UNCLASSIFIED

DEPARTMENT OF DEFENCE AR-001-179

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

ELECTRONICS RESEARCH LABORATORY
1

TECHNICAL REPORT
ERL-0004-TR

1

POLYNOMIAL MANIPULATION WITH APL

B. Billard

SUMMARY

A simple but effective system for the manipulation of
polynomials of several variables in APL is presented. The
system is especially advantageous in situations where more
sophisticated symbolic computing systems are not available,
or have failed to solve particular problems. The system is
shown to successfully solve a problem not resolved by a more
sophisticated system. '

Approved for Public Release

POSTAL ADDRESS: Chief Superintendent, Electronics Research Laboratory,
‘Box 2151, G.P.0., Adelaide, South Australia, 5001.

UNCLASSIFIED

ERL-0004-TR

TABLE OF CONTENTS

Page No.
1. INTRODUCTION 1
2. POLYNOMIAL REPRESENTATION 2
3. POLYNOMIAL MULTIPLICATION 3 -4
4. POLYNOMIAL DIVISION 4 -5
5. FURTHER CONSIDERATIONS 5
6. AN APPLICATION 6 -7
7. DISCUSSION 7 -8
REFERENCES 9
LIST OF APPENDICES
I APL PROGRAM LISTINGS 10 - 12
IT FILTER PROBLEM SOLUTION 13 - 14
ITI ORBIT PROBLEM SOLUTION 15

LIST OF FIGURES
1. Formation of the product of polynomials of a single variable.

2. Formation of a polynomial product by rotation of the outer
product.

-1 - ERL-0004-TR

1. INTRODUCTION

A quarter century of development in the area of symbolic computing has
resulted in a wide ranging heritage of symbolic computing systems. Excellent
"state of the art" reviews of this area have resulted from the 1966 and 1971
Symposia on Symbolic and Algebraic Manipulation(ref.1,2). Considering the
unquestioned power of these systems, it is perhaps surprising that they have
not gained a wider acceptance within the scientific community as a standard
tool. Part of the problem may be the slow process of education as to what is
available, The categorisation by Moses(ref.3) of systems into ""conservative",
"liberal", '"new left", and "catholic" eloquently highlights another problem -
that of deciding what the user wants, and indeed what can be reasonably
provided. Systems which attempt to be all things to all people may become so
complex that their larger computing requirements (time, memory, user education
and systems support) discourage their incorporation within many computing
environments.,

There is therefore a requirement for a smaller scale, more "simple minded"
formalism which will allow isolated researchers to harness some of the power of
symbolic computing even though they may not have access to (or may not know
about) the more extensive systems such as FORMAC, ALTRAN, REDUCE, SCHOONSCHIP,
and SIN.

This paper presents techniques by which manipulation of polynomials of an
arbitrary number of variables may be carried out using APL. A minimum of two
simple APL routines are required (for polynomial addition and multiplication),
but the simplicity of the formalism is such that it is easy to extend the range
of functions to allow for, say, polynomial division, and the manipulation of
rational polynomials.

APL has not been fully exploited as a medium for symbolic computing, although
its potential is undoubted. The use of APL for manipulation of polynomials of
a single variable has long been recognised, and it is now included in basic
texts(ref.4). Other users(ref.5,6,7) have pointed to the possibilities, while
generally limiting their attention to specific areas. More detailed comments
will be given later on Surkan's application(ref.7).

APL is especially suited to symbolic computing for several reasons. Firstly,
the programmer does not have to worry about storage control. Routines may be
coded with complete generality, without regard to the rank or size of arrays.
The storage problems caused by '"intermediate expression swell" in some other
systems (see Tobey(ref.8)) and ''garbage collection" are therefore not apparent to
the user. Secondly, APL functions can be used as operators which, for our
purposes, allow polynomial expressions to be built up naturally and executed
without the use of an intermediate interpreter. Further, APL is designed to be
used interactively. This is a decided advantage when the form of a problem
solution is not known in advance. The user is in a position to massage the
output of the symbolic computation in a way which he determines at that time.

The approach and the routines presented in this paper were developed to solve
a particular problem in filtering theory. A solution had been attempted using
FORMAC, but failed because an unknown intermediate term went outside the
allowable range. This raises a further advantage of this simpler approach.

The system presented here is sufficiently transparent so that if something
does go wrong in the computations, the user is in a good position to work out
how he can circumvent the problem - either by reformulating it, or by writing
his own routines to handle it. The presentation here is therefore
deliberately open-ended, to point the reader towards the possibilities rather
than to spell out all the details. '

The paper assumes a knowledge of APL.

ERL-0004-TR -2 -

2. POLYNOMIAL REPRESENTATION
Consider a polynomial in the r variables Xl""’xr' The polynomial

1 T
A, seeeng Xq seees X may be represented as an array of rank r

A = (a, ,0..51) (n

Thus the index of each term in A is 1 greater than the power to which each
variable X is raised. Alternatively, if the APL index origin is set to zero

(0] 10--0), the term A[il;"';ir] gives the coefficient of the term in

i i
1 T . . S . .
1 e X This representation is in general more expansive than is

b
strictly necessary, since a large proportion of the elements of A may be zero.
A more compact form would be one such as that adopted by ALTRAN, which, for N
non zero terms, would represent A by only N.(r+1) items (ref.9). This more
compact form was also adopted by Surkan(ref.7) in his APL implementation.
However our simplicity of representation means that coding of routines to
manipulate the arrays is much simpler.

The polynomial form (1) has been used for the basic arithmetic operations
add, multiply and divide between polynomials, but it is capable of extension to
allow manipulation of rational polynomials, using as building blocks the
routines to handle the form (1).

One possible representation is to place the numerator and denominator "back
to back". Thus the numerator is represented by the array

AlO;;....1, (2)

and the denominator by

Al1;;....1.

Alternatively, the denominator may be kept as a series of factors, so that
the numerator is represented by

ANos;....1, (3)
as in (2), but

Ali;;...], i>0

are factors of the denominator.

The form (3) would be less efficient with storage, since the arrays
Ali;;...] would all have to be filled out to the same shape. However, in
problems where the same factors occur frequently in denominators, this may be
less demanding than searching to eliminate common factors from the form (2).

-3 - ERL-0004 -TR

3. POLYNOMIAL MULTIPLICATION

If PA and PB are polynomials represented by the arrays of coefficients A and
B respectively, then the polynomial product PAPB can be found by forming the
outer product A°.xB, and summing those elements of the outer product which
correspond to the same exponents in the polynomial product. The procedure for
selecting and summing these elements can be most easily visualised as a
generalization of the single variable polynomial product.

If A and B represent polynomials of degree n and m respectively, in x, the
outer product will be an (n+1)x(m+1) array of products (aibj), i=0,...,n,

j=0,...m, (where A = (ao,...,an) and B = (bo,...,bm)). The coefficient of
xk in the polynomial product will be the sum of all terms aibj such that

i+j=k. Thus we must sum all elements in the outer product along the reverse
diagonal i+j=k for each k = 0,1,...,n+ (see figure 1).

There are two ways in which the elements along each reverse diagonal of the
outer product may be selected. The first is to generate a selector matrix
which has the same shape as the outer product, and which is zero everywhere
except for 1's along the appropriate reverse diagonal. The APL product of this
selector matrix with the outer product will, when reduced by summation, give the
desired coefficient of a term in the polynomial product. This technique has
been implemented in APL and has been found to be adequate, but slower than would
be desirable. The slowness is due to the need to separately shape the selector
matrix for each term in the polynomial product.

The second technique which has been implemented is performed by rotating the
outer product matrix so that the diagonals i+j=k become columns, which may then
be reduced by summation in a single APL operation.

The process is illustrated for the single variable case in figure 2, where
the outer product has been padded with n columns of zeros to the left, and the
rows then rotated by amounts ranging from n for the first row, to 0 for the last
row. Reduction by summation over the first axis then gives a vector which is
the array representation of the polynomial product. :

For the generalization to polynomials of r variables, assume PA and PB are of
degree MyseesD and Myseee,m in each of the variables respectively. The
outer product A°.xB will have shape (n1+1),...,(nr+1),(m1+1),...,(mr+1), and the
product will be of degree p, = ni+mi,i=1,...,r. If we pad the outer product in

the same way as for the single variable case, the resulting array will have shape

m#1),. o (1 #1), (Py+1) 5., (P_41),

that is, we have padded n layers of zeros onto the left side of the (r+i)th
axis for each 1i.

A separate rotation will now need to be carried out for each variable. For
the first variable, this means defining an array C of shape

41,50, (1#1), (py 1) e, (p 1)
such that
cl0;...;] is n,

Ccl1;...;5] is n -1,

ooooooooo

and

ERL-0004-TR -4 -

After the rotation has been performed, each section of the array
perpendicular to the (r+l1)st axis will be characterised by (ii+ji) = constant,
where i; is the index of the first and j; dis the index of the (r+1)st axis
respectively. Each such section would have the same shape as C.

If this rotation operation is now carried out with respect to the second
variable in the same way, the section of shape

(,+1) 50y (41D, (pgrD) e os (pp*1)

which is perpendicular to the (r+1)st and (r+2)nd axes will be characterised by
iy +j1 = constant and i;+j; = constant.

After similar rotations for each of the r variables, each section
perpendicular to the (r+1)st,...,(2r)th axes will have shape (n1+1),..., (nr+1),

and will be characterised by

i +j = constant = k, s = 1,...,r
s °s S

Thus elements contributing to each term in the product are located in
columns defined by the first r axes of the array, and the array representing the
polynomial product may be formed by reduction by summation over each of these
first r axes.

While this technique is a little more difficult to visualize than that
involving the generation of a selector matrix, it is shorter (30 times shorter
for multiplication of polynomials of degree 9 in two variables) because the bulk
of the operations are carried out once for each axis (variable), rather than once
for each term in the product.

4. POLYNOMIAL DIVISION

The system used for polynomial division, while it thoroughly exploits APL
techniques and therefore may look quite different, is identical in concept to
that outlined by Collins(ref.10) for the PM system.

Consider two polynomials A and B in r variables. We assume A is of degree
n. in X, and B is of degree m, in X; . If ni<mi for any i we know B will not

divide A and hence without loss of generality we may assume nf>1ni,i=1,...,r.

We start by defining the most significant term. This is done by defining a
primary ordering of the non-zero terms according to the exponent of X1, a
secondary ordering according to the exponent of x; and so on. In APL this is
implemented by recursively removing outer layers of zeros, until the array is at
jts smallest significant size, and then dropping all except the last layer of
the remnant array in the first dimension on the first cycle, the second
dimension on the second cycle, and so on to the r-th dimension on the r-th cycle,

The most significant term in B can then be divided into the most significant
term in A; the result, q say, added to the quotient Q, and a new A'=A-Bq formed
in the usual manner of polynomial long division. The process will halt when
the leading term in B no longer divides the leading term in A'. A' will then be
an array which has only zero elements for (i1?>m1,i£>’m2,...,i;>'mr). Note that

this does not necessarily mean that the degree of Q in, say Xe» is less than m_.

In fact Q may still be of degree n_ in each of the variables XyseoesXe

-5 - ERL-0004-TR

(E.g. consider A = X*+y*+xy and B = xy). In 2 dimensions this may be
illustrated by representing the remainder A' as

A =<Ao Az>
A O

where Ay has shape n,m and A; and A, are not necessarily zero.

5. FURTHER CONSIDERATIONS

The basic arithmetic operations, multiplication, division and addition are
sufficient to solve a wide range of polynomial manipulation problems. Listings
of APL routines to perform these functions are given in Appendix I.

The most expensive of the basic routines ADD, BY, and DIV in terms of storage
requirements is the polynomial multiplication routine, BY. This routine must
accommodate an array equal in size to the outer product of one factor and the
polynomial product. Under normal circumstances, and especially in a virtual
storage environment, this should not cause problems. However the applicability
of the routine can be extended if a checkpoint is added before the formation of
the outer product in BY, at which the available working area, O WA, is tested
against requirements. If necessary one of the factors can then be split
(presumably half way along its longest axis) for a recursive call to BY. If
this occurs then the section of BY which processes outer products will be
bypassed in the primary call. Because lowest powered exponents are eliminated
in BY before formation of the outer product, this procedure may considerably
reduce the workload if either of the factors is large and has widely spaced
non-zero elements. The listing of BY in Appendix I includes such a checkpoint
with a rudimentary test of available space. Tests carried out on the self-
multiplication of a 10 x 10 non-zero array showed that the execution time was
increased by about 50% when recursion was carried to the fourth level.

There are further operations which may usefully be performed by using the
basic routines as building blocks.

One desirable facility is to be able to eliminate common factors from two
polynomials, say, numerator and denominator. A traditional approach to this
has been the search for a greatest common divisor. In theory this can be
achieved by a straightforward application of Euclid's theorem, but in practice
it has proved to be one of the great problem areas of symbolic computing (see,
for example, Collins(ref.11)).

A simpler but more limited approach that has been used successfully by the
author has been to build a "library" of factors which arise naturally in
denominators in the course of a series of calculations, and to look for factors
from amongst these. If a series of routines (say ADDR, BYR and OVER) are built
up from the basic ADD and BY to handle rational polynomial functions, then it
would be appropriate in OVER to check to see if a new factor could be added to
the library of denominator factors.

Another useful facility is the ability to substitute new expressions for
variables. A routine, REDRNK, has been written to perform this and its
listing is included in the appendix. The only limitation is that the user may
need to transpose co-ordinates of the input polynomial so that substitution is
made for the correct variable (the last one). If the substituted polynomial
includes a new variable the input polynomial will also need to be recast so that
it is a function (albeit trivial) of that variable. Both these operations are
straightforward in APL.

Further functions such as polynomial differentiation can also be easily
coded in APL.

ERL-0004-TR _6 -

6. AN APPLICATION

The following application is one which arose in the course of research in the
area of Kalman filtering and smoothing. The aim was to determine the band-
widths of a particular Kalman filter-smoother as a function of the bandwidths of
the Kalman filter without the smoother.

Under steady state conditions the filtering and smoothing matrices may be
described in terms of 3 parameters fs, fv and fa’ which are proportional to the

filter's initial response to a step in position, velocity and acceleration
respectively. In fact, fS will approximate the (non-dimensional) frequency

response of the filter with respect to position. (The same cannot be said of
fV and fa because of phase shifts.)

Only one of these parameters may be specified independantly, and we may write,
for t = \/(1—£S) ,

- 2y . - 32 . - _+33
fS = (1-t") ; fv 2(1-t)° fa (1-t)° /(1+t)
If bs’ bv’ ba are the respective smoothing responses, it is possible to show

that they may be defined so that they are the diagonal elements of a 3 x 3 matrix
W, given by

W= (PS-®) (I-A71)
where ® = /114 ATl = a/d -1 %
011 b/d 1 -1
001 2¢/d 0 1
P =/f, f , 2f
S v a
£, f, (12-10£-f)/ (8f_ (1-£)) , £, (2f_-f)/(1-£)
2, £,((f-£)/(1-£) » 26,F /(1-£)
a = (I-f+£); b = (£-2f); ¢ = £; andd = (1-f),

and S is the solution of the equation

S—ATSA = I'e

00O

where ' = (100)
000

Here P is proportional to the covariance of the filtered state vector, I' is a
scaled information matrix, and ® the transition matrix for a unit data rate.

The only significant remaining problem is the solution of the equation for S.
Since A is algebraically simpler than A, this may be equivalently expressed as

aHT sty - s = ahHire @ty

-7 - ERL-0004-TR

It was the solution of this set of 9 equations in the 9 unknowns
Sij,i,j=1,2,3 which was attempted using the standard procedures of FORMAC and

which failed because some intermediate term had gone beyond the allowable
magnitude range. Solution of the equations was then attempted by hand,
Although a range of relatively simple subrelations could be derived, they were
still too cumbersome to solve by hand.

The relations were

S11: = S12- + S1
S12- = 2(S13 + $2)
S21 = 2(S31 + $32)
8cS33 = 1 + 2(d-1) (S13+S31)
S31 = S32 = - 53
2(1+d) (S13+S31) + 2(2a+b+2d) Spa - = 1
2(btc-d(b+3c)) (Sy3 - S31) = b+c
and 2(b+c-d(b+3c)) S3; - = -d

Solution was again attempted using FORMAC, which again failed.
The subrelations were then coded in APL using the polynomial manipulation

routines ADD and BY and the results were used to calculate the responses bs’

bv’ ba’ as pairs of polynomials (numerator and denominator) in two variables t,

and 6 = (1+t)7'. The solutions that were obtained are listed in Appendix II.
The validity of the polynomial solutions was confirmed by the numerical
solution of the equations for S and W for a range of fs. However, the primary

form of the polynomial solution as numerators WN1l, WN22, WN33, and

denominators WD11, WD22, WD33, was still too complex to give insight, and it was
therefore desirable to simplify these expressions by use of polynomial
manipulation.

The first step was to eliminate common factors by testing each numerator and
denominator against a library of 9 factors which arose in the course of the
calculations. The second step was to make use of the rational function nature
of the result to eliminate the variable #. This was done first by
substituting § = 1/0 (effected by reversing the order of the last co-ordinate in
the numerator and denominator) and then by substituting { = (1+t). After
testing the results for factors (1+t) and (1-t), it was found that

(1+6t-34t> +39t* -4t® -8t%)/ (£? (1+t?) (1+4t+12))

S

b, = (1-t*)/ (1+4t+t?)
and b= 4t(1-t)/((1+t) (1+4t+t?))
and it is remembered that t2 ' = 1-f_.

The output of the two steps in the simplification is included in Appendix II.

7. DISCUSSION

Some points of comparison should be made between the APL system of
polynomial manipulation presented in this paper, and those proposed previously
by Surkan(ref.7). In his paper, Surkan reported the development of APL
routines to add, subtract, multiply and differentiate polynomials. He used a
different form of polynomial representation in which each term is represented by
its coefficient and the exponents of the (ordered set of) variables.

ERL-0004-TR -8 -

Tests were run with Surkan's example of orbit calculation to compare the
-effectiveness of the two approaches.

The problem essentially amounts to a recursive set of calculations involving
polynomials in the variables U, V, - and W, given that Fp = 1, Go = 0,

Fy = UAFy 4 , VOFy, , WO, | UGy _,
oU oV ow - v
6 = WGy . VOCGyg . WGy, Fy_q
ou v oW h

and U = -3UV, V = W-2V, W = -V(U-2W). (Note that the equation for V was
listed incorrectly in Surkan's paper, although it was programmed correctly in
his figure 2.)

The current set of routines performed these calculations to N = 19 in 18.2 s
on an IBM 370/168 with VSAPL. This compares most favourably with Surkan's
quoted time of 20 min on an APL online terminal to an IBM 360/50, in spite of
the difference in systems.

» Of more consequence is the difference in the results at N = 11. Although
some terms agree with those of Surkan's figure 3, most do not. Only the
addition routine was listed in Surkan's figure 1, and so it is difficult to be
more precise about where the difference arises. Since the same equations
programmed in FORMAC give answers identical with those from the current set of
routines, it must be assumed either that this author has misinterpreted the
example, or else the routines reported in reference 7 were in some way faulty.
A listing of the correct solution for N = 11 is given in Appendix III.

It is interesting to note that the FORMAC solution took 5.65 s in primary
execution time and 8.43 s including the preprocessing, compilation, and link-
editing steps. This does not diminish the value of the APL approach for the
reasons discussed in section 1. In fact the ratio of execution times, at a
little more than 2:1, appears to be substantially less than the 10 - 100:1
generally accepted for execution times of problems coded in APL to those for
coding in other higher level languages (such as FORTRAN and PL/1) (12). The
advantage with APL normally comes with the time to program and debug, and this
will dominate in programs which do not require repeated execution. It is this
‘problem solving' orientation of APL which is especially suited to symbolic
computing.

No.

10

11

12

Author
All papefs
All papers

Moses, J.

Iverson, K.E.

Bergquist, J.W.

Kellerman, A.
Surkan, A.J.

Tobey, R.G.’

Hall, A.D.

Collins, G.E.

Collins, G.E.

Streeter, D.N.

-9 - ERL-0004-TR

REFERENCES

Title

Comm. ACM 14, August 1971

Comm. ACM 9, August 1966

"Algébraic Simplification : A Guide to the
Perplexed'. Comm. ACM 14, pp 527 - 537,
August 1971

"APL in Exposition". = IBM Philadelphia
Scientific Centre, Report 320 - 3010

"Algebraic Manipulation'. APL 74,
Proceedings, pp 45 - 49

"APL Symbolic Manipulation and Generating
Functions'. . APL 75, Proceedings,
pp 214 - 220

"Symbolic Polynomial Operations with APL'".
IBM J. Res. Develop., pp 209 - 211,
March 1969

"Experience with FORMAC Algorithm Design't.
Comm. ACM 9, pp 589 - 597, August 1966

""The ALTRAN System for Rational Function
Manipulation - A Survey". Comm. ACM 14,
pp 517 - 521, August 1971

"PM, A System for Polynomial Manipulation"
Comm. ACM 9, pp 578 - 589, August 1966

""Subresultants and Reduced Polynomial
Remainder Sequences'". ACM Journal 14,
pp 128 - 142, January 1967

"Cost-benefit Evaluation of Scientific
Computing Services'. IBM Sys. J. 11,
PP 219 - 233, 1972

ERL-0004-TR - 10 -

APPENDIX I
APL PROGRAM LISTINGS

vRY[N1v
YV RES<«A BY RyMNTIN 37 3P sT 3 3N yRNX 3RARB3FAS
f1] RUWK«(ppA) (ppR)IMTIO+D
r27 o CHECKX FOR NULL OR TRIVIAL POLYNOMTAL
[a] >((0=+/,1A)Yv(n=+/,1B)Y/NULL
[u] >((0<L/pR«ST™RIP BIA(N<| /pA«STRIP A))/ N2
[51 MULL:20%ppRES«(RNXp1)p0
671 TA:>0xppRES«Bx+/ A
[7] ™TB:>0xppRPFRS«Ax+/ 7
ral 7m2:a((1=0/p4),(1=T/pR),((0pA)= 003))/(mﬂ 73,51)
rqj B«(((RNX- opR)pl) pR)p3B
(1071 A«(((RNK- opA)ol).oA)oA
11} a REMOVE COMMON POWERS FROM A AND B
[12] S1:PB<«(pR)Y+0xPA<«(pA)+FAC<«RIKpI+N
FT13]) LOsM«T+1+1(RPRY-T+1)+J<N
f1u] LA:+(0=+/,1(RALAT],(J«T+1) ,RA[LN])+A)/TA
(157 J«nxRALTI1«RAIT1-PACTT 1«7 -1
18] A«(-RA)+A
173 LR:»(0=+/,| (RBIAT],(J«T+1) ,RRIN])+B)Y/LR
187 RBII1«RBIT1-J<«J-1
FT19] B<«(-RB)+3
FT2071 >(PNE>T«T+1+0xFACLTI«FPARITYI+J)/ 10
2171 o 7HFNX AVATTLARLFE WORK ARFEA
[2271 >(0<IFA-404+(20xRVK)+x/20,RPA RM«RA4+RBR-1)/52
[237 T«1+0xJ<«[/RA
fon} Leas(Jdz2(T-1)Y4(T«T+1)Y4RA) /T
257 RES«(-N+pPES)ARES«R BY(N<«((T-1)p0) ,(J<«[N,5%xT) ,(R"X-T)o
0)+4
[26)1 >(RNE=pRM<«oNRES«RES ADD R BV(((I 1)Y4RA) , T, TIPAY+L)Y/PREST
{277 S2:7«0xppRES«{(RA,(-PM))4A0 ,x
[28] L1:N+((I+9A),1,((I+1)¢DA),(I+RM),(I+1)+PV)
f29] >(RATT1=14T3p «NpJ+RATT1-1)/701
(30 L2:>(RALTII>14T+4p0C«0 [I 1Mpd«T-1)/L2
(317 FO1:+((I«T+1)<0,5%xppRES«COIRNK+TIRES) /T A
[32] 5L3:+(RVNE<ppRES<«+/[NIRES)/L3
[33] a RESTORE COMMON POWERS T(Q RESULT
[34] REST:RES<«STRIP(-PM+FACY+RES

v
vADDI]V
Y RES<«A ADD B,FR
f13] a TNSURR A AMD B HAVE THFE SAMFE RAWX
21 >((ppA)=0pB)/S1
31 R«(ppA)lppR
rul B«(((R-ppB)p1),pR)p7
[s1] A<«(((R-0ph)p1),0A)pA
61 p PAD OU™ SMALTFR OF FEACH DIMENSION
771 81:RES«STRIP(R+AY+(P«(pA)FpRI4R
v
VSTRIPINV

¥ R<«STRIP AsRAJPNU ;T3 J3A13A2

{11 a REDUCES A ™0 SMALLEST SINNIF, SIZR

[2] >((+/,1A)=+/ R« ((AT RNX«ppA)p1)pA)/O

ral T<1+J«0xpp R<A

Tyl L1:A1<(I-1)+RA<pR

51 A2«T4PA

(61 L2:+(0=+/,1(A1,(-TJ«J+1),A2)4R)/L2

r71 S((TT+1)<poP«(((T-1)pd«n) ,(1-) ,(RPIK-T)p0)¥R)/T1
v

- 11 - ERL-0004-TR

VDIVINMIvV
V RES«A DIV B;I;01I0; RNK 30 3AS 3RS 3CB3yRCB RDQ RSN
(11 o POL.A + POL.B, RETURNS QUOTIENT AUD REMAINDER
(2] 0OIo<«1+0x+/ RNV<-(ppA<—S””"IP A)rpp°<-f""PID B
[31] +((ppA)=ppB)/S5D ,
(4] A«(((RNK-ppA)p1),pA)0A
[51] B«(((RNX-ppB)p1),0B)pB
(61 S0:>(1<[/pR)/S1 ,
{71 *0xppRES«(2,pQ)4(1,p0Q)pA<«(At+/,B)
[8] a FIND THE HIGHEST POWERED TERM IW B
[9]1 S1:RCB«RNKpOxT+«1
[10] RS<«pCRB<«R
(11] LB: RCB[I]+RﬂB[I]+RS[I] ‘) .
[121] +((I+«I+1)<pRS+«pCB<«STRIP CB«(((TI- 1)+RS) 1,I+RS)+CB)/LB
(131 0« (RNKp1)pO
Tau] a CAN 4 QUOTTIENT BW FOUVD’
157 L1:>(0>L/((pA)-pB))/NO
[16] +(0=+/,lAS«(RSQ+(RCB)-I+1)+A)/NO
[17]1 RS<«pAS«STRIP AS ;
f18] L2:RPSQLI1«RSQLII+R8IT]
[19] ((I<«I+1)<pRS«pAS«STRIP AS«(((I-1)4+RS Y, 1,I+RS)Y+45)/I.2
[20] a RSQ IS HIGHEST POWER, AND AS ITS COFFFICI”H”
[21] RDQ«? Q-RCB-1+I+0
[22] AS<«+/,AS:CB
[23] @g<«0 ADD RDQp(((x/RDQ)-1)p0),AS
[24] >(RNK=ppA<«STRIP A ADD- (1- ?D0+pB)+BxAS)/L1
(251 WO:RES«(RS+0),[0.51(RS«(pQ)[pA)+4
\
VRATPOLT[1]vV
V RES<«A RATPOL B;[1IO ;I 3PNK3RA; s RB3;JA ;JB;
(113 NV+(opA)r(opB)f1
(2] A ENSURE A AND B HAVE THE SAME RANK
[3] >((RVK=ppA YARNK=ppR)/S1
fu] B«(((RNZ-ppB)p1),p0B)pB
[51 A<«(((RNK-0pA)p1),p4)p4
(6] S1:+((0=+/,14)v(0=+/,1B))/52
{71 na REMOVE COMMON POWFPS OF VARIABLES
[8] I<«(JI0+0x+/(RA«pA) ,RB+pB
[al L1:N+I+1+1(RNK—I+1)+JA«JB+0
[10] ZA:+(0=+/,| (RAC\I],(JA«JA+1) ,RALNI)+4) /LA
[11] LB:»(0=+/,1(RB[\T],(JB<«JB+1) ,RBLN1)+3)/IB
[12] RALT]«RATI]-JA«(JALJIB) -1
(13] RBLI)<«RBII1-JA
f14] A«(-RA)44A
151 B<«(-RB)+B
[16] >(RNK=I<I+1)/L1
[17] S2:RES<«(2,RA)p (,RAYA), ,(RA«(pA)TpRB) 4B
v
VREDRNKI1v
V RES<«A REDRNK B;[1IO;RN;RB
(1] = qUBSmImUTES pOL.,A FO? TRE LAS™ VARIABLE OF R
21 +(1= 1+(DB)+OXRV+QPB+(-WIO+1)+QWTQ*B)/OUm
{31 L1:5(1< 14pRE S«(((RWp0), 1)4RES)ADD A BY(RB,(1-"14pRES)
Y+ ((RB<«"14pRES),” 1)+PFS)/Ll
(4] OUT:RES«("14pRES)oRES
v

ERL-0004-TR - 12 -

VREDFACLM 1V
V RES<PLIB RTDFAC RPOLY;FAC;0\I0 ;7K N 3D3HFACT;IF 3P 30 3 RPT,
(1] & ELIMINATES FACTORS IN PLIR FROM RPOLY(RAT. POIL.)
(23] N«TKp(1,7K<(14pRPOLY))+RPOT.Y
[3] D«TXp("1,TZ)4RPOLY
(41 NFACT<«+/(14pPLIB)
[5] RRL<«(ppPLIB)-NIO«1+IF<«0
[6]1 a SELECT NEXT FACTOR
[7) NEWF:+(NFACT<IF«IF+1)/NOMORE
[81 PAC+(1+pFAC)oFAC<«STPIP((IF-NFACT) ,RRLpO)+((IF-1) ,PRI,p0)+
PLIB
(91 a IS IT A FACTOR OF NUMERATOR AND DENOMINATOD?
0103 L:+(0<+/,1(71,(14pQ))4Q<«] DIV FAC)/NEWF
[11] +(0<+/,1("1,(1+4pP))4P«D DIV FAC)/NEVF
[12] M<TKp(1,TK«140Q)40Q
[13] D+«TKo(1,T7K«14pP)4+P
f1u] >((ppFAC)2+/pFAC)/L
C15] WOMORE :RES«(P4N),[0.51(P<«(pN)lpD)4D
v

- 13 -
APPENDIX I1I

FILTER PROBLEM SOLUTION

WN1l and WD11 are the numerator and denominator respectively of the first
diagonal term of W, expressed as a rational polynomial in t and . WT1 is the
same term expressed as a rational polynomial in the form (2), after
elimination of common factors using the routine REDFAC and the library of
factors, PLIB. Wl is the same term after elimination of 6. Similar comments
apply to the other diagonal terms of W.

RATPOL takes two polynomials as input and returns them in the rational

polynomial form (2), after cancelling factors which are powers of the
variables

ERL-0004 -TR

W11
0 0 0 0 0
0 32 T32 0 Yy
0 ~288 288 16 “u8
0 1160 ~1156 ~1uy 264
0 "2744 2712 576 880
0 4200 "4088 ~13u44 1980
0 4312 4088 2016 3168
0 2968 2688 "2016 3696
0 1320 1096 1344 ~3168
0 344 ~232 7576 1980
0 3o 8 144 T80
0 0 4 16 264
0 0’ 0) “ug
0 0 0 0 u
7D11

0 0 0

0 0 0

0 0 0

0 8 Ty

0 "uo0 2u

0 72 6y

0 40 104

0 480 120

0 72 104

0 5o Teu

0 8 24

0 0 Ty

«WT71«2xPLIB REDFAC WN11 RATPOL WD11
8 8 0 1
Tou oy 4 76
26 ~25 T12 15
10 8 12 "29

o} 1 4 15
0) 0 76
0 0 0 1
0 n 0 0
0 n 0 0
2 1 0 0
2 0 0 0
0 "1 0 0
0 0 n 0
0 n 0 0
Mel71«(2 2p1 1 1 "1)REDFAC(1 2 1p1 1)REDRVKéNT1
1 6 0 "34 39 " Tg
o} 0 1 6 10 6 1
QW22
0 0) 12 "5/ 100 T80 20 8 Ty
0 0 0 ;] 32 Tuo0 0 un T32 8
/WD22

0 0 0 8 "18 8 32 8 T16 8 0
0 0 0 4 12 T12 y 4 T12 12 y

ERL-0004-TR - 14 -

Ne«pm2«PLIB REDFAC WN22 RATPOL WD22

3 72
T2 0
102
0 0
2 "1
C
2 "1
0 "1
Mel2«(2 201 1 1 “1)YREDFAC(1 2 101 1)REDRYKGKT2
1 0 "1
1 u 1
QW33
0 0 0 n 0 n n) n 0
0 s n y T12 q 8 T12 4 0
0 0 0 T4 2z T80 80 TB0 24 T u

]/WD33
0 0 0 8 16 0 16 "8 0
0 0 o "uo 12 T1s 16 T12 I
O«WT3«.5xPLIB REDFAC WN33 RATPOL WD33

[Be e B B]
O

CDCONON
o = S NI
oo D

0

NelW3«(2 2p1 1 1 TAYREDFAC(1 2 1p1 1)YREDRIKEGWTI
0 4 "4 0
1 5 5 1

- 15 - ERL-0004-TR

APPENDIX III

ORBIT PROBLEM SOLUTION
(*F11',[1 JA)FORM SEL F

5 4 3 L 2 5
Fi11= 1023 U7V - 878268 I/ V 4 93R60 7 VI + 367614504 [J V

3 3 3 2 27
148733940 U V 7 + 1189702) VW - 318715238 U V

25 2 32 2 3
+ 23408u492 7V ¥ - 53057340 U VW + 3479700 U VW

9 7 5 2
+ 654729075 UV - 695674980 UV I + 266431410 UV W

3 3 y
42723300 UV W 4+ 2320275 VY

5 42 4 | I
Gl1= - U + 53640 U V - 1008 U W - 6379326 7/ V
3 2 3 2 2 6 24
+ 1657140 I/ V ¥ - 40446 U 7 4 97257888 U V - 57948120 11 V ¥
2 2 2 23 8 6
+ 9297840 U V W - 255000 U W - 310134825 IV + 200768940 0V
. 2 3 u

- 93324150 UV ¥+ 11213100 UV W - 308745 W

ERL~0004-TR

Index of A
Index of B 0 1 m
oty "
’aO m
S
- 23 bm

\\‘.\

n+m
(aO b0)+(a1 bO *a, bl)x+ e e e *a bm X .

Figure 1. Formation of the product of polynomials
of a single variable from the outer product

O-

| {
0 ?0’) ?1’ 239 O ?
|
? >y ?0, ay bl’ > a4 Tm, 0, . , 0
o, o, ;
| I ’?
(ao b0)+(a1 b0 + a, bl)x+ +a b X .

Figure 2. Formation of polynomial product by rotation
of outer product. The padded outer product
is skewed along its last axis, and then
reduced by summation along its first axis.

DOCUMENT CONTROL DATA SHEET

Security classification of this page UNCLASSIFIED
1 DOCUMENT NUMBERS 2 SECURITY CLASSIFICATION
AR AR-001-179 a. Complete UNCLASSTFIED
Number: Document:
Report ERL-0004-TR b. Title in UNCLASSTFIED
Number: Isolation:
Other c. Summary in
Numbers: Isolation: UNCLASSIFIED
3{ TITLE
POLYNOMIAL MANIPULATION WITH APL
4 1 PERSONAL AUTHOR(S): 5| DOCUMENT DATE:
April 1978
B. Billard 6| 61 TOTALNUMBER
OF PAGES 20
6.2 NUMBER OF 12
REFERENCES:
71 7.1 CORPORATE AUTHOR(S): 8 REFERENCE NUMBERS
a. Task:
Electronics Research Laboratory b. Sponsoring
Agency:
7.2 DOCUMENT SERIES
AND NUMBER 9| COST CODE:
Electronics Research Laboratory 228753/135
0004-TR
10 | IMPRINT (Publishing organisation) 11 COMPUTER PROGRAM(S)

Defence Research Centre Salisbury

(Title(s) and language(s))

12| RELEASE LIMITATIONS (of the document):

Approved for public release.

12.0 OVERSEAS NO PRJ 1

A

Security classification of this page: L

UNCLASSIFIED

Security classification of this page: UNCLASSTFIED

13| ANNOUNCEMENT LIMITATIONS (of the information on these pages):

No limitation

14| DESCRIPTORS: Polynomials 15 | COSATI CODES;
a. EJC Thesaurus Computer systems
Terms programs : 0902
Symbolic programming
Electronic computers 1201

Computer programming

b. Non-Thesaurus

Terms APL (programming language)

Symbolic computing

16 | LIBRARY LOCATION CODES (for libraries listed in the distribution):

SW SR SD AACA

17| SUMMARY OR ABSTRACT:

(if this is security classified, the announcement of this report will be similarly classified)

A simple but effective system for the manipulation of
polynomials of several variables in APL is presented. The
system is especially advantageous in situations where more
sophisticated symbolic computing systems are not available,
or have failed to solve particular problems. The system is
shown to successfully solve a problem not resolved by a more
sophisticated system.

Security classification of this page: UNCLASSIFIED

	Summary
	Contents
	1. Introduction
	2. Polynomial representation
	3. Polynomial multiplication
	4. Polynomial division
	5. Further considerations
	6. An application
	7. Discussion
	References
	Appendix I APL program listings
	Appendix II Filter problem solution
	Appendix III Orbit problem solution
	Document Control Data

