VIBRATIONAL ENERGY TRANSFER IN THERMAL UNIMOLECULAR SYSTEMS

By E. Kamaratos, J. D. Burkhalter, D. G. Keil

November 78

UNCLASSIFIED

NR092-549-TR08

E. Kamaratos, J. D. Burkhalter, D. G. Keil, and B. S. Rabinovitch

Department of Chemistry, BG-10
University of Washington
Seattle, WA 98195

Technical Report No. NR092-549-TR08
Contract N00014-75-C-0690/ NR092-549

1 November 78

26 p.
Title: Vibrational Energy Transfer in Thermal Unimolecular Systems by the Diffusion Cloud Method. Cyclopropane.

Authors: E. Kamaratos, J. D. Burkhalter, D. G. Keil and B. S. Rabinovitch

Performing Organization Name and Address:
Professor B. S. Rabinovitch
Department of Chemistry BG-10
University of Washington
Seattle, WA 98195

Controlling Office Name and Address:
Office of Naval Research, Code 743
Department of the Navy
800 N. Quincy
Arlington, VA 22217

Monitoring Agency Name and Address:
To be submitted to J. Phys. Chem.

Key Words: Bath Gases, Gas Reaction, Cyclopropane, Unimolecular Reaction, Diffusion Cloud, Vibrational Energy, Energy Transfer

Abstract:
A study of vibrational energy transfer by the Diffusion Cloud Method has been made at temperatures from 975 K to 1175 K in the cyclopropane isomerization system. H₂, He, N₂, and CO₂ were studied as inert bath gases. Their relative efficiencies increase in that order. Values of <ΔE> vary from 150 cm⁻¹ to 1100 cm⁻¹ at 975 K. These values tend to decline and the collisional efficiencies, β_c, decrease markedly with rise of temperature to 1175 K.
Vibrational Energy Transfer in Thermal Unimolecular Systems
by the Diffusion Cloud Method. Cyclopropane

by E. Kamaratos, J. F. Burkhalter, D. G. Keil, and B. S. Rabinovitch

Department of Chemistry
University of Washington
Seattle, WA 98195

Abstract

Little information is available regarding vibrational energy transfer involving highly excited polyatomic molecules at higher temperatures (≥ 1000 K). In an earlier paper (ref 6), we described some features of the point source diffusion cloud method which is here applied to the study of the thermal unimolecular isomerization of cyclopropane. The relative collisional energy transfer efficiencies β_c for the bath gases He, H$_2$, N$_2$ and CO$_2$ have been determined in the fall off region $(k/k_\infty \sim 0.02-0.05)$ at 975 K. By calibration of absolute rate constants from earlier data, values of the average energy down-jump size $\langle \Delta E \rangle_d$ were determined. They are approximately 200, 150, 400, and 1100 cm$^{-1}$, respectively, and decrease with rise of temperature to 1175. β_c also decreases between 975 K and 1175 K. These findings have relevance for the interpretation of high temperature gas reactions such as shock tube systems and complement some earlier measurements (ref. 7b).
Introduction

Since the development of the point source diffusion flame method by M. Polanyi and co-workers, it has been used extensively to study the kinetics of fast bimolecular reactions. Extended versions of the method have added flow transport to the diffusive transport and reaction. Tal'rose has called this technique the diffusion cloud method. In an earlier paper, where a history of the method and a summary of recent experimental and theoretical developments was presented, we have examined theoretical and experimental aspects of the method using a non-reactive diffusive substrate, mercury. We proposed that the method should be applied to the study of unimolecular reactions and vibrational energy transfer and adopt Tal'rose's nomenclature for such applications.

Specifically, the diffusion cloud method may be employed advantageously to extend investigations to the lower region of elevated temperatures (\(\geq 1000 \, \text{K}\)) reached usually by shock tube methods. Interesting information regarding unimolecular reaction rate constants and collisional efficiencies for vibrational energy transfer may be obtained. Little information on vibrational energy transfer involving highly excited polyatomic molecules at high temperatures is available.

The present paper presents data on the relative collision efficiencies of cyclopropane in \(\text{N}_2\), \(\text{CO}_2\), \(\text{H}_2\), and He bath gases using the diffusion cloud technique. Temperature dependence of the rate has also been measured between 975 - 1175 K. Since the diffusion constants increase at higher temperatures, it was necessary to extend the mathematical treatment presented in the earlier paper. A model given by Nevrovskii which employs reflections at the wall and a flat velocity (plug flow) profile has been considered. Efforts have been made to extend the treatment to the case of a laminar (parabolic) flow contour, with only partial success. However, the present results serve to illustrate the usefulness of this method for the study of unimolecular systems.
Recently, unimolecular reaction rate constants for the thermal decomposition of \(\text{CF}_2\text{BrCF}_2\text{Br} \) in \(\text{N}_2 \) were reported.\(^9\) The experimental method used was an extended diffusion method with laminar flow; however, the reactant was not introduced from a point source. The method and mathematical treatment employed restricted the determination of rate constants to measurements made at large distances from the origin.

Experimental

The diffusion reaction chamber was a 5 ft length of 12 in. i.d. fused silica tube with a 0.5 in. wall. The polished ends of the tube were sealed with a brass inlet flange and a steel outlet flange with the use of 1/4 in. neoprene gaskets. The apparatus was pumped through a stainless steel liquid nitrogen trap by a Leybold-Heraeus WA 500 Roots-type pump, with displacement capacity of 160 \(\text{l. sec}^{-1} \), and backed by a Leybold-Heraeus E150 two-stage pump.

The bath gas flow was measured with a precalibrated Manostat Tri-Flat flow-meter. The gas entered the reaction chamber through a stainless steel diffuser can, 11 in. diam., which served also as a preheater. The diffuser had 50 - 1/32 in. diam. holes, grouped so as to produce parabolic flow. Four 14-mesh stainless steel screens were attached with crossed meshes to the face of the diffuser to break up wakes due to the flow through the holes. The neoprene end gaskets were protected by copper water jackets around the ends of the quartz tube. The bath gas exited through a chevron optical baffle which screened the reaction area from a cooling baffle. The cooling baffle was a water-cooled hollow copper can, 11 in. diam., 1 in. thick, through which flow was conducted via 32 - 3/4 in. axially oriented copper tubes. The tubes were arranged so as to accept parabolic flow with minimum perturbation. Roughly 15% of the cooling baffles surface area consisted of tube openings.
A quartz-sheathed, vacuum-jacketed, water-cooled, stainless steel reactant inlet probe, 25 in. long, entered through the brass inlet flange along the wall of the quartz tube; the probe made a right angle and terminated in a water-cooled 11/32 in. diam. sterling silver spherical nozzle on the axis of the reactor. The nozzle was located 11 in. from the diffuser face and 16 in. upstream from the optical baffle. Each of the twenty nozzle holes on the sphere were located at the center of the face of an icosahedron. Input from the nozzle was designed to be not more than 5% of mass flow of atmospheric gas over the surface of the sphere, so as to minimize perturbations.

Two stainless steel axial collection tubes entered upstream and downstream of the nozzle, through cajon fittings in the end flanges. They were movable on axis at positions from 1/4 in. to 8 in. from the nozzle. The probes were vacuum-jacketed and water-cooled similar to the inlet probe and were fitted with truncated conical sterling silver tips having an approximately seven-thousandths in. orifice on an end flat ~1/32 in. in diam. The diameter of the collection probes was 1/4 in. for a length of 1 in. after which the probe tube expanded to 1/2 in. o.d. The samples were pumped through a stainless steel flexible tube to a liquid nitrogen-cooled trap.

Heat to the reactor was provided by a 3-zone Kanthal wire oven, controlled by an internal thermocouple. The output from a Partlow proportional time temperature controller could be reduced by a separate control for each zone. Proper adjustment permitted a relatively flat temperature profile. Over the reaction region, the effective maximum temperature drop near the ends of the reactor was approximately 10°.

Samples were analysed by glpc using a 1-ft column of Duropak followed by 10-ft of 15% squalane on 45-60 mesh Chromosorb P and a flame detector.
Results

Mathematical Treatment of Data. The equation of continuity for the concentration of reactant is

\[D \frac{\partial^2 C}{\partial z^2} - U(\rho) \frac{\partial C}{\partial z} - k C = 0 \]

(1)

where \(D \) is the diffusion constant, \(C \) is the concentration, \(U(\rho) \) is the velocity profile as a function of the cylindrical radial coordinate \(\rho \), \(z \) is the axial distance from the origin of reactant, and \(k \) is the rate constant. The solution of this equation for a point source and \(U(\rho) = \text{constant} \) has been given for an unbounded reactor.\(^4\) At higher temperatures, where the diffusion coefficients become larger, i.e., low \(U/2D \), the values of \(k \) computed from our data became unrealistically large and depended on the axial distance \(z \) from the nozzle. This is due to reflection from the wall. As a consequence, it is necessary to apply some boundary conditions for a cylindrical reactor of finite size,

\[\frac{\partial C}{\partial \rho} \bigg|_{\rho=0} = 0 \quad \text{and} \quad \frac{\partial C}{\partial \rho} \bigg|_{\rho=R} = 0, \]

where \(R \) is the radius of the reactor. A solution with these boundary conditions has been given by Nevrovskii (eq. 16, ref. 8) as a limiting case of the more difficult problem in which the velocity field is taken as parabolic. We have independently solved the equation by integrating the time-dependent concentrations of instantaneous sources moving in a flat velocity field,\(^{11,12}\)

\[C(\rho,z,k) = \frac{1}{2\pi R^2 D} \sum_{i=1}^{\infty} \frac{\exp\left[\frac{U}{2D} \left(z - \frac{U^2}{4D^2} + \frac{k}{D} + \alpha_i^2 \right)^{1/2} \right] J_0(\alpha_i \rho)}{\left(\frac{U^2}{4D^2} + \frac{k}{D} + \alpha_i^2 \right)^{1/2} J_0(\alpha_i R)} \]

(2)

where \(\alpha_i \) are the roots of \(J_1(\alpha_i R) \). This expression for the concentration can be shown to be equivalent to that of Nevrovskii when an integral of Bessel functions given by him is evaluated.
The system under study is an isomerization reaction so that it is possible to make the useful and realistic simplification of taking the diffusion coefficients of reactant cyclopropane and product propene to be equal. The diffusion coefficient was calculated by a well-known relationship. The rate constant \(k \) was evaluated from the data as the root of the equation

\[
\frac{C(p,z,k)}{C(p,z,0)} = \frac{C^{'}_{\text{reactant}}}{C_{\text{reactant}} + C_{\text{product}}}
\]

by using the IMSL Computer library program ZBRENT, where the \(C^{'} \) are experimentally determined concentrations. ZBRENT combines linear and quadratic inverse interpolation to determine the roots of an equation. Only the first 21 roots of \(J_1(\alpha R) \) were employed in evaluating \(C(p,z,k) \) and \(C(p,z,0) \) and the value of \(k \) was usually determined with fewer than 10 iterations.

When applied to the data, the finite cylinder model with constant flow velocity eliminates the dependence of calculated \(k \) values on \(z \) and gives good agreement between values obtained from both upstream and downstream sample collection probes. Table I illustrates this behavior. The value of the constant velocity was set at the average for parabolic flow, \(\bar{U} = U(0)/2 \). This is a physically reasonable value. Moreover, comparison of the \(z \) part of terms in the solution for the constant velocity model with terms in the (partial) solution for laminar flow model (next paragraph) supports this assignment. As is brought out later, however, in the presentation of the results, our approximate mathematical treatment is not adequate in all respects.

It has already been noted that eq. (1) has been solved in principle for a point source with laminar atmosphere flow and with reflection at the wall. Both analytical and numerical solutions have been given that apply at distances far from the source. However, for fast reactions the data must be taken at distances close to the source. The numerical method requires very small grain sizes and
thus prohibitively long computer times for evaluation. The analytic solution
holds the greatest promise, since it is only necessary to evaluate more terms
to the series solution in order to obtain accurate results at the positions of
interest. The difficulty arises in evaluating the coefficient for each term.
Gershenzon et al. used a single term, which is only adequate for \(Z \) much larger
than \(R \). Nevrovskii used a truncated series of four terms, which is adequate
only for axial distances greater than 0.6 \(R \). In order to evaluate coefficients,
it was necessary for Nevrovskii to use an orthogonalization routine for each set of
functions \(\psi_1 \) (eq. 4). This requires an increasing number of numerical integrations
with each term added. It may be noted parenthetically that although Nevrovskii
provided a limited analytical series solution of the point source in a finite
cylinder with laminar flow, his subsequent experimentation utilized only the
unbounded piston flow model. We have succeeded in evaluating the first fifteen
exponential eigenvalues \(\lambda_i \) and the radial functions \(\psi_1(\rho) \) in the series:

\[
C_{\text{lam}}(\rho, z, k) = \sum_i A_i \psi_1(\rho) e^{\lambda_i z}
\]

where the \(\psi_1(\rho) \) is a product of an exponential and a confluent hypergeometric
continuing function; \(\psi_1(0) = 1 \) for the special case \(\rho = 0 \). Our work is directed toward
developing a more efficient method of evaluating the coefficients, \(A_i \), which
avoids the intractably cumbersome orthogonalization routine of Nevrovskii. The
inverse problem of finding rate constants from experimentally determined concen-
trations would then become tractable for the case of laminar flow.
Diffusion and Flow without Reaction. Several diffusion experiments were performed at room temperature in order to test the apparatus and to confirm our earlier results with Hg in nitrogen. Diffusion of cyclopropane and butane in nitrogen was studied at total pressures around 1 torr. Samples were taken downstream of the spherical nozzle. For \(r = z \), in the infinite cylinder model, \(C(z) = \frac{I}{4\pi D z} \), where \(I \) is the rate of input of the nozzle gas, for the case of diffusion and transport of a nozzle gas introduced from an axial point source into an atmospheric gas stream flowing with uniform velocity along the axis of the cylinder; \(\frac{U}{2D} \) is \(\asymp 1 \). Plots of inverse concentration \((1/C) \) vs axial distance \(z \) for each hydrocarbon followed the straight line relation.

Some typical behavior is illustrated in Fig. 1. Also, the ratios of linear least-squares slopes curves were determined for the three hydrocarbons. The experimental ratios agreed with the predicted values, \(C_i/C_j = D_j/D_i \), within \(20\% \).

Diffusion, Flow and Reactions. Efficiencies of Bath Gases at 975 K. Exploratory data were obtained over the range from 800 - 1200 K. Most of the data were taken at 975 K and at 1175 K, with the former set being the most extensive. Rates at 975 K were measured at pressures around 0.5, 1, 2 and, in some cases, 7 torr for all four bath gases.

Most measurements were usually made at \(\bar{U} \) values between 20 and 100 cm sec\(^{-1}\). The type of reproducibility that could be obtained upon repetition of measurements in different runs under constant condition of pressure and flow velocity is illustrated in Table I. The data for He show excellent concordance, both in detail as a function of \(z \), and between upstream and downstream measurements. The values for \(H_2 \) have more scatter and are typical of some runs; however, although the data does have some obvious dispersion (some of which is believed to have known experimental sources), nonetheless, the mean value has a standard deviation of only \(10\% \) in this case.
Deficiencies of the constant velocity finite cylinder model became evident in an apparent dependence of k on the experimental flow velocity. The dependence was particularly noticeable at the lower temperature. It is interesting to note that although not recognized by them and described only as random experimental error, a dependence of the unimolecular rate constants on the experimental flow velocity also appears in the work of Gershenzon9 mentioned in the Introduction. In view of this dependence, it was not possible to determine absolute unimolecular reaction rates (although relative collision efficiencies of the bath gases could be determined under constant experimental conditions). We have employed an expedient adopted by shock tube exponents and have used the known rate of cyclopropane decomposition in order to calibrate, or to correct for the flow parameter approximation. Rate constants are recorded7b for the decomposition of cyclopropane diluted in He at 973 K and at pressures below 1 torr; the literature values are 0.035 and 0.065 sec-1 at 0.5 and 1 torr, respectively. These values coincide with the present measurements at 975 K for a constant value of \bar{U}, namely, 70 cm sec-1. This value has been used as a reference for all other data and rate constants at this velocity have been obtained by interpolation from the measured data.

Values of rate constants for all bath gases at 975 K are summarized in Table II along with the relative collisional efficiencies, β_p; derived quantities are listed in Table III.

Efficiencies of Bath Gases at 1175 K, Decline of β_c with Temperature. Since the 1175 K data did not display any marked velocity dependence, no interpolation was needed. The rate data are presented in Table IV together with their statistical parameters. Some obvious inconsistency in the pressure dependence of k is evident. Nevertheless, the results, taken as a whole, indicate marked lowering of the observed activation energy for all gases which is beyond experimental error; values averaged over all pressures are (kcal mole-1): CO\textsubscript{2}=42; N\textsubscript{2}=49; H\textsubscript{2}=40; He=49, at a fixed value of ω corresponding to $k/k_\infty = 0.03$ at 975 K.
Discussion

Relative efficiencies at 975 K. The pressure-per-pressure efficiencies, \(\beta_p \), in Table II show a decrease along the series: \(\text{CO}_2 > \text{N}_2 > \text{H}_2 = \text{He} \). This trend accords with some other experiments reported in the literature at lower temperatures. Chan et al.\(^\text{16}\) report \(\beta_p \) values for methylisocyanide of .32, .21, 0.28, .17, for \(\text{CO}_2, \text{N}_2, \text{H}_2 \) and \(\text{He} \), respectively, at 550 K in the second order region. Pritchard et al.\(^\text{17}\) gave for the cyclobutane system, 0.21, 0.10, 0.07 for \(\text{N}_2, \text{H}_2 \) and \(\text{He} \) bath gases, respectively, at 720 K in the fall off region. Volpe and Johnston\(^\text{18}\) found low-pressure values, for \(\text{NO}_2 \text{Cl} \) at 476 K, of 0.34, 0.15, and 0.15 for \(\text{N}_2, \text{H}_2, \) and \(\text{He} \), respectively; a \(\text{CO}_2 \) value is not recorded but that for \(\text{N}_2 \text{O} \) was 0.48.

Absolute efficiencies at 975 K. Absolute efficiencies on a collision basis, \(\beta_c \), were obtained from the pressure (collisional rate \(\omega \)) displacement by comparison of the data with calculated (App I) fall off curves (Fig. 2). The experimental fall off is displaced with respect to the strong collider curve and
\[\beta_c = \omega(sc) / \omega(wc); k/k_{\infty} = 0.03. \]

The collision cross sections of refs. 7b and 16 were used. The fall off curves were calculated for various assumed average energy-transfer step sizes and probability distribution model by a stochastic computation similar to that described earlier.\(^\text{19}\) The value of \(\langle \Delta E \rangle_d \) is also obtained, as well as the dimensionless parameter, \(E' = \langle \Delta E \rangle_d / \langle E^+ \rangle \), where \(\langle E^+ \rangle \) is the average energy of substrated molecules above \(E_0 \) as given by the Boltzmann distribution. It has been shown\(^\text{19}\) that \(\beta_c \) is a universal function of \(E' \), for a particular distribution model. Values of \(\beta_c \) are summarized in Table III. It appears\(^\text{16,19}\) that the step ladder (or gaussian) model is an apt one for more efficient colliders while an exponential model may be more correct for weaker colliders.

The value of \(\langle \Delta E \rangle_d \) measured here for \(\text{H}_2 \) gas is closely similar to that measured previously at the same temperature in the cyclopropane-d\(_2\) system for \(\text{He} \), which has comparable efficiency. The value 1100 cm\(^{-1}\) for \(\text{CO}_2 \), the most efficient gas studied here, is less than that measured previously\(^7\text{b}\) for the more efficient parent cyclopropane substrate (1900 cm\(^{-1}\)). The \(\langle \Delta E \rangle_d \) value for \(\text{N}_2 \) is intermediate.
Temperature dependence of $\langle \Delta E \rangle_d$ and β_c. Theoretical falloff plots at 1175 K were calculated for various assumed collisional energy transfer step sizes. These are similar to those in Fig. 2 and are given in ref. 12. By fitting the rate data of Table IV to the calculated curves, the appropriate values of $\langle \Delta E \rangle_d$ were obtained (Table IV); the collision cross-sections of ref. 7b were employed.

The collisional efficiencies β_c were again evaluated, at a fall off value of $k/k_w = 0.01$, by comparison of the displacement of the experimental weak collider data on the collision rate axis with respect to the theoretical strong collider curve (Table IV).

By comparison of the 975° and 1175°K results, it is evident that β_c decreases markedly — particularly since $\langle E \rangle$ appears to decrease with rise of temperature. Such a decrease is predicted on theoretical grounds.7a The average activation energies, ~45 kcal, are very low as a result of the decrease of β_c with temperature. The present data, although limited, provide a useful complement to the meager number of investigations of the collisional efficiencies for polyatomic molecules at higher temperatures.

It may be noted that earlier shock tube studies7a have yielded low values of the activation energy at elevated temperatures. It was suggested7a earlier that at least part of the reason for the low shock tube values of E_a could be attributed to a decline of the collisional efficiency with temperature.

Dedication

This paper is dedicated to Don Bunker.
Appendix I

Model for RRKM Calculations

Complex frequencies (cm\(^{-1}\)): 3020(5), 1430(3), 1100(4), 900(5), 550(3)

Molecule frequencies (cm\(^{-1}\)): 3050(6), 1460(3), 1080(7), 870(3), 735(2)

\(d = 12; \ (I^+/I)^{1/2} = 1.24\)

\(E_0 = 62.7 \text{ kcal mole}^{-1}\)
Table I. Illustrative Run Data; Rate constants \(k \) (sec\(^{-1}\))

A. He (2.14 torr); \(\bar{U} = 40 \text{ cm sec}^{-1} \)

<table>
<thead>
<tr>
<th>Run (z) (cm)</th>
<th>5.0</th>
<th>6.0</th>
<th>7.5</th>
<th>8.0</th>
<th>10</th>
<th>13</th>
<th>Run Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(u^a)</td>
<td>0.064</td>
<td>0.074</td>
<td>0.079(^b)</td>
<td></td>
<td></td>
<td></td>
<td>0.074</td>
</tr>
<tr>
<td>d</td>
<td>0.081</td>
<td>0.079</td>
<td>0.077</td>
<td></td>
<td></td>
<td></td>
<td>0.079</td>
</tr>
<tr>
<td>2</td>
<td>0.078</td>
<td>0.098</td>
<td>0.090</td>
<td></td>
<td></td>
<td></td>
<td>0.086</td>
</tr>
<tr>
<td>(u^a)</td>
<td>0.078</td>
<td>0.084</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>0.081</td>
<td>0.093</td>
<td>0.101</td>
<td></td>
<td></td>
<td></td>
<td>0.093</td>
</tr>
<tr>
<td>3</td>
<td>0.071</td>
<td>0.062</td>
<td>0.074</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(u^a)</td>
<td>0.088</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>0.080</td>
<td>0.111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.096</td>
</tr>
<tr>
<td>4</td>
<td>0.083</td>
<td>0.081</td>
<td>0.087</td>
<td></td>
<td></td>
<td></td>
<td>0.088</td>
</tr>
<tr>
<td>(u^a)</td>
<td>0.092</td>
<td>0.085</td>
<td>0.097</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>0.095</td>
<td>0.103</td>
<td>0.109</td>
<td></td>
<td></td>
<td></td>
<td>0.098</td>
</tr>
<tr>
<td>5</td>
<td>0.092</td>
<td>0.104</td>
<td>0.153</td>
<td>0.114</td>
<td>0.116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(u^a)</td>
<td>0.102</td>
<td>0.118</td>
<td>0.130</td>
<td>0.113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>0.099</td>
<td>0.116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grand Average 0.092 ± 0.005\(^c\)
Table I. (continued)

B. H$_2$ (2.14 torr); $\bar{U} = 90$ cm sec$^{-1}$

<table>
<thead>
<tr>
<th>Run</th>
<th>z(cm)</th>
<th>5.0</th>
<th>6.0</th>
<th>7.5</th>
<th>9.0</th>
<th>10.0</th>
<th>12.0</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1d</td>
<td>d</td>
<td>0.15</td>
<td>0.25</td>
<td></td>
<td>0.21</td>
<td></td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.16</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d</td>
<td>d</td>
<td>0.19</td>
<td>0.22</td>
<td></td>
<td>0.22</td>
<td></td>
<td></td>
<td>0.21</td>
</tr>
<tr>
<td>3</td>
<td>u</td>
<td>0.11</td>
<td>0.10</td>
<td></td>
<td>0.12</td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>0.12</td>
<td>0.13</td>
<td></td>
<td>0.13</td>
<td></td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>4</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td>0.20</td>
<td>0.25</td>
<td></td>
<td>0.23</td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>0.26</td>
<td>0.32</td>
<td>0.27</td>
<td>0.32</td>
<td></td>
<td></td>
<td>0.27</td>
</tr>
<tr>
<td>5</td>
<td>u</td>
<td>0.20</td>
<td>0.18</td>
<td></td>
<td>0.15</td>
<td></td>
<td></td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.16</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>0.29</td>
<td>0.20</td>
<td>0.19</td>
<td>0.20</td>
<td></td>
<td></td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.19</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grand Average 0.19 ± .02c

a u or d represents up or downstream measurements, respectively.
b Multiple entries represent repetitions at different times during a run.
c Standard deviation of the mean.
d No upstream measurements in this case.
Table II. Summary of Rate Constants\(^a\) (sec\(^{-1}\)) and Efficiencies, \(^b\) \(\beta_p\), at 975 K.

<table>
<thead>
<tr>
<th>(\beta) (torr)</th>
<th>0.53</th>
<th>1.0</th>
<th>2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k) (\beta_p)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CO}_2)</td>
<td>(0.28 \pm 0.09)(^c) ((1))</td>
<td>(0.20 \pm 0.05) ((1))</td>
<td>(0.39 \pm 0.04) ((1))</td>
</tr>
<tr>
<td>(\text{N}_2)</td>
<td>(0.051 \pm 0.020) (0.18)</td>
<td>(0.13 \pm 0.01) (0.65)</td>
<td>(0.23 \pm 0.02) (0.59)</td>
</tr>
<tr>
<td>(\text{H}_2)</td>
<td>(0.035 \pm 0.001) (0.13)</td>
<td>(0.069 \pm 0.002) (0.35)</td>
<td>(0.16 \pm 0.02) (0.41)</td>
</tr>
<tr>
<td>(\text{He})</td>
<td>(0.035) (0.13)</td>
<td>(0.065) (0.33)</td>
<td>(0.14 \pm 0.01) (0.36)</td>
</tr>
</tbody>
</table>

\(^a\) Based on calibration described in text

\(^b\) Values relative to \(\text{CO}_2 \equiv 1\)

\(^c\) Standard deviation from fit of line
Table III. Values of β_c and $\langle \Delta E \rangle_d$ (cm$^{-1}$) at 975 K.

<table>
<thead>
<tr>
<th></th>
<th>$\langle \Delta E \rangle_d^{SL}$</th>
<th>$\langle \Delta E \rangle_d^{EXP}$</th>
<th>E'</th>
<th>β_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>--</td>
<td>190b</td>
<td>0.16</td>
<td>0.010</td>
</tr>
<tr>
<td>H_2</td>
<td>--</td>
<td>150</td>
<td>0.14</td>
<td>0.009</td>
</tr>
<tr>
<td>N_2</td>
<td>450</td>
<td>400</td>
<td>0.37</td>
<td>0.02</td>
</tr>
<tr>
<td>CO_2</td>
<td>1100</td>
<td>--</td>
<td>1.0</td>
<td>0.09</td>
</tr>
</tbody>
</table>

a) $E' = \langle \Delta E \rangle_d/\langle E^+ \rangle$, where $\langle E^+ \rangle$ is the average energy (1094 cm$^{-1}$) above E_0 for a Boltzmann distribution (Ref. 18).

b) Based on calibration of rate. See Text.

c) At $k/k_\infty = 0.015$
Table IV. Summary of rate constants (1175 K), β_c and $<\Delta E>_d$

<table>
<thead>
<tr>
<th></th>
<th>p (torr)</th>
<th>ΔU^a (cm sec$^{-1}$)</th>
<th>k (sec$^{-1}$)</th>
<th>$<\Delta E>_d^d$ (cm$^{-1}$)</th>
<th>β_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$</td>
<td>0.53</td>
<td>$13.8 \pm 2.0(4)^b$</td>
<td>450 ± 150</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.02</td>
<td>$8.0 \pm 0.6(9)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.14</td>
<td>$14.2 \pm 1.4(10)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N$_2$</td>
<td>0.53</td>
<td>$8.4 \pm 0.6(6)$</td>
<td>350 ± 150</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.02</td>
<td>$5.8 \pm 0.4(8)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.14</td>
<td>45-85</td>
<td>$12.3 \pm 0.8(4)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H$_2$</td>
<td>2.14</td>
<td>5.6 ± 0.4^c</td>
<td>110</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>0.53</td>
<td>100-198</td>
<td>2.75\pm 0.05(6)</td>
<td>200 \pm 50</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>2.14</td>
<td>95-136</td>
<td>10.5 \pm 0.8(12)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Range of \bar{U} in runs where \bar{U} varied significantly.

b) Standard deviation of the mean of the number of run measurements shown in parenthesis.

c) Average of two measurements only.

d) Averaged over all pressures

e) At $k/k_\infty = 0.01$
References

† Present address: Chemistry Department, Tougaloo College, Tougaloo, MS 39174
‡ Present address: Chemistry Department, University of Pittsburgh, Pittsburgh, PA 15213
NSF ERG Trainee

1. This work was supported by the Office of Naval Research.

5. A. F. Dodonov, G. K. Lanrovskaya, V. P. Struin, and V. L. Tal'rose, Kinet.
 Katal., 7, 693 (1966), et. seq.

7. a) B. S. Rabinovitch, D. G. Keil, J. F. Burkhalter and G. B. Skinner, Tenth
 Intern. Shock Tube Sympos., Kyoto, 1975, p. 579; b) I. E. Klein and B. S.

Figure Captions

Fig. 1 Plot of inverse concentration vs z at 25° for several gases

- Δ, butane;
- \bigcirc, cyclopropane;
- \square, ethane. Slope ratios:
 - butane: cyclopropane: ethane; experimental = 1.3:1:.78;
 - theoretical: 1.1:1:.84.

Fig. 2 Plot of $\log k/k_\infty$ vs $\log \omega$ for cyclopropane-d_2 at 975 K for various bath gases:

- \square, CO$_2$;
- \bigtriangleup, N$_2$;
- \Diamond, H$_2$;
- \bigcirc, He.
DISTRIBUTION LIST

Contractor ________________________ University of Washington ________________________
Contract Number ____________________ N00014-75-C-0690 ________________________
NR 092-549 ________________________ Date ________________________

Office of Naval Research
Code 473
Arlington, VA 22217
Attn: Lt. Richard Miller

Office of Naval Research Branch Office
1030 East Green Street
Pasadena, CA 91106
Attn: Dr. R. J. Marcus

Office of Naval Research Branch Office
536 S. Clark Street
Chicago, IL 60605
Attn: Dr. J. Smith

Defense Documentation Center
Bldg. 5
Cameron Station
Alexandria, VA 22314

Office of Naval Research Branch Office
495 Summer Street
Boston, MA 02210
Attn: Dr. L. H. Peebles

Office of Naval Research Resident Representative
University of Washington
3710 Brooklyn Avenue NE, Unit 2
Seattle, WA 98195

U. S. Naval Research Laboratory
Code 2627
Washington, D.C. 20375

Naval Research Laboratory
Code 6100
Washington, D.C. 20375

Naval Air Systems Command
Code 440
Washington, D.C. 20360
Attn: Dr. H. Rosenwasser

No. Copies
10
1
1
12
1
6
1
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Naval Sea Systems Command\nSEA-0331\nWashington, D.C. 20362\nAttn: Mr. J. Murrin</td>
</tr>
<tr>
<td>1</td>
<td>Naval Sea Systems Command\nSEA-0332\nWashington, D.C. 20362\nAttn: Dr. A. Amster</td>
</tr>
<tr>
<td>1</td>
<td>Naval Surface Weapons Center\nResearch and Technology Dept.-WR\nSilver Spring, MD 20910</td>
</tr>
<tr>
<td>1</td>
<td>Naval Weapons Center\nResearch Department\nCode 60\nChina Lake, CA 93555</td>
</tr>
<tr>
<td>3</td>
<td>Naval Weapons Center\nCode 608\nChina Lake, CA 93555\nAttn: Ronald L. Derr</td>
</tr>
<tr>
<td>1</td>
<td>Air Force Office of Scientific Research\nDirectorate of Aerospace Sciences\nBolling Air Force Base\nWashington, D.C. 20332</td>
</tr>
<tr>
<td>1</td>
<td>Air Force Office of Scientific Research\nDirectorate of Chemical Sciences\nBolling Air Force Base\nWashington, D.C. 20332</td>
</tr>
<tr>
<td>1</td>
<td>Air Force Office of Scientific Research\nDirectorate of Physics\nBolling Air Force Base\nWashington, D.C. 20332</td>
</tr>
<tr>
<td>1</td>
<td>U.S. Army Research Office\nChemistry Division\nP.O. Box 12211\nResearch Triangle Park, N.C. 27709</td>
</tr>
<tr>
<td>1</td>
<td>U.S. Army Research Office\nPhysics Division\nP.O. Box 12211\nResearch Triangle Park, N.C. 27709</td>
</tr>
<tr>
<td>5</td>
<td>Professor S.N.B. Murthy\nTechnical Director, Project SQID\nPurdue University\nLafayette, IN 47907</td>
</tr>
</tbody>
</table>