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1.0 INTRODUCTION 

The present work is a result of efforts directed.toward providing theoretical support 
to aerodynamic testing in transonic wind tunnels. The corresponding boundary-layer 
problems usually involve compressible turbulent flows with both favorable and adverse 
pressure gradients on smooth impermeable adiabatic walls. The following requirements 
have occurred in the Propulsion Wind Tunnel Facility (PWT) at the Arnold Engineering 

Development Center (AEDC) which illustrate the need to solve this sort of 
boundary;layer problem rapidly, with reasonable accuracy, and with minimal preparation 

time: (1) support of tests while they are in the tunnel, (2) accounting for the 
boun.dary-layer displacement effect in solutions requiring viscous/inviscid iterations, and 
(3) estimation of skin friction drag. In the first requirement, quick results are desired to 
investigate boundary-layer problems that could influence the remaining test plan. In the 
second requirement, transonic inviscid codes can be complicated and require large 
amounts of computer time and storage; hence it is desirable to expend minimum time, 
effort, and computer resources on the boundary-layer portion of the problem. For the 
last requirement, it is usually necessary to perform computations for a large number of 

f 
test conditions and it is desirable to reduce the time per solution to conserve computer 
time. The present work was carried out to yield a turbulent boundary-layer calculation 
method capable of providing reasonably accurate solutions in short periods of time with 
minimal demands on computer resources. 

Turbulent boundary-layer computation methods can be divided into two classes, 
integral and differential techniques. Integral methods require the solution to one, or 
more, ordinary differential equations, but differential methods require the solution to a 
system of partial differential equations. As a result, development of differential methods 
has accelerated in recent years following advances in computational capabilities (including 

both computers and numerical algorithms), whereas integral methods require less in the 
way of computational capability and have been under investigation for many years. 
Differential methods, in conjunction with improved turbulence models such as the one- 
or two-equation-of-turbulence models, are usually regarded as more accurate than integral 
methods for general applications (Ref. 1). With regard to specific applications, however, 
the results of the Stanford Conference (Ref. 2) on incompressible flow indicate that some 
integral techniques provide essentially the same accuracy as differential methods. 
Therefore, an integral approach is considered here in the interest of simplicity and speed, 
with the additional intent of developing an integral method to the point of being 
competitive in accuracy with differential methods for transonic turbulent flow over an 
adiabatic wall. 

The approach of this work is the simultaneous solution of the momentum integral 
equation and the mean-flow kinetic energy integral equation for two-dimensional planar 

7 
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or axisymmetric flow. The momentum integral equation is usually used in integral 

methods (an exception to this is White's (Ref. 3) method; he contends that his technique 
is entirely different from yon K/lnn.~n's momentum integral equation). Use of the 
mean-flow kinetic energy integral equation is not uncommon in integral techniques, but it 
is not universal. A primary advantage of using this latter equation was pointed out by 
Nash (Ref. 4) to be that it is extendible to compressible flow without the transformation 
limitations associated with the moment-of-momentum integral equation. 

In addition to the momentum integral equation and the mean-flow kinetic energy 
integral equation, other auxiliary parameters commonly required for solution of the 
integral equations are addressed: 

1. The wall shear stress 

2. Velocity profiles 

3. The shear-work integral 

4. The velocity-temperature relationship 

5. Shape factor correlations 

The methods by which items 2 through 4 are handled in the present work are different 
from those used in other integral techniques. The velocity profile is a newly developed 
profile which promises increased accuracy, the shear-work integral is evaluated directly 

rather than by empirical correlation, ,and the temperature (density) distribution is based 
on a new relation which predicts the total-temperature overshoot near the outer edge of 

turbulent adiabatic wall boundary layers with nonunity Prandtl number and recovery 
factor. 

The integral method is developed in Section 2.0. Numerical solutions are compared 
with experiments and finite difference boundary-layer solutions in Section 3.0 to 
establish the cap.abilities and limitations of the method. These solutions are all for an 
adiabatic wall as this is the situation usually encountered in transonic flow applications. 
The resulting computer program used to obtain the results is short and simple to use. A 
listing of the Fortran code is presented in Appendix A. 

2.0 ANALYSIS 

The general form of the integral boundary-layer equations for x-momentum and 

mean-flow kinetic energy for turbulent compressible flow on two-dimensional planar or 
axisymmetric bodies is derived in this section. The five items, which amount to auxiliary 

relations, mentioned in the preceding section will be addressed as they arise in the 
development of the integral method. The numerical method used to solve the equations is 
a simple one used by Nash (Ref. 4). 
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2.1 DERIVATION OF THE INTEGRAL EQUATIONS 

The compressible turbulent boundary-layer equations of continuity, x-momentum, 
and total enthalpy (energy). are, respectively, 

ax Oy p = o 

p u  Ou + p v  Ou = _ d p  + ! 0 r r  k (//  0u __ 
Ox Oy d"~ r k O, L k" 

( l )  

0 u" v~)l (2) 

i '4t 
where r = rw + y cos ~k for external flow, r = rw - y cos ~b for internal .flow, k = 0 for 
two-dimensional planar flow, and k = 1 for axisymmetric flow. The dependent variables 
in Eqs. (1) through 3 are time-averaged quantities with the exception of  the term pv, 
which is actually the product of  the time-averaged p and the mass-weighted averaged v 

(see Cebeci and Smith (Ref. 5) for a discussion of the approximations leading to the 
boundary-layer equations). The y-momentum equation is ap/ay = o. The momentum and 
mean-flow kinetic energy integral equations will be derived from Eqs. (1) and (2). 

Equation (3) is the basis for a relation between velocity and temperature which is 

required for solution of the compressible momentum and mean-flow kinetic energy 
integral equations. 

J 

The momentum and mean-flow kinetic energy integral equations are derived by 
multiplying Eq. (1) by um+t / (m + 1), Eq. (2) by rku m summing, and simplying the 
results to obtain 

1 [ 0 (rkPum-2) O(rkpvum-11 kum dP u m ~  (4) ax  + ~ :  = - r  __  + 
dx Oy 

where r is the total shear stress 

a u  , = ~ - p , , ' v  (5) 

Substitution of m = 0 will eventually result in the momentum integral equation, and m = 

1 in the mean-flow kinetic energy integral equation. Using the momentum equation at 
the edge of  the boundary layer 
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dp = du 
dx - P e  % " ( 6 )  dx 

and subtracting the term 1/(m + 1) a/ax r k pu u¢ m+l) from each side of Eq. (4), one can 
write the expression 

m~- PeUe . 

dUe_ 1 0 ( r  k +1) um 0 (rkr) (7) rk um UePe dx m+l 0x pu ue m + 0y 

Expanding the middle term on the dOt-hand side of Eq. (7), combining part of this 
expansion with the term containing due]dx, and using Eq. (1) in the remaining portion of 
the expansion results in the expression 

, I~xx Irk m+2 pu /um+, 1/1 0 ( k ) - U ~ + '  I m+l PeUe _--:-:- - + r pvu m+l 0 (rkpv) 

r k m+l due ( u 4  - pu ) um a (rkr) = PeUe ~ p-~, + O--y" (8) 

Integrating Eq. (8) with respect to y over the interval (0 < y < -) yields the result 

re+l" PeUe Pu (um+Z -- 1/1 
PeUe [ue- ~ 

dy + u m+l rk w Pw Vw I 

[ m+l du e (u..~ - p.u. )dy + f um o a (rkr)dy = rk Pe Ue ~xx Pe ue (9) 

The no-slip wall boundary condition of u = 0 at y = 0 is used to obtain Eq. (9). In 
addition, two terms resulting from the integration of the second and third terms on the 
left-hand side of Eq. (8) do not appear in Eq. (9) because they sum to zero as a 
consequence of pv ~ (pv) e and u-*u e in the limit of y-*-. 

For the special case of m = 0, Eq. (9) can be written 

f ) 2 pu _ dy  + rk Pe Ue ~ I - pu dy 
k Pe Ue PeUe o PeUe 

k r k 
- rw UePwVw = w % ( 1 0 )  

10 
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In writing Eq. (10), it is necessary to use (rkr)--~0 as y-*'. To show that (rkr)--,0 as y--,', 
consider the following: The turbulence model used subsequently in this analysis will 
postulate the shear stress in the outer part of the boundary layer to be proportional to 
the local velocity gradient. Therefore, because r is linear in y, it will suffice to prove that 

(y au/ay) -~ 0 as y-*--. As a consequence of the velocity prof'de developed in Ref. 6, also 
to be used subsequently in this analysis, the term au/ay behaves as exp (-cyb) where c 
0 and b ~> 0. -The product y exp(-cyb)--, 0 as y-~ ,  and hence (rkr)-+0 as y--~. 

For the special case of m = 1, Eq. (9) can be written 

] / 0 [r k u 5 
"2" ~xx Pe e PeUe u- ~" ~ Pe Ue dx u e Pe 

_ 1 r k 2 / k O._~e dy w U e P w  Vw = r r Oy (]1) 

In writing Eq. (11), it is necessary to integrate the last term in Eq. (9) by parts and again 
use (rk r)-'O as y"~. 

Interchanging the order of differentiation.and integration in Eqs. (10) and (11), 
these equations can be written as 

1 dxd (r k,,,pe Ue2~)~. ~, du, _ pwV,, _ c r ( 1 2 )  
rkpeu2w e Ue dx .° eue 2 

1 d ( r k  3 0 , )  + ~** du. _ 1 Pw vw _ c, ~) 
2 r P, use dx w Pe Ue Ue d, 2 p , .  2 (13) 

where 

c~ = r (14) 
2 Pe u2 

= - cos dy 
o ge Ue Ue f rw 

(15) 

~, = / 11 - Pe~ePU ) ( 1  + __r y c o s ~ /  k dy 
o w 

(16) 

O* -- P~_ 1 - ml  '~ +- ~ c o s  ~ dy 
Pe Ue uS rw 

e 

(i7) 

II  
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,/ ( ;.)( ~** = '_L I - P I - _~Y cos dy 
U e r W 

(18) 

f ) = /  r 0("/%) (1 + y )k r .  Oy ~ cos ~ dy (19) 

These five integral quantifies are denoted by the tilde (%) in order to distinguish them 
from true defect lengths. For example, ~* defined by Eq. (16) is the true mass-flow 
defect (displacement) length for two-dimensional planar flow (k = 0) but it is not the 
true mass-flow defect length for axisymmetric flow (k = 1) (see Ref. 7). However, ~* 
approaches the true mass-flow defect length for axisymmetric flow when the boundary 
layer is thin compared to the local body radius. This is true not only because y/r w in Eq. 
(16) is small when (1-pulp e Ue) is largest, but also because 6*/rw(a term not appearing 
in Eq. (16) but that does appear in the true expression for the mass-flow defect length, 
see, e.g., Section 1.9 of Ref. 5) is small compared to unity. It is important to make this 

point about the defect lengths because if Eq. (16) was used to compute the displacement 
effect on an axisymmetric body with thick boundary layers for use in a viscous/inviscid 

iteration calculation, for example, the computed displacement effect would be incorrect. 
Although the lengths defined by Eqs. (15) through (18) are not true defect lengths for 
axisymmetric flow, Eqs. (12) and (13) are exact within the boundary-layer approximation 

and are the general form of the momentum and mean-flow kinetic energy integral 
equations for compressible flow on two-dimensional planar or axisymmetric bodies. 

The analysis is hereafter restricted to boundary layers that are thin relative to the 
local body radius. The motivation for this is that by excluding the term (y/r w) cos ~ in 

F~ls. (15) through (18), integrations can be performed once and for all in order to 
establish correlations for certain shape factors which will appear in the analysis. 
Otherwise, integration of Eqs. (15) through (18) has to be performed at each axial 

station thereby increasing the computational time. The analysis is also restricted at this 
point to an impermeable wall, v w = 0. It would be a trivial program modification to 

include the permeable wall capability, but the associated auxiliary relations were not in- 
vestigated as to their suitability for use in permeable wall calculations. For thin boundary 
layers relative to the local body radius, and for impermeable walls, the momentum and 
moan-flow kinetic energy integral equations, [Eqs. (12) and (13)], reduce to 

1 d ( r k 0 e u 2 0 ~  _ 8, d . .  = ¢~ 
k u2 dx \ " /e - - ~  -- (20) rwPe  • u e dx 2 

1 a (rk a O , ) + S ~ _ , ,  au e c~ 
2rkw Oe u3e dx w Oe Ue ue dx - "~ D (21) 

12 



A E D C-TR-78-42 

where 

0 = :  p_u (I - '!) dy 
e Ue tl e 

(22) 

(23) 

PeUe 112 
(24) 

f -  u ( 8** % I.-P ~av = ~ 1  • ( 2 5 )  

O 

D = 
j .- a(,/,,) r dy 
O 

(26) 

Equations (20) through (26) are used in this work, where k = 0 for planar flow and k = 
1 for axisymmetric flow. (Actually, in the computer program, planar flow is handled by 
inputting r w = constant.) 

2.2 WALL SHEAR STRESS 

An expression is needed for the local skin friction coefficient appearing in Eqs. (20) 
and (21) in terms of variables appearing in these equations. Such expressions are 
frequently derived by using the zero pressure gradient (dp/dx = 0) momentum equation 
to develop a transformation relating the compressible skin friction coefficient, cf, to an 
incompressible skin friction coefficient, El. One of the available expressions for Ef can 
then be used to determine of. In the present work, variable pressure gradient (dp/dx :/: 0) 
as well as zero pressure gradient flows are of interest and the procedure for obtaining an 

expression for cf is not well established. Therefore, the rationale behind the one 
developed here will be given; the success of the resulting expression wig be judged by the 
agreement obtained with experimental data. 

The basis for the present expression for cr is Coles' law of corresponding stations 
(Ref. 8) which is 

cf ~e 0 - Pe/'t'e c'f R% 
p~. ~,~. (27) 

where the superscript bar ( " )  denotes low-speed flow. This relation was used by Lewis, 
Kubota, and Webb (Ref. 9), along with the approximation, ~t ~ T, to successfully 

13 
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correlate high-speed (up to Me = 8.18) turbulent boundary-layer velocity profiles. Using 
this approximation, i.e.,/~ "~ T, Eq. (27) reduces to 

m 

c f Be 0 = ~'f Re 0 (28) 

It was pointed out in Refs. 8 and 9 that, whereas Eq. (27) specifies the relation for 
corresponding stations, it does not specify the relation between cf and ~f, which must 
come from hypothesis. In this work, recourse is made to the work of Winter and Gaudet 
(Ref. 10), who established the relation 

_- [i \ 1 ,2  

c, v .- c29) 

for adiabatic walls, dp/dx = 0, and air. It is hypothesized that Eq. (29) is acceptable for 
dp/dx ~ 0 if an appropriate expression is used for ~f for dp/dx ~ 0. The expression 
used for ~f is 

ef  = o.3e-z'33H 

(lOglo ~e-e0 ) 1.74+0.313 (30) 

which is Eq. (6-179) in White's book (Ref. 3). The incompressible momentum thickness 
Reynolds number, Reo, used in Eq. (30) is obtained using Eqs. (28), (29), and Re 0 
which is calculated as part of the solution. The incompressible shape factor, H, used in 
Eq. (30) is obtained by a subsequently developed correlation of H as a function of H a * 
(which is also calculated as part of the solution) and M e. 

2.3 V E L O C I T Y  PROFILE 

The integrals of Eqs. (22) to (25) are usually evaluated by use of power-law or 
law-of-the-wake (Ref. 1 l)  velocity profiles. The main feature distinguishing the current 
method from previous integral methods and the main contribution to the quality of the 
results is the use of a newly developed velocity profile. This new profile is given by a 
closed-form analytical expression valid over the entire thickness of the turbulent 
boundary layer, Ref. 6. Shown in step 8 of Table l, the expression is the sum of two 
transcendental functions, one expressed in terms of the inner variable, y+, and one 
expressed in terms of the outer variable, y/0". Table l was taken from Ref. 6 and is a 
summary of the procedure for calculating turbulent boundary-layer velocity prof'fles by 
this method. This expression was shown in Ref. 6 to provide a reasonably accurate means 
of correlating various velocity profiles that included boundary layers near separation, 
reattached -boundary layers, nonequilibrium boundary layers (boundary layers with 
nonzero streamwise variation of ~), and compressible boundary layers. In the latter case, 
the incompressible profile given in Table l is related to the corresponding compressible 
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l 

prof'de by u/u e = ~ / ~  and y/0 = (y/0)(0/~) where 0/0 is a correlation developed in 

Subsection 2.6. It is convenient that the expression for the profile is a function of the 
local incompressible parameters: skin friction coefficient, shape factor, and Reynolds 
number based on momentum thickness, because these parameters are a natural 
consequence of the equations being solved. This velocity profile expression was developed 

Table 1. Summary of Procedure for Computation of Turbulent 
Boundary-Layer Velocity Distributions 

Step 

1. 

2 .  

3. 

4 .  

5 .  

6 .  

7. 

8 .  

][, U=, 

Requirement Comment 

and R'-e 0 are" inputs  (use incompress ible  values)  

fie 

Compute ~ (5) - 0.87 + O.08e -2"6(][-1"95)2 

~---- (2) I tan--1 (0"18 h"eg~ 
Ue O. 09 ~+ 

e 

0 . 1 8  

O e 

C ~ p u t e  g(2) = 

u--- (5) 1 tan-1 t 
Ue 0.09 u e - 

Compute g ( 5 )  - ~ u: / 
1 

0 .18  ~+ 
e 

In I tanh-I  [S2(2)] ~ 
\ tanh -1 [g2(5) ; I  Compute b - . .  

l'n 

Compute a = tanh-1 - -~-g2(2)~ 
2b 

L u / -  I0.09 t a n - l ( o ' 0 9  y+) ÷ (U~e - - -  0.~8) t anh l /2  Ia (Y/bl 

. [S~1/2 

e ' 

~ I Y l  e t - Y - s  

g/Y~ at  -Y - 2 
W 

S I ~  at  _-Y,~ - 5 

t anh- lz  " 2 ~l -z /  

e 2z- 1 tanh z = ~ + 1 

Ue ~e 

Ue u+ e 

= R"~ e y Y 

for two-dimensional planar flows, but it is used herein for axisymmetric flows without 
modification, because the assumption has been made that the boundary layer is thin 
relative to the local body radius. 
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Because the new profile reduces to an identity at the wall, it is not possible to 
calculate the wall shear stress, %. = Cuau/ay)w , by taking the slope of the velocity profile. 
Instead, the wall shear is obtained from the skin friction coefficient developed in 

Subsection 2.2. The shear work integral, Eq. (26), is usually obtained by correlation of . 
experimental data, but the new velocity profile is considered sufficiently accurate to 
permit evaluation of Eq. (26) by use of au/ay obtained from the profile expression and 
an appropriate turbulence model, as described in Subsection 2.4. 

2.4 S H E A R - W O R K  I N T E G R A L  

The term referred to here as the shear-work integral (also frequently referred to in 
the literature as the dissipation integral) is denoted by D and given by Eq. (26). The 

velocity profile given in Table 1 is used to compute the velocity derivative, and in this 
regard it is convenient to express Eq. (26) as 

f '~ r a(u. %) 
= a ( , , ,  ,,,, 

d (y,,,t ~" ) (31) 
O W . 

inasmuch as y/O is one of the independent variables in the velocity expression. The 
problem, therefore, is to specify the shear-stress distribution, ~'h'w, across the boundary 
layer in order to carry out the integration identified by Eq. (31). In keeping with the 
idea of maintaining simplicity, the shear-stress distribution is specified in three regions 
across the boundary layer, and common turbulence models for each region are used. 

The first region considered is that near the wall, defined by 0 ~ y+ ~ 100. In 

deriving the inner solution part of the velocity profile in Table 1 (the inner solution part 

is tan-1 (0.09 y+)/0.09), it was assumed that the total shear stress ~, was constant and 

equal to 7 w. Based on the agreement between experimental data and the velocity profile 
expression resulting from this assumption (see Ref. 6), it appears that ~- = ~'w for 0 ~ y+ 

100 is a plausible approximation for use in Eq. (31). In fact, in Fig. 7 of Ref. 6 an 

extreme case of an experimental velocity profde having a severe adverse pressure gradient 
and no logarithmic region was well represented by the velocity expression in Table 1, and 
for this case the inner solution, tan-1 (0.09 y+)/0.09, was the dominant term for 0 ~ y* 

100. The assumption T = ~w allows Eq. (31) to be integrated analytically over 0 ~ y+ 
100 (i.e., out to the value of y/0 where y+ ffi 100 as given by y/~ = 100 ~e+/~ee0, see 

Table 1) and numerical integration is avoided. 

The next two regions are handled by Boussinesq's (Ref. 12) eddy-viscosity concept, 
where the eddy viscosity e is defined by 

" V  I a u  - -  ffi ~ _ _  ( 3 2 )  

ay 
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where e will be either e m or e o, depending on the region. For the fLrst region outside y+ 
= 100 (middle region), Prandtl's mixing-length theory (Ref. 12) is used where 

¢m=,2] 0u[ ~ (33) 

and the mixing length is 

g= 0.41y (34) 

For the outer region a constant eddy viscosity of  the form suggested by Clauser (Ref. 13) 

is used. The specific expression for eo in the outer region is 

eo = 0 . 0 1 6 8  U e ~*  

where ~ is the incompressible displacement thickness defined as 

"~-*= 1 - I_~e dy 

(35) 

(36) 

The point in the boundary layer separating the middle region from the outer region at a 

particular x location is that point where e m = e o. The shear stress for y+ > 100 primarily 
consists of the turbulent shear stress as defined by 

r t ffi - p  u'v" ( 3 7 )  

'and the shear stress distribution for use in Eq. (31) is approximated as 

o. o 

, .  , .  o, . .  o ( 11 
for the middle region, and 

O'Ol68pUe~*~Y 2 P ~ 8('U/Ue) 
' = -- o . o 1 6 8  c - / ~  a(y/~) 

rw 

for the outer region. 

(38) 

(39) 

Equation (31) is analyticaUy integrated from y+ = 0 to y+ = 100 and then 
numerically integrated in the middle and outer regions, using Eqs. (38) and (39) with 

p/p¢ being evaluated as discussed in Subsection 2.5. 

2.5 VELOCITY-TEMPERATURE RELATIONS 

To establish the necessary shape factor correlations for use in the solution to Eqs. 
(20) and (21) it is necessary to use a relation between velocity and temperature in order 
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to integrate Eqs. (22) to (25) (recall that P/Po = To/T as a consequence of ap/ay = 0). 
The relationship used is the analytical solution developed in Ref. 14 for nonunity Prandtl 
number. Because the interest here is in turbulent boundary layers on adiabatic walls, only 
the adiabatic wall solution in Ref. 14 is used. The advantage of the method developed in 
Ref. 14 over the more commonly used method of Crocco (Ref. 15) is that the results 
obtained in Ref. 14 predict the overshoot in total temperature near the outer edge.of a 

turbulent boundary layer on an adiabatic wall [see, e.g., van Driest (Ref. 16)], which the 
Crocco results cannot do. Moreover, the Crocco solution is actual.ly contained as a special 
case of the solution #oven in Ref. 14 for unity Prandtl numbers. The quality of agreement 
between the results of Ref. 14 and experimental data is considered good. The 
comparisons from which this conclusion was drawn are given in Refs. 14 and 17. 

The density ratio in the expressions for the shear-stress distributions, Eqs. (38) and 
(39), is, however, specified by the modified Crocco relation for an adiabatic wall (see, 
e.g., Ref. 3) 

pe/p = T / T  e = l +  r..)(y- l) M 2 ( 1 - u  2;/ue2),,'2 

The reason for this choice rather than using Ref. 14 is that numerical integration of Eq. 

(31) is carried out at each axial location (whereas integrations for the shape factor 

correlations are carried out only one time) and the modified Crocco relation is simpler 
than the solution #oven in Ref. 14, requiring less computer time. Moreover, the modified 
Crocco relation is in good agreement with the solution #oven in Ref. 14 in the region near 
the wall for adiabatic flow and this re#on is the dominant portion of the integrand of 
Eq. (31). 

2.6 SHAPE FACTOR CORRELATIONS 

There are four length scales in Eqs. (20) and (21), 0, 5*, 0*, and 5"*. It is 
convenient and computationally expedient to correlate these lerigths by analytical 
expressions of other variables to avoid evaluation of the integrations identified by Eqs. 

(22) through (25) at each x location (and possibly several times at each x location to 
obtain convergence). The approach is to define the following shape factors 

H$,- $* 
- T ( 4 0 )  

!I0. _ 0* - ( 4 1 )  

and 

HS** 8** 
= T (42) 
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and then correlate these shape factors in terms of M e and H where 

m 

H - 8 (43) 

In addition, because y is scaled by O as shown in Table 1, and because 0 is obtained from 
the solution to Eqs. (20) and (21), a correlation for 0[# is also established. 

The velocity profile given in Table 1 was used to carry out the numerical 

integrations (using Simpson's rule) necessary to establish the correlations. This profile 

depends on "~f and ~e 0 as well as H". Using Eq. (30) for ~f = Er (R"ee, H--), the variables 

are reduced to R% and H only. The influence of Re0on the numerical results is 
extremely small compared to that of H. For example, the difference between solutions 
with Re 0 = 5,000 and R% = 100,000 is less than one percent, which is within the 
accuracy of the analytical expressions derived for the correlations. All numerical results 
given here for the correlations are for ~e% = 50,000. 

The numerical results for Hs . ,  He,  , H 6 **, and 0/b" are represented in Figs. 1 
through 4 as open symbols. The results of the analytical expressions derived to represent 
these numerical results are given in Figs. 1 through 4 as solid lines. The analytical 
expressions derived by inspection are 

i 

I18, --- H (1+0.113 M~)+ 0.290 . :  (44) 

2 - 0 . S ,  t a n h [ 1 . 1 ( H -  I ) ]  + 0"028M2e 
H0. = 

1 + 0.014 M 2 (45) 

and 

HS,,  =(0.064 + 0.251) M 2 
\~-T~.-.-.8 (46) 

6 _ 1 - 0.92 M 2 tanh [ 1 . 4 9 ( H -  0 .9 ) ]  
O" 7.09 + M 2 (47) 

e 

Although the constants differ, the general form of Eqs. (44) and (46) was used by Nash 
(Rcf. 4) for these shape factor correlations. The form of Eq. (45) was not used by Nash, 
however. The advantage of Eq. (45) over the form used by Nash is that Eq. (45) can be 

inverted to obtain H as a function of H 0 * and Me, which is useful in the numerical 
solution of Eqs. (20)-and (21). The correlation given by Eq. (47) is in good agreement 
with that established by Winter and Gaudet (Ref. I0), although their correlation was for 

r 
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H6. 5 

4 

1 
1.0 

I I I I I 
L4 1.8 2.2 2.6 3.0 

Open Symbols Represent the Numerical Results for 
Eq. (40) Using the Velocity Profile Given in Table 1 
and the Velocity-Temperature Relation of Ref. 14 

Solid Curves Represent the Analytical Correlation of 
H6°= H (1 + 0. 113 t,~) + 0. 290/V~ [Eq. {44)] 

Figure 1. Correlation of the shape factor H~. for adiabatic flow. 

2.0 

1.8 

M e 

1. 6 3 

H8~ 
1.4 0 

1.2 

1.0 
1. 

I I I I I 
1 . 4  ] . 8  2.2 2.6 3.0 

Open Symbols Represent the Numerical Results for 
Eq. (41) Using the Velocity Profile Given in Table 1 
and the Velocity-Temperature Relation of Ref. 14 
Solid Curves Represent the Analytical Correlation of 
, 2-  0.54tanh [1. 1 ~ -  1)] + 0.028/~ 
H8° = [Eq. (45)] 

1 + O. 014 Me 2 

Figure 2. Correlation of the shape factor He* for adiabatic flow. 
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H6*. 

0 
1. 

i 

m 

Me-1 

I I l I I 

0 1.4 1.8 2.2 2.6 3.0 

Open Symbols Represent the Numerical Results for 
Eq. (42) Using the Velocity Profile Given in Table l 
and the Velocity-Temperature Relation of Ref. 14 
Solid Curves Represent the Analytical Correlation of 

+ o. ( = ,  

Figure 3. CJrre la t ion of  the shape factor  HS* ° for  adiabat ic f low.  

e/~ 

1.0 

0.8 
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0.4 

0.2 

0 I I I I I 
1.0 1.4 1.8 2.2 2.6 3.0 

Open Symbols Repre~nt the Numerical Results for 
119 Using the Velocity Profile Given in Table 1 and 
the Velocity-Temperature Relation of Ref. 14 
Solid Curves Represent the Analytical Correlation of 
g O. W2 t¢~ 

- ~ =  1 "7.09+ M~ tanh 11.49~ - 0.911 [Eq. 14711 

Figure 4. Corre lat ion o f  the compressible to  incompressible 
momen tum thickness rat io for  adiabat ic f low.  

m 

zero pressure gradient flows and did not contain the parameter H. The correlations given 

by Eqs. (44) through (47) and compared with numerical results in Figs. 1 through 4 are 
for M e ~< 3 and a constant recovery factor of 0.88. 

2.7 S U M M A R Y  OF THE EQUATIONS AND METHOD OF SOLUTION 

Using the definitions of the shape factors defined by Eqs. (40) through (42), Eqs. 
(20) and (21) can be rewritten as 
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1 d ( r k  2 0 ) +  |-I8~ 0 due = cf ([48) 
rk Pe u2 dx w Pe Ue u e dx -'~ 

w Q 

l d ( rk  30II0.)+H8=,0 du cf 
2r~p,,~s~ dx w Pe ue ue dx" = --2 D (49) 

m 

where H 8 . ,  H 0 . ,  and H 8 ** are given by Eqs. (44) through (46) and are functions of H 

and M e as indicated. The skin friction coefficient, cf, used in the solution of Eqs. (48) 
and (49) is given by Eqs. (28) through (30) and can be written as 

l 0.3e-l.33H c[ -- 
Fe [log 10 (He0fFc)] 1.74-O.SlH" (50) 

where F c = (1 + M~/5)1/2. The skin friction coefficient is, therefore, a function of  H, 

Me, and Re 0 where Re 0 = PeUe 0/~e. The shear-work integral, D, is defined by Eq. (31) 

where ~'/T w is unity for 0 ~ y+ ~ 100, and given by Eqs. (38) and (39) for the middle 
and outer regions of the boundary layer. Therefore, D depends on cf, H, 0, and P/Pe 
(where Pe/P is given by the modified Crocco relation, Subsection 2.5). All of these 
quantities can be related to H, M e, and Re o (or 0 in place of Re 0 because PeUe/#e is 
known from the boundary-layer edge conditions). Equations (48) and (49) are, therefore, 
two equations for the two'unknowns H and 0. 

The method used to solve Eqs. (48) and (49) is the predictor-corrector method used 

by Nash (Ref. 4). Various schemes were tried for determining step size and for most 
problems the step size was not particularly important. A constant value for the step size 

was used for the solutions presented in this report; however, because the code is simple, 
it is a trivial task for the user to modify this portion of the program as appropriate. 
Initial values of 0 and H (from which H is obtained in the program using Eq. (44)) must 
be input as well as a reference Mach number, Reynolds number, and M e and r w as 
functions of x. A listing of the boundary-layer code is given in Appendix A. 

3.0 RESULTS 

Because a turbulent boundary-layer calculation method can be made to fit a 

particular set of experimental data, it is of interest to consider several sets of data for 
various conditions. The present method was applied to a large number of experiments 

and examples are presented in this section. The examples presented are those of 
Schubauer and Klebanoff (Ref. 18), Stratford (Ref. 18), Cook, McDonald, and Firmin 

% 
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(Ref. 19), Pasiuk, Hastings, and Chatham (Ref. 20), and Winter, Rotta, and Smith (Ref. 

21). These examples represent a fairly broad range of  flow conditions that include 

favorable, mild, and severe adverse pressure gradients. 

The experiment of Schubauer and Klebanoff (Ref. 18) was selected because it is a 

realistic airfoil-type flow commonly encountered and also numerous other calculation 

techniques were compared to this experiment in Ref. 2, from which indirect comparisons 

with the present method can be inferred. Comparisons between calculated and measured 

values of  cf, H 6 , ,  and Re e are given in Fig. 5. The agreement is reasonably good 
upstream of  about x = 22.5 ft. This is the same sort of  agreement obtained by nearly all 

the 27 calculation techniques (both integral and finite difference) shown in Ref. 2. 

cf 

(I005 

O.OO3 

O.O02 

O. 001 

0 

- o Experimental Data, IDENT-2100, Ref. 18 

" I I i I 

1"16" 2. 

0 o 

(9 

I I I I I 

Re flx 10 -4 

Figure 5. 

0 I 

0 30 

O 

oo 
e 

o 

5 10 15 20 25 
x, ft 

Present calculations and incompressible experimental 
measurements of Schubauer and Klebanoff ( I D E N T  = 
2100,  Ref. 18). 
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However, those calculations shown in Ref. 2 which took three-dimensional flow effects 

into account were in better agreement with these experimental data than the present 
calculations. Three-dimensional effects were not considered in the present calculations. 
Comparisons of calculated and measured velocity profiles are shown in Fig. 6 for 
favorable, nearly zero, and severe adverse pressure gradient portions of the flow as 

indicated by the experimental values of/3ex p. This agreement is considered good, even for 
the severe adverse pressure gradient at x = 22.0 ft. 

y, in. 

5 m 

4 

3 

2 

1L 

o Experimental Data, IDENT = 2100, Ref. 18 
Present Calculations 

x = 22.0 ft 

_ 6ex p = 5. 710 

0 I I I 
0 0.2 0.4 1.0 

x =13.5ff 

• ~exp = -0. (]50 

/ 

0.6 0.8 L0 0.6 0.8 1.0 0.6 0.8 
ulu e 

F igure 6.  Favorable  and adverse pressure gradient  incompressible  ve loc i ty  
prof i les o f  Schubauer  and K l e b a n o f f  ( I D E N T  = 2 1 0 0 ,  Ref .  18 ) .  

In contrast to the experiment of Schubauer and Klebanoff (Ref. 18) where nearly 
all 27 calculation techniques (Ref. 2) were able to compute the flow with reasonable 
success, the experiment of Stratford (Ref. 18) had comparisons presented from only 

about half of  these calculation techniques and of these only two succeeded in calculating 
reasonably good results for el, H 6 . ,  and Re e (Ref. 2). Comparisons between the present 
calculations and the experiment of  Stratford (Ref. 18) are given on Figs. 7 and 8. Of 

particular interest in these comparisons is the velocity profile in Fig. 8 for/3ex p = 78.988 

which appears to be extremely close to separation and yet the experimental velocity 
distribution is reasonably well calculated. 

Boundary-layer measurements on an RAE 2822 airfoil in transonic flow have 
recently been made by Cook, McDonald, and Firmin (Ref. 19). Three sets of  data from 
Ref. 19 are considered, and the pressure distributions are given in Fig. 9. Case 2 
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Figure 7. Present calculations and incompressible experimental 
measurements of Stratford (IDENT = 5300, Ref. 18). 

represents a reasonably mild favorable and adverse pressure gradient flow where the flow 
is subcritical and the airfoil is at a = -2.18 deg. Cases 9 and 12 represent commonly 

encountered supercritical flows with severe adverse pressure gradients caused by shocks 

on the airfoil (a = 3.19 deg). Comparisons between calculated and measured values of  cf, 

6"/c, 0/c, and H6. are given in Fig. l0 for Case 2. These quantities vary smoothly along 
the airfoil and the agreement between calculations and measurements is good. 

Comparisons of the same quantities are made for Case 9 in Fig. 1 I. Good agreement is 

obtained up to the shock and reasonable agreement is obtained downstream of  the shock. 

Case 12 was for the same conditions as Case 9 except the chord Reynolds number was 
reduced from 6.5 x )06 to 2.7 x l06. Comparisons of calculated and measured data are 

presented in Fig. 12 for Case 12. The agreement in Fig. 12 is good except for the integral 
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quantities at x/c = 0.9. This experiment (Ref. 19) provides the opportunity to investigate 
the shock/boundary-layer interaction region in some detail. The three velocity profiles 
nearest the interaction (which are located just upstream, essentially at, and just 
downstream of the interaction) for Cases 9 and 12 are compared with the calculations in 
Figs. 13 and 14. The agreement in Fig. 13 for the higher Re,, c flow with an abrupt 
change in boundary-layer properties (see, e.g., the cf distribution in Fig. 11 which 
illustrates this abrupt change) is considered reasonably good. The agreement in Fig. 14 is 
considered good with only a slight discrepancy between theory and experiment for the 
velocity profile in the interaction region at x/c = 0.498. 

Sym /Vim Rein, c x 10 -6 o, de~ Cas.___e 
o O. 676 5. 7 -2.18 2 
o O. 730 6. 5 3. 19 9 
• 0.'730 2. 7 3. 19 12 

o Experimental Data, IDENT=5}00, Ref. 18 -1.4 I -  
-! 2 L l ~ g D g g g g Q L  x - 4. 103 ft, l~ex p = 31. 320 

[] Experimental Data, IDENT fi300, Ref. 18 - 1 . 0 # ;  

x = 6. 236. 1Sex p - 78. 988 I - -  • for Meo - 0. 730 Present Calculations -0.8 ,,o Cp* 
6 

-o.6 . . . .  • 8 0 0  - 0 . 4  oooOOoo°ao 
5 -0.2 o o ° °  ':'ag 
4 O. 2 

y. in. 0.4 

l- J 2 1.0 

1 1 I I 
0.12 0. 4 xlc 0. 6 0.18 I. 0 

0 ~ I  I I I 
O 0.2 0.4 0.6 0.8 1.0 

ulu e 

Figure 8 .  Severe adverse pressure 
gradient incompressible 
velocity profiles of  
Stratford ( IDENT = 
5300, Ref. 18). 

Figure 9. Upper surface pressure 
d is t r ibut ions  on the  
RAE 2822 airfoil for  
Cases 2, 9, and 12 of  
Ref .  19. 

Measurements by Pasiuk, Hastings, and Chatham (Ref. 20) were made .for a 
compressible turbulent adiabatic wall boundary layer with a favorable pressure gradient. 
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Boundary-layer displacement and momentum thickness measurements are compared to 

present calculations in Fig, 15 and the agreement is considered good. The boundary-layer 

edge Math number varied from about 1.5 to 3.0 for the data shown in Fig. 15. 
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Figure 10 .  U p p e r  surface b o u n d a r y - l a y e r  F igure 11.  
proper t ies  o f  the  R A E  2 8 2 2  
air foi l  f o r  M. .  = 0 . 6 7 6 ,  R e ©  = 
5 .7  x 10  e ,  and a = - 2 . 1 8  deg 
(Case 2 ) .  

U p p e r  surface b o u n d a r y - l a y e r  
propert ies  o f  the  R A E  2 8 2 2  
a i r fo i l  fo r  M,. = 0.730, 
Re. ,© = 6 .5  x 10  e ,  and a = 
3.19 deg (Case 9). 

An experimental investigation was performed by Winter, Rotta, and Smith (Ref. 21) 

on a waisted body of  revolution in both subsonic and supersonic flow. Two sets of  data 
from Ref. 21 are considered, M** = 0.597, Re**,£ = 9.98 x 106 and M** = 1.398, Re**.£ = 
10.08 x 106. The pressure distributions for these two eases and the body geometry are 

shown in Fig. 16. Boundary-layer properties of  el, 6", 0, and H~, are compared with 

present calculations in Fig. 17 for M** = 0.597 and in Fig. 18 for M., = 1.398~ T h e  
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calculated cf is a little larger than the experiment for the M. = 0.597 data, but the 

overall agreement in Fig. 17 is considered good. The agreement with the M® = 1.398 data 

in Fig. 18 is good up to x = 42 in., but not as good over the remaining aft end of  the 

body. In this connection, a compatibility check of  the experimental data was performed 
by Winter, Rotta, and Smith (Ref. 21) by using measured values of  cf. and Hs.  in the 
momentum equation. The conclusion drawn in Ref. 21 from this exercise was that for the 

M = 1.398 data, the skin friction measurements appear to be too large for x > 42 in. 

This was attributed in Ref. 21 to the technique used to measure skin friction (the razor 
blade technique) which had not been completely established for these types of  flow. 
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Figure 12. Upper surface boundary-layer 
properties of the RAE 2822 
airfoil for M.  = 0.730, Re.~© 
= 2.7 x 106, and a = 3.19 
deg (Case 12). 
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adiabatic wall boundary layer with a 
f a v o r a b l e  p r e s s u r e  gradient. 

Velocity profiles for these two sets of data from Ref. 21 are compared with present 

calculations in Figs. 19 and 20. The agreement is good except for the last two 

downstream profiles in Fig. 20 which is poor. This is the same region of discrepancy as in 
Fig. 18. Also shown in Figs. 19 and 20 are the ratios of 5*/r w which must be small (i.e., 

6*/r w <<1)  for transverse curvature to be unimportant (recall that this method is 
axisymmetric but does not account for transverse curvature). Note that regions of any 
significant discrepancies in Figs. 19 and 20 (excluding the last two downstream profiles in 

Fig. 20) occur near the outer edge of the boundary layers. It was pointed out in Ref. 6, 

where the velocity profile used here was developed, that the correlation for u/u e at y/O = 
5 should be modified for axisymmetric flow. Therefore, the strictly two-dimensional 

planar correlation at y/O = 5 is identified as the source of this discrepancy in Figs. 19 
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and 20. It should be pointed out, however, that the portion of  the boundary layer for 

y/~ < 5 is the important part for the calculation of the shear-work integral term, Eq. 

(31). 
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Rgure 16. Pressure distributions on the waisted 
body of revolution for M® = 0.597, 
Re ,£  = 9.98 x 10 s and M.. = 1.398, 
Re ,£  = 10.08 x 10 s (Ref. 21). 

The most upstream boundary-layer profile measttrements reporte d in Ref. 21 were at 

x = 24 in. Initial conditions near the nose were not available. This is usually the case in 

practice; therefore, it is of  interest to investigate the influence of initial conditions on the 

solutions. Skin friction measurements were reported for x < 24 in. in Ref. 21 and these 

measurements provide an indication of  the results that might be expected. Solutions for 

four sets of  initial conditions are compared to these skin friction data for M** = 0.597 

and Re**,£ = 9.98 x 106 (Ref. 21) in Fig. 21. Three solutions are for initial conditions at 

x = 3 in. and one for initial conditions at x = 24 in., which is the same solution as given 

in Fig. 17. As illustrated in Fig. 21, the three solutions beginning at x = 3 in. quickly 
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Figure 17. Boundary-layer properties on the waisted 
body of revolution for M= = 0 .597  and 
R e . £  = 9,98 x 106 . 

converge to the same axial distribution of cf. The solution beginning at x = 24 in. also 

has the same distribution, and converges to the same solution as the three solutions 

started at x = 3 in. 

The data of Winter, Rotta, and Smith (Ref. 21) were used for comparisons with 

other calculation techniques. Blake (Ref. 22) compared these data with the finite 

difference calculation methods of Cebeci and Smith (Ref. 5), Harris (Ref. 23), and 3lake 

(Ref. 22). Three figures were taken from Ref. 22 and included here along with the 

present calculations as Figs. 22, 23, and 24. It is important to note that these figures 

were copied from Ref. 22 because the plotted experimental data points differ somewhat 

from supposedly the same data (M® = 1.398 and Re®,~ = 10.08 x 106) already used in 

Figs. 18 and 20. The discrepancies are not large, however, and direct comparisons of the 
4 
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calculation methods can be made. Skin friction comparisons in Fig. 22 indicate that the 

present solution is close to Blake's solution (Ref. 22) up to about x/£ = 0.7 and then is 
below the other solutions for x/£ > 0.7 and below the experimental data for x/£ > 0.,8. 

As pointed out previously, however, it was concluded by Winter, Rotta, and Smith (Rel: 
21) that the experimental skin friction appears too large over the aft portion of the 

body. Momentum thickness comparisons in Fig. 23 indicate that the present solution is 
essentially the same as Cebeci and Smith (Ref. 5) up to the maximum value of 0/£, and 

then is between the Cebeci and Smith solution and Blake's and Harris' solutions (the two 

latter solutions are essentially the same) over the remaining aft end of the body. From 

the velocity distribution comparisons in Fig. 24 the present solution is considered to 
provide a better description of the experimental velocity profile than Blake's solution 

(Ref. 22). Velocity distributions from Cebeci and Smith (Ref. 5) and Harris (Ref. 23) 
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Figure 18. Boundary-layer properties on the 
waisted body of revolution for 
M® = 1.398 and Re.~ = 10.08 
x 106. 
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I 

calculation methods were not given in Ref. 22. The discrepancy between experimental 

data and the present solution near the outer edge of the boundary layer was discussed 
above and attributed to neglecting transverse curvature. However, the slight inflection in 
the experimental,.velocity profile in Fig. 24 is well represented by the present integral 

solution, whereas the finite difference solution of Blake does not properly describe this 
feature of the boundary layer. 

y, in. 

The experimental data of Winter, Rotta, and Smith (Ref. 21) were also considered 
by Lewis, Kubota, and Webb (Ref. 9) in their work concerning the application of 
transformation theory to turbulent boundary layers and the extension of Coles' (Ref. 8) 
analysis to include pressure gradient. The agreement obtained in Ref. 9 is considerably 
worse than the agreement obtained here with the same experimental data. Two possible 
sources of discrepancy are given in Ref. 9 as having to do with the low-speed formulation 
part of their transformation theory and/or the Mangler transformation which they used. 
Such problems are avoided by the present approach. 
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4 .0  C O N C L U S I O N S  

The objective of the present work was the development of  a reasonably accurate and 

rapid means of  calculating compressible turbttlent adiabatic wall boundary layers on 

planar and axisymmetric bodies. Reasonably accurate solutions were obtained for the 

type of boundary-layer problems frequently encountered in PWT as illustrated by 
comparisons with transonic turbulent bottndary-layer data. For the few direct 

comparisons afforded by the results in Blake's thesis (Ref. 22), the present integral 

method provided reasonable a~eement  with the finite difference methods of Cebeci and 

Smith (Ref. 5), Blake (Ref. 22), and Harris (Ret'. 23). The present method is simple to 
use and about 42 x-steps can be solved per second on an IBM 370/165. The method no 

doubt could be improved, but the objective of the present work is considered satisfied. 

The present approach differs from most integral approaches in three primary 
respects. First, an entirely different velocity profile (Ref. 6) was used. Second, the 

shear-work integral term was not correlated from experimental data, rather it was 

• obtained by direct integration. And third, a new relation between velocity and 

temperature was used for shape factor' calculations (Ref. 14), which accounted for 
total-temperature overshoot near the outer edge of turbulent boundary layers for the 
realistic conditions of  nontmity Prandtl number and nonunity recovery factor. 
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APPENDIX A 
LISTING OF THE BOUNDARY-LAYER COMPUTER CODE 

FORTRAN IV G LEVEL 21 

0001 
0002 
0003 
0004 
0005 
0006 

O00T 

0008 
0009 9 
0010 12 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 500 
0020 
0021 1002 
O022 
0023 
0024 16 
0025 20 
0026 
0027 
0026 22 
0029 
O03O 
0031 
0032 
0033 
0034 
0035 
0036 
003~ 
0038 
0039 
0040 30 
0041 
OO42 
0043 
0044 
0045 
0046 
0047 36 
0046 
0049 40 
0050 
005) 
0052 
0053 
0054 42 

MAIN 

REAL MoN|NFtNMI3OO)vMOMI2)pKE(2]gM2 
DIMENSION X ( 2 ) ,  XX(3OOItRR(300)  

2 FORMAT(IP11E12.4) 
3 FORqAT(RFIO,5) 
4 FORMATE13) 
b FORNAT(/ / /13Xt°MACN NO. m l t F 6 . 3 ~ S x t o U N [ T  REYNOLDS NO. mooFTo41o NZ 

1LLXONOo//) 
7 FORMAT(1HIoSXtlX~IJlXolR°ollXo°M°w9Xp°THETA°~9Xo~H°tlIAI°CF°t9Xo 

1 tOSTARteTXt°UETA°o9XeOREQoo 9Xo°REXOtRXeOOZSSt/) 
8 FORMAT( e INPUT VALUES AREO//6X;wXXlt7XooMMtoRXgtRRt/) 

FORMAT(3FIO.5) 
READ(So3)MINFIRENtTHETAoH 
READ(StA) NINR 
READ(SP9)(XX(I)tMM(I)tRR(I)tX=ItNINP) 
WRZTE(6tR) 
WRXTE(6o9)(XX(Z)tMM(Z)tRR(I)oX=IoNINP) 
MR[TE(6e6)NINFeREN 
X ( ) l m x X ( l )  
;mO 
IPR|NTmO " 
KKKmO 
WRXTE(6t7) 
CONT|NUE 
I F ( I , L T , 2 )  I n I * I  
I F ( l - l ) 2 2 t 2 2 t 1 8  
D X z ( X X ( N I N P ) - X X ( I ) ) / 5 0 0 .  
X ( 1 ) m X ( I - l ) * O X  
IF((X(I)*DX-XX(NINP)).GE.O.O)ZPR|NTwl 
] F ( X ( 1 ) - A X ( N | N P ) ) 2 2 o 2 2 t I 2 0  
CONTINUE 
CALL LINXNT(X([ ) IXXtNM~MoDXM) 
CALL LIN|NT(X(X)oXXtRRoRADoDUM) 
M2mM~N 
Tm(1,+O.2~MINFoo2)/(X.*O,2OMOe2) 
UmM/MINFeSORT(T) 
DUmDXM/(Me(I . *Oo2~Meo2))  
FCwSORT( le*NtN/5o)  
GaUOO2eT~e2eSeRAD 
REsRENeleoE*O6eUeTeeloT4 
H L I = I ,  
X F ( X - l ) 3 0 o 3 0 o 3 6  
MOM(])aQ~THETA 
H I : ( H - O , 2 9 0 ~ M 2 ) / ( I , * O . I I 3 e M 2 1  
KE(I):MOM(I)eUe(2,-Oo54~TANH(I.Ie(HX-Ie))*OoO2BeM2)/(1,tO.OIAeM21 
REQ:REeMO~(I) /Q/FC 
CFmO.3~EXP(-I.33eHI)/ALOGIO(REQ)e~(Ie74*O.31eHI) 
UPEmSQRT(2e/CF) 
CALL TURR(H2oUPEtREQeHIoTHETA~XPRXNT~O) 
DO 60 Kml~6 
X F ( X ' l ) 4 2 t 4 2 o 4 0  
~OM(X):NOM(X'I)*O,5:(OMeONM)~DX , 
KE(X) :KE(X ' I )~O~5~(DK~OKK)eOX 
Z:(2o-KE(I)/MOM(I)/U)e(I.*O.O14~M21/O.5~ 
HX:It*O,5eALOGK(I,tZ)/(I.'Z))/I,| 
H w H I e ( l . * O t l 1 3 e N 2 ) * O . 2 9 0 e N 2  
CFmO.3eEXP(-I,33eHX)/ALOGIO|REeMOM(I)/Q/FC)~e(1,74*O.3|eHX)/FC 
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FORTRAN IV G LEVEL 21 

0055 46 
0056 
0057 
OOSB 49 
0059 50 
0060 60 
0061 
0062 
0063 70 
006~ 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
OOTg 
0060 
0081 
0082 120 
0083 
0086 

RAIN 

DN:O,5eQeCF-NON(1)eHeDU 
DK:OoUeCFQO-2,eMOM(I)eU~DU~(O,O64/(HI-OoS)tO,251)eM2 
I F ( I - l ) 7 0 9 7 0 t 6 9  
IF|ABS(Io-HLI/HI)-OeO005)70170,50 
HLImHI 
CONTINUE 
DXmO,5QDX 

.GO TO"20 
DNMsDM 
DKKnDK 
THETAaNON(I)/Q 
DSTAR :HeTHETA 
BETAm-2eODSTAR/CFeOu 
REOCOM:REOTHETA 
REx:REeXI I )  
WRITE(be2)X(I)tRADtMoTHETAoHtCFeDSTAReBETAtREQCONtREXeO 
UPEmSORT(2./(CFOFC)) 
REOmREOCO~/FC 
THETAIITHETA/(|,-O,92wN2/(7,09*N2)eTANH(I,69e|HZ-Oeg))) 
CALL TURB(N2oUPEoREQtHIoTHETAIBIPRZNToD) 
KKKmKKK*I 
I [ ( I , E Q o l )  GO TO 1002 
X ( l ) : X ( 2 )  
NON(IImNOM(2) 
KE( | I=KE(2 )  
]F(KKKeEQeST)GO TO 500 
60 TO 18 
CONTINUE 
STOP 
END 

FORTRAN IV G LEVEL 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0006 
0009 

21 LININT 

SUBROUTINE LININTIXtXXmYYIYgOY} 
DIMENSION XX(3OO)tVY(300) 
N" I  

I NsN+I 
]F (X ,GT,XX(N) )  GO TO 1 
Dy=(yy(N)-Yy(N-|))/(XX(N)-XX(N-I)) 
y m y Y ( N - I ) * ( X - X X ( N - | ) ) e D Y  
RETURN 
ENO 
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FORTRAN IV G LEV(L 2) TURB r .  

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0004 
0009 
0010 
0011 

0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0026 

0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
O03R 
0039 
0040 
0041 
OO42 
OO43 
0044 

10 

11 
9000 

SuRROUTIN[ TURB(XM2ouPEgREToHoTH[TAoIPRINTID) 
DIMENSION F(101) 
P]m3,141592 
RETUP=RET/(uP(eo2} 
~EUP9:O.O9eR(T/UPE 
PIUPEaPZ/(e lSoUP[)  
UUE2B1*723°EXPi'O,6~H)O(1**50o/RET| 
UUESuO.87*O,OSOEXPC-2,6O(H-|,q§)eo2) 
G2s(UUE2"(I./(oO9eUPE))OATAN(2oOREUP9))/(Io-PZUPE) 
GSg(UUES-(I./|.O9eUPE))OATAN(5.eREUP9))/(te-PIUPE) 
BaALOG((ISeALOG((Io*G2eQ2)/(Io-G2ee2)))/((eSeALOG|(|,*GSee2)/(Io - 

|GSee2) ) ) ) I /ALOG(Oo4)  
Aa(,5eALOG((1,*G2*o2)/(lo-62*o2)))/2.eeB 
NnI01 
DX= IO, / IO0 .  
SUMaO, 
X=UPEQIOO,/RET-DX 
DO 9000 I w l t N  
XsX*DX- 
YIXeTHETA 
YPLUSmX~RET/UPE 
ARGmAeXeeB 
ZF(ARS.GT°87 ,3 )F ( I )nO.  
IF(ARG,GTeOT.3)GO TO 9000 
HCOSm(COSH(ARG))°e2 
HTANnSQRT(TANH(ARG)} 
UPLUSBATAN(R[UPgeX)/OeO9*(URE-PI/O.18)eHTAN 
UUEwUPLUS/UP( 
F(|)uRETUPe(I°/(Io*(REUP9eX)eO2))*(lo-P;UPE)eARGeB/2o/X 

Ie | Io / (HTANeNCOS)}  
XLaO,61eX 
FFCnO.OIbSeHeF(1) 
FFmXL~XLeF(1)eF(1) 
IF(FFoGT.FFC)SUN=SUM*lm 
ZF(SUMoGToO,)FFJFFC 
F(X)sFFOF(Z)/(lI÷OoI76oxN2Q(|°-UUEeUUE)) 
IF (ZPRINT.EQoIeAND, I ,EQ° I )  WRZTE(6olO) 
FORMAT( I I IoSXo lY* t  8Xoly/THETAItoTXo;YtleIOXttU*I* 9 X I I U / U E t / )  
IF( IPRINToEQol )  WRZTE(6t11) Y~XoYPLUSIUPLUStUU( 
FORHAT(|P5E12,4) 
CONT;NUE 
CALL SIMP(FpF2mF4tN) 
CPnDX/3 ,e (F (1 ) *F2*F4*F (N) )  
D=ISeT9/UPE*UPEOUPEOCP 
RETURN 
END 
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FORTRAN ZV O LEVEL 21 SIMP 

0001 SU~ROUT|N(SIHP(FeF2tF41N) 
0002 DIMENS|ON F(101) 
0003 FODDROeO 
0004 F[VENBO+O 
0005 N I I N - !  
0006 N2:N-2 
0007 DO 30 I03pN2+2 
0008 30 FODD=FODO*F(Z) 
0009 F2"2,oFODD 
0010 DO 40 Z=2oNlP2 
0011 40 FEVENfFEVEN*FCX) 
0012 F4a4teFEVEN 
0013 RETURN 
0014 END 

The following is an example set of  input data for the Waisted Body of  Revolution (Ref. 
21) for IVl = 0.597 and Re.,£ = 9.98 x 106. 

.597 .1642 ,0J6'3 
022 
24.0 .642 4.359 
27,0 ,598 3,793 
28.5  .585 3 . h i s  
30.0 ,578 3.257 
31,5 ,573 3,0139 
33.0 .S69 2 , r~B)  
36.5 o567 2,5q~ 
36,0 ,563 2.406 
37,5 .559 2,222 
• 0.0 ,545 1,9~9 
42.0 .537 | , 8 7  
44.0 .542 1.933 
45,5 .552 2.0~? 
47,0 .55d 2,231 
48o5 .%63 2,407 
50o0 ,~67 2.597 
51,5 ,56~ 2.8A? 
53,0 .~73 3,093 
5~,b  057~ 302~2 
56.0 .5F5 3,52 
57,5 ,5~7 3.?o9 
59.0 ,623 4.0q? 

1.751 
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a 

b 

C 

Cf 

Cp 

Cp * 

D 

b 

Fc 

g 

H 

H 

Ha* 

H/~** 

He* 

k 

£ 

M 

rn 

Pr 

Prt 

A E DC-TR -78-42 

NOMENCLATURE 

Parameter used and defined in Table 1 

Parameter used and defined in Table 1 

Airfoil chord 

Local skin friction coefficient, rv,/qe 

Pressure coefficient, (p-p**)/q** 

Critical pressure coefficient 

Shear-work integral, defined by Eq. (26) 

Defined by Eq. (19) 

(l + 0.2 Me2) 1/2 

Function used and defined in Table 1 

Specific total enthalpy 

a*/0 

a*lO 

5"'18 

/9"10 

Index which is zero for planar flow and one for axisymmetrie flow 

Mixing length, ~ = 0.41 y; also total body length 

Mach number 

Index which is zero for the momentum integral equation and one for the 
mea'n-flow kinetic energy integral equation 

Molecular Prandtl number 

Turbulent Prandtl number 
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P 

q 

Reo 

Re**,c 

Re®A 

r 

rw 

T 

U 

tl + 

UT 

V 

X 

Y 

y+ 

3 

g, 

i* 

~** 

e 

E m 

Static pressure 

Dynamic pressure, pu2/2 

p~. u¢ O/taL. 

p . .  LI.~ I 2 / p .  

p. u** ~/p. 

r~. +- y cos ~; also used as recovery factor (r = 0.88) 

Local body radius 

Static temperature 

Mean velocity in the x direction 

tl/U 7 

(rw/p,,. ) I/2 

Mean velocity in the y direction 

Coordinate along the body surface 

Coordinate normal to the body surface 

p,,. ur y//.t,~.. (Re0/ue+)(y/~) 

Angle of attack, deg 

5*/r~ dp/dx 

Boundary-layer displacement thickness defined by Eq. (23) 

Defined by Eq. (36) 

I)efined by Eq. (16) 

Defined by Eq. (25) 

Defined by Eq. (18) 

Eddy viscosity, defined by Eq. (32) \ 

Middle boundary-layer region eddy viscosity, defined by Eq. (33) 
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e o 

0 

0* 

/a 

P 
"7"7, -pu v 

1" 

Outer boundary-layer region eddy viscosity, defined by Eq. (35) 

Boundary-layer momentum thickness, defined by Eq. (22) 

Low-speed or kinematic boundary-layer momentum thickness, 
(l-u/ue)dy 

Defined by Eq. (15) 

Defined by Eq. (24) 

Defined by Eq. (17) 

Molecular viscosity 

Density 

Reynolds stress 

Total shear stress, (g + pe) au/~)y 

r t Turbulent shear stress, pe au/ay 

~k Local body surface angle 

SUBSCRIPTS 

e Boundary-layer edge value 

exp Experimental value 

w Wall value 

* *  Free-stream value 

SUPERSCRIPT 

Denotes low-speed or incompressible value 

AE DC-TR-78-42 

0 = f~u/u e 
0 
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