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INTRODUCTION

The effects of snowfall on the propagation of light are of interest to
the military community because of the increas'.,g number of imaging,
tracking, and detecting devices which rely on light propagation. The
wavelengths of interest extend from the visible to the muillimeter region.
The work re')orted here is part of a larger effort devoted to the modeling
of atmospheric effects on. electro-optical systems for both design plan-
ning and deployment. The oLject of that effort is the production of a
library of computer codes capable of describing adverse environmental
effects, both natural and r::an-Im;-d, as they ralate to readily observable
meteorological parameters. OnE of the more difficult conditions to so
describe is snowfall.

The effects of snowfall are more varied and generally more severe than
rain. Over a sizable portion of the earth, snow occurs frequently enough
to be a potential hazard to operations. As an example, at Montreal
(latitude 45"') over 200 hours of snowfall were observed in one winter
season by Warner and Gunn 11 !. Durations of snowfall of several hours
are common in such areas. Thus an ability to estimate the propagation
effects can be an important factor.

The purpose of this work has been to deterviine frcn available data what
the magnitude of attenuation by snowfall is, what the contributing
factors are, and what parameters are required for its estimation. Suf-
ficient data have not yet been acquired for millimeter wavelengths; flow-
ever, the nature of millimeter attenuation effects can probably be
anticipated from size distributions.

More information is available for the visibie and infrared (IR) regions,
and certain features immediately become evident from this information.
First, the magnitude of attenuation is large--lylr.g between the magnitudes
for fog and rain--but this depends on the wavelength;. Second, every
snowfall is dcLfferent; attenuation varies widely, depxanding on snow type,
temperature, humidity, and other factors. Finally, since most of the
accessible data on snowfall were obtained with effects other than propa-
gation considered, all of the necessary information is seldom avai'lable.

BACKGROUND

Before specific measurements are discussed, the nature of the problem will
be considered. In snowfall the major effect on propagation is scattering.
Conventionally this effect is treated successfully by assuming spherical
scatterers and describing their sizes and optical properties. With snow,
such an approach is not possible because of the irregilar shapes of the
particles, at least until wavelength \ is large enoug) so that particle
diameters are much less than N. This generally weans \ > 10 ami. The
only alternative for shorter wavelennths then is empirical determination.
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Scattering by snow particles is not the only Iimportant effect and may
often be rivaled by scatterinq from fog droplets accompanying the snow.
This phenomenon, appears to be less well recognized, and many of the
existing~ observations are difficult to assess because they do not men-

E tion it. Since the presence of fog in snowfall is difficult to detect
aný still more difficult to measure, the frequency of occurrence of this
probiem "s not known. As will be seen later, the presence of fog is
probably the rule rather than the exception, at least for some locations.
I'aze or other particulate materials Piav also accompany snow.

A smaller but not negligible effect is due to water vapor. Except near
absorption bands, this effect may be more indirect as it affects the
properties of accompanying haze. In at least one case ill, it is noted
that attenuation at 0.45,m increases with humidity, becoming quite sig-
nificant for relative huridity above 8,5 percent. Its significance at
wavelengths near absorption bands is obvious, and appropriate absorption
calculations may be warranted. However, generally the scattering is
expected to far outweigh absorption.

The following paragraphs sunriarize existing data and give a synopsis of
the results. The difficulties in obtaining suitable Imeasurements in
snow are painted out; and as a starting point, a "typical" snowfall is
described. An attempt is made to identify meteorological observables
which are r.-'ily obtainable and which may he tised to establish trans-
mittance predictions.

AVA I LABL E MEASUREMENTS

Lillesaeter 121, Mellor 131, Warner and Gunn ill, Zel'manovich !41, and
Polyakova and Tretjak'¢ 151 have measured light attenuation in snowfall.

These results are difficult to compare directly because of differences
in their apparatus and in the way the data are related to snowfaHl rate.
Each result, however, gives en empirically derived equation relatir.;
either extinction coefficient or visibility to snow amount, and an
attempt has been made to convert these resul i to similar units without
loss of accuracy. rhe resulting equations are given in Table 1.

Also included in the table is a visibility relation presented by O' rien
161 who reports this relation in the form of extinction, coefficient.
O'Brien meas,.red visibility, converting by means of the Koschmieder rela-
tion which is doubtful for snowfall; therefure, his extinction cceffi-
cient is given only in terms of visibility. Figure 1 gives plots of
these relations where the disparity of resuls is evident.

All of the reasurements were made at visible wivelengths except for
f those of Zel'iianovich 141 in which a 3.87;.m scu-ce was used. All of

the mea.irements represent observations over one or more winter seasons,
again excepting those of Zel'narovich which represent a single snow-
storm. While all researchers are careful to measure the rate of accumu-
lation, little note is taken of the presence or absence of fog, and
temperature and relative humidity are not reported. O'Brien 161 refers

3
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ALE1. TRANSMITTANCE ALGORITHMS FOR SNOWFALL

j ý~iator Extin'ction Coefficient (knf') Visibility (kin

Lillesaeter =~ 3.93 R *V =R-

Zel'uianovich _. 1.3 R0, 5

Polyakova and c~3.2 RO, 91  V =O9R09
Tretjakov

Mellur 1,11 R0",2 V = 1.65 R-0 -42

Warner and Gunn ci 2..53 R

O'Brien =1,393 RO0 '39  V =1.25 R-0 -69 -

*Arccumulat'iori rate, R, is mm hr-1. Dashed line indicates primairy
measurement.
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to the frequent presence of fog with snow at his site at Hanover (also
the site of Mellor's work) and Warner and Gurn [ I mention th. effect ofhigh relative humidity (but not foq), suggesting that it riy account for
almost 50 percent of the observed attenuation.

Careful observations of snow type were E;ade only by Mellor 131, who does
not break down his transmittance data by type, and O'Brien who does, but
who, in addition to the earlier mentioned difficulty, presents his re-
sults in ters of area concentration which can be converted to accuiý!ula-
tion rate only with knowledge of the size distribution. Mellor observes
that the proportionality constant relating V and ,% is a factor of 2.25
less than that of the Koschmieder formula, that is, -,V = 1.74. This
affects O'Brien's results as mentioned above.

The importance of temperature is evidenced by studies of visibility
i7,8, and 91 and by transmittance-based snow rate measurements 1101,
which show attenuation to be significantly lower in melting snow. Rain
repr.sents a l iiting case. Zel'rtanovich, however, measured a tempera-
ture well below freezinc for his case so that other factors can also
depress the curve. At this point no clear reason for the dispersion of
results can be identified.

To see the iavnitude of the effect, a rate of I mm hr" 1 may be considered.
According to L1], is 1.1 and the transmittance over 1 km is 33 percent.
According to [2] is 3.93 and transmittance is 2 percent, making a
differeice of a factor of 17. From [1] which is presented as an im-
prove;4ent over [2], the value is S percent, still down by a factor of
four, and the disagreement increases with increasing R.

Mellor's results incluue numerous observations in a total of 16 snowfalls
with corr,,ents about the srnow type and particle size. Figure 2 shows re-
suits derived from his report with the reciprocal of visibility plottid
against snow rate and indicating different snow types. No clear corre-

lation with type is evident, but the spread of the data indicates that
factors other than R affect the extinction. Mellor notes that these
observations were limited to ýiidespread dry snowfalls of 1 hour or more
duration. Wet snow would be expected to produce results to the lower
side of this qroupirig.

Millesaeter [2] mieasured transmittance at (0.45t:m, but reports that visi-

Lility, V, is equal to I/R although he does not show data for V. The
information as reported by Lillesaeter leads to the result, V = 3.93.

Warner and Gunn [1] also measured transmitterce at 0.45jim and concur
with Lillesaeter in the relation of V to R. Thus, from them we obtain
IV = 2.53. Again no oata for V are presented, and it is assumed that
the two variables were not observed simultaneously.

Polydkova and Tretjakcv [5] report measurements of both variables but do
not tdbL2ate the data. They do, however, present empirical relations
for both in ter,., of R from which aV - 3.01 can be obtained.
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Both Mellor and O'Brien [3,6] measured visibility by means of contrast
attenuation at two visible wavelengths. However, only Mellor provides
a relation between a and V based on actual measurements. He obtains
aV = 1.74.

These different resuits are plotted in Figure 3. The results [5] and
[1] are considered most representative for the visible wavelength
region.

Chu and Hogg [111 measured transmission losses in light snowfall at
l0.6pm, 3.5.m, and 0.63um. The indicated points in Figure 4 were ob-
tained from their results and by use of their measurement at 0.63pm to
derive V via the formula obtained from Polyakova and Tretiakov[5].

By approximate fitting to this data, relations can be obtained for the
extinction at 3.5pm and i0.6om in terms of visibility. These relations
are:

C 1 0.6 3.5V-0• 8

f3 5 = 3V- 1. 2

Note, however, that Chu and Hogg's result did not always indicate con-
sistent behavior. Most of the time attenuation at 0.63pm exceeded that
at 3.5pm although occasionally the reverse occurred. This could be ex-
plained on the basis of an accompanying light fog of varying size dis-
tribution.

Sola and Bergemann [12] have reported broadband measurements of transmit-
tance in snowfall for the 3-4pm and 8-12um regions. Their data were ob-
tained in tests at Fort A. P. Hill, Virginia, and Grafenwohr, West Germany.
In presenting their results, they use values of visibility that are
derived from near IR extinction coefficients by means of the Koschmieder
formula, aV = 3.91. Since, from the work already discussed, that for-
mula appears to be inapplicable in snowfall, their results are recalcu-
lated by using the formula oLtained from Polyakova and Tretjakov [5]
(Figs. 5 and 6).

By curve fitting to these results, slightly different relations are found
for the IR extinction than from the data of Chu and Hogg [111. Here the
relations are

a3.5 '3.3V

aI0.6 = 4V- "

When all o•: these data are combined and fitted, the resulting formulae
are

7
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Figure 3. Empirical formulae for extinction versus visual range as
derived from the results of Polyakova and Tretjakov (1960),
Warner and Gunn (1969), and Mellor (1966). Koschnieder's
formula is shown for reference.
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Figure 4. Extinction at 3,5vm and lOo6pm measured by ChU and Piog9 (196S)
in snowfall plotted versus visual range as obtained from their
simultaneous measurement at 0O63vm using the relation derived
from Polyakova and Tretjakov (1960). Formulas for fitted
curves are given in text.
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(see text). These authors also present results from
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Figure 6. Extinction at 3o5pm versus visual range from Sola and
Bergemann (1977) (obtained at Ft. A. P. Hill, Virginia,
and Grafenw6hr, West Germany) corrected according to
Polyakova's results (see text).
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10.6 = 3.8V- '

'3.5 -- 3 - '

Reciit work reported by Muench and Brown [13] appeat s to be consistent
with these findings.

Graupel results from the accumulation on the snow particles of supercooledcloudi droplets as they fall, to the extent that they becLme roughly

spherical [10]. This phenomenon is common with deep cloud systems and
particularly at sea or near large bodies of water when moisture content
is high. Attenuation is much less for graupel than for other forms for
an equal precipitation rate because of the increased density of the
particles. However, the relationship to visibility may or may not be
significantly affected.

Dendrites and spatial dendrites are the star-like forms usually thought
of (and photographed) as typical snow particles. They are not, t'owever,
the most common form. They occur most often in weak storns or at the
extremities (temporal and spatial) of heavier storms [14]. They clump
together easily and tend to produce large agglomerations that break up
easily, Their effect on propagation is often among the most severe for
unit intensity of precipitation because of their very low effective
density. Reliable estimates of their attenuation coefficients are the
most illusive, however, because of their clumping tendency which can re.-
duce the t.umber concentratien and therefore the attenuation.

The most conmion form of snow particle is the aggregate, probably because
it is produced by the most common forms of winter snowstorms. It is
associated with widespread steady snowfalls from stratocumulus or nimbo-
stratus systems in which there is an abundant supply of moisture, Thus
it may be less conmon in dryer regions. Sie distributions for aggre-
gates are more well-behaved and better understood so that propagation
can probably be best described for them. Alzo more data appear to be
available for aggregates; therefore, they will be considered representa-
tive of a typical snowfall,

Table ' lists other characteristics that describe the typical snowfall
with the qualification that the probability of departure is fairly high.
These characteristics might be expected to apply to winter polar cap
regions or those latitudes that are snow covered in winter but not in
summir, The data of Table 2 are intended as a starting point for de-
scribing snowfall attenuation; important modifications and departures
from them will be discussed later.

Size distributions for snowfalls consistent with Table 2 are presented
in Fig. 7. These distributions are due to Gunn and Marshall [17], Sekhon
and Srivastava [15], Litvinov [16], and Zel'manovich [4], and represent
snowfalls of approximately 0.1 mm hr- 1 intensity. Of these researchers,
only Litvinov actually measured the snow particles. The others measured
melt stains left by the particles and described the size distribution of
the equivalent water droplet.

10



TABLE 2. TYPICAL CHARACIERISTICS

Type Aggregate of 10 to 100 crystals

Intensity ,1 uI[n ht,' 80% of time

Size Ranse Peak at 0.1 to 1 mln, 90% < 2 mi

Concentration 1000 m-3 (It-1)

Visual Range 1.5 km

0-

I ' ' I

S1 1 VINO\ t 01 111

-- I

0- l L _ l-..-1. . . i . . .

4 � 0

DiAMETER (CM)

Figure 7. Snow particle size distribution functions proposed by various
investi ators. A distribution typical of fog (note different
unit,;) ?s shown for reference.
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Zel'manovich observed an approximate ratio of the snowflake size to that
of the stain (9:10) and also that of stain to the droplet diameter (4:1)
to obtain an appropriate ratio (4:1.1) for relating droplet size to flake
size. The curves plotted here have been obtained by applying this ratio
to his distribution as well as those of F17J and [15].

The distributions of [17] and [15] are not realistic in the small extreme
and are rep!resented by their authors as applicable only above 0.1 cr,.
Even so they appear to fall too sharply toward larger sizes to be repte-
sentative of aggregates for which they are intended, indicating that a
different correction factor may be applicable to them.

The curves Z and L in Fig. 7 both show peaks in the vicinity of I num, as
expected, and are relatively broad. Zel'manovich observed flakes as large
as 0.7 cm in obtaining his data (single snowfall). Litvinov's results
are based on 172 photographs of falling particles obtained throughout one
winter season. Both use modified gamma functions of the generalized
form

d = C d" e-

in which N is number of particles of diameter d per unit volume per unit

size range, C is a constant, and a and 0, are the distribution parameters.
Note that C = 2/(modal diameter), while o is inversely related to the
width of the distribution. Litvinov reports that a decreases as tempera-
ture increases, thus broadening the distribution. This seems consistent
with Zel'manovich's results which were obtained uider relatively cold
(-4.6°C) conditions and show a narrower distribution.

These distributions show that visible and IR wavelengths are much
smaller than the particles of snow; therefore, very little wavelength
dependeice of scattering would be anticipated. At approximately 1 .- 1,
more severe effects due to resonancýe can be expected. Pote that the
distributions are highly variable at times, and those shown here are
based on averaged data, taken in steady snowfalls. When snow consis.ts
of powder, needles, or pellets, or is in arctic regions, a shift to
smaller sizes is expected.

It is also important to nete tnat snow is ofren accomipanied by fog which
has a smaller size distribution as shown. The effect on visitle and IR
wavelengths is significantly increased in this case. E,;thi-,ates oT the
magnitude of fog are not available from the data since %.e presence of
fog is not reported. One reason may be the difficulty in seeing fog In
a snowstorm.

CONCLUSION

The propagation of lignt in snowfa'Il as it is represented by existing
experimental data has been discussed. The wide variatioin 4n the results

S~1?
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found is evidently caused by two factors: the many different forms of
snow and the coexistence of fog particles. The available data are not
sufficient to permit the presentation of results separately for each
snow type, and the effect of fog can be treated only generally.

Scattering is easily the most significant mechanism of attenuation
throughout the visible and IR and, probably, most of the mtaillimeter wave
regions. Water vapor absorption, next in importance, becomes appreciable
only near absorption bands.

On the basis of size distributions, attenuation by snow particles alone
can be expected to increase fur wavelengths closer to the range 0,1 co
10 millimeters. In that range, maximum attenuation is dnticipated.

Thus, at lO.6um, which in ha7e propagates better than visible wave-
lengths, the attenuation by snowfall will be more severe thAn for
visible.

Inconsistent experimenZai results for 3.5Mom are considered indicative
of the presence of fog. From the small amount of data available, the
following relations for extinction in terms of visibility are obtained,
applicable to the range of V from 1 to 5 km.

a0.63 ' 3V-1

"•3.5 = 3V-1".1

"1l0.6 = 3.8V-0' 9

Results at 1.06pmn are expected to be very close to those at 0.631m. A
generalization in terms of wavelength cannot be made without further data.

In particular, correlations are required with relative humidity for th3
ranges above and below 85 percent to assess fog effects. Correlations
with temperature and in some ways with snow type (possibly through cloud
conditions, geography, etc.) are required to specify the snow effects.

The expression of extinction in terms of observables other than visi-
bility is not yet feasible. The most likely "other observable" is snow

rate expressed either as area concentration (cm2per M3 ) or accumulation

(mm hr-1 ) for which expressions are possible, However, dependence on
snow type then becomes more critical and this observatieti is lot prac-
tical in a tactical sense. What is needed ds an alternative to visi-
bility is a theory yielding extinction in terms of meteorological piram-
eters such ds temperature and relative humidity. Such a theory would
have to he based on more accurate models of snowstorms than currently
exist. Work toward this may be warranted, however, bv the fact that it
offers the potentlai for forecasting optical effects.

13



From the results discussed in this paper, a general statement can be made
that attenuation will be greater when snow is dryer (colder) and that the
peak in such cases will be shifted toward the lower side of the O.ltm to
lOam range (waveler gth). The presence of fog will significantly Offect
near IR wavelengths perhaps out to lO-m. Values of a for "typical"
storms are:

visible to 3.5,m 2 km-n

lO.6pm a = 2.53 km-

14
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