, =0.067 8 /r,=0.02

lar ©  Experimental Data, Ref. 21 x = 42.0in.
Present Calculations 6°/r, = 0.155

1.2

1.0

0.8 F x=28.5in.

§°Ir,, = 0.032

0.6 -

0.4F

0.2 F

0 1 =
0 0.2 0.4 0.6 0.8 1.0 1.0 1.0 L0 1.0

que

Figure 19. Velocity profiles on the waisted body of revolution for
M_ = 0597 and Re_g = 9.98 x 108,
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, x=50.0in. . x=39.0in,
1.4 l' O Experimental Data, Ref. 21 8°iry=0.065 0 /ry, =0.039
Present Calculations
12k ,, X=42.0in,
. 8", = 0.171
Lo
0.8
y, in.
0.6 . x=2851in.
6 iy, = 0.029
0.4
0.2
0 L > —
0 02 0.4 0.6 1.0 . . . 1.0

ulug

Figure 20. Velocity profiles on the waisted body of revolution for
M_ = 1.398 and Re_g¢ = 10.08 x 106,
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- —— 150 700
0.05 ---= 150 1,000
\ —-— L6 700
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000 | o © Experimental Data, Ref. 21
0.003 {
[
0.002 |-
0.001 |-
0 ] { ] L | i |
0 10 2 30 0 50 60
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Figure 21. Influence of initial conditions on the
. waisted body of revolution for
M_ = 0597 and Re_ ¢ =9.98 x 106,
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O  Experimental Data, Ref. 21
Blake's Solution, Ref. 22

0. 004
[ Cebeci and Smith's Solution, Ref. 5
—~ = ~- Harris' Solution, Ref. 23
0o I —o— Present Solution

% oo
0.001 |

0 1 [ 1 J [ 1 [ 1 ]

0.4 0.5 0.6 0.7 08 0.9 10

X/t

Figure 22. Calculated and measured skin friction
distributions on the waisted body of
revolution for M_ = 1.398 and
Re_ ¢ = 10.08 x 108,

O Experimental Data, Ref, 21

Blake's Solution, Ref, 22

Cebeci and Smith's Solution, Ref. 5
— ——- Harris' Solution, Ref. 23

—a— Present Solution
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Figure 23. Calculated and measured momentum
thichness distributions on the waisted
body of revolution for M_ = 1.398
and Re_g = 10.08 x 108,
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LOr o Experimental Data, Ref. 21 !
0.9 | —— Blake's Solution, Ref. 22 1
0.8 | — —— Present Solution /
07}
0.6
y.in. 05 }
04}
03
02F

0.1

T

0 { 1 I
0 010203 04 050607 08 09 1.0
ulu,

Figure 24. Calculated and measured
velocity distributions on
the waisted body of
revolution for M_ = 1.398
and Re_¢ = 10.08 x 106
at x =42 in.

4.0 CONCLUSIONS

The objective of the present work was the development of a reasonably accurate and
rapid means of calculating compressible turbulent adiabatic wall boundary layers on
planar and axisymmetric bodies. Reasonably accurate solutions were obtained for the
type of boundary-layer problems frequently cncountered in PWT as illustrated by
comparisons with transonic turbulent boundary-layer data. For the few direct
comparisons afforded by the results in Blake's thesis (Ref. 22), the present integral
method provided reasonable agreement with the finite difference methods of Cebeci and
Smith (Ref. 5), Blake (Ref. 22), and Harris (Ref. 23). The present method is simple to
us¢ and about 42 x-steps can be solved per second on an IBM 370/165. The method no
doubt could be improved, but the objective of the present work is considered satisfied.

The present approach differs from most integral approaches in three primary
respects. First, an entirely different velocity profile (Ref. 6) was uscd. Second, the
shear-work integral term was not correlated from experimental data, rather it was
-obtained by direct integration. And third, a new relation between velocity and
temperature was used for shape factor calculations (Ref. 14), which accounted for
total-temperaturc overshoot near the outer edge of turbulent boundary layers for the
realistic conditions of nonunity Prandtl number and nonunity recovery factor.
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APPENDIX A

LISTING OF THE BOUNDARY-LAYER COMPUTER CODE

FORTRAN IV 6 LEVEL

0001
0002
0003
0004
0005
0006

0007

0008
00909
oolo
ooll
ool2
0013
0014
0015
0016
0017
00l8
0019
o020
oo2}
0022
0023
0024
0o02s
0026
0027
o028
0029
0030
0031
0032
0033
0034
003S
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054

W N

7

8
9
12

500
1002

a2

30

386

40

42

21 MAIN

REAL MoMINF MM (300) 4 MOM(2) yKE (2) sM2

DIMENSION X{2)s XX(300)9sRR(300)

FORMAT(1P11E12.4) :

FORMAT(8F10,5)

FORMAT(13)

FORMAT (///33Xs "MACH NO, 39 4,F6,3+5Xs'UNIT REVNOLDS NO, =¢3FTebs? MI

ILLION?//)

FORMAT (1H1o5X e "X P9 12Xs PR 911Xe " M1 o OXy ' THETA?sOX o "HY 911Xy 'CF 99X,
INSTARY o TX o "HETA' ¢+ IXs'REQYy X+ 'REX'98Xe?'DISS*/)

FORMAT (' INPUT VALUES ARE!//8X,)'XXV4TXg 'MM? 48X *RR?/)

FORMAT(3F10,5)

READ(S+3)MINFIRENyTHETAWH

READ({Ss4) NINP

READ (59} (XX (1) 9MM(I) +sRR(I}I=14NINP)

WRITE(6:8)

WRITE(649) (XX(I)oMM({I)sRR(I)sI=19N]INP)

WRITE (696)MINF4REN

X{1)1=xX{1)

I=0

IPRINT=0

KKK=0

WRITE(6:7)

CONTINUE

lF(!oLTlZ) IEl‘l

IF{I=1)122+22+18

DX={XXININP)=XX(1})/500.

X(Irax{l=1)eDX

IFL{XC(T) ¢DXaXX (NINP) ) ¢GE«040) IPRINT=]

IFIX(I)=XX(NINP))22,22+120

CONTINUE

CALL LININT(X(I)eXXsMMeMoDXM)

CALL LININT(X{I)»XX9RRsRADoDUM)

M2uM#M

Ta(1s¢0,20MINFRR2) /(]1s¢0,208M082)

UsM/MINFeSOQRT(T)

DUDXM/ (M® (1 ¢0,20M802))

FC2SQRT{]1.+M¥M/5,)

QaynazeTenz SWRAD

RE=REN®],0E+068U%Ton] T4

HLI=]l,

IF{I=1130+30+36

MOM{1)2G*THETA ' .

HIs(H=0,2908M2) /7 (1.¢0s113%M2)

KE(1)=SMOM(1)®U®(2,=0,542TANH(1, 1% (HI=1s))eD, OZB.MZ)/(I-OO-OIQ.MZl

REQaRE*MOM{1)/Q/FC

CFu03¥EXP («]1.33%H])/ALOGL0(REQ)®® (] ,74¢0,31%HI)

UPE=SQRT(2./CF)

CALL TURB(M2sUPE+REQeHI»THETA» IPRINT D)

DO 60 K=1,6

IF(I=1)42+42440

MOM(I)=MOM(1=]1) ¢0,5® (DMeDMM) DX ,

KE{IVSKE(I=]1)+0,5% {DKK¢DKK) #DX

22(2.=KE{I)/MOM (1) /7U)}®(1le*0,0144M2) /0,54

HI=)e®0.5%AL0G((lse2Z)/(le=2Z))/1,]

HeHI®#({].¢0,11308M2)00,290%M2

CFe0.3%EXP (=]1,337%H]1) /ALOGL1O(RE®MOM({I)/Q/FC)n®(],74+0,31%H]I)/FC
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FORTRAN IV 6 LEVEL

0055
0056
0057
0058
0059
0060
006]
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084

FORTRAN IV G LEVEL

0001
poo2
0003
0004
0005
0006
0007
to08
0009

46

49
So
60

70

120

2l MAIN

DM=0 ,5*Q®CF=MOM(]) #H#DU

DK=QeUSCFoDa2 #MOM (1) #U#DUR {0,064/ (HI=0,8) +(,251) *M2
IFtI=1)70s70249

IF (ABS{1e=HLI/H]1)=0,0005)70+70,50

HLI=H]

CONTINUE

DXx=0,5%DX

.60 TO 20

DMM=DM

DKK=DK

THETA=MOM(I) /70

DSTAR sH*THETA

BETA==2,*DSTAR/CF*Dy

REQCOM=RE#THETA

REX=RE®#X (1)
WRITE(692)X(1) yRADsMs THETAsHeCFoDSTARIBETA+REQCOMeREX D
UPEnSQRT (2, /{CF®*FC))

REQuREQCOM/FC

THETAI=ZTHETAZ (1e=0.92%M2/ (7 ,094M2) #TANH (] .49 (H]=0,9)))
CALL TURBI(M2eUPEYREQeHIsTHETAL» IPRINT+D)
KKK=KKK*)

IEtI.EQ.1) GO TO 1002

X{1)=x¢2)

MOM{1)=MOM(2)}

KE (1) sKE({2)

IF (XKKKoEQ@,57)G0 TOQ 500

GO TO 18

CONTINUE

STOP

END

21 LININT

SUBROUTINE LININT(XsXXsYY2Y40Y}
DIMENSION XX(300)+YY(300)

Nsl

N=Ne]

IF{XeGTeXX(N)) GO TO 1

DYz (YY(N) =YY (N=1) ) /{XX(N)=XX{N=]))
YeYY (N=1) ¢ (X=XX(N=)))®DY

RETURN

END
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FORTRAN IV 6 LEVEL 21 TURB .
0001 SUBROUTINE TURB {XM2+UPEsRETsHs THETA+IPRINT D)

0002 DIMENSION F(101)

0003 PlI=3,141592 -

0004 RETUP=RET/ (UPE®®2)

0005 REUP9=0,09°RET/UPE

0006 PIUPE=PI/ (4189UPE)

0007 UUE2E] « T2IREXP (=046%H) (] 4+504/RET)

0008 UUES20.87+40,08%EXP (=2,6% (H=],95)#82)

0009 6G2= (UUE2=(1.7(,09%UPE) ) ®ATAN(2,*REUPY9))/(].~PIUPE)

0010 6GSa (UUES=(1./(.09%UPE) ) SATAN(S . *REUPS) ) /{1 .=PIUPE)

0011 BaALOG((+S®ALOG({]1.+62902)/(].=G2%%2)))/({.5%ALOG((1.+6G5%92)/(]l,.~

165##2)))))/7AL0G(0.4) .

ool2 A= (,50AL0G((],+G2902)/(]1.~620%2))) /2,848

0013 N=101

0014 DX=10.7100¢

001S SuM=0,

0016 X=UPE®100,/RET=DX

0017 DO 9000 I=l,.N

0018 X=X eDX - ' . . . .
0019 Y=X*THETA

0020 YPLUSsX*RET/UPE

0021 ARGmA®)X##B

0022 IF (ARG «GT+8Te3)F(I)=0,

0023 IF (ARG.GT+87+3)60 TO 9000 ;
0024 HCOS= (COSH(ARG) } ®e2

0025 HTANaSQRT (TANH{ARG)}

0026 UPLUS=ATAN (REUP9%X) /0.09¢ (UPE=PI/0,18) ®HTAN

0027 UUEaUPLUS/UPE

0028 F(1)aRETUP®(l4/(]se (REUPI®X)O8D) )¢ (] ,~PIUPE)#ARG®B/2,/X

191,/ (HTAN®HCOS)) -

0029 XL=0s410X

0030 FFC=0.01689H®F (])

0031 FFReXLeXL®*F {TI)SF ({])

0032 IF (FFeGToFFC)SUMaSUMe],

0033 IF(SUM(GT,0,)FF=FFC -

0034 FCIIBFFR*F (1) /7(1e%0,1762XM2% () .=UUE®UUE))

0035 IF({IPRINT.EQsleAND.I.EQal) WRITE(6+10)

0036 10 FORMAT (1" e5Ko 'Yty BXo'Y/THETAIYsTXo'Y¢ o 10Xo We'y 9Xo?U/UE?/)
0037 IF (IPRINTLEQsl) WRITE(6¢11) YeXsYPLUS»UPLUS,UUE

0038 11 FORMAT(IPSE12.4)

0039 9000 CONTINUE

0040 CALL SIMP(F F2:F44N)

0041 CP=DX/3,%(F (1) sF2¢F4+F (N))

0042 D=16.T9/UPE+UPE®UPE®CP

0043 RETURN

0044 END
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FORTRAN IV 6 LEVEL 21 SIMNP
0001 SURRNOUTINE SIMP(FyF2eF&sN)
0002 DIMENSION F(101)

0003 FODD=04.0

0004 FEVEN=0,0

000S Nl=N=1

0006 N2zN=2

0007 . DD 30 I=3¢N292 .
0008 30 FODD=FODDeF (I)
0009 © F2m2,#FODD

0olo DO 40 I=24N1y2
0011 40 FEVEN=FEVEN+F (I)
0012 Fas4 *FEVEN
0013 RETURN

0014 END

The following is an example set of input data for the Waisted Body of Revolution (Ref.
21) for M_ = 0.597 and Re_ g = 9.98 x 106.

«597 01642 + 03673 1.751

022
2440 NI 44359
27.0 598 3.793
2845 «585 3,915
30.0 578 3.257
31.5 573 3.0189
33.0 569 247981
3445 «567 245946
3640 «563 . 2e406
37.5 «559 24222
60.0 «545 1963
4240 +537 1.87
44,0 «562 1.933
4545 «952 24067
47.0 +558 2.231
485 o563 20407
5060 567 24597
51.5 «569 2.802
5340 o573 3.073
56,5 «578 1.262
I 5640 +«585 352
57.5 «597 3,764
59.0 623 4,097
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NOMENCLATURE
Parameter used and defined in Table |
Parameter used and defined in Table 1
Airfoil chord
Local skin friction coefficient, 7y, /qe
Pressure cocfficient, (p-p.)/q.,
Critical pressure coefficient
Shear-work integral, defined by Eq. (26)
Defined by Eq. (19)
(1 +0.2 M2)1/2
Function used and defined in Table 1
Specific total enthalpy
56
5%/6
8**’:‘9
6*/6
Index which is zero for planar flow and one for axisymmetric flow
Mixing length, ¢ = 0.41 y; also total body length
Mach number

Index which is zero for the momentum integral equation and one for the
mean-flow kinctic energy integral equation

Molecular Prandt] number

Turbulent Prandtl number
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p

Rep
Re

Re_¢

Tw

u

ut

5*
B

6**

§x#

Stutic pressure

Dynamic press

Pe U By,

p. U, Yu_

v * ¥ cos y; also used as recovery factor (r = 0.88)

ure. pu?/2

Local body radius

Static temperature

Mean velocity
uiur

(Tw [py)/?
Mean velocity

Coordinate alo

Coordinate normal to the body surface

in the x direction

in the y direction

ng the body surface

{

Py Ur Yiity. (Regiug* )y iB)

Angle of attack, deg

&*/7, dp/dx

Boundary-layer displacement thickness defined by Eq. (23)

Defined by Eq
Defined by Eq

Defined by Eq.

Defined by Eq

Eddy viscosity

. (36)
. (16)
(25)
. (18)
. defined by Eq. (32)

\

Middle boundary-layer region eddy viscosity. defined by Eq. (33)
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€ Outer boundary-layer region eddy viscosity, defined by Eq. (35)

0 Boundary-layer momentum thickness, defined by Eq. (22)

6 Low-speed or kinematic boundary-layer momentum thickness,
(1-ufu,)dy

] Defined by Eg. (15)

0* Defined by Eq. (24)

g* Defincd by Eq. (17)

u | Molecular viscosity

p Density

-pw Reynolds stress

T Total shear stress, (u + pe) Bu/éy

Ty Turbulent shear stress, pe du/dy

¥ Local body surface angle

SUBSCRIPTS

e Boundary-layer edge value

exp Experimental value

w Wall value

= Free-stream value

SUPERSCRIPT

— Denotes low-speed or incompressible value
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