POLYMERIZATION OF SPIRO ORTHO ESTERS — EFFECT OF TEMPERATURE (U)
POLYMERIZATION OF SPIRO ORTHO ESTERS – EFFECT OF TEMPERATURE ON KINETIC RESULTS

BY HUBERT J. BOOTH

RESEARCH AND TECHNOLOGY DEPARTMENT

AUGUST 1978

Approved for public release; distribution unlimited.

NAVAL SURFACE WEAPONS CENTER
Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910
Preliminary kinetic data obtained at ambient temperature on a model spiro ortho ester, a class of non-shrinking monomers, showed that side reactions compete with the polymerization reaction. In an effort to minimize these interfering side reactions, polymerization was conducted at reduced temperatures and kinetic data was gathered. The information obtained indicated that lower temperatures (down to -30°C) do not reduce the magnitude of the effect of the side reactions.
SUMMARY

This report describes kinetic data obtained on the polymerization of spiro ortho esters as a function of temperature. Spiro ortho esters represent a class of monomers that have near zero shrinkage or slight expansion when polymerized. The results obtained indicated that temperatures down to -30°C do not prevent interfering side reactions from occurring.

This work was performed with funding from Internal Research, Task No. CR01AA171. The work was conducted during the period October 1977 through May 1978.

J. R. Dixon
By Direction
CONTENTS

INTRODUCTION... 4

EXPERIMENTAL... 5

RESULTS AND DISCUSSION
I. Polymerization at 15°C.. 6
 A. Five Mole Percent Catalyst.. 6
 B. Ten Mole Percent Catalyst.. 6

II. Polymerization at 0°C.. 6
 A. Five Mole Percent Catalyst...................................... 6
 B. Ten Mole Percent Catalyst...................................... 6

III. Polymerization at -20°C.. 6
 A. Ten Mole Percent Catalyst....................................... 6
 B. Two Separate Additions of Five Mole Percent Catalyst for Total of Ten Mole Percent Catalyst.. 7

IV. Polymerization at -30°C.. 7
 A. Five Mole Percent Catalyst...................................... 7
 B. Ten Mole Percent Catalyst...................................... 7
 C. Twenty Mole Percent Catalyst.................................. 7

CONCLUSIONS... 17

RECOMMENDATIONS.. 18
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Polymerization of the Spiro Ortho Ester I at 15°C and Five Mole Percent Catalyst</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Polymerization of the Spiro Ortho Ester I at 15°C and Ten Mole Percent Catalyst</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Polymerization of the Spiro Ortho Ester I at 0°C and Five Mole Percent Catalyst</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Polymerization of the Spiro Ortho Ester I at 0°C and Ten Mole Percent Catalyst</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Polymerization of the Spiro Ortho Ester I at -20°C and Ten Mole Percent Catalyst</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Polymerization of the Spiro Ortho Ester I at -20°C and Two Separate Additions of Five Mole Percent Catalyst for a Total of Ten Mole Percent Catalyst</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>Polymerization of the Spiro Ortho Ester I at -30°C and Five Mole Percent Catalyst</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>Polymerization of the Spiro Ortho Ester I at -30°C and Ten Mole Percent Catalyst</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>Polymerization of the Spiro Ortho Ester I at -30°C and Twenty Mole Percent Catalyst</td>
<td>16</td>
</tr>
</tbody>
</table>
INTRODUCTION

The potential usefulness of monomers that expand—rather than shrink—upon polymerization has been detailed in our first report. In that report we explained the reasons why the spiro ortho ester I, 2-phenoxyethyl-1,4,6-trioxaspiro(4.4)nonane, was chosen as the model compound for kinetic study.

\[
\begin{align*}
\text{O} & \text{CH}_2 \text{CH} \text{O} \text{CH}_2 \text{O} \text{C} \text{O} \text{CH}_2 \\
\text{CH}_2 \text{O} & \text{CH}_2 \text{CH}_2 \text{CH}_2 \\
\text{Ph} &
\end{align*}
\]

II

The results given in that report showed that this monomer underwent various side reactions during its polymerization. The side reactions affect the final polymer in such a way that its composition and structure are unknown. Basically, the side reactions result from the breakdown of I, upon addition of the boron trifluoride etherate catalyst, to the compounds from which it is prepared, phenyl glycidyl ether, II, and γ-butyrolactone, III. Consequently, II can undergo several reactions (detailed in Reference 1) that affect the makeup of the final polymer.

\[
\begin{align*}
\text{O} & \text{CH}_2 \text{CH} \text{O} \text{CH}_2 \\
\text{CH}_2 \text{O} & \text{CH}_2 \text{CH}_2 \text{C} \text{O} \\
\text{Ph} &
\end{align*}
\]

II

\[
\begin{align*}
\text{CH}_2 \text{CH}_2 & \text{C} \text{O} \\
\text{CH}_2 \text{O} &
\end{align*}
\]

III

Therefore, in an effort to control or prevent these side reactions, kinetic studies were performed at temperatures below room temperature. (Room temperature was the temperature at which polymerization data was gathered and given in Reference 1.)

EXPERIMENTAL

The materials used and the gas chromatographic equipment and the calibration of that equipment are explained in Reference 1. Methylene chloride was used exclusively as the polymerization solvent; boron trifluoride etherate was used as the polymerization catalyst. Kinetic studies could not be conducted below −30°C because the spiro ortho ester I crystallized from solution below −30°C. The starting concentration of the spiro ortho ester I in methylene chloride was held constant in all the kinetic runs.
RESULTS AND DISCUSSION

I. Polymerization at 15°C

A. Five Mole Percent Catalyst

The data gathered on the polymerization of I in methylene chloride at 15°C using 5 mole percent boron trifluoride etherate is given in Figure 1. The results show that upon addition of catalyst a portion of the spiro ortho ester I quickly dissociates to phenyl glycidyl ether, II, and γ-butyrolactone, III. The concentrations of II and III would be equal if II did not undergo the various side reactions explained in Reference 1.

B. Ten Mole Percent Catalyst

Figure 2 shows the results of the kinetic run at 15°C with 10 mole percent catalyst. As expected based on the data obtained in the preliminary kinetic results (Reference 1), the catalyst concentration directly affects the quasi-equilibrium concentrations of I, II, and III.

II. Polymerization at 0°C

A. Five Mole Percent Catalyst

The results of the kinetic run at 0°C and 5 mole percent catalyst are given in Figure 3. The data is essentially the same as that obtained at 15°C and 5 mole percent catalyst (Figure 1). A decrease of 15°C (from 15°C to 0°C), therefore, had little or no effect on the polymerization rate or side reactions.

B. Ten Mole Percent Catalyst

Once again the data given in Figure 4 for 0°C and 10 mole percent catalyst is, within experimental error, the same as that data obtained at 15°C and 10 mole percent catalyst (Figure 2).

III. Polymerization at —20°C

A. Ten Mole Percent Catalyst

Figure 5 gives the results gathered at —20°C and 10 mole percent catalyst. The data corresponds well with that obtained with 10 mole percent catalyst at 15°C and 0°C (Figures 2 and 4).
B. Two Separate Additions of Five Mole Percent Catalyst for Total of Ten Mole Percent Catalyst

In this case, we wanted to determine if the effect of catalyst on the quasi-equilibrium concentrations of compounds I, II, and III was cumulative. The results in Figure 6 show that the effect of catalyst is cumulative. The data obtained after the first addition of 5 mole percent catalyst is the same as the data gathered at 15°C and 0°C (Figures 1 and 3). After 243 minutes, the second addition of 5 mole percent catalyst was added and gave results comparable to the data given for 15°C, 0°C, and -20°C at 10 mole percent catalyst (Figures 2, 4, and 5).

IV. Polymerization at -30°C

A. Five Mole Percent Catalyst

Again the data given for these conditions (Figure 7) is the same as the results obtained for the other temperatures at 5 mole percent catalyst (Figures 1 and 3).

B. Ten Mole Percent Catalyst

Figure 8 shows the results gathered at -30°C and 10 mole percent catalyst. The data compares favorably with that obtained at the other temperatures using 10 mole percent catalyst (Figures 2, 4, and 5).

C. Twenty Mole Percent Catalyst

The results of adding 20 mole percent catalyst to the polymerization solution at -30°C are given in Figure 9. As expected, different amounts of catalyst directly affect the quasi-equilibrium concentrations of compounds I, II, and III.
Figure 1: Polymerization of the Spiro Ortho Ester I at 15°C and five mole percent catalyst
Figure 2: Polymerization of the Spiro Ortho Ester 1 at 15°C and Ten Mole Percent Catalyst.

Molarity

Time (min)

0

40

80

120

160

200
FIGURE 6 POLYMERIZATION OF THE SPIRO ORTHO ESTER I AT -20°C AND TWO SEPARATE ADDITIONS OF FIVE MOLE PERCENT CATALYST FOR A TOTAL OF TEN MOLE PERCENT CATALYST
FIGURE 7 POLYMERIZATION OF THE SPIRO ORTHO ESTER 1 AT -30°C AND FIVE MOLE PERCENT CATALYST
FIGURE 9 POLYMERIZATION OF THE SPIRO ORTHO ESTER I AT -30°C AND TWENTY MOLE PERCENT CATALYST
CONCLUSIONS

The data obtained at the various temperatures and catalyst levels shows that lower temperatures are of no benefit in controlling the side reactions occurring during the polymerization of spiro ortho esters. The concentration of compounds I, II, and III at a particular catalyst level correspond to each other, within experimental error, in the temperature range of −30°C to room temperature.

The quasi-equilibrium concentrations of the spiro ortho ester I and γ-butyrolactone, III, depend on the initial amount of catalyst used. On the other hand, the concentration level of phenyl glycidyl ether, II, is essentially independent of catalyst level. The phenyl glycidyl ether formed upon dissociation of I quickly homo- and copolymerizes until a certain minimum concentration level is reached. This same observation has been noted by Krejear and Lunak.2

RECOMMENDATIONS

A continued investigation of spiro ortho esters as non-shrinking monomers is not recommended because of competing side reactions during polymerization which lead to polymers of unknown composition and structure.

The use of spiro ortho carbonates as a class of non-shrinking monomers should be investigated. The structure of these materials precludes their breaking down to the compounds from which they are prepared. Some preliminary work has indicated that this class of materials is capable of copolymerization with more conventional acrylic-terminated monomers. The degree of expansion and/or shrinkage, along with a convenient procedure to measure volume change, must be determined. Then, the basic properties of the materials developed can be evaluated.
DISTRIBUTION

Office of Director of Defense
Research and Engineering
Attn: Mr. J. Persh, OAD/ET
Washington, DC 20301

Commander
Naval Air Systems Command
Attn: AIR 52032 (C. Bersch)
 AIR 53032D (M. Stander)
 AIR 320A (T. Kearns)
 AIR 53032D (J. Gurtowski)
Washington, DC 20361 4

Commander
Naval Sea Systems Command
Attn: SEA-033
 SEA-035
 SEA-09G32
 SEA-03B
Washington, DC 20360

Office of Naval Research
Attn: Code 472 (Dr. G. Neece)
 Code 470 (Dr. Edward I. Salkovitz)
800 Quincy Street
Arlington, VA 22217 2

Director
Naval Research Laboratory
Washington, DC 20375 2

Commander
Naval Weapons Center
Attn: Code 533
China Lake, CA 93555 2

Commander
Naval Ocean Systems Center
Attn: Technical Library
San Diego, CA 92152

NSWC/WOL TR 78-106

DISTRIBUTION (Cont.)

Copies

Director of Development
Army Material Command
Graveley Point
Washington, DC 20316

Commanding Officer
Picatinny Arsenal
Plastic Technical Evaluation Center
 Attn: A. M. Anzalone
Dover, NJ 07801

Commanding Officer
U.S. Army Mobility Equipment
R&D Laboratory
 Attn: Technical Library
Fort Belvoir, VA 22060

Air Force Materials Laboratory
Wright-Patterson Air Force Base
 Attn: Technical Library
OH 45433

Commanding Officer
Army Materials and Mechanics
Research Center
 Attn: Library
Watertown, MA 02172

Commander
Naval Ship Research and Development Center
Carderock Library, Code 5641
Bethesda, MD 20032

Defense Documentation Center
Cameron Station
Alexandria, VA 22314

Commander
Naval Underwater Systems Center
 Attn: LA151, Technical Library
Newport, RI 02840

Director
Naval Avionics Facility
 Attn: Code 033 (C. Ferguson)
 Code 033.3 (W. W. Turner)
 Code 035 (Library)
Indianapolis, IN 46218
TO AID IN UPDATING THE DISTRIBUTION LIST
FOR NAVAL SURFACE WEAPONS CENTER, WHITE
OAK TECHNICAL REPORTS PLEASE COMPLETE THE
FORM BELOW:

TO ALL HOLDERS OF NSWC/WOL/TR 78-106
by Hubert J. Booth, Code R-31
DO NOT RETURN THIS FORM IF ALL INFORMATION IS CURRENT

A. FACILITY NAME AND ADDRESS (OLD) (Show Zip Code)

NEW ADDRESS (Show Zip Code)

B. ATTENTION LINE ADDRESSES:

C.

☐ REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.

D.

NUMBER OF COPIES DESIRED ___________________________________