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INTRODUCTION

The a-B-y tracker is a system of equations which use estimates of position,
velocity, and acceleration to predict a new (updated) position, a new
velocity and a new acceleration. Then the error between the measured
position and the predicted position is used to improve (correct) the
estimates. The parameter y is associated with acceleration and if it is
set to zero the a-g-y tracker becomes an a-g tracker. In a-g trackers,
acceleration is not estimated nor used in the predictor equations.

The a-B-y tracker is especially well suited for computer algorithms. The
a-B-y algorithms require very little storage and a small number of compu-
tations and are well suited for real-time applications.

The Kalman tracking algorithms require much more storage and many more
computations. However, the Kalman algorithms produce estimates with mini-
mum rms error estimates given non-stationary measurement noise.

The standard a-g-y tracker minimizes the exponentially weighted squared
error between the data and parabolic line through the data.

The QD based a-B-y tracker minimizes the squared error between the data

and a parabolic line through the data--over some number of points and
subject to slope and intercept conditions.

THE a-g-y TRACKING EQUATIONS

The a-g-y tracking Equations (1) through (6) are:

Corrector (or Estimator) Equations:

ih = X * a(xn - an) (1)
Vh * Vnp * '%" (xn - xnp) (@)
a, - ap * _if' (x, - xnp) (3)




Predictor Equations:

Xnp = *p1 ¥ Va7 * % ;n-sz (4)

Yp = Vn-l * ;n-IT (5)

np ~ A (6)
where

X = measured quantity,

'x_n, Vn. En = estimated quantities,

X,V ,a = predicted quantities,

np’ "np’ “np

Xn-1* Yp-1° - = estimates from previous step, and
T = step size.

The Equations (1) through (6) are in a form that can be efficiently pro-
grammed on a computer.

Substituting Equations (5) and (6) into (2) and (3) yields another form:

R = Kpp *alxy - %) (7)
v =V 2 £ -

Yn = Vn-1 t an_]T M (xn xnp) > (8)
a2 =a X -

T T 12 (xn xnp) ’ (9)
X_ =X  +TV 4 + -3 .T° (10)
np n-1 n-1 2 "n-1 :

PERFORMANCE MEASURES [1]

One performance measure is the ratio of output variance to input variance
with noise as the only input. These ratios are defined by

L1] H. R. Simpson, "Performance Measures and Optimization Condition for a
Third Order Sampled Data Tracker," Transactions on Automatic Control,
April 1963, pp. 182-183.




k_(0) = steady-state variance in position output
X

variance in raw position input

k_(0) = steady-state variance in velocity output
v variance in raw position input ’

k_(0) = steady-state_variance in-acceleration output
a variance in raw position input

The equations for these variance reduction factors are

k (0)Y2 = 28y(20% + 28 - 3a8) - av?(4 - 2 - 8) (1)
k(042 = agdy - 422+ 232 - a) (12)
k(0¥ = agy® (13)
where
Y2 = y[a(28 + v) -2¢)(4 - 20 - ) . | (14)
2

One transient performance measure D° is obtained from the response of the
tracker to a unit step inout of velocity. Ideally, the position output
would be a ramp, the velocity output would he a constant, and the accelera-
tion output would be zero for t > 0. The D% measJres are the sums of the
squared error between the jdeal response and the actual response:

02v2 = 2y (2- a)(1 - &)? (15)
02v212 = 2ya?(2 - o) + 2801 - )] + (+/8)(2 - o)

-(2/002(8 - 30)(2 - o) + a8] (16)
024t = w4 - 2a -8+ Y22 -0) o

The final performance measure A2 is obtained from the response of the tracker
to a unit step input of acceleration. Ideally, the position output would




be a parabola, the velocity output would be a ramp and the acceleration
output would be a constant. The A2 measures are sums of the squared error
between the ideal response and the actual response:

A% - a(4-2-8)(1-a) (18)

‘

Afvzrz = (a/8)(8 - 20)%(4 - 20 - 8) + (v/8)(2 - a)(8 - 2a- )2 , (19)

A§v214 a82(4 - 20 - 8) + (y/2)[202 - (2 - a)B)(4 - 20 - B) . (20)

Finally, Simpson determined that all these performance measures are minimized
if

28 -alatpgty/2)=0 . (21)

Note that Equation (21) is one equation in three unknowns and does not
completely specify the design.

"STANDARD" a-g-y TRACKER

1f the error between the sampled data and a parabolic line approximating
the data is squared, weighted exponentially, and minimized, o, B, and vy
are found [2] in terms of a parameter, 6. Kahriias calls this tracker
"critically damped."

a=1-8 (22)
g = —%— a - 0)2(1 + 8) (23)
y=0-0?3 (24)

Morrison [3] calls such a tracker "a fading memory polynomial filter of
degree 2." Morrison [4] gives the variance reduction factors in terms of s.

[2] P. J. Kahrilas, Electronic Scanning Radar Systems Design Handbook, Artech
House, 1976, p. 215.

[3] Norman Morrison, Introduction to Sequential Smoothing and Prediction,
McGraw-Hi11, 1969, p. 516.

[4] Morrison, p. 526.




kx(o) = (] = °)5 (19 + 246 + 1662 + 603 + e4) (25)

1+

3 2 |
k (072 = (L: - :;5 (22300 * 130 (26)

5
4 (1=
k (0)7% - g Ll=0) (27)

(1+6)
QD TRACKER [5]

The QD tracker minimizes the sum of the squared error between m data points
and a polynomial passing through the data--subject to intercept and slope
constraints. For a "second order" QD, the polynomial is a quadratic and [6]

2

a = 3 50!“2 N (28)
10m™ + 33m™ + 23m - 6
_ _2a
8 = m ’ (29)
' 20
Y= —5 . . (30)
mZ

a-B TRACKER

The system of Equations (1) through (6) can be converted to an a-g tracker
by setting y = 0. Then_all of Simpson's results reduce to those given by
Benedict and Bordner [7].

If the error between the sampled data and a straight line approximating the
data is squared, weighted exponentially, and minimized, a and g are found
(see Reference [2]) in terms of e.

[5] W. A. McCool, "A Matrix-Vector Formulation of the QD Digital Filter,"
Technical Report, WSMR, New Mexico, December 1968.

(6] W. L. Shepherd, Draft Report, Instrumentation Directorate, WSMR, New
Mexico.

[7] T. R. Benedict and G. W. Bordner, "Synthesis of an Optimal Set of Radar
Track While Scan Smoothing Equations," Transactions on Automatic Control,
July 1962, pp. 27-32.
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2

1}

1-0
(1 - 0)2

Morrison (see Reference [3]) calls such a tracker "a fading memory polynomial
of degree 1." He gives (see Reference [4]) the variance reduction factors
in terms of .

a

B

k,(0) = —jl—i—ggg— (5 + 4o + 5°) (31)
i1 +e

« (o2 = 20 =8 (32)

v (1 + 9)3

7 TRANSFORMED o-g-y TRACKER

Substituting Equation (10) into Equations (7) through (9) and taking the
Z transform yields ‘

—_ . 2_ _
(Z+a- 'I)Xn + (o - T)TVn + [(a - 1)/2]T An = aZXn , (33)
—_— — 2.__ _
exn +(2+8 - l)TVn + (g/2 - 1)T An = BZXn . (34)
Y s TV 25 _
YXn 4 YTVn + (2 + v/2 - ])T An = yZXn . (35)

Writing Equations (33) through (35) in matrix form and using Cramer's rule

yields
L& Z[a(Z - N2+ (g + y/2)(Z -1) ++4] (36)
X, , A ’
v 2 |
o Is(z - D+ y(z -1)]

x: - - Y \ (37)
A 2

n _ Zy(Z - 1) \ (38)
Xn R




o . argryR)z-1Pe a2 N@ -1 by (39)
Xn . A ’
where
= (Z-13+alz-12+ (8 +y/22UZ-1) 4+ . (40)
STABILITY

For an a-g tracker, the characteristic equation is [8]

e (1-a)+ (a+g-2)2+2% . (41)
Stability requirements are [8]

a>0 , (42)

B>0 , (43)

20 + B < 4 . (44)

Stability constraints for an a-g-y tracker may be obtained by expanding
Equation (40) and applying the constraints given in Jury [9]:

0O<a<2 , (45)
20 + g <4 , (46)
o +t ay/2 -y>0 , ’ (47)
y>0 . (48)

Note that Inequalities (42), (43), and (44) imply Expression (45), and that
Expressions (45), (47), and (48) imply that g8 > 0 (Expression (43)). Finally,
observe that setting y = 0 reduces the a-g-y expressions to the a-g results.
For the a-g-y tracker, Relations (45) through (48) are necessary and suffi-
cient. Expression (47) may be replaced by the more convenient sufficient

(but not necessary) condition of (49):

af > vy . (49)

. L. Gonzales, "Performance Models for Range and Angle Trackers Ap-
plicable to Phased Array Instrumentation Radar," Electronics Division
Technical Memorandum 68-2, Instrumentation Directorate, WSMR, New
Mexico, June 1968.

[9] E. I. Jdury, Theory and Application of the Z-Transform, John Wiley,
1964, p. 93.
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FREQUENCY RESPONSE CURVES

To find the frequency responis for any one of the transfer functions (36)
through (40), replace Z by e’Jul and plot the magnitude and phase. (Recall
that the frequency resporse of digital filters is periodic with period 2r in
wT. Only a half period is shown in the plot.)

A linear plot of |Xp/Xn| ard phase of X,/X, is shown in Figure 1. The same
plot on a log-log scale is shown in Figure 2. Note that the curves of
Figure 2 are Bode plots and can be used in control system design. A design
example for using Figure 2 follows.

DESIGN EXAMPLE

1. Select the sample time for a standard (critically damped) a-8-y
tracker with a = .1 if the tracker must pass 5 Hz.

2. Determine the attenuation of a 60 Hz signal for this sample time.

3. Determine the frequency of the first maximum response above the
desired pass band.

SOLUTION

1. " Use 3 dB down as the edge of the pass band. From the graph,
x(.1) is 3 dB down at wT = .135. '

T = ) = 0043 second

Thus, the signal must be sampled 235 times per second (or faster) if 5 Hz
is to be attenuated no more than 3 dB.
2. T =% x.135 = 1.62
From the graph, x(.1) at T = 1.62 is about 23 dB down.
3. The first undesired maximum occurs at
w = -31—%—#95— = 1452/second ,
or

f = 231 Hz
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If the 23 dB of attenuation at 60 Hz is insufficient and a critically
damped tracker is desired, then a must be decreased. Of course, decreasing
a will increase the overshoot.

If the phase characteristic of Xn/Xn is unsatisfactory, then the phase
characteristic of X,p/Xp should be examined. Figure 3 reveals that the
magnitude curve for Rn /Xn is very similar to the magnitude curve for
Xn/Xn, but the phase 18 monotonically decreasing.

Figure 4 exhiBits the magnitude and phase of Xp/X, and the magnitude and
phase of 200T Ih/xn on the same log-log axes. Note that the magnitude
characteristics are very similar for T above 0.2.

Figure 5 compares the QD, a-8, and a-g-y trackers on the same log-log axes.
The values of a, B, and y used in these cases are shown in Table 1.

TABLE 1. a-g-y VALUES FOR FIGURE &

STANDARD a-g-y STANDARD a-g Q0
a 0.3 0.3 ‘ 0.3
B 0.0356 0.0267 0.0362
Yy - 0.0014 0 0.00219

" The m required to produce o = .3 is 16.6. Table 2 shows the more typical
m = 21 values and Figure 6 compares the 3 trackers for the same a.

TABLE 2. a-g-y YALUES FOR FIGURE 6

STANDARD a-g-y STANDARD o-g Q
a 0.246 0.246 0.246
8 0.0231 0.0173 0.0234
y 0.00072 0 0.0011
1
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ANALYTICAL EXPRESSIONS

The plots of Figures 1 through 6 contain all the frequency domain informa-
tion. However, analytic expressions for the minimum and maximum of |Xp/Xy|
and the associated frequencies, and the frequency at which |X,/Xp| = 0.709
would be convenient and useful. The minimum of |Xp/X,| occurs at wT = 7 and
is given by Equation (50):

><| 3¢
=

e -8 - (50)

I |m'ln T 4 < 2a-8

n
Note that Equation (50) is independent of vy.

Unfortunately, an exact solution for the frequency where |Xn/X,| is 0.707
would require the symbolic solution of a cubic equation. However, setting
1Xn/Xnl = 1 results in an algebraically tractable expression. The exact
solution is given in Equation (51) and a good approximation is given in
Equation (52?: '

wl = arc cos(1 - g) , ' ' (51)
or
ol = /28 . (52)

Now observe that the frequency response from the point where |X,/Xp| = 1
to the minimum is nearly a straight line on the log curve. Thus, approxi-
mating the response by a straight 1ine should give a reasonable result.
This procedure results in

] V28
oT = /78 10"‘5“'1'L(L‘%)‘nn"q/2 : (53)

The same procedure was used to estimate the -6 dB point (-.15 in the exponent
of (53) becomes -.3) with the results shown in Table 3.

TABLE 3. APPROXIMATE VERSUS EXACT wT FOR -6 DB

a .1 .3 .488

Approximate .194 .65 1.18

Exact .196 .65 1.20
16




An exact solution for wT which yields a maximum is algebraically intract-
able. Examination of Figure 1 reveals that the maximum of |X,/Xn| occurs
near the midpoint of the 0 to |Xp/X,| = 1 line segwent. Thus, ) S B
approximately 1/2 of the wT which yields |Xn/Xn| = 1.

wl = B2 . (54)

max

Instead of calculating the maximum of |X,/X |, it is more convenient and
useful to find the overshoot. The overshoot is defined overshoot =
maximum - 1. At “Tmax’ the overshoot is approximately

2 2
< M, M +N
overshoot = 5 + 02 R (55)
where
M= -3 g2 + ' (56)
=g B (1 - a)(n +8/3) ,
3 2.2
2_ 8°(1 -4a)n -
3 ‘
D=n?+ b (58)
with
='_(_"§—_. -—3._.2
n=—=—-y+g 8 . (59)

Note that increasing y decreases n and thus increases the overshoot--
provided that y < ag/2. Table 4 compares the exact overshoot with the
approximation of Equation (55).

TABLE 4. APPROXIMATE AND EXACT OVERSHOOT

a .1 .3 .488

Exact

Overshoot 0.269 0.232 0.192

Approximate

Overshoot 0.275 0.261 0.237
17




The approximate and exact “Tmax

TABLE 5. APPROXIMATE AND EXACT wl

a | .3
Exact

”Tmax 0.0402 0.13325
Approximate

“Tmax 0.0419 0.13338

SUMMARY_AND CONCLUSIONS

are compared in Table 5.

ax

.488

0.2440

0.2366

The frequency domain response of an a-g-y tracker provides information

which is useful for the design of an a-g-y tracker.

very helpful if the a-g8-y tracker is to be incorporated into a control

system.

Equations (50), (53), and (55) present results which also are useful in

the design of a-B-y trackers.

18

The Bode plot is
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