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INTRODUCTION
- 25 The effects of snowfall on the propagation of 1ight are of interest to
- the military community because of the increas®ag number of imaging,

tracking, and detecting devices which rely on 1ight propagation. The
wavelengths of interest extend from the visible to the millimeter region,
The work renorted here is part of a larger effort devoted to the modeling
of atmospheric effects ¢n electro-optical systems for both design plan-
ning and deployment. The olLject of that effort is the production of a
1ibrary of computer codes capable of describing adverse environmenzal
effects, both natural and man-m--ie, as they ralate to readily cbservable
meteorological parameters., Ong of the more difficult conditions to so
describe is snowfall.

The effects of snowfall are more varied and generally more severe than
rain. Over a sizable portion of the earth, snow occurs frequently enough
to be a potential hazard to operations. As an example, at Montreal
(latitude 45°) over 200 hours of snowfall were observed in one winter
season by Warner and Gunn {11]. Durations of snowfall of several hours
are common in such areas. Thus an ability to estimate the propagaticn
effects can be an important factor.

The purpose of this work has been to determine frcm available data what
the magnitude of attenuation by snowfall is, what the contributing
factors are, and what parameters are required for its estimation. Suf-
ficient data have not yet been acquired for millimeter wavelengtins; how-
ever, the nature of millimeter attenuation effects can probably be
anticipated from size distributions,

More information is available for the visibie and infrared (IR) regions,
and certain features immediately become evident {rom this information,
First, the magnitude of attenuation is large--lyirng hetween the magni tudes
for fog and rain--but this depends on the wavelength;. Second, everyv
snowfall is different; attenuation varies widely, decanding on snow type,
temperature, humidity, and other factors. Finally, since most of the
accessible data on snowfall were obtained with effects other than propa-

, = gation considered, all of the necessary information is seldom available,
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Before specific measurements are discussed, the nature of the problem will
be considered. In snowfall the major efrect on propagation is scattering.
. Conventionally this effect is treated successfuily by assuming spherical
- scatterers and describing their sizes and optical properties. With snow,
such an approach is not possibie because of the irregular shapes of the

. Y particles, at least until wavelength \ is large encugh so that particle

3 diameters are much less than \. This cgenerally means \ > 10 mm, The.

- only alternative for shorter wavelenaths then is empirical determination.
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Scattering by snow particles is not the only important effect and may
often be rivaled by scattering from fog droplets accompanying the snow.
This phenomenoin appears to be less well recognized, and many of the
existing observations are difficult to assess because they do not men-
tion it. Since the presence of fog in snowfall is difficult to detect
anc still more difficult to measure, the frequency of occurrence of this
probiem s not known. As will be seen later, the presence of fog is
probably the rule rather than the exceptior, at least for some locations.
Faze or other particulate materials may also accompany Snow.

A smaller but not negligible effect is due to water vapor. Except near
absorption bands, this effect may be more indirect as it affects the
properties of accompanying haze, In at least one case | 1], it is noted
that attenuation at 0.45.m increases with humidity, becoming quite sig-
nificant for relative huridity above 85 percent. Its significance at
wavelenaths near absorption bands is obvious, and appropriate absorption
calculations may be warranted. However, generally the scattering is
expected to far outweigh absorption,

The following paragraphs summarize existing data and give a synopsis of
the results. The difficulties in cbtaining suitable neasurements in
snow are pointed out; and as a starting poirt, a "typical" snowfall is
described. &1 attempt is made to identify meteorclogical observabies
which are rcalily obtainable and which may he used to establich trans-
mittance predictions,
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AVATLABLE MEASUREMENTS

Lillesaeter {21, Mellor [ 3{, Warner and Gunn {11, 7el'manovich |41, and
Polyakova and Tretjaksv | 51 have measured light attenuation in snowfall.
These results are difficult to compare directly because of differences
in their apparatus and in the way the data are related to snowfail rate.
Fach result, however, gives ¢n empirically derived equation relatirg
efther extinction coefficient or visibility to snow amount, and an
attempt has been made to convert these resul ; to similar units without
loss of accuracy. [he resuiting equations are given in Table 1.

Also included in the table is a visibility reiation presented by ('Grien
[6] who reports this relation in the form of extinctior coefficient.
0'Brien meawtred visibility, converting by means of the Koschmieder rela-
tion which is doubtful for snowfall; therefure, his extinction cceffi-
cient is given only in terms of visibility. Figure 1 gives plots of
these relations where the disparity of resul*s is evident.

rrr—

e A1) of the rieasurements were made at visible wavelengths except for
those of Zel'manovich [31 in which a 3.87vm scu~ce was used. Al of

the meas rements represent observations over ore or more winter seasons,
again excepting those of Zel'marovich which represent a single snow-
storm, While all researchers are caretful to measure the rate of accumu-
lation, Tittle note is taken of the preserce or absence of fog, and
temperature and relative humidity are not reported. 0'Brien {61 refers

w
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TABLE 1, TRANSMITTANCE ALGORITHMS FOR SNOWFALL

Investigator Extinction Coefficient (km™!) Visibility (km)
Liiiesaeter e _=3.93R _* V= R"!
Zel'manovich _ & = 13RO
Polyakova and _a=3,2R0.91 V = 0.94R"0:91
Tretjakov
Mellor a = 1.11 RO-42 Vo= 1,65 R70.42
3 Warner and Gunn _a=253R _
gi 0'Brien a = 1,393 RO.69 V = 1,25 R"0.69

o *Accumulation rate, R, is mm hr~!, Dashed line indicates primary
3 measurement.
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Figure 1. Snowfall attenuation coefficients versus precipitation rate as
obtained from several published empirical studies. A1l are
for visible wavelenyths except (z) which is for 3.87um,

R denoces the case for rain.
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to the frequent presence of fog with snow at his site at Hanover (also
the site of Mellor's work) and Warner and Gurn |1 ] mention the effect of
high relative humidity {but not fog), suggesting that it riy account for
almost 5C percent of the observed attenuation.

Careful observations of snow type were miade only by Mellor { 3], who does
not break down his transmittance data by type, and O'Brien who does, but
whe, in addition to the earlier mentioned difficulty, presents his re-
sults in terms of area concentration which can be converted to accutwula-
tion rate only with knowledge of the size distribution. Mellor observes
that the proporticnality constant relating V and o is a factor of 2.25
less than that of the Koschmieder formula, that is, aV = 1,74, This
affects 0'Brien's results as mentioned above.

The importance of temperature is evidenced by studies of visibility
7,8, and 91 and by transmittance-based snow rate measurements (101,
which show attenuation to be significantly lower in melting snow. Rain
represents a 1imiting case. Zel'manovich, however, measured a tempera-
ture well below freezinc for his case so that other factors can also
depress the curve, At this point no clear reason for the dispersion of
rasults can be identified.

To see the magnﬁtude of the effect, a rate of 1 mm hr™! may be considered.
According te {2], : 1s 1.1 and the transmittance over 1 km is 33 percent.
According to [2] . s 3.93 and transmittance is 2 percent, making a
differeace of a factor of 17. From [1] which is presented as an im-
provement ovar [2], the value is 8 percent, still down by a factor of
four, and the disagreement increases with increasing R,

Mellor's results incluue numerous observations in a total of 16 snowfalls
with comments about the srow type and particle size. Ficure 2 shows re-
sults derived from his report with the reciprocal of visibility plotted
anainst snow rate and indicating different snow types. No clear corre-
lation with type is evident, but the spread of the data indicates that
factors other than R affect the extinction, Mellor notes that these
observations were limited toc widespread dry snowfalls of 1 hour or more
duration., Wet snow would be expected to produce results to the lower
side ef this grouping.

Lilleseeter [2] measured transmittance at (.45.m, but reports that visi-
Lility, V, 1is ecqual to 1/R although he does not show data for V. The
information as reported by Lillesaeter leads to the result, oV = 3,93,

Warner and Gunn [1] also measured transmittence at 0.45um and concur
with Lillesaeter in the relation of V to R. Thus, from them we obtain
oV = 2,53, Again no cata fer V are presented, and it is assumed that
the twe variables were not observed simultaneously.

Polyakova and Tretjakev [5] report measurements of boih variables but do
not tabuiate the data, They do, however, present empirical relations
for both in termis of R from which aV = 3,01 can be obtained,

5
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Both Mellor and 0'Brien [3,6] measured visibility by means of contrast
attenuation at two visible wavelengths, However, only Mellor provides
a relation between a and V based on actual measurements., He obtains
aV = 1,74,

These different resuits are plotted in Figure 3, The results [5] and
[1]_are considered most representative for the visible wavelength
region,

Chu and Hogg [11] measured transmission losses in 1ight snowfall at
10,6um, 3.5.m, and 0.63um, The indicated points in Figure 4 were ob-
tained from their results and by use of their measurement at G.63um to
derive V via the formula obtained from Polyakova and Tretjakov[5].

By aperoximate fitting to this data, relations can be obtained for the
extinction at 3.5um and 10.6um in terms of visibility. These relations
are:

=0.8
%0.6 = 3+9V ,

y-l.2 |

®3.5

Note, however, that Chu and Hogg's result did not always indicate con-

sistent behavior. Most of the time attenuation at 0.63um exceeded that
at 3.5um although occasionally the reverse occurred. This could be ex-
plained on the basis of an accompanying l1ight fog of varying size dis-

tribution.

Sola and Bergemann [12] have reported broadband measurements of transmit-
tance in snowfall for the 3-4um and 8-12um regions., Their data were ob-
tained in tests at Fort A, P, Hill, Virginia, and Grafenwohr, West Germany.
In presenting their results, they use values of visibility that are
derived from near IR extinction coefficients by means of the Koschmieder
formula, oV = 3,91, Since, from the work already discussed, that for-

mula appears to be inapplicable in snowfall, their results are recalcu-
lated by using the formula optained from Polyakova and Tretjakov [5]

(Figs. 5 and 6).

By curve fitting to these results, slightly different relations are found
for the IR extinction than from the data of Chu and Hogg [11]., Here the
relations are

(13'5 = 3.3V-1 ’

010 6 = 4V‘1.l .

When all oY these data are combined and fitted, the resulting formulae
are

‘ol itlnt bt
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Empirical formulae for extinction versus visual range as
derived from the results of Polyakova and Tretjakov (1960),
Warner and Gunn (1969), and Mellor (1966), Koschmicder's
formula is shown for reference.
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Extinction at 3.5um and 10.6um measured by Chu and Hogg (1968)
in snowfall plotted versus visual range as obtained from their
simultaneous measurement at 0,63ym using the relation derived
from Polyakova and Tretjakov (1960). Formulas for fitted
curves are given in text,
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Figure 5. Extinction at 10.6um versus visual range from Sola and
Bergemann (1977) corrected according to Polyakova's results
(see text). These authors also present results from
Sokolov (not available to this author).
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Bergemann (1977) (obtained at Ft. A. P. Hill, Virginia,
and Grafenwohr, West Germany) corrected according to
Polyakova's results (see text).
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Recuat work reported by Muench and Brown [13] appears t¢ be consistent
with these findings.

Graupel results from the accumulation on the snow particles of supercooled
cloud droplets as they fall, to the extent that they become roughly
spherical [10]. This phenomenon is common with deep cloud systems and
particularly at sea or near large bodies of water when moisture content

is high, Attenuation is much less for graupel than for other forms for

an equal precipitation rate because of the increased density of the
particles., However, the relationship to visibility may or may not be
significantly affected.

Dendrites and spatial dendrites are the star-like forns usually thought
of (and photographed) as typical snow particles. They are not, rowever,
the most common form., They occur most often in weak storms or at the
extremities (temporal and spatial) of heavier storms [14]. They c¢lump
together easily and tend to produce large agalomerations that break up
casily. Their effect on propagation is often among the most severe tor
unit intensity of precipitation because of their very iow effective
density. Reliable estimates of their attenuation coefficients are the
most f1lusive, however, because of their clumping tendency which can re-
duce the number concentraticn and therefore the attenuation.

The most common form of snow particle is the aggregate, probably because
1t is produced by the most common forms of winter snowstorms. It is
assocfated with widespread steady snowfalls from stratocumulus or nimbo-
stratus systems in which therc is an abundant supply of moisture. Thus
it may be less common in dryer regions. Sire distributions for aggre-
gates are more well-behaved and better understood so that propagation
can probably be best described for them. Al<o more data appear to be
available for aggregates; thercfore, they will be considered representa-
tive of a typical snowfall,

Table 2 lists other characteristics that describe the typical snowfall
with the qualification that the probability of departure is fairly high.
These characteristics might be expected to apply to winter polar cap
regions or those latitudes that are snow covered in winter but not in
summer.  The data of Table 2 are intended as a starting point for de-
scribing snowfall attenuation; important modifications and departures
from them will be discussed later,

Size distributions for snowfalls consistent with Table 2 are presented

in Fig, 7. These distributions are due to Gunn and Marshall El?]. Sekhon
and Srivastava [15], Litvinov [16], and 7el'manovich [4], and represent
snowfalls of approximately 0.1 mm hr=! intensity. Of these researchers,
only Litvinov actually measured the snow particles. The cothers measured
melt stains left by the particles and described the size distribution of
the equivalent water droplet.

10
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TABLE 2. TYPICAL CHARACTERISTICS

i e e b

Type Aggregate of 10 to 100 crystals
Intensity <1 wm he"! 80% of time
;Z Size Range Peak at 0.1 to 1 mm, 90% < 2 mm
g: Concentration 1000 m~* (1g~1)

Visual Range 1.5 km
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Figure 7. Snow particle size disuribution functions proposed by varicus

investigators. A distribution typical of fog (note different
units) s shown for reference,
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Zel'manovich observed an approximate ratio of the snowflake size to that

of the stain {9:10) and also that of stain to the droplet diameter (4:1)

to obtain an appropriate ratio (4:1,1) for relating droplet size to flake
size, The curves plotted here have been obtained by applying this ratio

to his distribution as well as those of [17) and [15].

The distributions of [17] and [15] are not realistic in the small extreme
and are represented by their authors as applicable only above 0.1 cw.
Even so they appear to fall too sharply toward larger sizes to be repre-
sentative of aggregates for which they are intended, indicating that a
different correction factor may be applicable to them.

The curves Z and L in Fig. 7 both show peaks in the vicinity of 1 mm, as
expected, and are relatively broad. Zel'manovich observed flakes as large
as 0.7 cm in obtaining his data (single snowfall), Litvinov's results

are based on 172 photographs of falling particles obtained throughout ore
winter season., Both use modified gamma functions of the generalized

form

- a -,Zd
Nd =Cd e

in which N‘ is number of particles of diameter d per unit volume per unit
d

size range, C is a constant, and « and § are the distribution parameters.
Note that § = 2/(modal diameter), while o is inversely related to the
width of the distribution., Litvinov reports that o decreases as tempera-
ture increases, thus broadening the distribution, This seems consistent
with Zel'manovich's results which were obtained under relatively cold
(~4.6°C) conditions and show a narvower distribution,

These distributions show that visible and IR wavelengths are ruch
smaller than the particles of snow; therefore, very little wavelength
dependence of scattering would be anticipated. At approximately 1 mm,
more severe effects due to resonanne can he expected. Note that the
distributions are highly variable at times, and those shown here are
based on averaged data, taken in steady snowfalls. When snow consiits
of powder, needles, or peilets, or is in arctic regions, a shift to
smaller sizes is eypected.

It is also important to ncte tnat snow is ofren accompanied by fog which
has a smaller size distribution as shown, The effect on visitle and IR
wavelengths is significantly increased in thic case. Estimates of the
magricude of fog are not available from the data since :-e presence of
fog is not reported. One reason may be the ¢ifficulty in seeina fog in
a snowstorm,

CONCLUSION

The propagation of 1ignt in snowfail as it is represented hy existing
experimental data has been discussed. The wide variatian *n the resu'ts

12
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found is evidently caused by two factors: the many different forms of
snow and the coexistence of fog particles. The avaiiable data are not
sufficient to permit the presentation of results separately for each
snow type, and the effect of fou can be treated only generally,

Scattering is easily the most significant mechanism of attenuatfon
throughout the visible and IR and, probably, most of the miliimeter wave

regicns, Water vapor absorption, next in importance, becomes appreciahle
only near absorptinn bands.

On the basis of size distributions, attenuation by snow particles alonre
can be expected to increase for wavelengths closer to the ranye 0.1 o
10 millimeters. in that range, maximum attenuation is anticipated.
Thus, at 10.6um, which in haze propagates better than visible wave-
Tengths, the attenuation by snowfall will be mcre severe than for

visible.
,f?; Inconsistent experimeniai results for 3.5um are considerad indicative
=38 of the presence of fcg. From the small amount of data available, the
= following relations for extinction in terms of visibility are obtained,
fr v applicable to the range of V from i to 5 km,
Z2
£ %0.63 = 3V
2 = qy-t.1
% . ._O 9!1
= w06 = 387

Results at 1.06pm are expected to be very close to those at 0.63ym. A
generalization in terms of wavelength cannot be made without further data.
In particular, correlations are required with relative humidity for th2

: ranges above and below 85 percent to assess fog effects, Correiations

S with temperature and in some ways with snow type (possitly through cloud
conditions, geography, etc.) are required to specify the snow effects.

The expression of extiinction in terms of observables other than visi-
bility is not yet feasible. The most 1ikely “other observable" is snow

rate expressed efther as area concentration (cm’per m?) or accumulation

{(mm hr=1) for which expressions are possible. Howcver, dependence on
snow type then becomes more critical and this observaticn is not prac-~
tical in a tactical sense. What is needed as an alteraative to visi-
bility is a theory yielding extinction in terms of meteorological psram-
eters such as temperature and relative humidity. 3uch a theory would
have to he based on more accurate models of snowstorms than currently
exist. Work toward this may be warranted, however, by the fact that it
offers the potential for Torecasting optical cffects.
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From the results discussed in this paper, a general statement can be made
that attenuation will be greater when snow is dryer [coider) and that the
peak in such cases will be shifted toward the lower side of the 0.lum to
10um range (wavelergth). The presence of fog will significantly uffect
near IR wavelengths perhaps out to 10:m. Values of o« for "typical"
storms are:

visible to 3.5um =2 k!

10.6um a = 2.53 km™!
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